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Abstract

This paper describes the Named Entity Recog-
nition system of the Institute for Artificial In-
telligence “Mihai Drăgănescu” of the Roma-
nian Academy (RACAI for short). Our best
F1 score of 0.84984 was achieved using an
ensemble of two systems: a gazetteer-based
baseline and a RNN-based NER system, de-
veloped specially for PharmaCoNER 2019.
We will describe the individual systems and
the ensemble algorithm, compare the final sys-
tem to the current state of the art, as well as
discuss our results with respect to the quality
of the training data and its annotation strategy.
The resulting NER system is language inde-
pendent, provided that language-dependent re-
sources and preprocessing tools exist, such as
tokenizers and POS taggers.

1 Introduction

Named entity recognition (NER) efforts present
two challenges: entity detection, identifying the
portion of text associated with an entity, and dis-
ambiguation, assigning the identified text to a spe-
cific entity class. At the Institute for Artificial
Intelligence “Mihai Drăgănescu” of the Roma-
nian Academy, one of the research goals focuses
on constructing an improved named entity recog-
nition system for Romanian language, including
biomedical entities. In this context, the cur-
rent PharmaCoNER 2019 competition (Gonzalez-
Agirre et al., 2019) offered the opportunity to
reconsider the existing Romanian NER system
which provided the grounds for developing new
approaches that are language-independent and
more accurate. With respect to our current Ro-
manian biomedical NER system, Mitrofan (2017)
presents a neural network based NER system that
is able to detect the beginnings and insides of en-
tities with four labels: anatomical parts, disorders,
medical procedures and chemical compounds. Al-

though we did not have the time to train this NER
system on PharmaCoNER 2019 data, our F1 score
on Spanish, when compared to the reported F1
score for the Romanian chemical compounds (the
label that best overlaps with the labels of Pharma-
CoNER 2019), is a strong indicator that we can
greatly improve the Romanian biomedical NER
system (by how much is the subject for a future
paper).

We begin by looking at state of the art ap-
proaches for NER systems, presented in Section
2 “Related work”, then we continue with the re-
sources used for this specific task, in Section 3
“Resources”, followed by a presentation of our im-
plemented algorithms and methods, in Section 4
“RACAI Systems”. Finally, system evaluation re-
sults are presented in Section 5 “System evalua-
tion”, followed by conclusions.

2 Related work

To tackle the challenges posed by BioNER, differ-
ent NER approaches were proposed. Even though
high performances have been obtained by apply-
ing classical NER approaches such as dictionary-
based methods (Sekine and Nobata, 2004), rule-
based methods (Rau, 1991), Hidden Markov Mod-
els (Zhou and Su, 2002), Conditional Random
Fields (Dingare et al., 2005), the current dominant
techniques are based on neural methods, which
will also be our focus in this paper, mainly because
we think that this is the current state of the art ap-
proach to NER.

Deep learning methods have shown impressive
results when applied to NLP and, since (Hochre-
iter and Schmidhuber, 1997) proposed Long-Short
Term Memory neural networks and Bidirectional
Long-Short Term Memory (BiLSTM) networks
(Graves, 2012), a wide variety of NER systems
have been created based on these methods.
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Santos and Guimaraes (2015) presented a
language-independent approach for NER based
on a deep neural architecture that uses word and
character-level embeddings to perform sequen-
tial classification. In order to demonstrate the
language-independence of the system, two an-
notated corpora in two different languages were
used: a Portuguese corpus - HAREM I (Milidiú
et al., 2008) and a Spanish corpus - SPA CoNLL-
2002 (Sang and F., 2002). The system obtained an
F1 score of 79% when trained on HAREM I cor-
pus and an F1 score of 82.2% for the SPA CoNLL-
2002 corpus.

Chiu and Nichols (2016) presented a NER
system based on stacked BiLSTM architecture
trained to detect four types of entities such as:
“PERSON”, “ORGANIZATION”, “LOCATION”
and “MISC”, each of the entity being annotated in
BIOES format (Beginning, Inside, Outside, End-
ing and Single). Using two lexicons extracted
from publicly-available resources the system ob-
tained an F1-score of 91.62% on CoNLL-2003
(Sang and De Meulder, 2003) corpus and 86.28%
on OntoNotes (Pradhan et al., 2013) corpus.

Shao et al. (2016) evaluated the performances
of three types of neural networks based systems
for multilingual NER. They compared a windows-
based feed-forward network, a standard BiLSTM
and a window-based BiLSTM. Word embeddings
combined with word-level features were used and
the annotation format was also BIOES. Based on
the experiments the authors concluded that: the
feed-forward neural network was outperformed in
accuracy by the standard BiLSTM and when less
information is available, the window-based BiL-
STM is more robust than the standard BiLSTM.

Soares et al. (2019) used NeuroNER (Dernon-
court et al., 2017) framework in order to perform
NER for medical domain. The Spanish Clinical
Cases Corpus (SPACCC) was used to train the
system, which is based on a LSTM neural net-
work. The biomedical corpus was previously an-
notated with four entity types, a subset of the types
PharmaCoNER 2019 uses. Using medical word-
embeddings, the system achieved an F1 score of
88.18%, outperforming the baseline system which
scored 87.76%.

3 Resources

In order to develop, train and test a NER system
several resources are needed. In this section we

review the main types of linguistic resources used
in our work:

3.1 Corpora
When applied to general domain, most of the state
of the art systems make use of the CoNLL-2002
corpus (Sang and F., 2002), which contains six
files that cover two languages: Dutch and Spanish.
The set of entity labels used for this corpus con-
tains four types of entities: PER (persons), ORG
(organizations), LOC (locations) and MISC (mis-
cellaneous).

In order to perform named entity recognition on
biomedical textual data several annotated corpora
were developed. For English there are several an-
notated corpora used for biomedical NER such as:
NCBI (Doğan et al., 2014) a gold-standard corpus
for disease mentions and concepts that contains
793 abstracts extracted from PubMed; CHEMD-
NER (Krallinger et al., 2015) a corpus of 10,000
abstracts collected from PubMed annotated with
two types of NEs: chemicals and drugs.

Lately a slightly increasing number of resources
specific to this field have been created for lan-
guages other than English. For example for
French there is the Quaero corpus (Névéol et al.,
2014) which contains 103,056 words annotated
with ten types of NEs defined using UMLS:
anatomy, chemical and drugs, devices, disorders,
geographic areas, living beings, objects, phenom-
ena, physiology, procedures. For Romanian there
is the MoNERo (Maria Mitrofan, 2019) corpus
which is a biomedical gold standard corpus and
contains 154,825 words annotated with four types
of entities: anatomy, chemicals and drugs, dis-
orders and procedures. For Spanish IxaMedGS
(Oronoz et al., 2015) is a corpus that contains
142,154 discharge records out of which 75 were
annotated with two types of NEs: diseases and
drugs; DrugSemantics corpus (Moreno et al.,
2017) has 226,729 tokens annotated with ten types
of NEs: chemical composition, disease, drug, ex-
cipient, food, medicament, pharmaceutical form,
route, therapeutic action and unit of measurement.

3.2 Word embeddings
Continuous word representations, trained on large
corpora have been proven to be useful for many
NLP tasks, including NER. It is known that neu-
ral word representations have the ability to capture
useful semantic properties and linguistic relation-
ships between words (Bakarov, 2018). Therefore
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pre-trained word embeddings are available for dif-
ferent languages, including Romanian and Span-
ish. For example in Romanian we have a set of
word embeddings (Păis, and Tufis, , 2018) computed
on the Reference Corpus for Contemporary Roma-
nian Language (CoRoLa) (Barbu Mititelu et al.,
2018) corpus.

Grave et al. (2018) released a set of pre-trained
embeddings for 157 languages calculated on texts
extracted from Wikipedia. Also for Spanish there
is a different set of pre-trained embeddings made
available by the Chile NLP group1 and calcu-
lated using the Spanish Billion Word Corpus (SB-
WCE)2.

Chiu and Nichols (2016) showed that word
embeddings vectors calculated on a specific do-
main produce better results than those obtained
from general-domain texts. Therefore (Soares
et al., 2019) calculated a set of medical word
embeddings for Spanish. They used text from
two sources: full medical articles from SciELo
database3 (100 million tokens) and biomedical
texts from Wikipedia (82 million tokens). The ex-
periments performed using this resource generated
more accurate results than those calculated based
on general-domain texts.

3.3 SNOMED CT

SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms)4 is a multilingual
healthcare terminology built around a concept-
based ontology. It contains more than 1 million
distinct medical terms, 326,734 concepts and 19
hierarchies. Concepts are classified under hierar-
chies, of which most of them corresponding to the
types of entities instances of which are encoun-
tered by clinicians during their work (body parts,
diseases, substances, procedures, etc.). A concept
in SNOMED CT has a unique name, unique nu-
meric code, and more descriptions (one main def-
inition, several secondary and more synonyms).
This resource is available in both English and
Spanish. To use it for scientific purposes, a license
is required after completing a form. We used this
resource to extract all the available proteins and
genes. Using the SNOMED browser for Spanish5

1https://github.com/dccuchile/
spanish-word-embeddings

2http://crscardellino.github.io/SBWCE/
3https://www.scielo.org/en/
4https://www.snomed.org/snomed-ct
5https://browser.ihtsdotools.org

we extracted 9,556 proteins names.

4 RACAI Systems

4.1 RACAI Baseline

Our baseline system is an enhanced gazetteer-
based annotation tool. It takes as input multiple
files, each containing an entity list of the same
type. For example, in the PROTEINAS.txt file
there will be a list of proteins. On each line, there
will be a string containing a word or an expression
denoting a protein.

Various gazetteer annotation systems already
exist. We recall here Stanford TokensRegex
(Chang and Manning, 2014) and Stanford
RegexNER part of Stanford Core NLP (Manning
et al., 2014). However, these and similar other
systems, impose the format to correspond to some
specific regular expression syntax (or at least to
a certain fixed form textual representation). In
our case, the gazetteer resources are partially
generated directly from the training annotations
provided for the task. Therefore, the format used
is not directly checked and validated by a human
operator.

Therefore, our system does not look for ex-
pressions exactly as they are provided. Instead it
implements additional rules to improve matching
such as:

• ignore special characters (example: ‘-’ , ‘¡’,
‘(’ etc.) in both provided expressions and the
searched text;

• recognize words followed by numbers re-
gardless of the way they are written (for ex-
ample: “CAP-57”, “CAP 57”, “CAP57”).

Finally, in the case of overlapping entities be-
ing found, the longer one is kept. The software
program allows for such overlapping entities to be
saved for manual examination, but this particular
feature did not seem useful for this task. The re-
sulting annotation file is in the “.ann” format.

4.2 RPCN

RPCN stands for the “RACAI PharmaCoNER
neural network” and is, as its name suggests, a
neural network that we specifically designed for
this competition and that, ultimately, will also be
run for Romanian for which we have BioNER
training data (Maria Mitrofan, 2019).

https://github.com/dccuchile/spanish-word-embeddings
https://github.com/dccuchile/spanish-word-embeddings
http://crscardellino.github.io/SBWCE/
https://www.scielo.org/en/
https://www.snomed.org/snomed-ct
https://browser.ihtsdotools.org
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4.2.1 Comparison with the state of the art
and design choices

As already discussed in Section 2, NER systems
based on BiLSTMs and using convolutional neural
networks (CNNs) to encode character-based fea-
tures of the input (Chiu and Nichols, 2016) repre-
sent the current state of the art for NER task. Other
approaches used stacked BiLSTM layers in an at-
tempt to increase the generalization power of the
network or decoders which chose the most proba-
ble label output given the LSTM encoding of the
featurized input (Dernoncourt et al., 2017).

Our research goal was to test an approach based
on BiLSTMs, given the abundance of papers us-
ing this type of artificial cell and reporting very
good results. At this point, we have to mention
that all design choices of RPCN presented below
were driven by intense experimentation with the
provided training data, aiming at short training
and evaluation loops. Because the training data is
rather small in size (a bit more than 3800 training
examples), we quickly realized that running with
more complex architectures (which have more pa-
rameters) leads to overfitting. Thus, all architec-
tures with two BiLSTM layers and/or CNNs en-
coding character features were dropped early on
from our experiments.

The RPCN network differs by mainstream BiL-
STM NER networks by attempting to use an at-
tention mechanism, like the one in (Anh Nguyen
et al., 2019) (of which we did not know at the time
of our experiments), whose main function is to
model how much words surrounding labeled enti-
ties contribute to the label prediction. Also, RPCN
tries to combine (by a simple addition) indepen-
dently trained word embeddings from the medi-
cal domain with the embeddings extracted directly
from the training corpus. We found that this ap-
proach gives a significant boost of performance
(more than 10% in the F1 score) when compared
to the usage of either word embedding sources in
isolation or with general-purpose embeddings ex-
tracted from Wikipedia. We are thus able to con-
firm and supplement the findings of Soares et al.
(2019).

In relation to the featurized input that we de-
signed for RPCN, we were guided by the follow-
ing assumptions and intuitions:

• all NEs are mostly noun phrases and in
Spanish, as in Romanian, noun phrases
have a well-defined syntactic structure which

prompted the usage of POS tags as features;

• all NEs are medical substances obeying some
naming patterns, so a feature regarding words
affixes was needed;

• some proteins have specific character pat-
terns, so a “word shape” feature was also
thought to be useful (see the next subsection
for the “shape features” details);

• with an eye to the rank of our system in the
PharmaCoNER 2019 competition, we also
thought that including the gazetteer feature
(if available) directly into RPCN would in-
crease the performance of the system.

4.2.2 Architecture
RPCN is a RNN which uses LSTM cells to encode
the feature descriptions of the words coming in,
remembering the information from both left and
right contexts of the target word, which makes it
BiLSTM RNN. The network was trained to label
each word in the sequence with one of the Phar-
maCoNER target labels or with the “nothing inter-
esting here” label which we called NONE.

The RPCN architecture is presented in Figure
1. We have tried the vanilla variant and the vari-
ant enhanced with an attention mechanism, as de-
scribed by Bahdanau et al. and retained the lat-
ter for further development, as the better approach.
RPCN is written in Java 1.8, using the DeepLearn-
ing4J deep neural network Java library, version
1.0.0-beta3.

Figure 1 shows the input vectors and the BiL-
STM cell for a single input word, for example
cadenas, but we consider sequences of words,
each with its own BiLSTM cell (but shared param-
eters among words). The input vectors that go into
the BiLSTM cell are as follows:

• the WE Layer is the word embedding layer
for the input word; its output size was cho-
sen by our hyperparameter grid search pro-
cedure to be 64 (see the Training subsection
4.2.3). The word is one-hot encoded and fed
to this layer which compresses it to a 64 di-
mensional vector;

• the External WEs resource refers to our
pretrained Spanish medical word embed-
dings (Soares et al., 2019). Because the size
of these embeddings is larger than 64, one
such embedding is fed to a fully connected

https://deeplearning4j.org
https://deeplearning4j.org
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Figure 1: The RPCN neural network

layer with an output size of 64 so that we
can add (element-wise) the output of the WE
Layer with the output of this fully con-
nected layer to obtain a “unified” word em-
bedding representation for the input word;

• the PE Layer is the POS tag embedding
layer for the POS tag of the input word (a
plural noun for our example word); its out-
put size was chosen to be 16 by the hyperpa-
rameter grid searching procedure. Each POS
tag is encoded as a one-hot vector and fed to
this layer which compresses it to a 16 dimen-
sional vector;

• c,a,d,e,n and d,e,n,a,s are the
“relative-index-hot” representations of the 5
character prefix and suffix of the input word;
the vectors for each character are added to
form a single output vector. The “relative-
index-hot” stands for the use of the 1/(i+1)
quantity instead of a 1 on the corresponding
vector position, where i is the index of the
character in the input word (0-based number-
ing), and this trick allows us to encode in a

single vector both the prefix and suffix vec-
tors which are sensitive to the character or-
dering in the word;

• PROTEINAS is the one-hot representation of
the gazetteer label that is (optionally) avail-
able for the input word (if it is not available,
we use the the one-hot representation of the
“default” label NONE);

• the Shape Features resource refers to
our word shape extraction algorithm that does
the following:

– using regular expressions, sets one bit
in the feature binary vector if the in-
put word looks like a substance, e.g.
“CD34”, “CAM5.2”, “Tc99m-MDP”,
etc.

– sets one bit in the the feature binary vec-
tor if the word is a “dash prefix word”,
e.g. “alfa”, “Beta”, “β”, etc. and it is
“glued” (no spaces) to the next word; the
list of dashed prefix words has been au-
tomatically generated from the train set.
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• the SNOMED CT Features resource
refers to our Spanish SNOMED CT
“word as a feature” algorithm. Based on
our tokenized SNOMED CT gazetteer
list, in which we labeled each “(sustan-
cia)” concept description with either the
PROTEINAS or the NORMALIZABLES
labels, we counted each word and label
pair and then computed the probability
distribution P (PROTEINAS|word) and
P (NORMALIZABLES|word). Each word
is represented by a 2 float vector on how
probable it is to point to either of these two
labels. If the input word is not found in
this resource, P (PROTEINAS|word) =
P (NORMALIZABLES|word) = 0.5. To the
2 float vector we also append the relative
frequency of the word in the tokenized
SNOMED CT gazetteer list; naturally, we
skip functional words from this computa-
tion. Some example vectors, computed as
described above, are presented in Table 1.

The BiLSTM cell will combine the forward fi
and backward bi states by multiplying the state
vectors, element-wise: hi = fi · bi. This method
proved to increase the precision of the system as
the signal will be strong only if left and right evi-
dence is strong (i.e. close to 1.0). We also found
out that if we average the forward and backward
states as in hi = (fi + bi)/2, we can increase the
recall at the cost of a lower precision. The same ef-
fect (recall increase) is obtained when the forward
and backward states are concatenated.

Besides the weighted sum of the combined BiL-
STM outputs hi given by the attention layer, the
output layer (a softmax layer with the output
size equal to the number of target labels) also re-
ceives the raw inputs from the gazetteer feature,
the shape features and the SNOMED CT features,
in an effort to boost the precision of the system.

4.2.3 Training
The input text is tokenized first, using an in-house
built tokenizer for Spanish, specifically designed
for this task. The tokenizer will split words at
the dash (‘-’) boundary because we observed that
some entities contained the dash while others did
not. The tokenizer will recognize (and thus gen-
eralize) the following types of tokens: numbers
(integers, reals, Roman numerals), amounts (e.g.
“305mg”), units of measure (e.g. “mg/g”), tem-

peratures (e.g. “30◦C”) and area/volume expres-
sions (e.g. “3x2cm2”). After tokenization, the text
is POS tagged using the Stanford Core NLP suite
with the Spanish POS tagging model and the sen-
tence boundaries are detected using a simple reg-
ular expression: end of sentence punctuation fol-
lowed by whitespace and then by an uppercase let-
ter. No named entity is allowed to cross a sentence
boundary.

We used a grid searching procedure, together
with the supplied train and development data, to
optimize the hyperparameters of RPCN. The hy-
perparameters are as follows:

• the number of time steps in the sequence:
how many words are in a window of consec-
utive words that the RPCN can consider as a
training example. Tried values were in the set
{7, 11, 15, 19, 21, 25} and the best value was
set to 21;

• the size of the LSTM state vector; tried values
were in the set {64, 128, 256} and the best
value was set to 128;

• the size of the trained word embedding vec-
tor, i.e. the size of the WE Layer. Tried
values were in the set {32, 64, 128} and the
best value was set to 64;

• the size of the POS tag embedding vector, i.e.
the size of the PE Layer. Tried values were
in the set {8, 16} and the best value was set
to 16.

The train and development sets that were made
available by the task organizers were distributed as
follows: 3822 training annotations (T entries in the
“.ann” files) and 1926 development annotations.
We have randomly reshuffled the whole data set
(training plus development) into 90% training set
and 10% development set.

As far as the configuration of the computation
graph goes, we used the Xavier weight initializa-
tion method together with the Stochastic Gradient
Descent optimization algorithm and the Adam up-
dater with the default parameters. The reader can
refer to the documentation of the DeepLearning4J
library for a description of these methods.

4.2.4 Running
The incoming text is tokenized, POS tagged and
sentence split. Then, RPCN is run on consecutive
sequences of adjacent words of length 21, each
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Word P (PROTEINAS|word) P (NORMALIZABLES|word) P (word)

lormetazepam 0.0 1.0 8.379841E-6
antinuclear 0.5 0.5 1.005581E-4
oxigenasa 0.625 0.375 6.703873E-5
carveol 1.0 0.0 8.379841E-6

Table 1: SNOMED CT word features for labels PROTEINAS and NORMALIZABLES

word receiving the best label by the softmax
output, accumulating labels as the window passes
by. The label with the highest accumulated score
wins for each word. Spans of consecutive tokens
having the same non-NONE labels are the new de-
tected named entities.

The raw label assignments are post-processed to
enforce the following:

• a recognized named entity will not start or
end with a functional word;

• if there is a gazetteer annotation for a RPCN
detected span then the labels must agree and
the gazetteer span boundaries will be pre-
ferred. If the labels do not agree, both spans
are deleted.

Finally, we also apply some regular expres-
sion based rules to catch some expressions which
RPCN was not able to learn, e.g. CD[0-9]+ (a
protein) or the pattern W1 “de” W2 in which “de”
W2 receive the same label as W1.

4.3 Ensemble methods

Given the different annotator systems described
above, an ensemble system was needed. Its aim
was to take the resulting annotations from two or
more runs, with the same or different system, and
combine them using different rules in order to im-
prove the overall results. The idea behind it is
that each system could be better at detecting cer-
tain types of entities and the combined annotation
would be better overall.

Our combining system takes as input two “.ann”
files and produces another “.ann” file by applying
rules. The rules are especially useful in the case
of overlapping entities. If there are no overlap-
ping entities, then the input annotations are simply
merged. Currently there are 5 rules available:

• “PRIO1”: gives priority to the first input
file, retaining the corresponding entity anno-
tation;

• “PRIO2”: gives priority to the second input
file;

• “SMALLER”: keeps the smaller annotation,
discarding the longer one in case of entity
overlap;

• “LARGER”: keeps the longer annotation;

5 System Evaluation

5.1 Working methodology

We mentioned that the initial distribution of an-
notations in the training and development sets was
not satisfactory and thus, we have proceeded to the
random reshuffling of the whole data set followed
by a 90%/10% split. We have selected our best en-
semble method on such a random reshuffling and
training/development split.

The RACAI baseline system worked with the
annotations from the training set plus the gazetteer
list based on the Spanish SNOMED CT “(sustan-
cia)” concept descriptions which we automatically
extracted and labeled as either PROTEINAS or
NORMALIZABLES and then manually validated.

RPCN was trained on the training set and eval-
uated, along with the RACAI baseline system,
on the development set. For the official evalua-
tion run, we used all annotations from the pro-
vided data set and the SNOMED CT entries as the
gazetteer list.

5.2 Results

Table 2 presents the runs of the RACAI baseline
system, RPCN and of four ensemble methods ap-
plied to the baseline (first input) and RPCN (sec-
ond input).

The highest scores are bold-faced for the Preci-
sion (P), Recall (R) and F1 columns. According to
our evaluations, the best ensemble method (by the
F1 score which was the optimization target) is the
“LARGER” (or C4 to match the name of the sub-
mitted zip file) ensemble method. Knowing that
we are allowed to submit five different runs, based



97

System P R F1
Baseline 0.8986 0.6915 0.7816
RPCN 0.9025 0.7539 0.8215
PRIO1 (C1) 0.8733 0.7764 0.8220
PRIO2 (C2) 0.8871 0.7764 0.8281
SMALLER (C3) 0.8694 0.7730 0.8183
LARGER (C4) 0.8911 0.7799 0.8318

Table 2: Development results of RACAI’s NER sys-
tems

System P R F1
Baseline 0.92530 0.71281 0.80527
RPCN 0.89327 0.76330 0.82319
PRIO1 (C1) 0.90189 0.80347 0.84984
LARGER (C4) 0.90043 0.79533 0.84462
C4M 0.78281 0.84528 0.81284

Table 3: Official PharmaCoNER 2019 results of
RACAI’s NER systems

on these evaluations, we decided to submit the out-
put of the following systems: RPCN (best preci-
sion), LARGER (C4, best F1 score) and Baseline
(official reference system). Before the submission
deadline, we also sent the PRIO1 (C1, the Base-
line priority) and an ensemble between the Base-
line and one other system that we developed for
PharmaCoNER 2019 (C4M). Table 3 presents the
official results that were communicated to us by
the task organizers.

6 Discussion and conclusions

The official evaluation results confirmed the re-
sults we obtained during development: the PRIO1
and LARGER ensembles between the Baseline
and the RPCN systems are better than each of
them, individually. RPCN definitely learned to
recognize new entities, as its recall is larger with
more than 5% than the recall of the Baseline sys-
tem.

We can also see that the precision of RPCN
dropped, as compared to the precision of the Base-
line system, with more than 3% in the official eval-
uation. This discrepancy appeared during devel-
opment as well and the main reason we found for
it was that the training data was not consistently
annotated. That is, the same expression (same
words, same casing) was annotated in a document
and was not annotated in another document. We
do not think that at this specialization level we

can justify this at a semantic level (i.e. the ex-
pression does not mean the same thing in the two
documents). Thus, during development, we au-
tomatically re-annotated the whole supplied data,
making sure the same expression is annotated ev-
erywhere with the same label (if there was an am-
biguity, the re-annotation was cancelled for the ex-
pression). By doing this, we were able to close the
precision gap between the Baseline and the RPCN
systems.

While we do not know the rank of our system
yet, our best system was scored with an F1 score
of 0.84984, which, we feel, is good performance.
We will put this system to the tests of scalability
and language-independence by using it unchanged
(but with the specialized computational resources)
in two Romanian-related tasks: as already stated,
in the identification of Romanian biomedical NEs
and in the rather different task of legal terminology
identification (e.g. EuroVoc6) in Romanian legal
texts, to be performed in the MARCELL project7.
For the latter task, we will have the chance to de-
termine if our system is able to reliably detect new
terms which are missing from the legal terminol-
ogy dictionaries.
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