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Abstract

Despite the remarkable progress on Machine
Reading Comprehension (MRC) with the help
of open-source datasets, recent studies indicate
that most of the current MRC systems unfor-
tunately suffer from weak robustness against
adversarial samples. To address this issue, we
attempt to take sentence syntax as the lever-
age in the answer predicting process which
previously only takes account of phrase-level
semantics. Furthermore, to better utilize the
sentence syntax and improve the robustness,
we propose a Syntactic Leveraging Network,
which is designed to deal with adversarial
samples by exploiting the syntactic elements
of a question. The experiment results indicate
that our method is promising for improving the
generalization and robustness of MRC models
against the influence of adversarial samples,
with performance well-maintained.

1 Introduction

As one of the ultimate goals of natural lan-
guage processing, Machine Reading Comprehen-
sion (MRC) has been attracting much attention
from both the academical and industrial institu-
tions (Richardson et al., 2013; Hermann et al.,
2015). Recently, most of the outstanding studies
have benefited from the rapid development of ma-
chine reading competitions with shared datasets,
such as SQuAD (Rajpurkar et al., 2016), MS
MARCO (Nguyen et al., 2017). According to the
competition results, the Deep Learning based ap-
proaches have shown significant strength on MRC
tasks and achieved most of the top-ranked posi-
tions (Wang et al., 2017; Yu et al., 2018).

Nevertheless, the very recent research in MRC
indicates that simply chasing the performance im-
provement on given datasets is unwise, since the
generalization and robustness might be weakened
due to the great fitting capability of DL models

trained on a specific corpus. Especially, the re-
search on adversarial reading comprehension sam-
ples conducted by Jia and Liang (2017) has shown
that the performances of most of the DL based
MRC models decrease significantly on the adver-
sarial samples. These adversarial samples are con-
structed by simply appending one sentence similar
to the question into the paragraph, without chang-
ing the original answer. This work indicates that,
apparently, there exists quite a gap between the
current MRC approaches and the methodologies
that really comprehend natural language passages.

In this paper, we attempt to face the challenge
brought by the RC adversarial samples and aim at
proposing a reading comprehension system with
better generalization and robustness. For this pur-
pose, this paper presents a method to improve the
answer inferencing process of MRC, by leverag-
ing the probability function for estimating answer
using the information related to sentence-question
matching. Moreover, to further improve the ro-
bustness of the MRC system, we propose a novel
model named syntactic leveraging network which
exploits the syntax of the question as the prior in-
formation to match the answer-contained sentence
and question more precisely.

2 Methodology

Most existent MRC methods predict answers by
calculating probabilities of answer spans (i, j).
For an answer a starts at position i, ends at j and
locates in sentence k, we denote it as a = {i, j, k}.
Given a question q and a paragraph p, the proba-
bility of a is computed by:

p(a|q,p) = ps(i|q,p) · pe(j|q,p) (1)

and:
ps(i|q,p) = fs(i|q,p)
pe(j|q,p) = fe(j|q,p)

(2)
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Here functions fs and fe are usually implemented
by neural networks to predict the probabilities.

In most non-inferencing machine reading com-
prehension datasets such as SQuAD, all infor-
mation needed to identify answers can be found
inside one single sentence (Raiman and Miller,
2017). In such datasets, given one question and
one phrase inside a sentence, overall whether this
phrase is the answer depends on two conditions:
1) if the phrase itself generally matches with the
question; 2) if the syntactic elements in the sen-
tence are precisely consistent with the syntactic el-
ements in the question.

However, the experiment results in Jia and
Liang (2017) have shown that the current MRC
systems pay less attention to the second condition,
thus can be easily attacked by question-related
sentences as adversarial samples. We attribute this
deficiency to the fact that the current models solely
takes the phrase-level information into account
when predicting the probability p(a|q,p), but fails
to exploit the sentence-level matching between
the answer-contained sentence and the question,
which is of importance on evaluating the second
condition. Consequently, we propose a new prob-
ability function for estimating answers by consid-
ering the sentence level matching degree:

p∗(a|q,p) = ps(i|q,p) · pe(j|q,p) · psent(k|q,p)α

psent(k|q,p) = fsent(q, sk)
(3)

where sk is the k − th sentence in p. In gen-
eral, psent predicts if the answer a presents in the
k − th sentence from the paragraph, it captures
the matching between sentence and question as a
leverage to improve the system robustness. α is
the leveraging factor for psent(k|q,p).

2.1 Syntactic Leveraging Network
Although theoretically fsent can be implemented
by any model aiming at evaluating the matching
between two sentences, to correctly identify real
answer-contained sentences from semantically-
closed adversarial sentences, it is necessary to
come up with a model which is capable of pre-
cisely extracting and comparing the syntactic ele-
ments within sentences and questions. Therefore
Syntactic Leveraging Network (SLN) is proposed
to predict psent(k|q,p), so as to improve the ro-
bustness of MRC models. The structure of SLN
is shown in Figure 1, which consists of the SRL
(Semantic role labeling) extractor, the CNN en-

coder, the Matching operator performing opti-
mal transport (Tam et al., 2019) and a classifier.

2.1.1 SRL Extractor
We utilize SRL (Gildea and Jurafsky, 2002;
Khashabi et al., 2018) to analyze the syntax of sen-
tences as prior information. In brief, it automat-
ically produces syntactic analyses by exploiting
generalizations from syntax-semantics links and
assigns labels to phrases in a sentence based on
their syntactic roles.

Given a question q, the SRL extractor separates
q into a sequence of phrases Q, specifically:

Q = SRL(q) = [q1, q2, . . . , qn] (4)

with corresponding lengths L = [l1, l2, . . . , ln].
Here each qi represents one syntactic element
within the q, and each can also be considered as
a condition that answer-contained sentences must
satisfy. The SLN model takes such sequence of
n-grams as inputs to represent the question.

2.1.2 CNN Encoder
The encoder projects the syntactic elements in Q
and s into real-valued vectors. Assuming CNN’s
filter windows range from wmin to wmax with
each kernel size of k. For qi in Q, it is only trans-
ferred into the filter window of size li in CNN:

qvi = CNNli(qi) i ∈ [1, n] (5)

This CNN is performed following Kim (2014), so
that the size of each qvi equals to the kernel size k.

For sentence s of length L, it is first split into
m1 separate phrases [s1, s2, . . . , sm], which con-
tains all n-grams (wmin ≤ n < wmax) in the sen-
tence. Then, each si is transferred into svj of size k
through CNN filters, such that:

sv = [sv1, s
v
2, . . . , s

v
m] (6)

where svj and qvi represent pieces of semantics in
the sentence and question.

2.1.3 Matching Operator
The matching operator is designed to evaluate if
the sentence generally matches with the syntac-
tic elements of the question. It first computes the
cosine-similarity between each qvi and svj , which
gives a similarity matrix S ∈ Rn×m. Then we im-
plement the max pooling across the row of S to
obtain qsim:

qsim = maxrow(S) = [qsim1 , qsim2 , . . . , qsimn ] (7)

1m = (wmax − wmin + 1) ∗ L−
∑max

i=min(wi − 1)
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Figure 1: The Architecture of Syntactic Leveraging Network

The value of each qsimi varies from 0 to 1, which
indicates the degree of similarity of each syntactic
element qi in s. Meanwhile, qsimi equals to 1 if the
syntactic element qi exist exactly in the s, which
is a significant signal for the element matching.

Furthermore, given S, for each qvi we compute
its corresponding hvi . Specifically:

hvi = [svargmaxj Sij
; qsimi ]

hv = [hv1, h
v
2, . . . , h

v
n]

(8)

where svargmaxj Sij
is the vector representation

of the most semantically-similar phase in the sen-
tence given qvi , and qsimi represents the degree
of similarity. Overall, hvi represents the most
matched phase in the sentence for one syntactic
element in the question and its corresponding de-
gree of matching. Finally, hv is transferred from
the Matching Operator as the output.

2.1.4 Classifier
The final classifier of SLN is designed to predict
if the sentence matches with the question. It first
concatenates the outputs hvi from the matching op-
erator with qvi as the LSTM inputs, such that:

ci = LSTM(ci−1, [hi; qi]) (9)

The last LSTM hidden states cn is then transferred
into a dense layer followed by a sigmoid activation
function, and binary cross-entropy is adopted as
the loss function.

3 Experiments

3.1 Experimental Setups

Data Description. We implement our method
on several end-to-end MRC models trained by
SQuAD dataset, and evaluate their robustness
before and after considering psent(k|q,p) using
the AddSent adversarial dataset (Jia and Liang,
2017). The training and test sets for MRC
models are generated from SQuAD. To compute
psent(k|q,p), we set those answer-contained sen-
tences in SQuAD as positive samples. For each
positive sample, three sentences inside the same
paragraph which do not contain answer are ran-
domly chosen as negative samples, so that the
positive/negative ratio is 1:3. All sentence-level
matching models are trained on above samples as a
binary-classification task using cross-entropy loss.
Baselines. Besides of SLN, we use relevance-
LSTM and Inner-Attention (Liu et al., 2016) as
baselines to compute fsent(q, sk). Relevance-
LSTM simply takes the last hidden states of the
sentence and question for similarity computation,
which is also used in the MRC model of Raiman
and Miller (2017); while Inner-Attention is the ab-
breviation for the Bidirectional LSTM encoders
with intra-attention, it utilizes the sentence’s rep-
resentation to attend words appearing in itself.
BiDAF (Seo et al., 2017) and MneReader (Hu
et al., 2017) are chosen as the back-end MRC
models, and the results are obtained by our Keras
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SQuAD AddSent
EM F1 EM F1

BiDAF
original 67.7 77.4 26.4 34.2
+Relevance-LSTM 67.8 77.6 26.4 34.2
+Inner-Attention 68.0 77.9 27.4 35.4
+SLN 67.7 77.5 28.4 36.4

MneReader
original 71.1 80.6 36.3 44.7
+Relevance-LSTM 70.8 80.1 36.1 44.3
+Inner-Attention 71.2 80.7 37.4 46.0
+SLN 70.9 80.3 37.9 46.7

Table 1: Results on the MRC datasets

Accuracy P@1
Random Guess 75.0% 25.0%

Relevance-LSTM 83.2% 80.1%
Inner-Attention 87.8% 86.2%

SLN 85.6% 82.7%

Table 2: Results on Sentence Matching

implementation (Chollet et al., 2015).
Parameter Settings. For SLN, we utilize the Al-
lenNLP to perform SRL (Gardner et al., 2017),
the filter windows are set from 1 to 8, with each
kernel size of 128. The hidden size of LSTM is
set as 128, while the size of the dense layer is set
as 64. Adam (Kingma and Ba, 2014) with learn-
ing rate 0.001 is used to optimize SLN, the batch
size is set as 8 and the models are trained for 50
epochs, with the early stop when the loss on vali-
dation set starts to drop. Dropout rate is set to 0.2
to prevent overfitting (Srivastava et al., 2014). We
utilize the pretrained 100-dim GloVe embeddings
for all the models and set it as untrainable during
training (Pennington et al., 2014). The leveraging
factor α are all set as 0.25 for relevance-LSTM,
Inner-Attention, and SLN.

For BiDAF and MneReader as back-end MRC
models, we follow the exact hyperparameter set-
tings of (Seo et al., 2017; Hu et al., 2017).

3.2 Results of the MRC Task

Table 1 details the performances of models on
MRC datasets. The results show that both the per-
formances of BiDAF and MneReader drop signif-
icantly on the adversarial dataset, which indicates
that current MRC models are not robust enough
to distinguish the semantically similar candidates
from answers. Concerning robustness, both Inner-
Attention and SLN improve the EM and F1 of
BiDAF and MneReader on AddSent dataset. This
shows evidence that the robustness of MRC mod-
els can be improved by properly exploiting the

sentence-level matching information. It can be
also observed that introducing the sentence-level
matching into the models overall is not detrimen-
tal to the performances of models on the regular
dataset, and the Inner-Attention even slightly in-
creases the EM and F1 on regular SQuAD.

By contrary, Relevance-LSTM fails to improve
the performance of current MRC models. We
attribute this phenomenon to two reasons: 1)
Relevance-LSTM mainly focuses on the seman-
tics of the whole sentence to evaluate the relevance
of two sentences, but current MRC models have
already captured this information; 2) The word-
level or phrase-level correspondence is important
in identifying whether two sentences are talking
about the same thing, which is also omitted in cur-
rent End-to-End metric-oriented MRC models.

3.3 Analysis on Sentence Matching

The results of the sentence matching are shown in
Table 2. It can be observed that Inner-Attention
achieves the best performance. We attribute its
high performance to the fact that its attention
mechanism helps to capture the semantics clues on
detecting answer-related sentences given the ques-
tion. However, although the Inner-Attention out-
performs SLN significantly on sentence matching,
the results on Adversarial dataset show that SLN is
more effective on robustness-promoting, reflected
by the highest EM and F1 achieved by SLN on
AddSent. Since most current MRC models have
already modeled the high-level semantics in the
sentences sufficiently, the attention mechanism in
inner-attention might be redundant thus less effec-
tive in identifying the adversarial samples. The
performance of SLN on robustness-promotion fur-
ther verifies our hypothesis that introducing the
syntax information as leverage on answer predic-
tion is a feasible way to enhance the robustness of
MRC systems.

4 Conclusions

In this paper, we exploit the usage of sentence-
level information, especially sentence syntax as
leverage, on machine reading comprehension task.
The experiment results show such approach is ca-
pable of improving the robustness of MRC sys-
tems against adversarial samples, with the per-
formance on regular datasets well maintained, al-
though currently, the improvements on robustness
are relatively moderate.
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