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Abstract

As part of the BioNLP Open Shared Tasks
2019, the CRAFT Shared Tasks 2019 pro-
vides a platform to gauge the state of the
art for three fundamental language processing
tasks — dependency parse construction, coref-
erence resolution, and ontology concept iden-
tification — over full-text biomedical articles.
The structural annotation task requires the au-
tomatic generation of dependency parses for
each sentence of an article given only the ar-
ticle text. The coreference resolution task fo-
cuses on linking coreferring base noun phrase
mentions into chains using the symmetrical
and transitive identity relation. The ontology
concept annotation task involves the identifi-
cation of concept mentions within text using
the classes of ten distinct ontologies in the
biomedical domain, both unmodified and aug-
mented with extension classes. This paper pro-
vides an overview of each task, including de-
scriptions of the data provided to participants
and the evaluation metrics used, and discusses
participant results relative to baseline perfor-
mances for each of the three tasks.

1 Introduction

With its multiple layers of annotation, the Col-
orado Richly Annotated Full Text (CRAFT) cor-
pus provides a unique foundation for integrating
natural language processing (NLP) tasks involving
structure, semantics, and coreference. As part of
the BioNLP Open Shared Tasks 2019, the CRAFT
corpus was used for the evaluation of three fun-
damental NLP tasks: dependency parse construc-
tion, coreference resolution, and ontology concept
annotation. Each of these tasks is a foundational
element to many NLP systems and their perfor-
mances can propagate downstream and directly af-
fect overall system accuracy. Dependency parses
have been successfully employed for information
extraction, e.g. from clinical records (Gupta et al.,

2018), relation extraction, e.g. identifying protein
post-translational modifications (Sun et al., 2017),
and used as features for machine learning tasks,
e.g. gene mention detection (Smith and Wilbur,
2009), among other uses. By linking noun phrases
to a referent entity, coreference systems serve as
annotation multipliers, amplifying results of en-
tity recognition systems (Cohen et al., 2017), and
have been shown to improve information extrac-
tion in biomedical text (Choi et al., 2016). The
concept annotation task, also known as named en-
tity recognition (NER), is a prerequisite for many
biomedical NLP applications. Its importance is
buttressed by the many previous shared tasks that
have included aspects of NER (Hirschman et al.,
2005; Smith et al., 2008; Krallinger et al., 2013) .
Measuring the state of the art of these foundational
tasks will inform the BioNLP community by reset-
ting the performance benchmarks and demonstrat-
ing optimal methodologies.

The CRAFT Shared Tasks (CRAFT-ST) 2019
mark the inaugural use and subsequent release of
thirty articles annotated in CRAFT that had pre-
viously been held in reserve. All 97 articles and
accompanying annotations of the CRAFT corpus
are now available in the public domain. To aug-
ment the results of the CRAFT-ST 2019, and to
account for the relatively low participation rate,
baseline systems for each task were evaluated in
the same manner as the participant systems. The
CRAFT-ST 2019 made use of the CRAFT v3.1.3
release1. Original task descriptions are available
on the CRAFT-ST website 2. An integrated scor-
ing platform capable of supporting the evaluation
of all three sub tasks of the CRAFT-ST 2019 is

1https://github.com/UCDenver-ccp/
CRAFT/releases/tag/v3.1.3;
doi:10.5281/zenodo.3460908

2https://sites.google.com/view/
craft-shared-task-2019

https://github.com/UCDenver-ccp/CRAFT/releases/tag/v3.1.3
https://github.com/UCDenver-ccp/CRAFT/releases/tag/v3.1.3
https://sites.google.com/view/craft-shared-task-2019
https://sites.google.com/view/craft-shared-task-2019
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also available as a standalone system3, and as a
pre-built Docker container4.

2 The CRAFT Structural Annotation
Task

For the structural annotation task (CRAFT-SA),
participants were asked to automatically parse
full-length biomedical journal articles of the
CRAFT Corpus into dependency structures for
each sentence. The CRAFT-SA task targets de-
pendency parses as opposed to constituency parses
in order to emphasize differences that directly af-
fect the meaning of a parsed sentence; differences
in constituent parse conventions can result in parse
differences that do not affect the resultant meaning
of a parsed sentence (Clegg and Shepherd, 2007).

There have been previous shared tasks in
the general domain NLP community to eval-
uate dependency parse construction using both
the CoNLL-X (Buchholz and Marsi, 2006) and
CoNLL-U (Zeman et al., 2018) file formats. Al-
though the dependency parses initially distributed
with the CRAFT corpus more closely resemble
the older CoNLL-X format, the CRAFT depen-
dency data was transformed into a quasi-CoNLL-
U format to allow the input provided to partici-
pants to be only the text of the documents mak-
ing for a more realistic scenario compared to the
CoNLL-X shared tasks which required partici-
pants to match gold standard tokenization for eval-
uation purposes.

2.1 Data
2.1.1 Data preparation – CoNLL-X
The dependency parses distributed as part of the
CRAFT corpus are automatically derived (Choi
and Palmer, 2012) from the manually annotated
Penn Treebank style data, which identifies the
syntactic structure of each sentence. During the
course of data preparation and testing, several up-
dates were made to the Treebank data. The con-
stituency parses for two sentences that were miss-
ing from the Treebank data were added. Also, in
cases where the automatically derived dependency
parse contained multiple ROOT nodes, the corre-
sponding syntactic parse was edited, usually by
dividing into multiple sentences, to ensure each

3https://github.com/UCDenver-ccp/
craft-shared-tasks; doi:10.5281/zenodo.3460928

4https://cloud.docker.com/u/
ucdenverccp/repository/docker/
ucdenverccp/craft-eval

dependency parse contained only a single ROOT
node. Once the errors were fixed and the CoNLL-
X formatted data was finalized, the data was trans-
formed into a quasi-CoNLL-U form.

2.1.2 Data preparation – CoNLL-U
The CoNLL-U format5 is a revised version of the
CoNLL-X format that adds a number of features
such as universal part-of-speech tags, language-
specific part-of-speech tags, and a standardized
multi-language dependency format. It includes
representations of the original raw text in addition
to its segmented and tokenized form. This is re-
quired for training systems that address sentence
boundary detection and tokenization as part of ex-
tracting syntactic dependencies from raw text.

The CoNLL-X representation of the CRAFT
dependency parses was converted into CoNLL-
U format using scripts that 1) introduce docu-
ment, paragraph, and sentence boundary mark-
ers and include the original untokenized text of
each sentence, 2) supplement the Penn Treebank
part-of-speech tags with their corresponding uni-
versal tags following the mapping proposed by
the Universal Dependencies (UD) project6, and
3) introduce morphological features based on the
same part-of-speech migration guide. Spacing and
paragraph information is added to the CRAFT
CoNLL-U files by aligning the CoNLL-X files
with the raw text for each article.

We note that while the resulting data is in the
CoNLL-U format and includes UD part-of-speech
tags and features, it retains the Stanford Depen-
dency structure and labels from the CoNLL-X files
and thus, does not fully conform to the UD repre-
sentation in terms of its content.

2.2 Scoring
Scoring of the CRAFT-SA task made use of the
scoring software provided for the CoNLL 2018
Shared Task (Zeman et al., 2018). Dependency
parse performance is measured using three met-
rics, LAS, MLAS, and BLEX. We provide brief
definitions of these metrics in the following and
refer to Zeman et al. (2018) for details.

2.2.1 LAS
The Labeled Attachment Score (LAS) metric is
the de facto standard metric for evaluating de-

5https://universaldependencies.org/
format.html

6https://universaldependencies.org/
tagset-conversion/en-penn-uposf.html

https://github.com/UCDenver-ccp/craft-shared-tasks
https://github.com/UCDenver-ccp/craft-shared-tasks
https://cloud.docker.com/u/ucdenverccp/repository/docker/ucdenverccp/craft-eval
https://cloud.docker.com/u/ucdenverccp/repository/docker/ucdenverccp/craft-eval
https://cloud.docker.com/u/ucdenverccp/repository/docker/ucdenverccp/craft-eval
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
https://universaldependencies.org/tagset-conversion/en-penn-uposf.html
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pendency parsing performance, and is commonly
defined simply as the fraction of tokens for
which the predicted head and dependency rela-
tion type (label) match the gold standard, i.e.
#correct/#tokens. In the CoNLL 2018 set-
ting applied in the CRAFT-SA task, this defi-
nition is generalized to account for cases where
the predicted tokenization does not fully match
the gold standard tokenization, and LAS is de-
fined over aligned predicted (pred-tokens)
and gold standard tokens (gold-tokens) as
the harmonic mean (F1-score) over the pre-
cision #correct/#pred-tokens and recall
#correct/#gold-tokens.

2.2.2 MLAS
The Morphology-aware Labeled Attachment
Score (MLAS) is a modification of LAS that
focuses on content words – ignoring e.g. punc-
tuation and determiners – while also taking
into account the part-of-speech, aspects of mor-
phology, and associated function words. For a
predicted token to be considered correct according
to the MLAS criteria, it must match the gold stan-
dard values for the head and dependency label (as
in LAS), and also the universal POS tag, selected
morphological features (e.g. Case, Number,
and Tense) and function words attached with
particular dependency relations (e.g. aux and
case). Similarly to LAS, MLAS is defined
for system-predicted tokenization in terms of
precision, recall and F1-score.

2.2.3 BLEX
Like MLAS, the Bilexical Dependency Score
(BLEX) is a modification of LAS that focuses
on content words, emphasizing lemmas instead of
morphology. A predicted token is correct accord-
ing to BLEX criteria if it matches the head, de-
pendency relation, and lemma of the correspond-
ing gold token. BLEX accounts for differences
between the predicted and gold tokenization simi-
larly to LAS and MLAS.

2.3 Baseline system

SyntaxNet (Andor et al., 2016), a transition-based
neural network framework built using TensorFlow
was used as the baseline system for the struc-
tural annotation task. The system was composed
of two models of similar architecture: a part of
speech (POS) tagger and a dependency parser. The
Python NLTK punkt (Bird et al., 2009) sentence

Team LAS MLAS BLEX
T013 - Run 1 65.994 0 45.618
T013 - Run 2 69.318 0 54.798
T014 - Run 1 89.695 85.549 86.631
T014 - Run 2 89.65 85.441 86.596
T014 - Run 3 89.536 85.318 86.545

Baseline 56.68 44.22 0.0

Table 1: Results showing the average score over all
test documents for each metric from the structural an-
notation (dependency parse construction) task for all
participating teams.

tokenizer was used to segment the articles into
sentences which where used as input to the POS
tagger model to generate POS annotations. The
dependency parser model uses the POS annota-
tions as input and generates dependency parses for
each sentence. Each of the models was trained us-
ing the CRAFT training data as a gold standard.

2.4 Results

Two teams submitted five runs in total for the
CRAFT-SA task (Table 1). Team T013 used
the SpaCy dependency parser with (Run1) and
without (Run2) the OGER NER system to test
whether adding semantic information in the form
of named entities can improve resultant depen-
dency parses. In the case of this evaluation, the
incorporation of an NER system caused a drop
in performance, however this decrease in perfor-
mance is confounded by tokenization differences
resulting from their system grouping entities as
single tokens. Using a neural approach and cus-
tom biomedical word embeddings, Team T014
demonstrated state of the art performance in de-
pendency parsing over biomedical text, achieving
high marks for all submitted runs. Both submit-
ted systems out-performed the baseline by a large
margin.

3 The CRAFT Coreference Resolution
Task

Coreference resolution, linking strings of text that
have the same referent, is a challenging NLP task
that offers potential benefit to downstream tasks if
done successfully. The challenge arises in linking
strings of text over long distances across a docu-
ment, or possibly between documents. The benefit
of doing so can be substantial as coreference reso-
lution has the ability to amplify results of upstream



177

tasks such as concept recognition, thereby poten-
tially improving the performance of downstream
tasks, e.g. information extraction, that require ex-
plicitly represented entities. It has been estimated
that successful coreference resolution would in-
herently add over 106,000 additional concept an-
notations to the CRAFT corpus through referent
linkages (Cohen et al., 2017).

Coreference resolution is an active area in the
NLP research community, and the most relevant
previous shared task on coreference resolution is
the CoNLL-2012 Shared Task (Pradhan et al.,
2012), which evaluated identity chains curated in
the OntoNotes project (Hovy et al., 2006). The
OntoNotes corpus consists of text from conver-
sational speech, broadcast conversations, broad-
cast news, magazine articles, newswire, and web
data in three languages (English, Arabic, and Chi-
nese), covering 1M words per language. The
CRAFT corpus presents some unique challenges
to the coreference resolution task. While slightly
smaller than the OntoNotes corpus in regards to
word count (1M), 620k works is still substan-
tial, and scientific text is a domain not covered
in OntoNotes explicitly. Further, CRAFT equals
the highest median token count (24.0) per sentence
(news wire) and the second highest median sen-
tence count per document (318 vs. 565 for broad-
cast conversations) in the OntoNotes corpus. The
combination of longer sentences and more sen-
tences per document allows for an increase in the
potential distances between coreference mentions
within the sentences themselves and within each
document. Adding further complexity to the task
is CRAFT’s use of discontinuous mentions, i.e.
coreference mentions that have intervening text
(see example of a discontinuous mention in Fig-
ure 1). Discontinuous mentions comprise 5.7%
of all identity chain mentions in the CRAFT cor-
pus. This is the first task on coreference resolution
that allows for discontinuous mentions as far as the
task organizers are aware.

3.1 Data

Annotation of the identity chains in the CRAFT
corpus is described in (Cohen et al., 2017). For
the purposes of the CRAFT-CR task, the strings
of text (referred to as mentions below) that are
linked to form coreference chains must exist in
the same document, but can be localized any dis-
tance from one another. Some mentions may be

Statistic Training Test
Min IC length 2 2
Max IC length 187 157

Median IC length 3 2
Average IC length 4.77 4.70

Total IC 16,302 7,185
IC per document 243.3 239.5

Total mentions 77,755 33,749
Discont. mentions 4,485 1,845

Table 2: Descriptive statistics of the coreference reso-
lution annotations in the CRAFT training and test sets.
IC = identity chain

found to be adjacent while others may exist only
in the document title and conclusion, for exam-
ple. Two types of coreference have been resolved
for all base noun phrases in the CRAFT corpus.
Identity chains link mentions of the same refer-
ent, and can span the entire document. Apposi-
tion relations link adjacent noun phrases that have
the same referent and are not linked by a copula.
The CRAFT-CR task focuses on reproducing the
manually curated identity chains.

3.1.1 Data preparation

During the course of data preparation for the
CRAFT-CR task, some errors in the coreference
annotations were discovered, and subsequently
fixed. The most common error involved two
identity chains sharing a single base noun phrase
mention. Each shared mention was manually re-
viewed, and the two identity chains were merged
in cases where the chains were deemed to be about
the same referent. In cases where the presence of a
shared mention in one chain was clearly an error,
it was removed and the identity chains remained
distinct. The CRAFT-CR training and test data are
summarized in Table 2.

3.1.2 Data format

The CRAFT-CR task makes use of the CoNLL-
2011/2012 data format for representing identity
chains7, with a modification to enable represen-
tation of discontinuous mentions. Discontinuous
mentions are denoted by the addition of a charac-
ter or characters (non-digit) after the chain identi-
fier (integer) as depicted in Figure 1.

7See the * conll File Format heading: http://
conll.cemantix.org/2012/data.html

http://conll.cemantix.org/2012/data.html
http://conll.cemantix.org/2012/data.html
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48141 0 7 high JJ - ... - (64a)
48141 0 8 and CC - ... - -
48141 0 9 low JJ - ... - (65
48141 0 10 IOP NN - ... - (64a)|65)

Figure 1: Sample representation of two coreference
mentions, high..IOP and low IOP. Note the use of
the character a in the chain identifier (64a) to indicate
a discontinuous mention for the high..IOP mention.
Empty columns 7-11 have been elided for figure layout
consideration.

3.2 Scoring

There are a wide range of coreference resolution
scoring metrics available. For historical purposes,
the five reference metrics (MUC, B3, CEAFE,
CEAFM, BLANC) of Pradhan et al. (2014) are
used to score the CRAFT-CR task. Due to their ap-
parent unreliability and their low agreement rate,
the Link-based Entity-Aware (LEA) metric pro-
posed by Moosavi and Strube (2016) is also used
to measure coreference system performance. The
LEA metric was designed specifically to address
the shortcomings of the previously used metrics.
By taking into account all coreference links and
evaluating resolved coreference relations instead
of resolved mentions, the LEA metric accurately
assesses recall and precision.

The coreference scoring implementations were
modified in two ways for the CRAFT-CR task.
First, because the CRAFT-CR data allows for
mentions with discontinuous spans, the implemen-
tations were augmented to take as input the mod-
ified CoNLL-Coref 2011/2012 file format. Sec-
ond, the implementations were updated to allow
overlapping mentions to match instead of enforc-
ing strict mention boundary matching. This option
was added to allow for a slightly more flexible,
permissive evaluation. The augmented implemen-
tations of all metrics used in the CRAFT-CR task
have been made publicly available8.

3.3 Baseline system

For comparison purposes, we evaluated the
Berkeley coreference resolution system using the
CRAFT-CR task test data (Durrett and Klein,
2013). The Berkeley system is an english coref-
erence system predicated on learning using sim-
ple, but large numbers of lexicalized features.

8https://github.com/bill-baumgartner/
reference-coreference-scorers;
doi:10.5281/zenodo.3462790

This baseline evaluation made use of the built-
in preprocessing machinery for sentence splitting,
tokenization, and parsing, and their pre-trained
CoNLL 2012 model. Prior to evaluation, results
from the Berkeley system were post-processed to
adjust for some system idiosyncrasies, e.g. replac-
ing ”-LRB-” in the ’word’ column with the ”(”
or ”[” that is found in the actual text, and then
the coreference information was mapped onto the
gold standard tokenization provided with the test
data.

3.4 Results

One team submitted three runs for evaluation in
the CRAFT-CR task (Table 3). They augmented
the state-of-the-art end-to-end neural coreference
resolution system of Lee et al. (2017) by incorpo-
rating extra syntactic features including grammati-
cal number agreements between mentions, as well
as semantic features using MetaMap to identify
entity mentions. They also investigated the use of
PubMed word vectors (Chiu et al., 2016) (Run1)
and SciBERT word vectors (Beltagy et al., 2019)
(Run2, Run3) as inputs to their model. As imple-
mented, the system of Team T010 performed ad-
mirably compared to the baseline. F-scores are in
line with some previous coreference systems used
on CRAFT (Cohen et al., 2017), thus emphasiz-
ing the challenge of coreference resolution in gen-
eral, and of coreference resolution over biomedi-
cal text in particular. While the baseline system
and Run1 of the participant system produced on
average shorter chains than those in the evaluation
set (p<0.01, Mann-Whitney U test), Run2 and
Run3 of the participant system were both able to
generate distributions of coreference chain lengths
that were not significantly different from the eval-
uation set (Run2: p=0.94, Run3: p=0.79, Mann-
Whitney U test) suggesting that inclusion of the
SciBERT embeddings helps to achieve the proper
chain length distribution.

4 The CRAFT concept annotation task

Concept annotation has been a mainstay in
BioNLP shared tasks dating back to the very
first BioCreative, which involved the detection
of gene/protein mentions in abstracts and their
subsequent normalization to gene identifiers from
model organism databases (Hirschman et al.,
2005). Detecting biomedical concepts is a foun-
dational NLP task, and performance of this task

https://github.com/bill-baumgartner/reference-coreference-scorers
https://github.com/bill-baumgartner/reference-coreference-scorers
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Metric Run PM RM FM PCR RCR FCR

B3 T010 - Run 3 0.731 0.578 0.646 0.517 0.384 0.440
Baseline 0.552 0.294 0.384 0.379 0.195 0.257

B3
APM

T010 - Run 3 0.779 0.615 0.687 0.538 0.406 0.462
Baseline 0.685 0.364 0.476 0.435 0.224 0.296

BLANC
T010 - Run 3 0.731 0.578 0.646 0.506 0.473 0.489
Baseline 0.552 0.294 0.384 0.413 0.193 0.263

BLANCAPM
T010 - Run 3 0.779 0.616 0.688 0.513 0.480 0.496
Baseline 0.686 0.365 0.476 0.447 0.209 0.284

CEAFE
T010 - Run 3 0.731 0.578 0.646 0.454 0.354 0.398
Baseline 0.552 0.294 0.384 0.334 0.195 0.247

CEAFEAPM
T010 - Run 3 0.779 0.615 0.688 0.484 0.377 0.424
Baseline 0.685 0.364 0.476 0.393 0.230 0.290

CEAFM
T010 - Run 3 0.731 0.578 0.646 0.555 0.439 0.490
Baseline 0.552 0.294 0.384 0.429 0.228 0.298

CEAFMAPM
T010 - Run 3 0.779 0.615 0.688 0.574 0.453 0.507
Baseline 0.685 0.365 0.476 0.487 0.259 0.338

LEA
T010 - Run 3 0.731 0.578 0.646 0.475 0.345 0.400
Baseline 0.552 0.294 0.384 0.335 0.171 0.226

LEAAPM
T010 - Run 3 0.779 0.615 0.687 0.491 0.360 0.415
Baseline 0.685 0.364 0.476 0.376 0.193 0.255

MUC
T010 - Run 3 0.731 0.578 0.646 0.644 0.511 0.570
Baseline 0.552 0.294 0.383 0.450 0.233 0.307

MUCAPM
T010 - Run 3 0.779 0.616 0.688 0.665 0.527 0.588
Baseline 0.685 0.365 0.476 0.530 0.275 0.362

Table 3: Results for the coreference resolution task. Runs achieving highest coreference F-score are shown. The
APM subscript indicates that partial mention matches were allowed. PM: mention precision; RM: mention recall;
FM: mention F-score; PCR: coreference precision; RCR: coreference recall; FCR: coreference F-score

impacts many potential downstream applications.
Mapping textual mentions of ontology concepts
presents its own set of challenges. Well-known
among these are conceptual synonymy, by which
a given represented concept may be indicated by
multiple unique textual mentions, and textual pol-
ysemy, by which a given text string may refer to
multiple represented concepts. Particularly preva-
lent in the biomedical literature are acronyms and
other abbreviations of represented concepts. Ad-
ditionally, some ontologies employ standard pat-
terns for concept labels, but some of these may re-
sult in long, complex labels that are infrequently
seen in the literature (Ogren et al., 2005; Funk
et al., 2014).

The CRAFT corpus is uniquely positioned to
gauge the state of the art in ontological concept
recognition as it comprises over 159,000 con-
cept annotations spanning ten ontologies from the
Open Biomedical Ontologies (OBO) (Smith et al.,
2007) collection. Participants in the CRAFT con-

cept annotation (CRAFT-CA) task were provided
the plain-text version of each article and a file con-
taining each ontology in the OBO format9. The
CRAFT-CA task was further subdivided into two
subtasks. The first subtask involved recognition
of concepts in the original OBO files. The sec-
ond subtask involved the recognition of concepts
in the original OBO files augmented with exten-
sion classes, which are classes created by CRAFT
developers but defined in terms of proper OBO
classes. These extension classes were created for
various reasons10: Some were created to capture
mentions of concepts different from, but corre-
sponding to, concepts represented in the ontolo-
gies, e.g., functionally defined entities correspond-
ing to represented molecular functionalities. Oth-

9https://github.com/owlcollab/
oboformat

10https://github.com/UCDenver-ccp/
CRAFT/blob/master/concept-annotation/
README.md

https://github.com/owlcollab/oboformat
https://github.com/owlcollab/oboformat
https://github.com/UCDenver-ccp/CRAFT/blob/master/concept-annotation/README.md
https://github.com/UCDenver-ccp/CRAFT/blob/master/concept-annotation/README.md
https://github.com/UCDenver-ccp/CRAFT/blob/master/concept-annotation/README.md
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ers are semantically broadened forms of the rep-
resented concepts, while others were created to
unify classes from different ontologies that were
semantically equivalent so that there would not
be multiple concept annotations for the same text
spans if disparate annotation sets are aggregated.

4.1 Data
Concept annotations in the CRAFT corpus span
ten Open Biomedical Ontologies (Smith et al.,
2007), including the Chemical Entities of Biomed-
ical Interest (ChEBI) ontology (Degtyarenko et al.,
2007), the Cell Ontology (CL) (Bard et al.,
2005), the Biological Process (GO BP), Cellu-
lar Component (GO CC) and Molecular Func-
tion (GO MF) subontologies of the Gene On-
tology (Ashburner et al., 2000), the Molecular
Process Ontology (MOP)11, the NCBI Taxon-
omy (NCBITaxon) (Federhen, 2011), the Pro-
tein Ontology (PR) (Natale et al., 2010), the
Sequence Ontology (SO) (Eilbeck et al., 2005),
and the Uberon cross-species anatomy ontology
(UBERON) (Mungall et al., 2012). Note that con-
cept annotations in the CRAFT corpus are permit-
ted to have discontinuous spans with intervening
text; e.g., for the phrase somatic and germ
cells, the combination of the two substrings
somatic and cells is annotated with the con-
cept for somatic cells (CL:0002371) even
though somatic and cells are not adjacent to
one another in the text. There are over 2,300 con-
cept annotations with discontinuous spans in the
CRAFT corpus. The ontologies provided for the
CRAFT-CA task were the same versions used dur-
ing the annotation of CRAFT. As with the other
tasks, the data is divided into a training set con-
sisting of 67 full-text articles from the PMC Open
Access subset, and a test set of 30 full-text arti-
cles chosen using identical selection criteria. Con-
cept annotation of the CRAFT articles is described
in detail in Bada et al. (2012) and Bada et al.
(2017). Summary statistics showing total anno-
tation counts for the ten ontologies used in the
CRAFT corpus are shown in Table 4.

4.1.1 Data preparation
Some minor concept annotation errors were dis-
covered and addressed during preparation for
the CRAFT-CA task. These errors included an
NCBITaxon concept that was found to not exist

11http://obofoundry.org/ontology/mop.
html

in the version of the NCBI Taxonomy used to an-
notate CRAFT, as well as some erroneous exten-
sion class prefixes used in the GO MF extended
ontology file. Errors were addressed prior to the
commencement of the shared tasks.

4.1.2 Data format
The CRAFT corpus is distributed with a script
that can convert its native annotation format to a
variant of the BioNLP format12 which is used for
both input and output for the CRAFT-CA task.
This format captures span information, the con-
cept identifier, and the covered text for each anno-
tation (See Figure 2).

4.2 Scoring

The method of Bossy et al. (2013) was used to
measure performance of the concept annotation
systems with respect to the CRAFT corpus. This
method employs a hybrid measure taking into ac-
count both the degree to which the predicted anno-
tation boundaries match the reference, as well as
a similarity metric for scoring the concept match.
The boundary match uses the modified Jaccard
index scheme described in Bossy et al. (2012),
which allows for flexible matching but prefers ex-
act matches. The concept similarity metric of
Wang et al. (2007) is used to score the predicted
concepts. As suggested by Bossy et al. (2013) , the
weight factor, w, was set to 0.65, which ensures
that ancestor/descendant predictions always have
a greater value than sibling predictions, while root
predictions never yield a similarity greater than
0.5. An implementation of the scoring algorithm
has been made publicly available13.

4.3 Baseline system

We evaluated a baseline system on the CRAFT-
CA data to use as a comparison for the participant-
submitted runs. The baseline system is a two-stage
machine learning system proposed in Hailu (2019)
and trained only on the CRAFT corpus. The first
stage makes use of NERSuite (Cho et al., 2010) to
detect concept mention spans using a conditional
random field (CRF) model. The CRF model was
trained as described in Okazaki (2007), and uses as
features words, parts of speech, and constituency
parse information within a window of three tokens

12http://2013.bionlp-st.org/
file-formats

13https://github.com/UCDenver-ccp/
craft-shared-tasks; doi:10.5281/zenodo.3460928

http://obofoundry.org/ontology/mop.html
http://obofoundry.org/ontology/mop.html
http://2013.bionlp-st.org/file-formats
http://2013.bionlp-st.org/file-formats
https://github.com/UCDenver-ccp/craft-shared-tasks
https://github.com/UCDenver-ccp/craft-shared-tasks
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Ontology Training Test Ontology Training Test
CHEBI 4,548 (18) 2,200 (14) CHEBI EXT 11,915 (38) 5,248 (19)

CL 4,043 (244) 1,749 (175) CL EXT 6,275 (249) 2,872 (175)
GO BP 9,280 (493) 3,681 (272) GO BP EXT 13,954 (526) 5,847 (287)
GO CC 4,075 (80) 1,184 (14) GO CC EXT 8,495 (150) 3,217 (30)
GO MF 375 (0) 94 (0) GO MF EXT 4,070 (28) 1,822 (20)

MOP 240 (0) 101 (0) MOP EXT 386 (0) 111 (0)
NCBITaxon 7,362 (2) 3,101(0) NCBITaxon EXT 7,592 (2) 3,219 (0)

PR 17,038 (84) 6,409 (44) PR EXT 19,862 (110) 7,932 (44)
SO 8,797 (108) 3,446 (45) SO EXT 24,955 (182) 9,136 (72)

UBERON 12,269 (235) 6,551 (118) UBERON EXT 14,910 (255) 7,416 (133)

Table 4: Total and discontinuous (in parentheses) concept annotation counts by ontology for both the 67 article
training and 30 article test sets.

T1 CL:0000540 83 89 neuron
T2 CL:0002613 239 247;259 265 striatal ... neuron
T3 CL:0002613 434 442;451 457 striatal ... neuron
T4 CL:0000540 703 709 Neuron

Figure 2: Sample annotations demonstrating the BioNLP format used as input and output for the CRAFT-CA
task. Note the presence of two annotations with discontinuous spans. The document identifier is indicated in the
filename for each annotation file.

Proper OBO OBO + extension
Ontology Submission SER P R F1 SER P R F1

CHEBI
T013 - Run 3/1 0.34 0.79 0.75 0.77 0.27 0.84 0.79 0.81
Baseline 0.44 0.91 0.59 0.72 0.29 0.89 0.73 0.80

CL
T013 - Run 3/2a 0.56 0.68 0.62 0.65 0.35 0.77 0.67 0.72
Baseline 0.53 0.83 0.48 0.61 0.33 0.79 0.67 0.73

GO BP
T013 - Run 3/1 0.30 0.83 0.78 0.80 0.29 0.81 0.81 0.81
Baseline 0.39 0.83 0.64 0.72 0.29 0.84 0.74 0.79

GO CC
T013 - Run 1/2a 0.39 0.77 0.75 0.76 0.20 0.92 0.83 0.87
Baseline 0.44 0.88 0.60 0.71 0.20 0.93 0.83 0.88

GO MF
T013 - Run 2/2a 0.04 0.99 0.96 0.98 0.39 0.82 0.68 0.74
Baseline 0.07 0.99 0.92 0.95 0.45 0.82 0.56 0.66

MOP
T013 - Run 3/2a 0.27 0.81 0.94 0.87 0.34 0.89 0.73 0.79
Baseline 0.43 0.87 0.65 0.75 0.36 0.88 0.72 0.79

NCBITaxon
T013 - Run 3/2a 0.05 0.97 0.97 0.97 0.077 0.98 0.93 0.96
Baseline 0.07 0.99 0.93 0.96 0.07 0.99 0.94 0.96

PR
T013 - Run 3/1 0.68 0.50 0.59 0.54 0.73 0.49 0.46 0.47
Baseline 0.69 0.60 0.40 0.48 0.62 0.61 0.45 0.52

SO
T013 - Run 3/2a 0.16 0.90 0.88 0.89 0.13 0.92 0.91 0.92
Baseline 0.21 0.91 0.82 0.86 0.18 0.92 0.85 0.89

UBERON
T013 - Run 1/2a 0.37 0.77 0.71 0.74 0.39 0.77 0.69 0.73
Baseline 0.41 0.84 0.61 0.70 0.36 0.86 0.66 0.75

Table 5: Aggregate concept annotation results evaluated per ontology against the 30 CRAFT test documents. For
Team T013, their highest scoring run is displayed based on SER. Run identifiers indicate (proper OBO/OBO EXT).
Note that Run 2a is an unofficial run as it was submitted after the deadline, however since there were no other teams
participating, Run 2a is included in the official results. SER = Slot Error Rate; P = Precision; R = Recall; F1 =
F1-score.
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upstream and downstream of each concept men-
tion. The second stage links each textual men-
tion identified by the CRF to an ontology iden-
tifier using a stacked Bi-LSTM approach imple-
mented by the OpenNMT system (Klein et al.,
2018). By modeling concept normalization as
sequence-to-sequence translation at the character
level, the baseline system maps characters in the
text spans identified in the first stage to characters
in ontology identifiers to normalize concepts.

4.4 Results

One team submitted three runs to the CRAFT-CA
task (Table 5). They used variants of two sys-
tems, one a modified ontology-specific BioBert14

model with (Run3) and without (Run1) input from
the OGER NER system (Furrer et al., 2019) and
with weights pretrained on PubMed using iden-
tifiers from the ontologies as the tag set, and
the other a BiLSTM with ontology pretraining
(Run2). With regard to overall system perfor-
mances, marked improvement in recognition of
concepts from CHEBI, GO BP, GO MF, and SO
was observed compared to past evaluations us-
ing the CRAFT public dataset (Funk et al., 2014).
However, it is important to note that past evalua-
tions were performed on CRAFT v1/2 concept an-
notations, whereas the testing of this shared task
was performed on v3 concept annotations, which
constitute a major update of the concept annota-
tions relative to those of v1/2 (including first us-
age of extension classes), so we do not believe it
is safe to directly compare evaluations performed
on these substantially different versions of the
concept annotations. The BioBert approach aug-
mented with the OGER NER system (Run3) gen-
erally outperforms the other approaches when nor-
malizing to proper OBO concepts, whereas the Bi-
LSTM approach is generally better when the ex-
tension classes are used.

Neither the baseline system, nor any of the
submitted runs identified annotations with discon-
tinuous spans. Though annotations with discon-
tinuous spans make up only a small percentage
(1.46%) of the overall annotations, their exclusion
from system output could represent potential low
hanging fruit for improving overall system perfor-
mance. Protein Ontology concept recognition re-
mains a target for future work as system perfor-
mances did not surpass an F-score of 0.55. In-

14https://github.com/dmis-lab/biobert

clusion of the extension classes generally resulted
in improvement of performance when compared
to runs using only the proper ontology concepts,
possibly attributable to the labels and synonyms
that were provided for the extension classes. One
exception is for GO MF EXT where performance
is expected to suffer with inclusion of the exten-
sion class annotations as the proper ontology class
count was limited to a very small subset of the
original ontology. Overall, however, performance
on the CRAFT-CA task demonstrated state-of-the-
art performance for ontological concept recogni-
tion in biomedical text.

5 Conclusion

The CRAFT-ST 2019 provides a platform to gauge
performance on three fundamental NLP tasks, au-
tomated dependency parse construction, corefer-
ence resolution, and ontology concept annotation
against a high quality, manually annotated corpus
of full-text biomedical articles. Submitted runs
from participating systems demonstrate promis-
ing results, particularly with respect to automated
dependency parse construction and some aspects
of ontological concept annotation. Clear needs
for improved extraction of protein ontology con-
cepts remain, while the neural approaches used
have addressed long standing deficiencies in the
recognition of biological process concepts in text.
Coreference resolution system performances high-
light the existing challenges of coreference resolu-
tion in general, and of coreference resolution over
biomedical text in particular.

The approaches taken by participants in the
CRAFT-ST 2019 mirror the current themes in AI
and NLP today. Neural approaches are unsur-
prisingly the preferred methodology for address-
ing these NLP tasks. The CRAFT ST 2019 have
provided new benchmarks for these fundamental
NLP tasks, setting the stage for the next evolution
of system development.
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