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Abstract

We present the approach taken by the
TurkuNLP group in the CRAFT Structural An-
notation task, a shared task on dependency
parsing. Our approach builds primarily on
the Turku neural parser, a native dependency
parser that ranked among the best in the recent
CoNLL tasks on parsing Universal Dependen-
cies. To adapt the parser to the biomedical
domain, we considered and evaluated a num-
ber of approaches, including the generation of
custom word embeddings, combination with
other in-domain resources, and the incorpora-
tion of information from named entity recogni-
tion. We achieved a labeled attachment score
of 89.7%, the best result among task partici-
pants.

1 Introduction

Syntactic analysis (parsing) is a fundamental task
in natural language processing (NLP) and a pre-
requisite for many related tasks. There is a long
tradition of research in automatic parsing target-
ing both constituency (phrase structure) and de-
pendency representations, with most work focus-
ing on the analysis of English news texts (Marcus
et al., 1994). Syntactic analyses are required also
by many methods for the analysis of biomedical
text; for example, information extraction methods
commonly rely on the shortest path over syntactic
dependencies to identify how entities mentioned in
text are related (Airola et al., 2008; Björne et al.,
2009; Liu et al., 2013; Luo et al., 2016). The
performance of parsers is known to be domain-
dependent: to create high-quality analyses of e.g.
biomedical texts, the tools should be trained on an-
notated corpora reflecting the domain (Miwa et al.,
2010). Syntactically annotated corpora of domain
texts are thus required for much of biomedical
NLP. These resources should also preferably fol-
low the relevant standards in the representation of

syntactic analyses to allow methods developed to
these standards to be applied also for biomedical
domain texts, thus allowing biomedical NLP to
benefit from advances in parsing technology.

The CRAFT Structural Annotation (SA) task,
organized in 2019 is a shared task on dependency
parsing largely following the setting of the popular
Conference on Computational Natural Language
Learning (CoNLL) 2017 and 2018 shared tasks on
dependency parsing (Zeman et al., 2017, 2018).
These tasks emphasize real-world scenarios by
casting the task as analyzing raw text (rather than
e.g. pre-tokenized and tagged text) and applying
universal, language-independent representations.
The CRAFT SA task follows these tasks in provid-
ing only plain text as input, requiring participat-
ing systems to perform sentence segmentation, to-
kenization, part-of-speech tagging, lemmatization,
and the identification of morphological features in
addition to analyzing the syntactic structure of the
input sentences. CRAFT SA also adopts the for-
mat and evaluation tools of the CoNLL tasks, and
its representation matches the universal represen-
tation of these tasks in part. The CRAFT task is
differentiated from the many corpus resources ap-
plied in the CoNLL tasks specifically in focusing
on biomedical domain texts, and CRAFT is unique
among syntactically annotated biomedical corpora
in that its texts are drawn from full-text articles,
rather than only article titles and abstracts.

We participated in the CRAFT SA task using an
approach that builds primarily on the Turku neural
parser (Kanerva et al., 2018), a native dependency
parsing system that previously ranked among the
best systems in the CoNLL 2018 task. As the
parser is fully retrainable, designed to accept the
format used for the CRAFT data, and agnostic to
the details of the representation, it was possible to
train it for the CRAFT task with little modifica-
tion. Additionally, as the parser has not been de-
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veloped or previously applied to biomedical En-
glish, we consider a number of modifications and
adaptions to improve on its performance, finding
in particular that the strong baseline performance
of the parser can be further improved through ini-
tialization with in-domain word vectors.

2 Background

Biomedical domain models have been available
for a number of constituency parsers (e.g. Char-
niak and Johnson (2005), McClosky and Char-
niak (2008)) and have been widely applied in do-
main information extraction efforts, frequently in
conjunction with heuristic conversions into depen-
dency representations such as Stanford dependen-
cies (De Marneffe and Manning, 2008). There
have also been native dependency parsers avail-
able for the domain, such as Pro3Gres (Schnei-
der and Rinaldi, 2004) and, later, GDep (Miyao
et al., 2008), nevertheless the abovementioned
McClosky-Charniak parser with Stanford depen-
dencies conversion was the workhorse of biomed-
ical dependency parsing for nearly a decade. Also
the treebanks available for training the parsers
in the biomedical domain have traditionally been
constituency-based, for instance the Penn BioIE
(Kulick et al., 2004) and especially the GENIA
treebank (Tateisi et al., 2005). The BioInfer cor-
pus (Pyysalo et al., 2007) was the first domain
corpus to adopt Stanford Dependencies as the na-
tive annotation scheme, coinciding with a gener-
ally growing interest in dependency parsing and
its applications.

The CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007) ad-
dressed multilingual dependency parsing, and
while data was provided for different languages
in the same format, the underlying representation
(e.g. dependency types) was not standardized in
these tasks. These tasks also included only predic-
tion of syntactic trees, whereas tokenization and
part-of-speech tags were given for the participants.

In recent years, there has been an increased in-
terest in native dependency parsing, reflected in ef-
forts such as Universal Dependencies (UD) (Nivre
et al., 2016) and the CoNLL 2017 and 2018 shared
tasks on multilingual parsing using UD data (Ze-
man et al., 2017, 2018). While these efforts have
covered a wide range of languages, genres and text
domains, and introduced end-to-end parsing from
plain text as the objective, they have not specifi-

Train Test
Documents 67 30

Sentences 21 731 9 099
Tokens 561 032 232 619

Table 1: CRAFT Structural Annotation statistics

Train Devel Eval
Documents 47 10 10

Sentences 15 007 3 421 3 303
Tokens 387 473 91 306 82 253

Table 2: CRAFT Train data split for development

cally involved scientific articles or biomedical do-
main texts.

3 Data

3.1 CRAFT data

The primary resource used for training systems for
the task is the CRAFT corpus syntactic annotation
provided by the task organizers. Table 1 summa-
rizes the key statistics of the data.

The test annotations were only made available
after participants had submitted their predictions,
and no train/development split was defined for the
provided data. For development purposes, we thus
split the provided training dataset of 67 documents
randomly into a set of 47 used for training, a devel
set of 10 used for early stopping during training,
and 10 used for evaluation during development.
The statistics of this split are shown in Table 2

The original CRAFT corpus syntactic annota-
tion uses a modified Penn Treebank (PTB) con-
stituency formalism (Verspoor et al., 2012), and
the dependency annotation provided for the task
was automatically created by conversion from the
constituency representation. The source data was
first converted into the CoNLL-X format using the
SD dependency representation and PTB POS tags
using the approach of (Choi and Palmer, 2012),
and this data was then further converted into the
CoNLL-U format with custom scripts.

The resulting task dataset is in the UD format
(CoNLL-U), but it only partially follows the UD
standard in terms of its content. In particular,
while the POS tags and morphological features
conform to UD, the dependency representation –
arguably the most important part of the data – does
not, instead matching the SD representation of the
CoNLL-X version of the data. Figure 1 shows SD
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Figure 1: Illustration of Stanford Dependencies (top) and Universal Dependencies (bottom) analyses for an exam-
ple sentence (from PMCID:15207008). The CRAFT dependency annotation follows the former representation.

and UD analyses for an example sentence from
the CRAFT data. While a number of dependen-
cies are identical between the two (e.g. nsubj), in
UD dependencies primarily relate content words
(e.g. verbs and nouns), with function words such
as adpositions being dependents of content words
rather than mediating their relations such as in SD
(cf. binds to TBPH in Figure 1). There are also
a number of minor differences such as the attach-
ment of coordinating conjunctions to the first con-
stituent in SD and the nearest to the right in UD.

While this discrepancy does not prevent the use
of tools that are agnostic to the details of the rep-
resentation (including many UD parsers), it does
mean that the data is incompatible with existing
UD resources and greatly complicates combina-
tion with other corpora, none of which are avail-
able in this particular hybrid SD/UD CoNLL-U
representation. We expand on this issue below in
Section 6.2.

3.2 Word vectors

We considered a number of previously released
word vectors for initializing the parser. As
a baseline we use the English word embed-
dings by Ginter et al. (2017) trained on general
English extracted from Wikipedia and Internet
crawls. These embeddings are trained using the
word2vec (Mikolov et al., 2013) tool with lower-
cased data, skip-gram algorithm, window size of
10 and 100 dimensions. The vectors were orig-
inally provided for the CoNLL 2017 and 2018
multilingual parsing shared task, and thus used by
many of the participating systems in their English
parsing models. We also considered a number of
word vectors induced specifically on biomedical
text for domain tasks, including those created by
Pyysalo et al. (2013)1 and Chiu et al. (2016)2.

1http://bio.nlplab.org/
2https://github.com/cambridgeltl/

BioNLP-2016

3.3 Unlabelled data

To induce new word vectors (Section 4.3) and
conduct co-training experiments (Section 5.2), we
used unlabelled texts from PubMed titles and ab-
stracts and PubMed Central (PMC) full texts. The
data was drawn from the PubMed 2017 baseline
distribution and a 2017 download of the PMC
Open Access subset.3 The texts were segmented
into sentences using the GENIA sentence split-
ter and then tokenized using the PTBTokenizer in-
cluded in Stanford CoreNLP tools (Manning et al.,
2014) and the tokenized sentences shuffled ran-
domly. The resulting dataset consists of 12.5 bil-
lion tokens in 500 million sentences. As the text
of the full-text articles of the CRAFT corpus con-
tains characters outside of the basic ASCII charac-
ter set, we created word vectors on the original ex-
tracted texts instead of first applying a mapping to
ASCII characters as was done in a number of sim-
ilar previous efforts (e.g. (Pyysalo et al., 2013)).

4 Methods

4.1 Turku Parser

Our primary parser used in all experiments is the
Turku Neural Parser Pipeline4 (Kanerva et al.,
2018), a full parser pipeline meant for end-to-end
analysis from raw text into UD. The pipeline in-
cludes sentence and word segmentation, part-of-
speech and morphological tagging, syntactic pars-
ing, and lemmatization.

The segmentation component in the Turku
pipeline is built using UDPipe (Straka and
Straková, 2017), where the token and sentence
boundaries are jointly predicted using a single-
layer bidirectional GRU network. Universal
(UPOS) and language-specific (XPOS) part-of-
speech tags, as well as morphological features

3We used 2017 data as we had a plain text version readily
available from previous work.

4https://turkunlp.org/
Turku-neural-parser-pipeline/

http://bio.nlplab.org/
https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
https://turkunlp.org/Turku-neural-parser-pipeline/
https://turkunlp.org/Turku-neural-parser-pipeline/
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(FEATS) are predicted with a modified version
of the one published by Dozat et al. (2017), a
time-distributed classifier over tokens in a sen-
tence embedded using bidirectional LSTM net-
work. The tagger has two separate classifica-
tion layers, one for universal part-of-speech and
one originally used for language-specific part-of-
speech tags. The bidirectional encoding is shared
between both classifiers. In the modified ver-
sion (Kanerva et al., 2018), the second classifier is
used to jointly predict the language-specific POS
tags together with morphological features by sim-
ply concatenating the two input columns into one.
The syntactic analysis is based on a graph-based
parser by Dozat et al. (2017), a biaffine classi-
fier with MST decoder on top of a bidirectional
LSTM network. The lemmatizer component by
Kanerva et al. (2019) is a sequence-to-sequence
model, where the lemma is generated one charac-
ter at a time from the given input word form and
morphological features.

In the Turku parser pipeline, all these compo-
nents are wrapped into a single system. All com-
ponents directly supports training with CoNNL-U
formatted treebanks while being completely label
agnostic, thus not requiring the treebank to ac-
tually follow the UD guidelines and label sets.
Therefore, the parser can be trained on CRAFT
corpus as is. The Turku Parser was ranked sec-
ond on LAS and MLAS, and first on BLEX on the
CoNLL-2018 Shared Task, making it highly com-
petitive.

4.2 UDPipe

UDPipe5 (Straka and Straková, 2017) is an easily
trainable parsing pipeline including segmentation,
morphological tagging, lemmatization and syntac-
tic parsing. UDPipe has long been the “go-to” UD
parser and has also served as the organizers’ base-
line in the 2017 and 2018 CoNLL Shared Tasks
on Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Tokenization and sentence seg-
mentation is implemented jointly, using a single-
layer GRU network, predicting for each character
whether it is a sentence boundary, token bound-
ary, or token-internal. The tagger is an averaged
perceptron disambiguating from a set of candidate
analyses generated based on the last four charac-
ters of the word. Lemmatization is carried out by
generating a set of candidate lemma rules, each

5http://ufal.mff.cuni.cz/udpipe

of which produce a lemma by removing and pos-
sibly substituting characters from the word prefix
and suffix. As in tagging, an averaged perceptron
then disambiguates among the candidates. The de-
pendency parser is a transition-based parser with a
feed-forward neural network serving as the classi-
fier that decides on the next transition taken by the
parser.

4.3 Word vectors

For inducing new sets of word vectors, we used
the word2vec6 (Mikolov et al., 2013) and Fast-
Text7 (Joulin et al., 2016; Bojanowski et al., 2017)
tools. In brief, these tools generate a vector rep-
resentation for each token based on the similarity
of the contexts in which they appear in a large cor-
pus of unannotated text. Word vectors were in-
duced on texts extracted from PubMed abstracts
and PMC Open Access publications (Section 3.3)
using both the skip-gram and continuous bag-
of-words (CBOW) models implemented in both
tools. Model parameters were primarily kept at
their default values, but we performed a series of
experiments with different values of the window
parameter, which has been found to be particularly
impactful in previous work (Chiu et al., 2016).

4.4 Evaluation

The CRAFT SA shared task adopted the evalua-
tion metrics and evaluation implementation of the
CoNLL’18 shared task. In particular, performance
was evaluated in terms of the Labeled attachment
score (LAS), Morphology-aware labeled attach-
ment score (MLAS), and Bi-lexical dependency
score (BLEX) metrics, defined as follows (Zeman
et al., 2018):

LAS The percentage of nodes having correctly
assigned parent token, as well as correct type of
the dependency relation. All tokens are considered
in the evaluation, including also punctuation.

MLAS Similar to LAS, but with an additional
requirement of having also functional dependents
and certain morphological features predicted cor-
rectly. In addition the metric is calculated only
based on content bearing words discarding func-
tional words and punctuation. Thus, MLAS mea-
sures the percentage of content words having cor-
rectly assigned parent token, relation type, func-

6https://github.com/tmikolov/word2vec
7https://fasttext.cc/

http://ufal.mff.cuni.cz/udpipe
https://github.com/tmikolov/word2vec
https://fasttext.cc/
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Parser Word vectors LAS
Turku Bio, word2vec/CBOW (window 2) 89.86
Turku Bio (CRAFT tokens), word2vec/CBOW (default parameters) 89.78
Turku Bio (CRAFT tokens), word2vec/CBOW (win2) 89.69
Turku Bio, word2vec/CBOW (default parameters) 89.55
Turku Bio, word2vec/CBOW (window 20) 89.73
Turku Bio, FastText/CBOW (default parameters) 89.50
Turku Bio, word2vec/skipgram (default parameters) 89.63
Turku CoNLL 89.27
UDPipe Bio, word2vec/CBOW (window 2) 85.00
UDPipe CoNLL 84.66
UDPipe Bio, word2vec/CBOW (default parameters) 84.22

Table 3: Development set results with different word vectors. CoNLL = baseline CoNLL shared task word vectors,
Bio = custom word vectors induced on PubMed and PMC articles, CRAFT tokens = input text tokenized with
model trained on CRAFT data. (For details on the word2vec and FastText tools, their CBOW and skipgram
models, and parameters, see Section 3.2)

tional dependents and certain morphological fea-
tures.

BLEX The proportion of correct relations be-
tween two content bearing words with an addi-
tional requirement that the lemma of the depen-
dent must be correct. Functional words and punc-
tuation tokens are discarded.

As LAS is the best established and most fre-
quently applied of these metrics, we focused on
optimizing this metric during development and
report results for experiments conducted during
development in terms of LAS only. For the fi-
nal three test set submissions, we provide re-
sults for the full set of metrics implemented in
the CoNLL evaluation script. In addition to the
three metrics above, this includes measures of to-
ken, sentence and word segmentation agreement
with gold (Tokens, Sentences and Words met-
rics), agreement of the universal (UPOS) and
language-specific (XPOS) part-of-speech tags and
morphological features (UFeats), the three previ-
ous together (AllTags), and agreement on lemmas
(Lemmas). We refer to Zeman et al. (2018) for
further details on these additional metrics.

We note that in the CRAFT test set evaluation,
performance for each metric was calculated as an
average of the results for the 30 test set documents,
rather than over the catenation of the documents as
in the CoNLL evaluation.

5 Results

During the development of our system, we consid-
ered a number of approaches in an iterative and in-
cremental process. In this section, we first present
the strategies we found effective, namely the use
of custom in-domain word vectors and data aug-

mentation. We then present the results from our
three test set submissions and an analysis of these
results using various additional metrics.

5.1 Word vectors

A simple but highly effective way to adapt ma-
chine learning systems that operate on vector rep-
resentations of words to new domains is to ini-
tialize them with word embeddings induced on
domain texts. We evaluated a variety of previ-
ously introduced and newly induced word embed-
dings in this way (see above) using both the Turku
and UDPipe parsers, and summarize results for
notable baseline vectors and selected in-domain
word vectors in Table 3.

We find that using the general out-of-domain
CoNLL word vectors, the parsers already achieve
high baseline LAS scores, 84.66% for UDPipe
and 89.27% for our primary, Turku system. In
our limited experiments with UDPipe we found
somewhat mixed results from the use of custom
biomedical domain word vectors. For the Turku
parser, a number of the in-domain word embed-
dings did prove effective, with the best-performing
combination of data preprocessing, model and pa-
rameters achieving a LAS of 89.86%, a 5% rel-
ative reduction in LAS error from the CoNLL
word vector baseline. Regarding the alternative
settings for inducing word vectors, we broadly
found CBOW to be more effective than the skip-
gram model and small windows to be more effec-
tive than either default parameters or large win-
dows. We did not see an advantage of FastText
over word2vec vectors and conducted the major-
ity of our experiments with the latter tool.

Two of the runs submitted for the final evalua-
tion used settings from these experiments, namely
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Parser Word vectors Extra data (size, source) LAS
Turku Bio, word2vec/CBOW (window 2) 4k sentences, PMC 89.92
Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC and PubMed 89.87
Turku Bio, word2vec/CBOW (window 2) 6k sentences, PubMed 89.78
Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC 89.84
Turku Bio, word2vec/CBOW (window 2) 20k sentences, PMC 89.41

Table 4: Development set results with extra training data

Bio, word2vec/CBOW (window 2) and CRAFT
tokenized, word2vec/CBOW (default parameters).

5.2 Training data augmentation

After identifying the word vectors that achieved
the highest LAS score for this data, we imple-
mented and evaluated multiple techniques to in-
crease the number of training examples beyond
the given training data. Most of the approaches
we considered failed to improve on performance,
largely due to incompatibilities in annotation (see
Section 6.1), but we found limited success with a
co-training approach (Blum and Mitchell, 1998).

Specifically, we first used the best Turku and
UDPipe parser models introduced in our previous
experiments to analyze a large sample of unanno-
tated text from PubMed abstracts and PMC full
text articles. We then compared the results to
identify sentences that are identically segmented
and tokenized and given identical syntactic analy-
ses (heads and dependency relations) by the two
systems. We then created random samples of
varying sources and sizes from this data, generat-
ing comparatively high-quality automatically an-
notated additional training data. This data was
combined with the original CRAFT training data
to create an extended training set that was then
used to create a new model with the Turku parser.
We present a selection of development results
from this setting in Table 4.

While we achieved some minor improvements
in some of the experiments, the co-training ap-
proach did not improve the performance as system
as much as could be hoped based on e.g. the ef-
fectiveness of self-training for parsing (McClosky
et al., 2006). There may be a number of reasons
for the limited effectiveness of our approach, po-
tentially including sub-domain mismatch between
our unlimited samples of PubMed and PMC doc-
uments and the comparatively narrow and focused
domain of CRAFT texts. We nevertheless chose to
include the model with the best result in these ex-
periments with 4k sentences, PMC as extra train-
ing data to include in our final submissions.

5.3 Test set results

The properties of the three runs we submitted to
the task are summarized in Table 5 together with
their development and test set LAS scores. We
find that test set performance closely follows the
results of development experiments, producing the
same ranking of the three runs as well as results
within 0.3% points of the development results in
all three cases.

As expected on the basis of the development ex-
periments, the two runs without extra training data
are highly competitive, and augmenting the train-
ing data via co-training while keeping the word
vectors constant provides only a modest benefit.
Nevertheless, the run that combined custom in-
domain word vectors and co-training to adapt the
Turku parser to biomedical text achieved the high-
est performance not only among our runs but also
out of all six runs submitted to the task.

5.4 Analysis of final results

Table 6 provides a detailed look at the perfor-
mance of our three final submissions using all met-
rics implemented in the CoNLL 2018 shared task
evaluation script (see Section 4.4). All of the met-
rics are averaged F1 scores across all 30 test files.

We find very similar results across all three runs.
Segmentation performance is acceptable for sen-
tence splitting (over 97.5%) and very high for tok-
enization (over 99.5%), indicating limited remain-
ing benefit from further focus on identifying sen-
tence and token boundaries. Part-of-speech tags
(UPOS and XPOS) as well as morphological fea-
tures are each assigned at a high level of consis-
tency (approx9̇8% each), and lemmas are correctly
identified in approx. 99% of cases, indicating that
the parser is well adapted to the challenges of
specialized biomedical domain terminology. The
only metrics showing notable remaining room for
improvement are dependency-based (last five rows
in Table 6). The relatively close results for the
unlabeled and labeled attachment score metrics
(UAS and LAS) indicate that the identification of
the correct dependency relation is not a key factor
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Parser Word vectors Extra data LAS(dev) LAS(test)
Turku Bio, word2vec/CBOW (window 2) 4k sentences, pmcoa articles 89.92 89.695
Turku Bio, word2vec/CBOW (window 2) No 89.86 89.650
Turku Bio (CRAFT tokens), word2vec/CBOW (defaults) No 89.78 89.536

Table 5: Final submission results on test data

Metrics Run 1 Run 2 Run 3
Tokens 99.593 99.555 99.593
Sentences 97.590 97.621 97.590
Words 99.593 99.555 99.593
UPOS 98.221 98.179 98.184
XPOS 97.806 97.758 97.789
UFeats 98.282 98.233 98.265
AllTags 97.752 97.718 97.729
Lemmas 98.999 98.981 99.048
UAS 90.942 90.882 90.794
LAS 89.695 89.650 89.536
CLAS 87.373 87.294 87.201
MLAS 85.549 85.441 85.318
BLEX 86.630 86.595 86.544

Table 6: Final submission test results for all metrics

limiting the performance of the parser, and that the
remaining challenges for substantially advancing
the performance of the system lie specifically in
more accurately recovering the dependency struc-
ture of the sentences.

6 Discussion

In the following, we briefly discuss a number of
ideas we considered that failed to improve on the
performance of the parser and address the relation-
ship between the CRAFT SA task data and Uni-
versal Dependencies.

6.1 What did not work
During the relatively brief development period for
participating in the shared task, we considered
a number of variants and potential extensions of
our approach that failed to improve on the perfor-
mance of the system. Although these were not
developed and evaluated with the rigor required
to report full experimental results, we summarize
some of these ideas here in the hope that they may
help others in their work.

Corpus combinations As the CRAFT depen-
dency annotations were created by automatic con-
version from PTB source, we considered the pos-
sibility of combining the task training data with
additional similarly converted annotations. We

performed several preliminary experiments con-
verting the PTB Wall Street Journal section (Mar-
cus et al., 1994) and the original GENIA treebank
data (Tateisi et al., 2005) as well as a version of the
GENIA treebank that as previously converted us-
ing the Stanford Dependency Converter.8 The re-
sults of these experiments were disappointing; ini-
tial single-corpus experiments using the converted
data failed to reach the expected level of perfor-
mance, and all combinations of this data with
CRAFT data resulted in decreased performance.
We also initially considered attempting combina-
tions with English corpora from the Universal De-
pendencies collection, but abandoned this idea due
to incompatibilities in the representations (see be-
low).

Entity mentions As the CRAFT corpus anno-
tation integrates not only syntactic but also entity
mention (or concept) annotation, there is an op-
portunity to integrate information on named enti-
ties and related concepts into the parsing process.9

Briefly, the intuition is that a model that has in-
formation on which tokens are e.g. part of chemi-
cal or species names could better parse their men-
tions and associated text. To explore this idea, we
converted the CRAFT concept annotation into a
token-level begin-in-out (BIO) representation us-
ing custom tools, and appended these annotations
into the XPOS column of the CoNLL-U data, cre-
ating merged POS and entity tags. We then trained
on this data, creating joint models that integrate
dependency parsing and entity mention informa-
tion. However, the performance of these models
was mixed, with minimal improvements in few
cases and a reduction in LAS in others, and we
chose not to pursue the idea further.

Previously introduced in-domain word embed-
dings Throughout development, we evaluated
many word vectors, including both previously in-
troduced and newly induced as well as biomedi-
cal domain and out-of-domain embeddings. The

8https://github.com/allenai/
genia-dependency-trees

9This idea was also advanced by the organizers in the
CRAFT SA task description.

https://github.com/allenai/genia-dependency-trees
https://github.com/allenai/genia-dependency-trees
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general pattern we found was the vectors intro-
duced for the CoNLL shared task represented a
very strong baseline, and many in-domain word
vectors previously made available by the biomedi-
cal NLP community (including ones previously in-
troduced by some of the authors) failed to improve
on the results achieved with these vectors. We
were only consistently able to improve over the
CoNLL word vector baseline by newly inducing
custom in-domain word vectors for the parser. We
attribute some of this effect to the differences in
the dimensionality of previously introduced vec-
tors: although the parser can be configured to ac-
cept vectors of any size, some part of its devel-
opment may have specifically optimized for the
100-dimensional CoNLL word vectors. It is also
likely that part of the effect is explained by the
presence of non-ASCII characters in the CRAFT
data, as many in-domain word vectors were cre-
ated on texts specifically mapped to ASCII as a
pre-processing step.

6.2 CRAFT and Universal Dependencies

Universal Dependencies have become the de facto
standard representation for computational depen-
dency parsing, and the UD repository10, contain-
ing over 100 UD treebanks covering more than
70 languages as of this writing, is a key interface
connecting corpus creators and researchers work-
ing on parsing technology. There are several po-
tential benefits to a biomedical domain UD cor-
pus, especially the potential for combining exist-
ing English resources and domain transfer tech-
niques. However, the CRAFT Structural Annota-
tion shared task dataset differs from UD standards
and conventions on a number of points, hindering
its adoption as a UD resource.

Most obviously, despite being provided in the
CoNLL-U format, the CRAFT data does not fully
adopt UD types and annotation conventions. As
noted above, the dependency relation types are
drawn from a predecessor of UD, Stanford de-
pendencies (SD), and the dependency annotation
similarly follows SD rather than UD conventions.
While the SD and UD representations are quite
similar in many ways, they differ systematically
in particular in that UD emphasizes content words
over function words (see also Figure 1) and di-
verge in many details of the representation.

We also noted that the lemmas in the CRAFT
10https://universaldependencies.org/

data don’t always correspond to the canonical (or
base) forms of the words. In addition to numbers
expressed as digits all having the lemma value “0”,
spelled-out cardinal numbers (e.g. “one”) have
the value “#crd#” in place of a lemma, ordinal
numbers (e.g. “first”) have “#ord#”, and hyper-
links (e.g. “http://www.ncbi.nlm.nih.gov/”) have
“#hlink#”. These exceptions are not part of UD
and contrary to the representation of lemmas in ex-
isting English UD resources.

Based on our experience with the SD and
UD representations and in creating UD corpora
by conversion from other formats, we believe it
should be possible to automatically convert the
present CRAFT corpus annotations into a full
UD representation using a combination of existing
tools and some deterministic mappings addressing
issues specific to this data. Such conversion would
allow the inclusion of the corpus in the UD repos-
itory, increasing the availability of biomedical En-
glish training data to the parsing community.

7 Conclusions

In this paper, we have presented the approach of
the TurkuNLP team to the CRAFT SA depen-
dency parsing shared task. Building on the ba-
sis of the Turku neural parser and UDPipe, we
considered a number of modifications and adapta-
tions to better address the full-text biomedical do-
main articles of the task, including the induction
of custom word vectors and the extension of the
training data with additional automatically parsed
data. Experiments showed the Turku parser to
clearly outperform the UDPipe baseline at the task
and demonstrated that initializing the parser with
custom in-domain word vectors could further im-
prove on its strong off-the-shelf performance. Our
adapted version of the Turku parser achieved the
highest result on the test set of the shared task with
a labeled attachment score of 89.7%.

All of the tools and resources applied in this
work, as well as the newly trained parsing mod-
els, are made available under open licenses.
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Yuan Luo, Özlem Uzuner, and Peter Szolovits.
2016. Bridging semantics and syntax with graph
algorithmsstate-of-the-art of extracting biomedical
relations. Briefings in bioinformatics, 18(1):160–
178.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics.

David McClosky and Eugene Charniak. 2008. Self-
training for biomedical parsing. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics on Human Language Tech-
nologies: Short Papers, pages 101–104. Association
for Computational Linguistics.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of NAACL, pages 152–159.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010


215

Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and
Jun’ichi Tsujii. 2010. A comparative study of syn-
tactic parsers for event extraction. In Proceed-
ings of the 2010 Workshop on Biomedical Natural
Language Processing, pages 37–45. Association for
Computational Linguistics.

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya Mat-
suzaki, and Junichi Tsujii. 2008. Task-oriented eval-
uation of syntactic parsers and their representations.
In Proceedings of ACL, pages 46–54.

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), pages 1659–1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
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