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Abstract

As our submission to the CRAFT shared task
2019, we present two neural approaches to
concept recognition. We propose two differ-
ent systems for joint named entity recogni-
tion (NER) and normalization (NEN), both of
which model the task as a sequence labeling
problem. Our first system is a BiLSTM net-
work with two separate outputs for NER and
NEN trained from scratch, whereas the second
system is an instance of BioBERT fine-tuned
on the concept-recognition task. We exploit
two strategies for extending concept coverage,
ontology pretraining and backoff with a dictio-
nary lookup. Our results show that the backoff
strategy effectively tackles the problem of un-
seen concepts, addressing a major limitation of
the chosen design. In the cross-system com-
parison, BioBERT proves to be a strong basis
for creating a concept-recognition system, al-
though some entity types are predicted more
accurately by the BiLSTM-based system.

1 Introduction

We describe our submission to the CRAFT shared
task 2019. We participated in the concept an-
notation (CA) subtask, which comprises biomed-
ical named entity recognition (NER) and nor-
malization (NEN) for full-text scientific articles.
We tested two different neural architectures, a
BiLSTM-based network trained from scratch and
a transformer system obtained by fine-tuning Bio-
BERT. While NER+NEN tasks have often been
approached with a pipeline architecture (NER out-
put passed to NEN as input), we strove for tackling
both tasks jointly in a single model.

In essence, we cast the task as a sequence-
labeling problem, by directly predicting IDs as
symbolic labels. This approach has the obvious
drawback that the models will only ever predict
IDs that were seen in the training data. In order
to account for this limitation, we used different
strategies to enrich the systems with information

derived from terminology resources, such as on-
tology pretraining and combination with a rule-
based dictionary-lookup system.

The source code of our systems is pub-
licly available at https://github.com/
OntoGene/craft-st.

2 Data

The CRAFT corpus (Bada et al., 2012; Cohen
et al., 2017) is a collection of 97 full-text arti-
cles, of which 30 have been released only in the
course of the present shared task. The documents
were manually annotated with respect to 10 dif-
ferent entity types, linked to 8 manually curated
ontologies of biomedical terminology:

CHEBI: chemicals/small molecules (Chemical
Entities of Biological Interest)

CL: cell types (Cell Ontology)

GO CC: cellular and extracellular components
and regions (Gene Ontology)

GO BP: biological processes (Gene Ontology)

GO MF: molecular functionalities possessed by
genes (Gene Ontology)

MOP: chemical reactions and other molecular
processes (Molecular Process Ontology)

NCBITaxon: biological taxa and organisms
(NCBI Taxonomy)

PR: proteins, genes, and transcripts (Protein On-
tology)

SO: biomacromolecular entities, sequence fea-
tures (Sequence Ontology)

UBERON: anatomical entities (UBERON)

In addition, the annotations are distributed in an
extended variant, i. e. CHEBI EXT, CL EXT
etc., resulting in a total of 20 annotation sets.
For the extension annotations, the creators of the
CRAFT corpus modified the given ontologies in

https://github.com/OntoGene/craft-st
https://github.com/OntoGene/craft-st
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Figure 1: Example of discontinuous and overlapping
annotations in an elliptical coordination construction.

a way to better represent actual usage of biomed-
ical entities in scientific texts. In many cases,
new concepts were added or existing ones were
replaced; some concepts were merged across on-
tologies (e. g. CL GO EXT:cell, which refers to
an unspecific cell).

The size of the ontologies varies considerably,
ranging from 5 concepts for GO MF to 1,167,358
concepts for NCBITaxon EXT. The 67 articles re-
leased for training contain a total of 575,296 to-
kens and the 30 test articles contain 239,409 to-
kens. In the training set of the corpus, PR EXT
holds the most annotations (19,862 mentions of
1075 unique IDs) and MOP has the fewest (240
mentions of 16 unique IDs). The corpus includes
1264 discontinuous annotations, which are found
most frequently among the GO BP annotations
with 493 occurrences. Of these, 788 annotations
partially overlap with another annotation of the
same type, sharing at least one token (cf. Figure 1).

Furthermore, the corpus contains 3362 annota-
tions that overlap with an annotation of a different
type. The three most common combinations are
〈CL, UBERON〉 (571), 〈GO BP, UBERON〉 (500)
and 〈CL, GO BP〉 (349). The three most com-
mon terms with cross-type annotations are “gene
expression” (161), “Mcm4/6/7” (107) and “Cln3”
(97), whereby the ten most common terms account
for 22.159% of the overlapping annotations.

For the present work, we treated each annota-
tion set as a separate dataset independent of all
others, resulting in 20 individual tasks. This is in
accordance with how the evaluation is carried out.

2.1 Preprocessing

The CRAFT corpus is distributed with annota-
tions in a stand-off format, i. e. separated from the
text. The primary format is Knowtator XML, but a
format-conversion suite is provided for producing
BioNLP format, which is more easily processed
and which is also required for the system predic-
tions by the official evaluation suite.

The stand-off formats allow representing inter-

laced annotations, such as discontinuous spans
and overlapping concepts, which often occur to-
gether (cf. Figure 1). For sequence classification,
however, two parallel sequences of tokens and la-
bels with one-to-one correspondence are required,
typically using IOB or IOBES tags. There is
no straight-forward method to represent interlaced
annotations in this format, even though potential
solutions have been proposed (Metke-Jimenez and
Karimi, 2016; Dai, 2018). Instead, we decided to
use a lossy transformation which simplifies the an-
notations during the conversion. While this means
that our systems cannot represent (and thus pre-
dict) all required types of annotations, we believe
that the phenomenon is too rare to justify the in-
crease in complexity (multi-class classification for
overlaps, additional labels for discontinuity, more
complex heuristics in postprocessing).

We used the standoff2conll suite1 for convert-
ing the annotations from BioNLP to a CoNLL-
like tab-separated format. We chose the “first-
span” strategy for resolving discontinuous spans
and “keep-longer” for overlapping concepts, the
former of which we wrote ourselves in analogy
to the existing “last-span” strategy. The stand-
off2conll suite also takes care of sentence splitting
and tokenization, using rule-based approaches.

In addition, we applied abbreviation expan-
sion using Ab3P (Sohn et al., 2008). We re-
moved short-form candidates that were all-lower-
case, consisted of only one character or had a
P-precision (Ab3P’s confidence metric) of less
than 0.9. For each article, all occurrences of
the remaining short forms were then replaced
with their best-matching long-form (highest P-
precision). Abbreviation expansion was only in-
tegrated in the BiLSTM system.

2.2 Postprocessing

Since our systems produce predictions in a
CoNLL-like format, an additional conversion step
was necessary to meet the requirements of the
evaluation suite (BioNLP format). As another
contribution to the standoff2conll tool, we wrote
a converter for the inverted direction (CoNLL to
stand-off). The converter is graceful with respect
to invalid tag sequences (e. g. O – I – O) and makes
use of existing functionality.

1https://github.com/spyysalo/
standoff2conll

https://github.com/spyysalo/standoff2conll
https://github.com/spyysalo/standoff2conll
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Figure 2: Occurrences of all concepts in the CRAFT
ontologies, as annotated by OGER in a large subset of
Medline+PMC, sorted by rank.

3 System Description

For the concept annotation task of the CRAFT
shared task, we tested two different neural ar-
chitectures, BiLSTM and transformer (BERT). In
addition, we used a rule-based dictionary-lookup
system (OGER), which served both as a baseline
and as an auxiliary component in the machine-
learning systems.

All three systems are applied to each of the an-
notation sets individually, i. e. each system per-
forms 20 independent predictions. For the neu-
ral systems this means that we trained 20 separate
models for each configuration; in the case of cross-
validation, the number of models is multiplied by
another factor.

In a supervised classification setup, an example-
based model can only ever predict concepts that
have been seen in the training phase. As the con-
cept vocabularies are very large for most of the
entity types, an annotated corpus with full cover-
age is out of reach. However, since the mentions
of biomedical concepts resemble a Zipfian distri-
bution (cf. Figure 2), it is often possible to achieve
reasonable performance in terms of F-Score even
with such a restricted label set. Yet a system that
is limited to the concepts of a training corpus is
undesirable in many application scenarios. For
this reason, we searched for ways to combine the
neural systems with the dictionary-based system
OGER, which requires no training and can target
the entire set of concepts from a given ontology.

Another common challenge of the neural sys-
tems, inherent to the sequence-labeling approach,
is the classification of multi-word expressions, as

each token is labeled individually. This is es-
pecially true for semantically weak tokens like
stop words, single letters, or numbers (e. g. “I”
in “Hexokinase I”). Correctly annotating these to-
kens is only possible in light of their context,
which makes them exceedingly demanding with
respect to generalization.

In contrast, OGER annotates multi-word ex-
pressions jointly with a single lookup for the entire
span. As another difference, OGER can predict
multiple concepts for the same span or even in-
terleaved spans, whereas the sequence taggers can
only assign one concept to each token.

3.1 Dictionary-based System

OGER (Basaldella et al., 2017; Furrer et al., 2019)
is a fast, reliable concept-recognition system based
on dictionary lookup. It is highly flexible in terms
of matching rules (tokenization, spelling normal-
ization) and supports a wide range of input/output
formats. For the present work, we used the fol-
lowing spelling normalization rules: translitera-
tion of Greek letter names, ise/ize conflation, and
stemming. Based on the performance on the train-
ing set, we fine-tuned the configuration on a per-
ontology basis; e. g. stemming was disabled for
NCBITaxon and PR.

3.2 BiLSTM-based System

Architecture
Our first neural sequence tagger is a network
with a bidirectional Long Short-Term Memory
(BiLSTM) (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) layer at its core. Its
architecture is illustrated in Figure 3. The input
tokens x are represented using pretrained word
embeddings (Chiu et al., 2016) and randomly ini-
tialized character embeddings, the latter of which
are transformed into a token-level vector through
a convolution and pooling operation (not shown in
the figure). The token representation is concate-
nated with a dictionary feature xO, which is a vec-
tor that encodes the predictions by OGER (using
the same dimensionality as the NEN output vector
over yC , see below).

The subsequent layers are inspired by the work
of Zhao et al. (2019), who propose a multi-task-
learning framework to jointly tackle span detec-
tion (NER) and normalization (NEN). A key step
to make NER and NEN compatible was to model
NEN as a sequence-labeling problem, where IDs
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Figure 3: Architecture of the BiLSTM-based sequence
tagger (simplified).

are predicted for each token just like span tags in
NER (cf. Figure 4). A BiLSTM layer consumes
a sequence of token representations one sentence
at a time. The sequence representation is then
forked into two output layers with soft-max ac-
tivation, which solve different tasks: The span-
detection layer predicts one of the labels yS =
{I,O,B,E,S}, as in a classical single-type NER
problem. The normalization layer predicts con-
cept labels (IDs) from yC = yCT ∪ yCP ∪ yCO , where
yCT are all labels seen in the training corpus, yCP
are the labels seen in ontology pretraining and yCO
are all labels found by OGER. The label set yC

includes the NIL symbol, which denotes the ab-
sence of a concept annotation. In addition to the
hidden states of the BiLSTM layer, the normaliza-
tion layer takes the output of the span-detection
layer as an input. In contrast to Zhao et al., there
is no symmetric feedback between the two output
layers, i. e. the span-detection layer does not “see”
the output of the normalization layer. This allows
training spans and concepts simultaneously.

Training a BiLSTM model for NER and NEN

Training is performed in two phases, ontology pre-
training and main training. In the first phase, the
model adapts to the domain of the respective en-
tity type by means of terminology entries. At
this stage, the model is trained on isolated names
and synonyms extracted from the provided ontol-
ogy files. Due to technical limitations, we re-
stricted the pretraining data to the 1000 most com-

RanBP2 modulates Hexokinase I activities
       S                   O                     B             E        O

RanBP2 modulates Hexokinase I activities
PR:13712           NIL             PR:8608   PR:8608    NIL

Figure 4: Example of labeling with IOBES tags (NER)
and concept IDs (NEN).

mon concepts of each ontology. As an approxi-
mation for determining the most commonly used
concepts in the literature, we automatically anno-
tated a large subset of Medline (26M abstracts)
and PubMed Central (725k articles) with OGER.
We sorted the annotated concepts by occurrence
and manually removed high-frequency false posi-
tives. The model is then pretrained on the top 1000
concepts for a fixed number of 20 epochs.

In the main training phase, training continues
with full sentences from the CRAFT corpus. At
this stage, the model learns to predict concept
mentions in real-world language usage, including
contextual hints, frequency distribution, and chal-
lenges like rephrasing and non-standard spelling.
While the main training is likely to override parts
of the connections learnt during ontology pretrain-
ing, others may remain to form some kind of back-
ground knowledge. Main training is performed as
6-fold cross-validation, where the held-out set of
each fold is used to determine when to stop train-
ing, using a patience value of 5 epochs. Thus, 6
models are trained for each entity type.

Agreement of NER and NEN Predictions
At prediction time, the softmax scores from all
6 models are averaged before the highest-ranking
label for a particular token is determined. Also,
when abbreviations have been expanded into mul-
tiple tokens during preprocessing, their scores are
averaged prior to label selection. The outputs for
NER and NEN are tested for agreement. Agree-
ment means that both outputs see a given token t
as either relevant or irrelevant, or formally:

(ŷSt = O ∧ ŷCt = NIL) ∨ (ŷSt 6= O ∧ ŷCt 6= NIL)

The labels ŷSt and ŷCt are chosen such that they
satisfy the above requirement, while maximizing
the overall score. In practice, we compare the
score product of the irrelevant labels (O/NIL) to
the score product of the top-ranking relevant labels
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[CLS] Tok1 Tok2 TokN
. . .

E[CLS] E1 E2 EN. . .

C T1 T2 TN. . .

NIL CHEBI:8608 NIL. . .

PubMed
(1M)

BERT
E[CLS] E1 E2 EN. . .

C T1 T2 TN. . .

Figure 5: A symbolic illustration of the BioBERT model as a result of a BERT model pretrained on the PubMed
corpus and fine-tuned for NEN on the CRAFT corpus.

of either output. This means that we might select
a non-best-ranking label for one of the outputs.

3.3 BERT-based System

Background: BERT and BioBERT

The multi-layer BERT model (Devlin et al., 2019)
is trained in an unsupervised setting to create
bidirectional contextual representations of a token
from unlabeled text conditioned on the left and the
right context. Two tasks are used to train the BERT
model: first, to predict whether two sentences fol-
low each other, and second, to predict a randomly
masked token. The resulting pretrained BERT
model can be applied to a large number of tasks,
such as question answering, next sentence predic-
tion, or NER. Recently it has been shown that the
use of pretrained BERT models is especially ben-
eficial to NER tasks (Devlin et al., 2019). In con-
trast to traditional models used for NER tasks such
as long short-term memory (LSTM) models and
conditional random field (CRF) models (Habibi
et al., 2017), which use context-independent word
vector representations such as Word2vec (Mikolov
et al., 2013) or GLOVE (Pennington et al., 2014),
the BERT model learns context-dependent word
vector representations.

A specialized variant of the BERT model for the
biomedical domain is the BioBERT (Lee et al.,
2019) model, which has been shown to produce
state-of-the-art results for NER in the biomedical
domain (Jin et al., 2019). The BioBERT model
is initialized using the BERT model pretrained
on general-domain data (Wikipedia, Bookcorpus)
and is then pretrained an additional 200k steps on
a corpus of one million PubMed abstracts.

Fine-tuning BioBERT for NER and NEN

For our second system in the CRAFT shared task,
we used the readily pretrained BioBERT model

available online.2 We wrote a task-specific head
for ID tagging and fine-tuned the model on the
CRAFT corpus for another 55 epochs. Like the
BiLSTM system, the model is trained to directly
predict a sequence of concept IDs from a sequence
of input tokens. Technically, we implemented this
as an adaptation of an NER tagger by extending
the tagset to all concept labels of the training set
(cf. Figures 4 and 5).

As a variant, we fine-tuned another BioBERT
model as a classical NER tagger over IOBES tags
and combined the resulting predictions with anno-
tations from OGER. Predictions were only kept if
both OGER and BERT agreed, i. e. both produced
a label different from O/NIL. This system, which
resembles a traditional NER+NEN pipeline, com-
bines the high recall of the dictionary-based sys-
tem with the context-aware span detection of an
example-based classifier.

Additionally, we combined the previous two
systems into a third system. In this variant, the ID
tagger takes precedence, whereas the span tagger
serves as a backoff model. Whenever the first sys-
tem does not predict an ID for a token, the backoff
system gets a chance to provide an ID, thus joining
the forces of two alternative approaches.

3.4 Related Work

Concept-recognition systems solve the task of de-
tecting and linking textual mentions to terminol-
ogy identifiers. In the past, this problem has of-
ten been approached with a pipeline combining
an NER tagger with a dictionary-lookup module
(e. g. Campos et al., 2013; Ghiasvand and Kate,
2014) or a rule-based system (D’Souza and Ng,
2015; Lee et al., 2016). Leaman et al. (2013) pre-
pared the ground for machine-learning approaches
to the normalization task, modeling it as a rank-

2https://github.com/naver/
biobert-pretrained

https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
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CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

OGER (baseline) 0.5808 0.6657 0.2832 0.6838 0.8632 0.4459 0.5947 0.4581 0.5362 0.6561
B

iL
ST

M no-pretraining 0.7293 0.5939 0.7293 0.7051 0.9764 0.7932 0.9609 0.3591 0.8824 0.7076
pretraining (Run 2a) 0.7412 0.5810 0.7455 0.7191 0.9670 0.0000 0.9584 0.3526 0.8909 0.7350
pick-best 0.7442 0.5990 0.7483 0.7149 0.9670 0.8014* 0.9611 0.3596 0.9027 0.7404

B
E

R
T IDs (Run 1) 0.7555 0.6316 0.7966 0.7626 0.9221 0.8601 0.9669 0.4762 0.8933 0.7416

spans+OGER 0.6586 0.6522 0.2957 0.7603 0.9838 0.7683 0.8451 0.8026 0.8163 0.6784
IDs+spans+OGER (Run 3) 0.7700 0.6487 0.8037 0.7645 0.9561 0.8705 0.9694 0.5443 0.8954 0.7488

CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

EXT EXT EXT EXT EXT EXT EXT EXT EXT EXT
OGER (baseline) 0.6797 0.7236 0.3644 0.8220 0.6731 0.4106 0.5994 0.4826 0.4604 0.6810

B
iL

ST
M no-pretraining 0.8031 0.7263 0.7758 0.8674 0.7154 0.7996 0.9583 0.4004 0.9092 0.6900

pretraining (Run 2a) 0.8173 0.7199 0.7712 0.8725 0.7411 0.5630 0.9554 0.4005 0.9167 0.7312
pick-best 0.8168 0.7289 0.7755 0.8723 0.7438 0.7996* 0.9549 0.4122 0.9187 0.7458

B
E

R
T IDs (Run 1) 0.8143 0.7375 0.8085 0.8918 0.6530 0.8240 0.9682 0.4706 0.9056 0.7654

spans+OGER 0.7180 0.7187 0.3799 0.8862 0.6715 0.4562 0.8351 0.8011 0.5640 0.7029
IDs+spans+OGER 0.8209 0.7484 0.8138 0.8936 0.6691 0.8437 0.9722 0.5516 0.9069 0.7714

*ontology pretraining disabled

Table 1: F-Score results of our experiments using the CRAFT corpus. Underlined numbers denote submitted
results; other results were obtained in post-submission experiments. Bold figures mark the best result for each
entity type (column).

ing problem. This approach has been adopted by
many (Zhang et al., 2014; Cho et al., 2017), also
using different neural architectures (Li et al., 2017;
Liu and Xu, 2018; Tutubalina et al., 2018).

There have been continued efforts to jointly
address NER and NEN, fighting the problem of
error propagation inherent to pipeline architec-
tures. Dictionary-based approaches can detect
and normalize concept mentions in a single step
(Tseytlin et al., 2016; Pafilis et al., 2013), even
though postfiltering (Basaldella et al., 2017; Cuz-
zola et al., 2017) or other strategies are usually
required to achieve good performance. Example-
based approaches include probabilistic (Leaman
and Lu, 2016) and graphical (Lou et al., 2017;
ter Horst et al., 2017) systems for jointly learning
NER+NEN in shared or interdependent models.
Zhao et al. (2019) propose a multi-task-learning
set-up for neural NER and NEN with bidirectional
feedback, as mentioned earlier.

Recently, it has been shown that BERT mod-
els that are pretrained on biomedical and clini-
cal datasets are beneficial for the NER task in
the biomedical domain (Lee et al., 2019; Belt-
agy et al., 2019). To address the NEN task with
BERT-based models, Kim et al. (2019) combined
the BioBERT model with a rule-based approach to
multi-type resolution and a dictionary lookup for
the normalization.

4 Results

The results of our experiments are summarized
in Tables 1 and 2. The tables contain both of-
ficially submitted results (printed with underline)
and post-submission runs. The results were ob-
tained by the official evaluation suite, which mea-
sures performance in terms of Slot Error Rate
(SER) (Makhoul et al., 1999) and F-Score (F1).
Both metrics are based on the counts of matches
(true positives), insertions (false positives), dele-
tions (false negatives) and substitutions (partial
positives). The substitutions, as defined by Bossy
et al. (2013), are a way to give partial credit to
system predictions that are partially correct, e g.
when the correct ID was assigned to one token of
a multi-word expression. While F1 is a measure
of accurateness ranging from 1 (perfect) to 0 (no
matching prediction at all), SER is a measure of er-
rors ranging from 0 (perfect) to above 1 (more er-
rors than ground-truth annotations). The rankings
produced by the two metrics are not guaranteed to
be identical; in fact, we report several cases where
F1 and SER disagree on the question of which sys-
tem performed best. For both metrics, the scores
are micro-averaged across all 30 documents of the
test set.

We used the plain dictionary-based system
OGER as a baseline. For the BiLSTM system,
we compared three different configurations: no-



191

CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

OGER (baseline) 0.7873 0.4862 0.9826 0.6120 0.3032 1.6238 1.0122 1.9768 1.2617 0.5584
B

iL
ST

M no-pretraining 0.4280 0.5628 0.4231 0.4829 0.0443 0.3507 0.0688 0.9017 0.1934 0.4379
pretraining (Run 2a) 0.4089 0.5781 0.3991 0.4296 0.0638 1.0000 0.0733 0.8597 0.1786 0.3913
pick-best 0.4038 0.5563 0.3956 0.4455 0.0638 0.3453* 0.0723 0.8501 0.1593 0.3864

B
E

R
T IDs (Run 1) 0.3569 0.5780 0.3145 0.3848 0.1507 0.2882 0.0580 0.7612 0.1689 0.3752

spans+OGER 0.5111 0.5000 0.8276 0.3788 0.0319 0.3762 0.2240 0.3052 0.2918 0.4749
IDs+spans+OGER (Run 3) 0.3388 0.5620 0.3047 0.3888 0.0869 0.2684 0.0537 0.6863 0.1680 0.3770

CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

EXT EXT EXT EXT EXT EXT EXT EXT EXT EXT
OGER (baseline) 0.6032 0.3361 0.8677 0.3493 0.5459 1.8108 0.9869 1.7056 1.1596 0.5210

B
iL

ST
M no-pretraining 0.3152 0.3555 0.3398 0.2076 0.4266 0.3445 0.0744 0.8354 0.1398 0.4552

pretraining (Run 2a) 0.3016 0.3547 0.3357 0.2032 0.3922 0.5564 0.0776 0.8047 0.1257 0.3943
pick-best 0.3016 0.3497 0.3333 0.2051 0.3881 0.3445* 0.0784 0.7715 0.1230 0.3730

B
E

R
T IDs (Run 1) 0.2664 0.3667 0.2867 0.1678 0.5081 0.3440 0.0538 0.7257 0.1475 0.3371

spans+OGER 0.4224 0.3417 0.7419 0.1907 0.4676 0.6432 0.2353 0.3030 0.5566 0.4450
IDs+spans+OGER 0.2571 0.3583 0.2786 0.1681 0.4999 0.3080 0.0466 0.6464 0.1466 0.3384

*ontology pretraining disabled

Table 2: SER results of our experiments using the CRAFT corpus. For mark-up (underline/bold) see Table 1.

pretraining, pretraining, and pick-best. For the no-
pretraining run, we skipped the pretraining phase
over the ontology names. The pretraining run cor-
responds to the description in Section 3.2; we (un-
officially3) submitted this run as Run 2a, except
for MOP and MOP EXT, where pretraining was
disabled since it had an extraordinarily negative
effect for this entity type in early experiments al-
ready. In the pick-best run, we trained each model
two or three times and picked the one with the
best performance on the held-out set in the cross-
validation; again, ontology pretraining was dis-
abled for MOP[ EXT] for this run.

For the transformer architecture, we also com-
pared three systems: BERT-IDs, BERT-spans+
OGER, and BERT-IDs+BERT-spans+OGER.
BERT-IDs was trained to predict concept identi-
fiers directly; we submitted these results as Run 1
(except for CL EXT, GO CC EXT, MOP EXT,
NCBITaxon EXT, and UBERON EXT, which we
analyzed only in post-submission experiments
due to time constraints). BERT-spans+OGER
combines IOBES predictions with annotations
from OGER in a pipeline fashion. The last
configuration combines the previous two in a
backoff manner; this was submitted as Run 3
(extension types post-submission only).

For many entity types, the BERT systems beat
the BiLSTM systems, which in turn clearly out-

3after the deadline, but before the release of the ground-
truth annotations

performed the dictionary-based baseline. A no-
table exception to this pattern is CL, where no neu-
ral system was as accurate as OGER. However,
the baseline is beaten by all other systems in many
cases; this is particularly true for SER, where the
baseline shows very poor performance for a num-
ber of entity types.

Among the BiLSTM systems, the effect
of ontology pretraining is somewhat heteroge-
neous; while it clearly improved performance
for some entity types (such as CHEBI[ EXT],
UBERON[ EXT]), it had a marginal or even neg-
ative effect on others (e. g. NCBITaxon[ EXT]).
As expected from the cross-validation results, on-
tology pretraining heavily decreased performance
for MOP and MOP EXT. The pick-best setting
yielded modest improvements in most of the cases.
In three cases (GO MF EXT, SO, SO EXT), this
configuration achieves the best overall scores.

Among the BERT-based systems, directly pre-
dicting IDs usually gave better results than join-
ing span predictions with OGER annotations, and
combining the two systems in a backoff manner
yielded another improvement. However, the span
detector coupled with OGER outperformed the
two ID taggers in five cases (CL, GO MF[ EXT],
PR[ EXT]), three of which constitute best over-
all scores (GO MF, PR[ EXT]). The most notable
results are the ones for PR and PR EXT, where
BERT-spans+OGER beat all other systems by a
margin of more than 0.25 F1/0.34 SER.
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BERT-IDs+
ground-truth OGER BiLSTM BiLSTM BERT-spans+ BERT-spans+

concepts pretraining pick-best OGER OGER
unique occ. P R P R P R P R P R

CHEBI 110 447 0.33 0.65 – – 0.74 0.47 0.70 0.11
CHEBI EXT 134 538 0.37 0.71 – – 0.62 0.49 0.76 0.09
CL 52 484 0.72 0.31 – – 0.88 0.22 0.59 0.04
CL EXT 52 484 0.72 0.31 – – 0.71 0.25 0.71 0.11
GO BP 120 484 0.21 0.25 – – 0.56 0.12 0.66 0.06
GO BP EXT 126 508 0.22 0.28 – – 0.29 0.18 0.62 0.07
GO CC 32 184 0.19 0.35 – – 0.50 0.17 0.49 0.06
GO CC EXT 36 231 0.28 0.47 – – 0.58 0.19 0.60 0.07
GO MF 1 1 0.10 0.50 – – – –
GO MF EXT 73 416 0.38 0.22 – – 0.57 0.15 0.54 0.04
MOP 2 2 0.08 1.00 – – – –
MOP EXT 2 2 0.08 1.00 – – – –
NCBITaxon 40 87 0.02 0.50 – – 0.40 0.34 0.75 0.22
NCBITaxon EXT 44 95 0.02 0.54 – – 0.43 0.35 0.85 0.25
PR 278 4782 0.26 0.86 0.61 4E-4 0.63 4E-4 0.81 0.74 0.69 0.15
PR EXT 309 5156 0.27 0.84 0.22 3E-3 0.34 8E-3 0.84 0.73 0.65 0.20
SO 16 101 0.04 0.87 – – 0.10 0.06 0.52 0.02
SO EXT 25 123 0.05 0.78 – – 0.28 0.47 0.85 0.41
UBERON 203 1297 0.47 0.33 0.74 2E-3 0.69 2E-3 0.74 0.25 0.59 0.06
UBERON EXT 207 1308 0.47 0.33 0.76 2E-3 0.87 1E-3 0.78 0.27 0.60 0.06

Table 3: System performance for unseen concepts: precision (P) and recall (R) calculated over the subset of
annotations and predictions of IDs that were absent from the training data. A dash (–) denotes that the system only
predicted known IDs for the given entity type. The systems BiLSTM no-pretraining and BERT-IDs are omitted as
they cannot predict unseen labels.

5 Discussion

The results show that, in general, neural sequence
taggers can be successfully applied to biomedi-
cal concept recognition, using a single model for
joint NER+NEN. Unfortunately, we cannot com-
pare our results to other work, as no other team has
submitted results to the concept-annotation task
and no official baseline is available at the time of
writing. Since the CRAFT test set has only been
released in the course of the present shared task,
it is not possible to directly benchmark our results
against previous work (such as Funk et al., 2014;
Tseytlin et al., 2016; Hailu, 2019) either. How-
ever, the tested systems allow for a comparison of
different approaches.

The strategies for extending the concept cov-
erage – a vital feature for many applications –
show a mixed picture. Pretraining on ontology
names has led to limited benefit only. While it
has demonstrated a positive effect for many entity
types, it has been able to increase the set of recog-
nized concepts only occasionally. As can be seen
in Table 3, ontology pretraining led to prediction
of IDs outside the training data in four entity types
(PR[ EXT], UBERON[ EXT]). Even though the
majority of the predicted unseen IDs is correct,
they only account for a fraction of the ground-truth

annotations.
On the other hand, combining BERT span pre-

dictions with OGER annotations resulted in cor-
rect predictions of unseen IDs for almost all en-
tity types – the exceptions being GO MF, MOP,
and MOP EXT, which suffer from a small num-
ber of concepts or positive examples in the train-
ing data. The BERT-spans+OGER system is par-
ticularly strong for PR[ EXT], where recogniz-
ing unseen concepts is especially important due
to the diversity and abundance of protein men-
tions in the literature. When this system is used
as a backoff for BERT-IDs, the recall for unseen
concepts drops due to the bias for existing knowl-
edge inherent to the ID tagger. In some cases
this bias is beneficial for precision, i. e. the ID
tagger suppresses many false-positive predictions
of OGER (e. g. CHEBI EXT, NCBITaxon[ EXT],
SO[ EXT]), while in other cases false positives
of the ID tagger hide correct OGER predictions,
leading to lower precision.

A few examples of correctly predicted IDs ab-
sent from the training corpus are given in context
in the following. BERT-IDs+BERT-spans+OGER
predicted CHEBI PR EXT:somatostatin in docu-
ment 17503968 (two occurrences):

However, the somatostatin receptor
2 (SSTR-2) antagonist PRL-2903 does
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not interfere with the ability of glucose
(at 3 and 7 mM) to inhibit glucagon se-
cretion from mouse islets [47].

The same system predicted CHEBI:60004 in doc-
ument 11604102:

Adult mouse testes were homogenized
in a buffer containing 20 mM Tris, pH
7.5, 100 mM KCl, 5 mM MgCl2, 0.3%
NP-40, 40 U/ml of Rnasin ribonuclase
inhibitor (Promega, Madison, WI), and
a mixture of 10 protease inhibitors pro-
vided [...]

BiLSTM pick-best predicted PR:000008373 in
document 16968134:

Decreased Osteogenic Differentiation
Correlates with Abnormal Distribution
of Cx43

The creators of the CRAFT corpus have put
great effort in building an annotated corpus with
high quality and consistency across all entity
types. However, the diversity of the different types
requires a lot of engineering for tackling them all.
A single approach is not sufficient to meet the
differing needs of all entity types. The experi-
ments with the test set have yielded a few surpris-
ing results, such as the comparatively good perfor-
mance of the dictionary-based approach on CL or
the outstanding scores for BERT-spans+OGER on
PR[ EXT].

Of the two concept extension strategies,
the NER+dictionary backoff has worked well,
whereas the effect of ontology pretraining was not
too conclusive. Since we tested each of the strate-
gies with only one system architecture, it is not en-
tirely clear which component contributed the most
to the success – the network architecture or the ex-
tension strategy. Testing the inverse combinations,
i. e. BERT with ontology pretraining and BiLSTM
with OGER backoff, is left for future work.
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