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Abstract

To date, a large amount of biomedical content
has been published in non-English texts, es-
pecially for clinical documents. Therefore, it
is of considerable significance to conduct Nat-
ural Language Processing (NLP) research in
non-English literature. PharmaCoNER is the
first Named Entity Recognition (NER) task to
recognize chemical and protein entities from
Spanish biomedical texts. Since there have
been abundant resources in the NLP field, how
to exploit these existing resources to a new
task to obtain competitive performance is a
meaningful study. Inspired by the success of
transfer learning with language models, we in-
troduce the BERT benchmark to facilitate the
research of PharmaCoNER task. In this pa-
per, we evaluate two baselines based on Multi-
lingual BERT and BioBERT on the Pharma-
CoNER corpus. Experimental results show
that transferring the knowledge learned from
source large-scale datasets to the target do-
main offers an effective solution for the Phar-
maCoNER task.

1 Introduction

Currently, most biomedical Natural Language
Processing (NLP) tasks focus on English docu-
ments, while only few research has been carried
out on non-English texts. However, it is essential
to note that there is also a considerable amount of
biomedical literature published in other languages
than English, especially for clinical documents.
Therefore, it is of considerable significance to con-
duct NLP research in non-English literature. Phar-
maCoNER(Gonzalez-Agirre et al., 2019) is the
first Named Entity Recognition (NER) task to rec-
ognize chemical and protein entities from Span-
ish biomedical texts. Biomedical NER task is the
foundation of biomedical NLP research, which is
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often utilized as the first step in relation extraction,
information retrieval, question answering, etc.

The existing biomedical NER methods can
be roughly classified into two categories: tradi-
tional machine learning-based methods and deep
learning-based methods. Traditional machine
learning-based methods (Settles, 2005; Campos
et al., 2013; Wei et al., 2015; Leaman et al.,
2015, 2016) mainly depend on feature engineer-
ing, i.e., the design of useful features using vari-
ous NLP tools. Overall, this is a labor-intensive
and skill-dependent process. In contrast, deep
learning-based methods are more promising in
biomedical NER tasks. Since deep learning-based
methods can automatically learn features, these
methods no longer need to construct feature en-
gineering and exhibit more encouraging perfor-
mance. For examples, (Luo et al., 2017) pro-
posed an attention-based BiLSTM-CRF approach
to document-level chemical NER. (Dang et al.,
2018) proposed a D3NER model, using CRF and
BiLSTM improved with fine-tuned embeddings
of various linguistic information to recognize dis-
ease and protein/gene entities. Recently, the lan-
guage model pre-training (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2019) has proven
to be effective for improving many NLP tasks.
The fine-tuning language model (Radford et al.,
2018; Devlin et al., 2019) can transfer the knowl-
edge learned from large-scale datasets to domain-
specific tasks by simply fine-tuning the pre-trained
parameters.

Inspired by the success of transfer learning with
language models, we would like to make full
use of the existing language model resources to
implement the PharmaCoNER task. In this pa-
per, we introduce the BERT (Devlin et al., 2019)
benchmark to facilitate the research of Pharma-
CoNER task. We regard the large-scale dataset
used to train the BERT model as the source do-
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main, and the PharmaCoNER dataset as the tar-
get domain, thus considering the PharmaCoNER
task as a transfer learning problem. We evaluate
two baselines based on Multilingual BERT and
BioBERT. Experimental results show that trans-
ferring the knowledge learned from source large-
scale datasets to the target domain offers an effec-
tive solution for the PharmaCoNER task.

2 Related Work

2.1 Language Model

Learning widely used representations of words has
been an active area of research for decades. To
date, pre-trained word embeddings are considered
to be an integral part of modern NLP systems, of-
fering significant improvements over embeddings
learned from scratch (Turian et al., 2010). Re-
cently, ELMo (Peters et al., 2018) has been pro-
posed to generalize traditional word embedding
research (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017) to extract context-
sensitive features. When integrating contextual
word embeddings with existing task-specific ar-
chitectures, ELMo achieves competitive perfor-
mance for many major NLP benchmarks. More
recent studies (Radford et al., 2018; Devlin et al.,
2019) tend to exploit language models to pre-train
some model architecture on a language model ob-
jective before fine-tuning that the same model for
downstream tasks. BERT (Devlin et al., 2019),
which stands for Bidirectional Encoder Represen-
tations from Transformers (Vaswani et al., 2017),
is designed to pre-train deep bidirectional repre-
sentations by jointly conditioning on both left and
right context in all layers. The pre-trained BERT
can be fine-tuned to create competitive models for
a wide range of tasks.

2.2 Transfer Learning

Many machine learning methods work well only
under a common assumption: the training and
test data are drawn from the same feature space
and distribution (Pan and Yang, 2009). When the
distribution changes, most models need to be re-
built from scratch using newly annotated train-
ing data. However, it is an expensive and chal-
lenging process. Therefore, it would be mean-
ingful to reduce the need and effort to recollect
the annotated training data. In such scenarios,
transfer learning between task domains would be
useful. For example, (Cui et al., 2018) demon-

strate the effects of transfer learning in the com-
puter vision domain. They explore transfer learn-
ing via fine-tuning the knowledge learned from
large-scale datasets to small-scale domain-specific
fine-grained visual categorization datasets. For
NLP tasks, (Conneau et al., 2017) and (McCann
et al., 2017) also demonstrate the effects of trans-
fer learning on the natural language inference and
machine translation tasks, respectively. These
methods demonstrate the significance of transfer
learning in machine learning methods.

3 Methods

3.1 Problem Definition

The PharmaCoNER task is structured into two
sub-tracks: ’NER offset and entity classification’
and ’concept indexing’. Since we only participate
in the first track, we will explain the fist track in
detail. There are three entity types for evaluation
in the PharmaCoNER corpus, namely ’normaliz-
ables’, ’notnormalizables’ and ’proteins’. Specif-
ically, ’normalizables’ is the mentions of chemi-
cals that can be manually normalized to a unique
concept identifier. ’notnormalizables’ is the men-
tions of chemicals that could not be normalized
manually to a unique concept identifier. ’pro-
teins’ is the mentions of proteins and genes. We
used the extended BIO (Begin, Inside, Other)
tagging scheme in our experiments. Formally,
we formulate the PharmaCoNER task as a multi-
class classification problem. Given an input se-
quence S = {w1, · · · ,wi, · · · ,wn} which has pro-
cessed by WordPiece, the goal of PharmaCoNER
is to classify the tag t of token wi. Essen-
tially, the model estimates the probability P(t|wi),
where T = {B-normalizables, I-normalizables, B-
notnormalizables, I-notnormalizables, B-proteins,
I-proteins, O, X, CLS, SEP}, t ∈ T , 1≤ i≤ n.

3.2 Model Architecture

BERT (Devlin et al., 2019), which stands for bidi-
rectional encoder representations from Transform-
ers, is designed to learn deep bidirectional rep-
resentations by jointly conditioning on both left
and right context in all layers. The architecture
of BERT is illustrated in Figure 1. The pre-
trained BERT can be fine-tuned to create competi-
tive models for a wide range of downstream tasks,
such as named entity recognition, relation extrac-
tion, and question answering.

Here, we explain the architecture of BERT for
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Figure 1: The Architecture of BERT.

NER tasks. The input of BERT can represent
both a single text sentence or a pair of text sen-
tences in one sequence. BERT differentiates the
text sentences as follows: first, they separate them
with a special token ([SEP]); second, they add the
sentence A embedding to every token of the first
text sentence and the sentence B embedding to ev-
ery token of the second text sentence. Further-
more, every sequence starts with a special token
([CLS]). For a given token, the input representa-
tion is constructed by integrating the correspond-
ing token, segment, and position embeddings.
BERT provides two model sizes: BERTBASE and
BERTLARGE . For the BERT model, the number of
layers L, the hidden size H and the number of self-
attention heads A are listed as follows:

• BERTBASE : L=12, H=768, A=12, Total Pa-
rameters=110M.

• BERTLARGE : L=24, H=1024, A=16, Total
Parameters=340M.

During the shared task, we exploit Multilingual
BERT (Devlin et al., 2019) and BioBERT (Lee
et al., 2019) to implement the PharmaCoNER task.
Both the multilingual BERT and BioBERT mod-
els are pre-trained based on the BERTBASE size.
The multilingual BERT model is pre-trained on

Wikipedia in multiple languages. The BioBERT
model is pre-trained on Wikipedia, BooksCorpus,
PubMed (PubMed abstracts) and PMC (PubMed
Central full-text articles). The pre-training process
of Multilingual BERT and BioBERT is similar to
the pre-training process of BERTbase. More de-
tails about Multilingual BERT and BioBERT can
be found in the studies (Devlin et al., 2019; Lee
et al., 2019).

For the output layer, we feed the final hidden
representation hi of each token i into the softmax
function. The probability P is calculated as fol-
lows:

P(t|hi) = so f tmax(Wohi +bo) (1)

where T = {B-normalizables, I-normalizables, B-
notnormalizables, I-notnormalizables, B-proteins,
I-proteins, O, X, CLS, SEP}, t ∈ T , Wo and bo are
weight parameters. Furthermore, during the train-
ing, we use the categorical cross-entropy as the
loss function. Finally, as shown in Figure 1, we
removed the special tokens (labeled by ’X’, ’CLS’
and ’SEP’) and obtained the final BIO labels at the
post-processing step.
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4 Results and Discussion

4.1 Experimental Settings

In this section, we introduce the dataset, evalua-
tion metrics and details of the training process of
our model.

Dataset. The PharmaCoNER corpus has been
randomly sampled into three subsets: the train-
ing set, the development set and the test set. The
training set contains 500 clinical cases, and the de-
velopment set and the test set include 250 clinical
cases, respectively.

Evaluation Metrics. We apply the standard
measures precision, recall and micro-averaged F1-
score to evaluate the effectiveness of our model.
These metrics are also adopted as the evaluation
metrics during the PharmaCoNER task.

Training Details. During the PharmaCoNER
task, we utilized the training set for training the
model and exploited the development set to choose
the hyper-parameters of our model. In the predic-
tion stage, we combined the training and devel-
opment sets for training our model, and the or-
ganizers used the gold-standard test set to evalu-
ate the final results. The detailed hyper-parameter
settings are illustrated in Table 1. ’Opt.’ denotes
optimal.

Parameters Tuned range Opt.
Sequence length 128 128
Train batch size [8, 16, 32] 32
Dev batch size 8 8
Test batch size 8 8
Learning rate [1e-5, 2e-5, 3e-5] 2e-5
Epoch number [10, 50, 100, 200] 100
Warmup 0.1 0.1
Dropout 0.1 0.1

Table 1: Detailed Hyper-parameter Settings in the
PharmaCoNER task.

4.2 Experimental Results

We applied Multilingual BERT and BioBERT on
the PharmaCoNER corpus, respectively. The ex-
perimental results are shown in Table 2. ’P’, ’R’,
’F’ denote precision, recall, and micro-averaged
F1-score, respectively. It is encouraging to see
that the performance of both models is quite com-
petitive. For the multilingual BERT model, since
the model learned the Spanish language informa-
tion during the pre-training process, its F1-score

is higher, reaching 89.24%. For the BioBERT
model, it also achieves an F1-score of 89.02%.
While BioBERT was only pre-trained on the En-
glish biomedical texts, applying it to the Spanish
PharmaCoNER task still yields competitive per-
formance. The primary reason may be that there
are a large number of chemical and protein men-
tions sharing the same name in English and Span-
ish in biomedical literature. Therefore, it is fea-
sible to use the existing model pre-trained on En-
glish biomedical corpora to fine-tune the Pharma-
CoNER task. These results indicate that trans-
ferring the knowledge learned from source large-
scale datasets via fine-tuning to the target-specific
domain is an effective solution to the Pharma-
CoNER task.

Models P(%) R(%) F(%)
Multilingual BERT 90.46 88.06 89.24
BioBERT 90.70 87.41 89.02

Table 2: The Experimental Results of Multilingual-
BERT and BioBERT.

Furthermore, we manually analyzed the errors
generated by our models on the corpus test set af-
ter the PharmaCoNER task. The main errors can
be classified into three categories: (1) incorrect
boundaries, (2) missing the chemical/protein men-
tion, (3) and incorrectly distinguishing the chemi-
cal and protein mentions. By analyzing these error
examples, we infer that document-level informa-
tion or biomedical knowledge may be helpful for
the PharmaCoNER task.

5 Conclusion

In this paper, we introduce the BERT benchmark
to facilitate the research of PharmaCoNER task.
We evaluate two baselines based on Multilingual
BERT and BioBERT on the PharmaCoNER cor-
pus. It is encouraging to see that the perfor-
mance of both models is quite competitive, reach-
ing F1-scores of 89.24% and 89.02%, respectively.
Experimental results demonstrate that transferring
the knowledge learned from source large-scale
datasets to the target domain offers an effective so-
lution for the PharmaCoNER task.

In future work, we would like to explore an ap-
propriate way to integrate document-level infor-
mation or biomedical knowledge to improve the
performance of the model.
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