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Abstract

Named Entity Recognition (NER) and Rela-
tion Extraction (RE) are essential tools in dis-
tilling knowledge from biomedical literature.
This paper presents our findings from partic-
ipating in BioNLP Shared Tasks 2019. We
addressed Named Entity Recognition includ-
ing nested entities extraction, Entity Normal-
ization and Relation Extraction. Our proposed
approach of Named Entities can be general-
ized to different languages and we have shown
it’s effectiveness for English and Spanish text.
We investigated linguistic features, hybrid loss
including ranking and Conditional Random
Fields (CRF), multi-task objective and token-
level ensembling strategy to improve NER. We
employed dictionary based fuzzy and semantic
search to perform Entity Normalization. Fi-
nally, our RE system employed Support Vector
Machine (SVM) with linguistic features.

Our NER submission (team:MIC-CIS) ranked
first in BB-2019 norm+NER task with stan-
dard error rate (SER) of 0.7159 and showed
competitive performance on PharmaCo NER
task with F1-score of 0.8662. Our RE system
ranked first in the SeeDev-binary Relation Ex-
traction Task with F1-score of 0.3738.

1 Introduction

Extracting knowledge from scientific articles is a
challenging but very important problem. This be-
comes especially critical for biomedical literature
which is growing at an increasing rate of at least
4% per year, as of June 2019 there are 30 Mil-
lion documents in PubMed (Lu, 2011). Named
Entity Recognition (NER) (Settles, 2004; Gupta
et al., 2016; Lample et al., 2016) in the context of
biomedical domain refers to the task of identifying
the name of the biological entities e.g. name of a
bacteria. Relation extraction1 (RE) (Kambhatla,

* Equal Contribution
1Event extraction is treated as RE in this work
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Figure 1: An illustration of (nested) NER + Normal-
ization and Relation Extraction in Biomedical entities.
Each rectangular box spans an entity, where the over-
lapping spans indicate nested entities. E.g., fish is a
nested entity (a sub-concept) of type Habitat within
the parent entity fish pathogen of type Phenotype. The
identifiers (e.g. OBT:002669, NCBI:40269, etc.) re-
fer to unique IDs in Biomedical databases (i.e., OBT
→ OntoBiotope Ontology and NCBI→ NCBI Taxon-
omy), used to perform entity normalization (i.e., entity
linking). The arrows indicate binary relationships.

2004; McDonald et al., 2005; Lever and Jones,
2016; Gupta et al., 2018) refers to identifying re-
lations among biological entities (binary or n-ary).

Figure 1 illustrates an example of (nested) NER
and RE consisting of five entities, where three en-
tities participate in two distinct relationships. It is
often required to link named entity(s) to a unique
reference in database(s). For instance, one of
the two occurrences of fish refers to marine fish
while the second refers to a farm fish, where the
two entities are linked (or normalized) to different
identifiers (e.g., OBT:002793 and OBT:002903) in
the biomedical database (e.g., OntoBiotope Ontol-
ogy). The act of linking entities to standard en-
tities with a unique identifier is known as entity
normalization and is challenging as several entity
mentions can correspond to the same standard en-
tity (or unique identifier), e.g. E. coli, Bacillus coli
and Bacteriumcoli refer to the standard entity Es-
cherichia coli in the database. The linking process
relies on knowledge base (KB) search (heuristic
OR semantic) in order to resolve entities.

NER is a critical primitive step in the NLP



133

w_e c_e t_f w_e c_e t_f w_e c_e t_f w_e c_e t_f

presence of fish pathogen

LSTM LSTM LSTM LSTM

CRF CRF CRF CRF

NNE

of

<s>

NNE

fish

presence

NE

pathogen

of

NE

</s>

fish
w_e

a_f

c_e

w_e

a_f

c_e

fish

pathogen

L
S
T
M

L
S
T
M

C
R
F

C
R
F

B-S_H

Level1 NER to detect parent entities

O O B-P I-PNER 
Layer

NED 
Layer

LM 
Layerm

u
lt
i-
ta
sk
in
g

wordLSTM

LSTMcharLSTM LSTM LSTM LSTM

B-P

L
S
T
M

L
S
T
M

charLSTM wordLSTM

Level2 Nested NER to detect sub-concepts in 
parent entities

KB
entity 

 normalization

nested-entity 
normalization

Figure 2: System Architecture for NER task, consisting of two bi-LSTM-CRF architectures: Level1 NER to detect
parent entities and Level2 Nested NER to detect sub-concepts within the parent entities (output of Level1 NER).
Here, w e: a word embedding vector; c_e: an embedding vector for a word computed using character-level bi-
directional LSTM; t_f : a vector of additional linguistic features; B_P: B_Pathogen; B-S_H: a sub-concept of type
Habitat detected by the Level2 Nested NER run over the the parent entity.

pipeline as downstream tasks such as RE, text clas-
sification, Question Answering (QA) etc., depend
on it. Even though several methods have been de-
vised to engineer reliable NER systems; however,
most of them don’t explicitly address the extrac-
tion (or recognition) of nested entities, especially
required in the biomedical domain. Nested en-
tity is defined as an entity or sub-concept which
is part of a longer entity (i.e., a parent). For in-
stance in the Figure 1, fish is a nested entity as it is
part of a parent entity fish pathogen. In this work,
we have also investigated extracting nested enti-
ties via two bi-LSTM-CRF (Lample et al., 2016)
networks: one for parent detection and another for
nested entities with the parent entity.

2 Task Description and Contribution

We participate in the following three tasks or-
ganized by BioNLP workshop 2019: (1) Phar-
maCoNER: Recognition of pharmaceutical drugs
and chemical entities in Spanish text. (2)
BB-norm+NER: Recognition of Microorganism,
Habitat and Phenotype entities and normalization
with NCBI Taxonomy and OntoBiotope habitat
concepts. (3) SeeDev Binary RE: Binary Relation
extraction of genetic and molecular mechanisms
involved in plant seed development.

Following are our multi-fold contributions:

1. To address NER tasks, we have employed
neural network based sequence classifier,
i.e., bi-LSTM-CRF and investigated multi-
tasking of named entity detection (NED) and
language modeling (LM). We further intro-
duced hybrid loss including CRF and rank-
ing. We also incorporated linguistic features
such as POS, orthographic features, etc. We
apply the proposed modeling approaches to
both English and Spanish texts. Comparing
with other systems, our submission (Team:
MIC-CIS) is ranked 1st in BB-norm+NER
task (Bossy et al., 2019) with standard er-
ror rate of 0.7159. In PharmaCoNER task
(Gonzalez-Agirre et al., 2019), our submis-
sion scored F1-score of 0.8662.

2. To address RE task, we employed linguistic
and entity features in SVM. Our submission
(Team: MIC-CIS) is ranked 1st in SeeDev-
binary RE task (Chaix et al., 2016) with F1-
score of 0.3738.

The code to reproduce our results is avail-
able at: https://github.com/uyaseen/
bionlp-ost-2019.

https://github.com/uyaseen/bionlp-ost-2019
https://github.com/uyaseen/bionlp-ost-2019
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Features Description
word-cap capitalization features
POS parts-of-speech tags

ortho
orthographic features
e.g. Egg Pulp, 97 encoded as Ccc Ccccp nn

tri-gram tri-gram as features
five-gram five-gram as features
length length of the word
sdp-rel dependency relation tag

alpha-features
detect if certain linguistic pattern occurred
in the current word or the next word

Table 1: Word-level features for NER. The features are
encoded as embeddings, except the alpha features that
are represented as one-hot vector.

3 Methodology

In the following sections we discuss our proposed
model for NER and RE.

3.1 Neural Architectures for NER

Figure 2 describes the architecture of our model,
where we design two sequence taggers Level1
NER and Level2 Nested NER to extract parent
and nested entities respectively. Furthermore,
Level1 NER can be configured in two modes: (1)
LSTM-CRF (Lample et al., 2016) with word em-
beddings (w e), character embeddings (c e) and
token-level features (t f ) such as POS, capitaliza-
tion features, word shape, etc. (refer to table 1
for the complete list of word level features) (2)
LSTM-CRF+Multi-task that performs entity de-
tection and language modelling as auxiliary tasks.
Note that Level2Nested NER only operates on
the parent entities detected by Level1 NER. The
parent and nested entities are than normalized to
unique identifiers in KB by our entity normaliza-
tion algorithm.

3.1.1 BiLSTM-CRF
The input to LSTM is a sequence of word
features (w1,w2, . . . ,wn) and they compute a
hidden state for each element in the sequence
(h1,h2, . . . ,hn). This hidden state can be used to
jointly model tagging decisions using CRF (Laf-
ferty et al., 2001). CRF imposes ordering con-
straints on the tagging decisions e.g. I_Habitat
should always be preceded by B_Habitat. For an
input sentence,

W = (w1,w2, . . . ,wn),

we consider a matrix P of scores output by the
bidirectional LSTM. The size of P is n × k,

where k is the number of distinct tags, and Pi,j

corresponds to the score of the jth tag of the ith

word in a sentence. For a sequence of predictions

y = (y1, y2, . . . , yn),

we define its score to be

s(X,y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi

where the matrix A express transition scores such
that Ai,j represents the score of a transition from
the tag i to tag j. We add start and end tag to
the set of possible tags, therefore, the size of A is
k + 2. During training, we minimize the negative
log-probability of the correct tag sequence:

log(p(y|X)) = s(X,y)− log

 ∑
ỹ∈YX

es(X,ỹ)


= s(X,y)− logadd

ỹ∈YX

s(X, ỹ), (1)

lossCRF = − log(p(y|X)) (2)

3.1.2 Hybrid Loss: CRF + Ranking
We use a variant of ranking loss function proposed
by dos Santos et al. (2015). Ranking maximizes
the distance between the true label y+ and the
most competitive label c−:
lossranking = max(0, 1 + (γ ∗ (m+ − y+)) +

(γ ∗ (m− + c−))
where γ is the scaling factor that penalizes the

predictions, m+ and m− are margins for correct
and incorrect labels respectively. We follow Vu
et al. (2016) to set the values of margins.

The hybrid loss function hence is the sum of
CRF tagging loss and ranking loss:

losshybrid = lossCRF + α · lossranking

where α ∈ [0, 1], weighs the contribution of rank-
ing loss in the overall loss value. During training
we minimize the hybrid loss and found it to im-
prove the F1 score for both BB-norm+NER and
PharmaCoNER tasks.

3.1.3 Multi-Tasking of Named Entity
Recognition, Detection and Language
Modelling

We employed auxiliary objectives of named-entity
detection (NED) (Aguilar et al., 2017) and bidirec-
tional language modelling (LM) (Rei, 2017) in our
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Algorithm 1 Entity Normalization

Input: NE, NE Type
Output: RF ID
Output: NE PRED (Optional)

1: RF ID = None
2: IF NE Type == ’Microorganism’:
3: found, RF ID = exact match(NE, NCBI)
4: if not found:
5: found, RF ID = fuzzy match(NE, NCBI)
6: return RF ID
7: ELSE
8: found, RF ID = exact match(NE, NCBI)
9: if not found:

10: found, RF ID = fuzzy match(NE, NCBI)
11: if found:
12: # LABEL UPDATE !
13: NE PRED = ’Microorganism’
14: return RF ID, NE PRED
15: found, RF ID = exact match(NE, OBT)
16: if not found:
17: found, RF ID = semantic search(NE, OBT)
18: return RF ID

model. Usually these auxiliary objectives acts as
regularizes (Collobert and Weston, 2008) and im-
proves the overall performance. With these multi-
tasking objectives, for each word token our model
predicts the NED tag, next word, previous word
and the NER tag2. LM and NED layers in figure
2 realizes NED and LM objectives respectively.
Note that Multi-tasking is only enabled at train
time and requires no additional labelling.

3.1.4 Nested Entities

The dataset of BB-norm+NER task contains
17.4% nested entities 3 which cannot be extracted
by standard Bi-LSTM CRF model. We employed
two Bi-LSTM-CRF models: Level1 NER model
to detect parent entities and Level2 Nested NER
model to detect nested entities. Figure 2 (right)
shows the architecture of Level2 Nested NER. The
parent entities detected by Level1 NER are fed to
Level2 Nested NER to detect nested entities in the
parent entities. Level2 Nested NER has the same
architecture as Level1 NER but without the multi-
tasking objectives. It is easy to see that current
architecture can only detect nested entities at level
2. The final output of model is the aggregation of
parent entities and nested entities.

3.1.5 Entity Normalization

The goal of entity normalization (entity linking) is
to map noisy predicted entities in text to canonical

2we used IOBES tagging scheme
3https://groups.google.com/d/msg/

bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ

entities in knowledge base (KB). This is challeng-
ing because: (1) not all variations of textual forms
for a canonical entity exists in the KB, (2) syn-
tactic variations in the predicted entity mentions
due to misspellings, abbreviations, acronyms and
boundary errors.

For BB-norm+NER task, we used two Biomed-
ical databases OntoBiotope Ontology and NCBI
Taxonomy. OntoBiotope Ontology contains 3, 602
canonical forms of type Habitat and Phenotype.
NCBI Taxonomy contains 1, 082, 401 records for
type Microorganism. We employed exact, fuzzy
and semantic (embedding) search to perform en-
tity normalization. Algorithm 1 illustrates the de-
tailed steps of our algorithm, note that type and
order of search depends on the predicted named
entity type. We also employed caching to mini-
mize pairwise comparisons and improve the over-
all run-time efficiency.

3.1.6 Post-processing for NER+norm
Our model (see Figure 2) employs CRF at decod-
ing step to impose boundary ordering constraints
on the predicted named entity types e.g. I should
always be preceded by a B token. But our model
does not always respect such ordering constraints
and therefore, we resolve boundary inconsisten-
cies at inference time to make the NER labels
consistent. Post-processing column in the Table
3 illustrates the post-processing resolving incon-
sistent labels after the voting on majority labels,
consider row r3 where post-processing correctly
imposes the semantics of boundary ordering by
changing I-Habitat to B-Habitat.

3.2 Relation Extraction

Deep Learning based methods are state of the art
in relation extraction (Wu and He, 2019; Wang
et al., 2016) but they require large amount of la-
belled training data. In cases when enormous
training data is not available than Kernel methods
like Support Vector Machines (SVM) are an op-
timal choice. We employed SVM for performing
relation extraction. One of the downsides of SVM
is that they usually require lots of hand-crafted fea-
tures to train properly. Table 2 lists computed gen-
eral and entity features.

Our best model was trained with Radial Ba-
sis Function (RBF) Kernel with value of penalty
parameter C determined by grid search for each
dataset. We employed oversampling and class-
weight penalization to handle imbalanced data.

https://groups.google.com/d/msg/bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ
https://groups.google.com/d/msg/bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ
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General Features Description Entity Features Description

bow
bag-of-words (bow) representation

entity-pos
position of entity in the bow

of the complete sentence representation

bow-partial

bow representation of the between
context (i.e. word tokens between

entity-type type of the entity mentions
target entities) including three
words to the target entities

bow-lemma
bow representation of the lemmatized

dist-entities-cat
distance between target entities

tokens in the between context as categorical
pos-tags part-of-speech tags dist-entities distance between target entities

sdp shortest dependency path as bow entity-count count of entities in between context

sdp-len
length of shortest dependency path

entity-count-cat
count of entities in between context

as scalar as categorical
sdp-rel dependency relation tag e1 type = e2 type if type of e1 and e2 is same

emb-sdp average embeddings of sdp sdp-entity sdp with entity as bow

keyword-vec
if current word is part of feature

entity-patterns
check if certain linguistic patterns

list of relations occur in the vicinity of target entities

Table 2: General and Entity features used in Relation Extraction

Tokens
Models Voting Post-

M1 M2 M3 processing
r1 Presence O O O O O
r2 of O O B-H O O
r3 fish I-H B-H I-H I-H B-H
r4 pathogen I-H I-P I-P I-P B-P
r5 Vibrio B-M B-M B-M B-M B-M
r6 salmonicida I-M O I-M I-M I-M
r7 in B-H O O O O
r8 fish B-H O B-H B-H B-H
r9 farm I-H O I-M I-H I-H

r10 . O O O O O

Table 3: NER: Ensembling and Post-processing cor-
recting individual models mistakes. Here, B, P and
M refer to Habitat, Phenotype and Microorganism, re-
spectively.

Surprisingly oversampling did not provide any
performance improvement therefore, final models
were trained only with higher class weights for mi-
nority classes. We did not normalize any input fea-
ture as it resulted in reduced performance.

In relation extraction participating entities are
not known in advance, the usual practise is to test
every valid pair of entities for a relation. We
employed heuristic of token counts between en-
tities to filter the probable invalid relations. The
value of token counts was determined using cross-
validation.

3.3 Ensemble Strategy

Bagging is a helpful technique to reduce variance
without impacting bias of the learning algorithm.
We employed a variant of Bagging (Breiman,
1996) which makes sure that every sample in the
training set is part of the development set at least

once and vice versa. We created three data folds
and trained the model using optimal configuration
on each fold, prediction on test involves majority
voting among the three trained models.

The commonly used tagging schemes (BIO,
BIOES etc.,) for NER contains information about
the boundary of an entity along with the class of
an entity, which is spitted by the model at each
time-step. Due to this dual information in a single
output, maximum voting is not trivial as models
can not only disagree on the class but also on the
boundary of an entity. Empirically we found that
our model is better at predicting the class of an
entity rather than the boundary of an entity, there-
fore, we followed the strategy class determines the
boundary. In cases when voting results in a tie, we
take the prediction of the confident model, we treat
the model trained on original train/dev split as the
confident model. We also experimented with an
extreme version of ensembling where we aggre-
gate the output of every model with distinct spans,
as expected this improves the recall but with the
cost of reduced precision. One possible optimiza-
tion to this ensemble strategy is to only aggregate
the non-overlapping spans to control reduction in
precision without much decrease in recall, we will
explore this as a future work. Table 3 shows the
ensemble correcting individual model’s erroneous
predictions.

In case of ensemble for RE, we followed the
straight forward approach of majority voting at
sentence level for each test sample.
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Task Train Dev Test
Sentence Counts

PharmaCo 8068 3748 3930

SeeDev 644 308 466

BB-norm+ner 822 413 735

PharmaCoNER Entities
NORMALIZABLES 2304 1121 859

PROTEINAS 1405 745 973

UNCLEAR 89 44 34

NO NORMALIZABLES 24 16 10

BB-norm+NER Entities
Habitat 1118 610 -

Microorganism 739 402 -

Phenotype 369 161 -

Table 4: Dataset statistics for NER

4 Experiments and Results

4.1 Dataset and Experimental Setup

Data: We employed bagging (discussed in section
3.3) to split the annotated corpus into 3-folds. We
used pre-processed versions of datasets for BB-
norm+NER4 and SeeDev5 provided by the orga-
nizers. This pre-processed version comes with
sentence splitting, word tokenization and POS tag-
ging.

PharmaCoNER: The dataset consists of four
entity types with very few mentions of type UN-
CLEAR and NO NORMALIZABLES as shown in
table 4. Entities of type UNCLEAR are ignored in
the evaluation of this shared task but we still treat
them as regular entities.

BB-norm+NER: The dataset consists of three
entity types with few mentions of type Phenotype
(see table 4). The dataset also contains 3.6% dis-
connected entities6, we did not employ any strat-
egy to handle disconnected entities and instead
treat them as separate (regular) entities.

SeeDev: The dataset consists of 22 bi-
nary relations among 16 entity types. The
dataset is highly imbalanced with zero instances
of type Regulates Molecule Activity and Com-
poses Protein Complex in the default develop-
ment set.

4https://sites.google.com/view/
seedev2019/supporting-resources

5https://sites.google.com/view/
bb-2019/supporting-resources

6https://groups.google.com/d/msg/
bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ

Hyper-parameter Value
NER

learning rate 0.005
character (char) dimension 25
hidden unit::char LSTM 25

POS dimensions 25∗, 50+

Ortho dimension 25∗, 50+

hidden unit::word LSTM 200∗, 100+

word embeddings dimension 200∗, 100+

length dimension 10
sdp rel 10

alpha features 2
ranking loss::α 1.0
ranking loss::γ 1.0

RE
kernel RBF

class-weights 10.0

Table 5: Hyper parameter settings for NER and RE. *
and + denote the optimal parameters for BB-norm+ner
and PharmaCoNER respectively.

Experimental Setup: We found sub-word in-
formation to be very helpful in identifying enti-
ties and relations in biomedical domain and all
our experiments used word embeddings trained
using FastText (Bojanowski et al., 2017). For
tasks in English language we used FastText em-
beddings trained on PubMed (Zhang et al., 2019).
We don’t employ any strategy for handling imbal-
anced classes for NER but have used class weight-
ing by a factor of 10 for all positive classes for
RE. Table 5 lists the best configuration of hyper-
parameters for all the tasks.

PharmaCoNER: We used SPACCC POS-
TAGGER (Soares and gonzalez agirre, 2019)
for sentence splitting, word tokenization and
POS tagging. We trained FastText embeddings
on the following corpora: IBECS (Rodrı́guez,
2002), IULA-Spanish-English-Corpus (Marimon
et al., 2017), MedlinePlus (Miller et al., 2000),
PubMed (Lu, 2011), ScIELO (Goldenberg et al.,
2007) and PharmaCoNer (Gonzalez-Agirre et al.,
2019). We trained embeddings on two variants
of corpora: (1) Include train and development set
of PharmaCoNER (2) Include complete dataset
of PharmaCoNER. We concatenated these two
embeddings to provide complementary informa-
tion and found them to empirically work better
than the embeddings trained on individual corpora
variant. We compute micro-F1 using the script

https://sites.google.com/view/seedev2019/supporting-resources
https://sites.google.com/view/seedev2019/supporting-resources
https://sites.google.com/view/bb-2019/supporting-resources
https://sites.google.com/view/bb-2019/supporting-resources
https://groups.google.com/d/msg/bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ
https://groups.google.com/d/msg/bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ
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Configration
PharmaCoNER BB-norm+NER
P R F1 P R F1 SER

Fold=1 Fold=1
r1 BiLSTM-CRF .884 .773 .824 .809 .474 .598 .576
r2 + word-emb .892 .857 .874 .831 .526 .644 .524
r3 + ortho .909 .846 .877 .823 .515 .633 .533
r4 + POS .906 .851 .877 .827 .523 .641 .526
r5 + multi-task .907 .851 .878 .806 .528 .638 .531
r6 + length - - - .842 .487 .617 .545
r7 + ranking .912 .860 .885 .827 .535 .650 .520
r8 + search - - - .810 .600 .690 .489

Fold=2 Fold=2
r9 BiLSTM-CRF .915 .890 .902 .630 .400 .489 -

r10 all features .934 .889 .911 .719 .513 .599 -

Fold=3 Fold=3
r11 BiLSTM-CRF .899 .873 .886 .784 .699 .739 -
r12 all features .917 .877 .896 .813 .764 .788 -

Table 6: Scores on dev set using different features on
PharmaCoNER and BB-norm+NER tasks. Here, + sig-
nifies feature accumulation to the last row.

provided by the organizers on the dev set7.
BB-norm+NER: For training NER model we

compute macro-F18 (Tsai et al., 2006) on the dev
set. NER and Entity normalization together are
evaluated using Standard Error Rate (SER) (Bossy
et al., 2015). During the entity normalization step,
the fuzzy and semantic search can resolve an entity
mention to multiple normalization identifiers. Our
algorithm returns top 5 matched identifiers, how-
ever, we empirically found selecting the top most
identifier gives superior performance.

SeeDev: We adopted two strategies to create
negative relation instances for train and dev+test
set: (1)Train: only consider sentences not par-
ticipating in any positive relation (2) Dev+Test:
consider all the sentences. Negative relation in-
stances are always created only among the valid
combination of entity types. We also employed an
extended version of keywords match of Li et al.
(2016) as a feature (referred as keyword vectors in
table 2).

4.2 Results on Development Set
To investigate the impact of features we incremen-
tally enabled them and observe the affect on per-
formance on dev set.

NER: Table 6 shows the score on dev set for
PharmaCoNER and BB-norm+NER. Observe that
FastText embeddings (row r2) outperform ran-
domly initialized embeddings (row r1) and con-

7https://github.com/PlanTL-SANIDAD/
PharmaCoNER-CODALAB-Evaluation-Script

8evaluation measure with strict boundary detection

Features P R F1
r1 bow-between .0 .0 .0
r2 + class-weights .214 .196 .205
r3 + entity-type .157 .589 .248
r4 + sdp-entity .204 .540 .296
r5 + emb-sdp .212 .479 .294
r6 + lemma .220 .478 .301

Table 7: Scores on dev set using different features on
SeeDev task. Here, + signifies feature accumulation to
the last row.

tribute to biggest performance boost for both
datasets. Subsequently, Orthographic (row r3)
and POS (row r4) features9 improve the scores for
PharmaCoNER but surprisingly lower the score
for BB-norm+NER. In row r5, we perform multi-
tasking with auxiliary task of NED leading to im-
provement only for PharmaCoNER. Next, we in-
corporate hybrid loss including ranking (row r7)
which consistently improves the score on both
datasets. In row r8, we employed Brute Force
Search (discussed in section 4.3) that significantly
reduce SER for BB-norm+NER. Finally, we cre-
ate an ensemble of (r7, r10, r12) and (r8, r10, r12)
on test set for PharmaCoNER and BB-norm+NER
respectively.

RE: Table 7 shows the score on dev set for
SeeDev10. In row r1, negative instances dominate
the training set resulting in no learning. Observe
that introduction of class weights (row r2) com-
pensate the dominance of negative instances lead-
ing to F1 score of 0.205. Next, we added entity-
type (row r3) and sdp-entity (row 4) features, both
of these features significantly improves F1 score
i.e. by an absolute value of more than 4.0. Sub-
sequently, emb-sdp (row r5) and lemma (row r6)
contribute to incremental improvements. Finally,
we create an ensemble of row r6 on all three data
folds.

4.3 Analysis on Development Set

BB-norm+NER: We also explored approaching
the problem of NER and entity normalization in
a reverse manner by matching every entity men-
tion from the biomedical databases (i.e. NCBI Tax-
onomy and Ontobiotope) in every sentence. This

9Additionally, we have employed document-topic propor-
tion from neural topic models (Gupta et al., 2019a), however,
no significant gains were observed.

10Results are only reported for standard data fold as it was
not trivial to change evaluation script for non-standard folds.

https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script
https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script
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Figure 3: BB-norm+NER: Impact of brute-force
search, Level1 NER and their aggregation on SER.
Here bfs, L1 and L2 refer to brute-force search, Level1
NER and Level2 Nested NER respectively.

matching is indeed exhaustive search, we refer to
it as Brute-force search. Figure 3 shows the com-
parison of: (1) brute-force search (2) Level1 NER
(3) aggregation of brute-force search and Level1
NER (4) aggregation of brute-force search, Level1
NER and Level2 NER. Brute-force search yields
high precision but a moderately low recall with
SER value of 0.7. In comparison, Level1 NER
has significantly higher recall with a little reduc-
tion in precision yielding SER value of 0.52. The
aggregation of brute-force search and Level1 NER
improves recall and lowers SER value to 0.49. Fi-
nally, aggregation of brute-force search, Level1
NER and Level2 NER results in a balanced pre-
cision and recall values but an overall higher value
of SER. Our submission on test set employed ag-
gregation of brute-force search and Level1 NER.

SeeDev: We employed the heuristic of token
counts between target entities to filter potential
negative relation instances. With this heuristic in
place, we only consider sentences with entity dis-
tance less than or equal to threshold parameter τ .
Figure 4 shows the impact of different values of τ
on system performance. The value of τ ≤ 20 gives
significant boost in precision with minor decrease
in recall. Our submission employed the threshold
value of τ ≤ 20 between entity tokens.

4.4 Comparison with Participating Systems

SeeDev: Table 8 (left) is the official result of
SeeDev Shared Task. Our submission MIC-CIS

0.2 0.25 0.3 0.35 0.4 0.45

τ
≤

5
τ
≤

10
τ
≤

20

0.31

0.31

0.26

0.21

0.34

0.44
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0.33

0.33

precision recall f1-score

Figure 4: SeeDev: Impact of ’token counts between
target entities’ heuristic on system performance.

Task: SeeDev Task: BB-norm+NER
Team P / R / F1 Team P / R / SER

MIC-CIS .294 / .511 / .373 MIC-CIS-1 .624 / .433 / .715
YNU-junyi-1 .272 / .458 / .341 MIC-CIS-2 .560 / .449 / .786

Yunnan University-1 .045 / .132 / .067 BLAIR GMU-1 .496 / .467 / .793
Yunnan University-2 .020 / .132 / .035 BLAIR GMU-2 .499 / .466 / .805

YNUBY-1 .011 / .070 / .019 baseline-1 .572 / .327 / .823

Table 8: Comparison of our system (MIC-CIS) with
top-5 participants: Scores on Test set for SeeDev and
BB-norm+NER

achieves the best score among all participating
systems with F1 score of 0.373 showing com-
pelling advantage. The system attains the high-
est precision (0.294) and recall (0.511). Precision
and recall are not balanced however, and our sys-
tem need an improvement to bring down false pos-
itives.

BB-norm+NER: Table 8 (right) shows the
comparison of performance among participating
teams on BB-norm+NER test set. Our two sub-
missions (MIC-CIS-1, MIC-CIS-2) ranked first
and second with standard error rate (SER) of
0.7159 and 0.7867 respectively. The second sub-
mission employed Level2 NER to extract nested
entities and hence has higher recall but with re-
duced precision. MIC-CIS-1 has the highest pre-
cision 0.6242 and MIC-CIS-2 has the recall close
to the best recall of BLAIR GMU-1 with score
0.4676. Precision and recall are not balanced, we
hypothesize improvement in nested entities extrac-
tion and modelling discontinuous entities will im-
prove the system recall.
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5 Conclusion and Future Work

In this paper, we described our system with which
we participate in PharmaCoNER, BB-norm+NER
and SeeDev shared tasks. Our NER system em-
ployed linguistic features, multi-tasking via auxil-
iary objectives and hybrid loss including ranking
loss to extract flat and nested entities in English
and Spanish text. Our RE system employed SVM
with linguistic features. Compared to other par-
ticipating systems, our submissions are ranked 1st

in BB-norm+NER and SeeDev task. Our system
demonstrates competitive performance on Phar-
maCoNER with F1-score of 0.8662.

In future, we would like to explore improved
modelling strategies for nested NER and discon-
tinuous entities extraction. Further, in this work
we only addressed intra-sentence RE, we would be
interested to explore approaches for inter-sentence
RE (Peng et al., 2017; Gupta et al., 2019b). More-
over, we would like to investigate interpretability
of LSTMs for NER and RE (Gupta and Schütze,
2018).
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