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Abstract 

Different representations of the same con-
cept could often be seen in scientific reports 
and publications. Entity normalization (or 
entity linking) is the task to match the dif-
ferent representations to their standard con-
cepts. In this paper, we present a two-step 
ensemble CNN method that normalizes mi-
crobiology-related entities in free text to 
concepts in standard dictionaries 1 . The 
method is capable of linking entities when 
only a small microbiology-related biomed-
ical corpus is available for training, and 
achieved reasonable performance in the 
online test of the BioNLP-OST19 shared 
task Bacteria Biotope. 

1 Introduction 

With over 500K papers in the biomedical field 
published on average every year2, it is important 
to promote efficient information retrieval and 
knowledge processing from the literatures auto-
matically. Named entity recognition (NER), 
which extracts meaningful real-world objects 
from free text, and entity normalization (entity 
linking), which links ambiguous or varied ex-
tracted objects to standard concepts, are two fun-
damental natural language processing (NLP) 
tasks to approach the goal.  

With many attempts made for general entity nor-
malization (Hachey, Radford et al. 2013, Luo, 
Huang et al. 2015, Wu, He et al. 2018, Aguilar, 
Maharjan et al. 2019), biomedical entity linking 
faces more challenges handling entity variations, 
making it an enthralling field to be explored. Many 
studies endeavored to solve biomedical entity nor-
malization issues have been published (Hanisch, 
Fundel et al. 2005, Leaman and Lu 2016, Cho, 

																																																								
1 Our code is available at: 
https://github.com/OXPHOS/BioNLP 

Choi et al. 2017, Li, Chen et al. 2017, Luo, Song et 
al. 2018, Ji, Wei et al. 2019). Meanwhile, BioNLP 
Shared Tasks, one of the community-wide chal-
lenges that aim to find solutions for biomedical lit-
erature information retrieval, also addresses di-
verse tasks of entity linking (Bossy, Jourde et al. 
2011, Bossy, Golik et al. 2013, Nédellec, Bossy et 
al. 2013, Chaix, Dubreucq et al. 2016, Deléger, 
Bossy et al. 2016). However, further investigations 
are required to improve the performance of the en-
tity linking systems, especially when the available 
corpus is small. 

Here, we present a two-step neural network-
based ensemble method that links free text pre-
annotated microbiology-related entities to stand-
ard concepts using semantic information from 
pre-trained word vectors. By integrating a perfect 
match method with a shallow CNN, our model’s 
performance is comparable to the SOTA methods’ 
performance when trained with a small biomedi-
cal corpus (2258 microbiology-related entities, or 
1248 after de-duplication, from 198 microbiology 
related publications and reports) provided by the 
BioNLP-19 task Bacteria Biotope challenge.3 

We have compared our ensemble model to both 
a baseline method, of which we linked free text 
entities to the standard concepts by vector dis-
tance (Manning, Raghavan et al. 2010), and 
ABCNN, one of the SOTA models that could be 
used for entity normalization (Yin, Schütze et al. 
2016). In addition, the method was tested online, 
and the results indicated that our model achieved 
a reasonable performance for microbiology-re-
lated entities linking tasks with small corpora. 

2 Related work 

Entity normalization is a rich research field 
where diverse approaches have been proposed. 

2 http://dan.corlan.net/medline-trend/lan-
guage/absolute.html 
3	https://sites.google.com/view/bb-2019/home	
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Figure 1 Model Architecture Overview. VSM: pre-trained word vector space model. Ab3P: an abbreviation de-
tection tool developed specifically for biomedical concepts. CNN: convolutional neural network. 

Most early studies utilized morphological similar-
ity defined by editing distances between input 
terms and standard concepts to normalize the en-
tities (Ristad and Yianilos 1998, Aronson 2001). 
Later, heuristic rules were incorporated to im-
prove the performance (Hanisch, Fundel et al. 
2005, Kang, Singh et al. 2012, Karadeniz and 
Özgür 2013, Tiftikci, Şahin et al. 2016, Cho, Choi 
et al. 2017). Among them, MaCallum et al. (2012), 
DNorm (Leaman, Islamaj Doğan et al. 2013) and 
LIMSI (Grouin and Moriceau 2016) introduced 
conditional random field (CRF) to the entity link-
ing tasks, while TaggerOne (Leaman and Lu 2016) 
presented a NER and normalization joint system 
utilizing semi-markov models, and it has been 
adopted by an integrated bioconcept annotation 
and retrieval platform developed by NIH (Wei, 
Allot et al. 2019). However, many of the studies 
achieved good performance yet were limited for 
further improvements due to the common draw-
backs of rule-based methods.  

Approaches utilizing semantic information of 
the entities was made possible by the appearance 
of the word embedding technique. Word embed-
ding projects words to vector spaces, where the 
cosine similarities between the vectors indicate 
their semantic similarities. The CONTES system 
(Ferré, Zweigenbaum et al. 2017) and the follow-
ing HONOR system (Ferré, Deléger et al. 2018) 
performed entity linking tasks by minimizing the 
distances between embedded input terms and 
standard biomedical concepts. Karadeniz and 
Özgür (2019)  proposed an unsupervised method 

for entity linking tasks using word embeddings 
and a syntactic parser. 

Meanwhile, neural networks have been com-
bined with word embeddings to normalize bio-
medical entities. Limsopatham and Collier (2016) 
applied convolutional neural network (CNN) and 
recurrent neural network (RNN) to pre-trained 
word embeddings to normalize medical concepts 
in social media texts, and achieved the SOTA per-
formance on several datasets. Li et al. (2017)  uti-
lized a CNN structure to rank the candidates gen-
erated by rule-based methods. Deep neural net-
works such as multi-view CNN  and BERT have 
also been proposed to normalize biomedical enti-
ties (Luo, Song et al. 2018, Ji, Wei et al. 2019). 
However, their applications might be limited due 
to the requirement of large amount of data. 

3 Models 

Our model architecture is shown in Figure 1, 
where our major work is highlighted in blue and 
further discussed in Section 3.1-3.3. 

To process the entities from the standard dic-
tionary, let !"

# be the $-th entity from the diction-
ary, and %"& ∈ ℝ)  be the * -dimensional word 
vector of the +-th word in the entity !"

#. the em-
bedded vector ," of entity !"

#is defined as 

," = PCA( 2
34

%"&, 	789:;9<=<> = 0.95)34
&D2 ,	

where 7" ∈ ℕ
+	is the number of words present 

in a pre-trained vector space model (VSM) in the 
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entity !"
# . The VSM was created from the bio-

medical scientific literature in the PubMed data-
base and Wikipedia (Pyysalo 2013). * = 200. 
PCA was conducted to increase training effi-
ciency, where	789:;9<=<> is the reduction rate. 

The processing of the entities from free text is 
described in the following section in detail. To be 
noted, abbreviations are commonly seen in free 
text from publications and reports. For example, 
CNS, standing for the central nervous system, 
might often be used in research literature over 
topics of neuroscience, and would be annotated as 
entities to be linked. However, abbreviations, 
mostly derived from phrases, are often absent 
from the pre-trained word vector spaces and 
would interfere with the model training. To solve 
this problem, we first converted potential abbre-
viations in free text pre-annotated entity list to 
their long forms with Ab3P. Ab3P is an abbrevia-
tion detection tool developed specifically for bio-
medical concepts. It reached 96.5% precision and 
83.2% recall on 1250 randomly selected MED-
LINE records as suggested by Sohn et al (2008). 

The converted free text pre-annotated entities 
were then matched with dictionary-derived stand-
ard concepts by characters through a perfect 
match module (Section 3.1). The entities failed 
perfect matching were then fed to a set of shallow 
CNN models (Section 3.2) trained with bootstrap 
samples. Next, the outputs of the CNNs were 
mapped to standard entity vectors via cosine sim-
ilarity. The standard entity vectors output from 
the voting classifier (Section 3.3) were predicted 
as the linked results of the input entities. 

3.1 Perfect match 

We noticed that some entities from the free text 
were able to match with the standard entities by 
characters after rule-based processing. These en-
tities were then directly linked to the dictionary 
instead of being fed to the Word2Vector and CNN 
models. The rules we designed include: 
• Hyphens were replaced with spaces. 
• Characters except alphabetic letters and 

spaces were removed. 
• Case-insensitive string matching was per-

formed between the free text entities and standard 
entities.  

3.2 Shallow CNN 

The shallow CNN (Figure 1) was adapted from 
the previous ideas from Kim (2014) and Lim-
sopatham and Collier (2016) .   

To start with, let H"
I  be the $ -th input entity 

(which were provided by the task), and J"& ∈ ℝ) 
be the *-dimensional word vector of the +-th word 
in the entity H"

I, * = 200. The embedded matrix 
K" of entity H"

Iis defined as 

K" = 	 J"2⨁J"M⨁…J"34. 

Here 7" ∈ ℕO	is the number of words present 
in the pre-trained VSM (Pyysalo 2013) in the en-
tity H"

I . ⨁  is the concatenation operator. K"  is 
padded to length 8 as 98.8% of the input entities 
were composed of 8 or fewer words. For the enti-
ties with more than 8 words, average pooling was 
performed in prior with the pool size = (P, 200) 
and step= P, where P = 7/8 . In other words, 
simple average of the neighboring P words was 
calculated, so that the final embedded matrix 
would always have a length ≤ 8. 

A temporal convolution kernel followed by a 
max-over-time pooling operation and a fully con-
nected layer were applied to each K". The output 
,"	was then passed to a cosine similarity function 
to calculate the similarity scores between ,"	and 
each standard entity vector respectively. The 
standard concept with the highest score was pre-
dicted as the linked entity	,"

T. 

3.3 Ensemble mechanism with voting 

To reduce overfitting, we designed an ensemble 
method that combined 5 shallow CNNs with the 
concept of boosting (Valiant 1984). The 5 CNNs 
shared the identical architecture, but their weights 
were randomly initialized respectively. To in-
crease the generalization capability of our model, 
the CNNs were fed with training data randomly 
subsampled with bootstrap method (Efron 1982), 
with the out-of-bag samples used for cross-vali-
dation.  
The final normalized results were achieved with a 
majority-vote classifier over the outputs from the 
5 shallow CNNs. If no majority output was pre-
sent, the output from the network with the best 
cross-validation estimates would be chosen.		

3.4 Baseline model 

For each entity U"
#	in the standard dictionary 

and	U"
I	in free text, the corresponding embedded 
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    Total Number Number after de-duplication 

  
Article 
Number Habitat Phenotype 

Habitat+ 
Phenotype Habitat Phenotype 

Habitat+ 
Phenotype 

Training  133  1118  369 1487  627  176  803 
Development  66  610  161 771  348  97  445 
Test  97  924  252 1176  596  148  744 

Table 1. Data Statistics 

vector V"
#	and V"

I	are defined, respectively, as: 

V"
# = 2

34
W"&
#34

&D2 ,		V"
I = 2

34
W"&
I34

&D2 ,	

where 7" ∈ ℕO	is the number of words present 
in the pre-trained VSM in the $-th entity.  

Cosine similarity between each free text-dic-
tionary entity pair was calculated. The free text 
entity was linked to the dictionary entity with the 
highest similarity score. 

 3.5 ABCNN 

ABCNN (Yin, Schütze et al. 2016) is a state-of-
the-art deep learning model for text similarity 
learning, which could also be applied for entity 
linking tasks. The model introduced attention 
mechanism into a pair of siamese architecture-
based weight sharing CNNs (Bromley, Guyon et 
al. 1994).  

For our purpose, we used a slight variant of a 
published ABCNN model4. In addition, attention 
mechanism could be applied to different layers of 
the CNN pair according to the original publication. 
Considering the data volume and the model com-
plexity, we applied the attention mechanism to the 
input layer.	 

4 Experiments and Results 

4.1 Data and resources 

The biomedical corpus and pre-annotated entities 
were provided by BioNLP-OST19 task Bacteria 
Biotope. Table 1 shows the detailed data statistics 
provided by the task. Two types of entities were 
involved in the task: phenotype, which describes 
microbial characteristics, and habitat, which de-
scribes physical places where microorganisms 
could be observed. Dictionary with 3602 standard 
concepts was also provided by the task. In the 
original dictionary, each concept is assigned to a 
unique ID, while its hierarchical information of its 

																																																								
4	https://github.com/galsang/ABCNN 
5 https://sites.google.com/view/bb-2019/sup-
porting-resources 

direct parents is also listed. In our model, the hi-
erarchical information is omitted. 

Ab3P-detected abbreviations were provided as 
separate input files by the task organizers5. 

The 4 GB word vector space model was down-
loaded in binary format6 and extracted with py-
thon package gensim. 

4.2 Training 

Our CNN model was trained using stochastic gra-
dient descent optimizer with cosine proximity as 
the loss function. We randomly split 20% samples 
as validation dataset for each CNN and used early 
stopping criteria to determine the number of train-
ing epochs. The learning rate was fixed to 0.01. 
Batch size (2), kernel size (4) and filter number 
(5000) were determined by grid-search. 

As expected with this small volume of data, ex-
tra convolution layers led to overfitting. 

4.3 Held-out evaluation 

We used precision metrics, the official metric of 
the challenge, to evaluate the performance of our 
model and the reference models on the held-out 
development dataset respectively. 
 

Table 2. Performance of different models on develop-
ment dataset (Precision) 

	
As shown in Table 2, non-supervised baseline 

model yielded a precision score of 0.184 on the 
development dataset, while ABCNN yielded 
0.221, which might be attributed to the small 

6 http://bio.nlplab.org/ 

 Habitat Phenotype Total 
Ensemble CNN 0.624 0.615 0.622 
     Perfect match 0.863 0.937 0.869 
     Shallow CNN 0.526 0.572 0.538 
ABCNN 0.244 0.134 0.221 
baseline 0.207 0.101 0.184 
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training corpus. Our ensemble CNN model per-
formed around 3 times better than both reference 
models with an average precision score of 0.622,	
indicating the efficiency of our model. 

However, it should be noted that the perfect 
match module in our system had a remarkable 
higher precision score compared to the shallow 
CNN module, suggesting that the performance of 
the neural network could be further improved.  

We analyzed the result of the shallow CNN 
module and concluded that 3 possible reasons 
might be associated with the performance: 1) 
Missing context. For example, our model normal-
ized “children” to “child”, while the provided la-
bel was “patient with infectious disease” in arti-
cles describing children with infectious disease. 2) 
Missing hierarchical information. For example, 
our model normalized “B cell” to “cell” instead of 
“lymphocyte”, and the latter one was a more ac-
curate description. Tackling the above two issues 
would require either the context or the hierar-
chical information of the standard concepts to be 
considered in the system. 3) Wrong match. For 
example, “cats” was normalized to “dog”, sug-
gesting that the networks were not trained well to 
normalize these words. However, we noticed that 
such errors mostly came with a majority vote of 2 
or 1, which on the other hand demonstrated the 
power of the voting mechanism.	

 
 Habitat Phenotype 
PADIA_BacReader 0.684 0.758 
Challenge-provided 
baseline 

0.559 0.581 

AmritaCen 
_healthcare 

0.522 0.646 

BLAIR_GMU# 0.615 0.646 
BOUN-ISIK# 0.687 0.566 

Table 3. Performance of different models on online test 
dataset (Precision). The performance of our model 
(PADIA_BacReader) is bolded. #: Best run of the sub-
missions is considered. 

4.4 Online test 

The ensemble CNN model was then evaluated 
through online testing7.  

Our results showed a 12.5% and 17.7% preci-
sion increase in habitat and phenotype entity link-
ing tasks respectively compared to the chal-
lenged-provided baseline model (Table 3), where 
case-insensitive string matching was applied for 
																																																								
7 https://sites.google.com/view/bb-2019/pre-
diction-submission 

linking. In addition, it performed the best or 
among the best ones compared to models pro-
posed by other participants, suggesting the ad-
vantages of our model. We did not test our own 
reference models online due to the limited number 
of submissions to the challenge.  

5 Conclusions and Future direction 

We introduced a two-step neural network-based 
ensemble method that linked microbiology-re-
lated biomedical entities extracted from free text 
to standard concepts. The shallow architecture 
and ensemble mechanism on top of a perfect-
match morphological similarity method achieved 
reasonable predictions with limited training sam-
ples. The comparison with reference models sug-
gested the efficiency of our model. In addition, 
our approach could be applied to other scenarios 
where semantic linking between entities is re-
quired as well. 

Further improvement might be achieved once 
more semantic clues are incorporated, as we 
briefly discussed at the end of Section 4.3. The 
normalization deviation due to missing context 
clues did not only affect the performance of shal-
low CNN, but also affected the performance of 
perfect math as well. For example, though entity 
‘cell’ has a perfect match in standard dictionary, 
it might be referred to ‘lymphocytes’ specifically 
in a research paper discussing about immunity. 
While some efforts have been made to preserve 
hierarchical information between concepts during 
entity linking (Ferré, Deléger et al. 2018), It 
would be interesting to investigate if knowledge 
graphs derived from the standard dictionaries and 
input corpus could contribute to the semantic-
based entity normalization. 

In addition, our model assigned the same 
weight to all the words present in the VSM, which 
might compromise the performance of the system. 
For example, only the word “children” is informa-
tive in the entity “children less than five years of 
age”, as the entity is normalized to “child”. The 
presence of other words might interfere with the 
normalization. Regarding this issue, syntactic 
parsers might be adopted for performance im-
provement. 
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