
Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP, pages 1–5
Hong Kong, China, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

1

Dependency Tree Annotation with Mechanical Turk

Stephen Tratz
CCDC Army Research Laboratory

Adelphi, Maryland 20783 USA
stephen.c.tratz.civ@mail.mil

Abstract

Crowdsourcing is frequently employed to
quickly and inexpensively obtain valuable lin-
guistic annotations but is rarely used for pars-
ing, likely due to the perceived difficulty of
the task and the limited training of the avail-
able workers. This paper presents what is, to
the best of our knowledge, the first published
use of Mechanical Turk (or similar platform)
to crowdsource parse trees. We pay Turkers to
construct unlabeled dependency trees for 500
English sentences using an interactive graph-
ical dependency tree editor, collecting 10 an-
notations per sentence. Despite not requiring
any training, several of the more prolific work-
ers meet or exceed 90% attachment agreement
with the Penn Treebank (PTB) portion of our
data, and, furthermore, for 72% of these PTB
sentences, at least one Turker produces a per-
fect parse. Thus, we find that, supported with
a simple graphical interface, people with pre-
sumably no prior experience can achieve sur-
prisingly high degrees of accuracy on this task.
To facilitate research into aggregation tech-
niques for complex crowdsourced annotations,
we publicly release our annotated corpus.

1 Introduction

State-of-the-art parsing models, which are im-
portant components to countless natural language
processing workflows, are trained using treebanks
of manually annotated parse trees. Unfortunately,
many languages do not have treebanks and even
the treebanks that do exist possess significant lim-
itations in terms of size, genre, style, topic cover-
age, and/or other dimensions. Even the venerable
Penn Treebank (Marcus et al., 1993)—one of the
largest and most widely used treebanks—contains
examples from only a single news source. Ex-
panding existing treebanks or creating new ones
tends to be quite expensive; for instance, the
Prague Dependency Treebank, with over a million

syntactically linked words, cost approximately
$600,000 (Böhmová et al., 2003). In this work, we
explore the use of crowdsourcing both to mitigate
this cost barrier and also because, perhaps more
importantly, it serves as a proof-of-concept for the
case in which only non-experts are available to
produce the parse trees, which is likely to be the
situation for most under-resourced languages. De-
spite the widespread use of crowdsourcing to col-
lect linguistic annotations, there have been few ef-
forts to apply crowdsourcing to parsing—a fact
we believe is largely due to concerns about the
complexity of the task, the training requirements
for the workers, as well as the skillfulness, dili-
gence, and consistency of workers on crowdsourc-
ing platforms such as Mechanical Turk.

This paper presents what is, to the best of our
knowledge, the first use of Mechanical Turk or
similar platform to crowdsource dependency parse
trees. We request 10 annotations for each of 500
trees (250 from the Penn Treebank (PTB) and 250
from Wikipedia) and find that, despite not requir-
ing any form of training, several of the Turkers
who annotate 50 or more PTB sentences achieve at
least 90% attachment agreement with the depen-
dency conversion reference trees. Furthermore,
for 72% of the PTB sentences, at least one Turker
produces a tree that fully matches the reference.
Ultimately, these results establish a baseline for
what people with presumably no prior training can
achieve in performing this challenging task.

2 Approach

To collect dependency tree annotations, we use
Mechanical Turk’s external question HIT (Human
Intelligence Task) functionality. HITs are the basic
unit of work on Mechanical Turk; essentially, they
are questions to be answered, with an associated
monetary reward. In the case of external question

2

Figure 1: Screenshot of our annotation interface in the Mechanical Turk sandbox.

HITs, the annotation interface is hosted on an ex-
ternal website, which is embedded on the Mechan-
ical Turk page within an HTML iframe. Each of
our HITs involves constructing an unlabeled1 de-
pendency tree for a single sentence using the an-
notation interface described below. When Turk-
ers submit their work, it goes both to the external
server and to Amazon’s Mechanical Turk website.

2.1 Graphical Annotation Interface
In our annotation interface (Tratz and Phan, 2018),
shown in Figure 1, words are displayed as nodes
and dependencies are displayed as edges between
them.2 Turkers create dependency arcs by drag-
ging and dropping word nodes. Dropping one
node onto another forms a dependency arc be-
tween the two, with the dragged node as the de-
pendent of the latter. While dragging, green circu-
lar dropzones appear to highlight possible attach-
ment sites.

The tool is configured to have all words initially
attached to the dummy root node. The Submit
HIT button becomes operable only when there is
exactly one word connected to the dummy root.
Thus, annotators are required to reattach all but
one of the words.

Annotation guidelines are accessible by click-
ing the Instructions button, which brings up a box
with the instructions that can be opened into a sep-
arate window. Since many Turkers may be reluc-
tant to read wordy guides, our instructions consist
primarily of 55 small example trees.

1We leave labeled dependency trees for future work, as
labeling dependencies (e.g., ‘subject’, ‘object’) could be per-
formed separately from the tree construction.

2Several aspects of the visual layout and styling of our
tool are inspired by TRED (Pajas and Štěpánek, 2008).

2.2 Data
For our Mechanical Turk HITs, we construct a
dataset consisting of 250 sentences from the Penn
Treebank (Marcus et al., 1993) and 250 from The
Westbury Lab Wikipedia corpus (Shaoul, 2010),
each consisting of 10 to 15 alphanumeric tokens.
We ignore Penn Treebank sentences that merely
report changes in earnings figures, prices, etc.,
since these types of sentences are particularly fre-
quent in the Penn Treebank and make for an undi-
verse (and, therefore, uninteresting) sample. With
the Wikipedia data, we filter incomplete and un-
grammatical sentences,3 and sentences with offen-
sive language, heavy use of foreign words, or es-
oteric technical content. We merge various date
expressions (e.g., March 15, 2000) into single to-
kens since these elements can be recognized with
high accuracy using regular expressions.

2.3 HIT configuration parameters
We require that Turkers who work on our HITs re-
side in the USA or Canada, have a 95% or higher
approval rating, and have previously had at least
20 other HITs approved. We pay $0.084 per com-
pleted assignment and request a total of 10 anno-
tations per sentence (from 10 different workers).

2.4 Evaluation
For evaluation, we calculate both the percentage
of words correctly attached (UAS: unlabeled at-
tachment score) and the percentage of trees that

3Many of these errors may be due to the overly aggressive
nature of our sentence splitter.

4In practice, this proved to be rather low for the amount
of time Turkers appear to have been spending, so we gave out
bonuses of $0.20 for most HIT assignments after all assign-
ments were received.

3

Worker Trees Penn Treebank Wikipedia
Trees UAS FTM t̃ime Trees UAS FTM t̃ime

W1 177 90 0.921 0.500 53.5 87 0.935 0.552 51
W2 453 223 0.913 0.439 37 230 0.918 0.465 33
W3 499 249 0.906 0.454 44 250 0.907 0.428 41
W4 410 201 0.901 0.443 42 209 0.901 0.407 38
W5 412 194 0.840 0.211 40 218 0.865 0.261 36
W6 450 226 0.796 0.159 45.5 224 0.831 0.228 38.5
W7 411 207 0.774 0.077 54 204 0.792 0.127 47.5
W8 434 211 0.724 0.057 55 223 0.768 0.112 44
W9 119 61 0.724 0.115 34 58 0.708 0.138 35.5
W10 352 178 0.644 0.034 45.5 174 0.688 0.052 39
W11 197 107 0.500 0.000 111 90 0.518 0.000 94
W12 128 59 0.423 0.000 311 69 0.434 0.000 238
W13 379 185 0.228 0.000 48 194 0.245 0.000 46
A1 500 250 0.969 0.712 — 250 1.000 1.000 —

Table 1: Results for the 13 workers (W1–W13) who annotate 50 or more Penn Treebank trees, including the total
number of trees annotated, unlabeled attachment scores (UAS), full tree match rate (FTM), and median time in
seconds (t̃ime) between accepting a HIT and submitting results. For reference, we also include scores for the
primary author (A1).

fully match the reference (FTM: full tree match
rate). In the case of the Penn Treebank sentences,
the reference is the automatic dependency conver-
sion; for the Wikipedia sentences, we use the pri-
mary author’s annotation. A total of 112 Turk-
ers participate; however, most only annotate 1 or
2 sentences, making it difficult to estimate their
aptitude for this task. The 13 workers who anno-
tated 50 or more sentence account for over 88% of
the annotations received. The scores for these 13
most prolific annotators are presented in Table 1,
along with the scores for the primary author (who
is, ideally, representative of an expert annotator)
included as well for comparison.

2.5 Results Discussion

We note a high degree of variation in the quality
of the work of the different annotators. Four of the
more prolific Turkers achieve attachment scores of
90% or higher on the Penn Treebank portion of
the data, but others are unable to reach even 50%
agreement. To examine how the Turkers’ perfor-
mance varies with time, we plot the change to their
overall attachment scores as they perform annota-
tions (see Figure 2). Several annotators, includ-
ing W6, W8, W10, and W11, improve noticeably
early on as they gain experience. A couple anno-
tators (i.e., W2 and W7) show slight decreases in
their scores, which may be due to fatigue. Overall,
there appears to be a very high degree of consis-
tency over time for the individual Turkers.

For 72% of the Penn Treebank sentences, at
least one annotator produces a dependency tree

that fully matches the reference completely. Tak-
ing the Turker-provided tree that best matches the
reference for each of the PTB sentences results in
a set of trees with a 96.8% attachment score, 3257
of 3363 attachments agreeing. Examining the re-
maining 106 disagreements in more detail, we ob-
serve that approximately 13 are due to handling
of business suffixes (e.g., Corp., Co.), at least 8
are due to errors in the reference, and 5 are re-
lated to quantifying adverbs preceding expressions
with numbers (e.g., about 8 %). Many of these
disagreements could be brought into alignment by
tweaking the annotation guide and/or fixing bugs
in the dependency conversion. The remaining er-
rors fall into a wide variety of categories. A sub-
stantial portion are related to phenomena that are
somewhat challenging to represent well with de-
pendency parses, such as gapping, right node rais-
ing, and it extraposition.

In general, the results seem to suggest that
the Wikipedia sentences may be slightly easier to
parse, but, overall, the results are quite similar to
those for the PTB sentences.

3 Related Work

To date, there have been very few efforts to crowd-
source parsing and no efforts, to the best of our
knowledge, to do so directly with a full parse tree
editor like ours other than in small classroom stud-
ies like that of Gerdes (2013).

In what is the most closely related line of
work, researchers build and deploy a Game with
a Purpose (GWAP) (Von Ahn, 2006) called ZOM-

4

Figure 2: Overall unlabeled attachment score on Penn Treebank sentences for the 13 most prolific workers (W1–
W13), calculated as each annotation is received. (Note: Workers do not annotate sentences in the same order.)

BILINGO in order to crowdsource a French tree-
bank (Fort et al., 2014; Guillaume et al., 2016;
Fort et al., 2017). ZOMBILINGO participants, who
are all volunteers, work on one attachment deci-
sion at a time, using the metaphor that the gov-
erning word is devouring the child just as zombies
seek out brains. The participants must complete a
training phase for each dependency relation type
that they work on, and they are unable to proceed
to relations deemed more difficult until they have
demonstrated some skill on less challenging de-
pendency relations.

Another related effort is that of He et al. (2016),
who, in an initial step toward human-in-the-loop
parsing, crowdsource individual attachment anno-
tations by asking annotators multiple choice ques-
tions automatically generated using parse trees
produced by an existing parser. They are able to
achieve some performance gains, including a 0.2
F1 improvement on their in-domain corpus (from
88.1 to 88.3) and a 0.6 F1 improvement on their
out-of-domain corpus (from 82.2 to 82.8).

It is worth noting that there are a number of
ethical concerns regarding the use of Mechanical
Turk, and a variety of articles have been written on
this subject. We refer the reader to a discussion of
these issues by Fort et al. (2011).

4 Conclusion and Future Work

This paper details the first effort to crowdsource
treebanking using Mechanical Turk or similar on-
line crowdsourcing platform. Using our graphical
web-based treebanking tool, we collect 10 depen-
dency parse annotations for each of 500 sentences.
Despite not requiring any training, several of the
annotators achieve attachment scores at or above

90%. Although this may not be of sufficient qual-
ity to train a competitive English parser, it estab-
lishes a baseline for dependency tree annotation
using workers who are presumably non-experts,
demonstrating the potential value that non-experts
can bring to parsing annotation projects. More-
over, treebanks with 90% attachment accuracy
would still be useful for other languages, espe-
cially those with little or no annotated data. To this
end, we plan to investigate whether our approach
will result in comparable accuracy for other lan-
guages, which will likely require recruiting work-
ers outside of Mechanical Turk.

We find that taking the best tree for each of the
250 Penn Treebank sentences results in a dataset
that agrees with the Penn Treebank dependency
conversion on 96.8% of attachments and agrees
with the full dependency tree 72% of the time.
Though unreasonable to assume that any such or-
acle exists, it may be possible to approach this
level of accuracy by employing a multi-step ap-
proach in which workers review and judge the
work of others, similar to the translation crowd-
sourcing efforts of Zaidan and Callison-Burch
(2011). To facilitate research among the greater
community into techniques for aggregating com-
plex crowdsourced annotations, we provide our
annotated dataset at https://github.com/
USArmyResearchLab/ARL_CrowdTree.

Finally, we plan to integrate active learning al-
gorithms that run while the Turkers are annotating.
A query by committee (Seung et al., 1992) frame-
work would be a natural choice—multiple differ-
ent parsing models would learn from the submit-
ted trees and the sentences provided to the anno-
tators would be selected based upon the level of
disagreement between the parsers.

https://github.com/USArmyResearchLab/ARL_CrowdTree
https://github.com/USArmyResearchLab/ARL_CrowdTree

5

References
Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora

Hladká. 2003. The Prague Dependency Treebank.
In Anne Abeillé, editor, Treebanks: Building and
Using Parsed Corpora, pages 103–127. Springer
Netherlands.

Karën Fort, Gilles Adda, and K Bretonnel Cohen.
2011. Amazon Mechanical Turk: Gold Mine or
Coal Mine? Computational Linguistics, 37(2):413–
420.

Karën Fort, Bruno Guillaume, and Hadrien Chastant.
2014. Creating Zombilingo, a Game With A Pur-
pose for dependency syntax annotation. In Proceed-
ings of the First International Workshop on Gamifi-
cation for Information Retrieval, pages 2–6.

Karën Fort, Bruno Guillaume, and Nicolas Lefebvre.
2017. Who wants to play Zombie? A survey of
the players on ZOMBILINGO. In Proceedings of
Games4NLP: Using Games and Gamification for
Natural Language Processing.

Kim Gerdes. 2013. Collaborative Dependency Anno-
tation. In Proceedings of the Second International
Conference on Dependency Linguistics (DepLing
2013), pages 88–97.

Bruno Guillaume, Karen Fort, and Nicolas Lefeb-
vre. 2016. Crowdsourcing Complex Language Re-
sources: Playing to Annotate Dependency Syn-
tax. In Proceedings of the 26th International Con-
ference on Computational Linguistics (COLING),
pages 3041–3052.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-Loop Parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016), pages 2337–2342.

Mitchell P. Marcus, Mary A. Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):330.

Petr Pajas and Jan Štěpánek. 2008. Recent Advances
in a Feature-Rich Framework for Treebank Annota-
tion. In Proceedings of the 22nd International Con-
ference on Computational Linguistics, pages 673–
680. Association for Computational Linguistics.

H Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by Committee. In Proceed-
ings of the fifth annual workshop on Computational
learning theory, pages 287–294.

Cyrus Shaoul. 2010. The Westbury Lab Wikipedia
Corpus. Edmonton, Alberta: University of Alberta.

Stephen Tratz and Nhien Phan. 2018. A Web-based
System for Crowd-in-the-Loop Dependency Tree-
banking. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2018), pages 2189–2193.

Luis Von Ahn. 2006. Games with a Purpose. Com-
puter, 39(6):92–94.

Omar F Zaidan and Chris Callison-Burch. 2011.
Crowdsourcing Translation: Professional Quality
from Non-Professionals. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-
Volume 1, pages 1220–1229.

