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Abstract
We present the approach of the Turku NLP
group to the PharmaCoNER task on Spanish
biomedical named entity recognition. We ap-
ply a CRF-based baseline approach and mul-
tilingual BERT to the task, achieving an F-
score of 88% on the development data and
87% on the test set with BERT. Our ap-
proach reflects a straightforward application
of a state-of-the-art multilingual model that is
not specifically tailored to either the language
nor the application domain. The source code
is available at: https://github.com/
chaanim/pharmaconer

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in information extraction, and the abil-
ity to detect mentions of domain-relevant enti-
ties such as chemicals and proteins is required
for the analysis of texts in specialized domains
such as biomedicine. Although a wealth of man-
ually annotated corpora and dedicated NER meth-
ods have been introduced for the analysis of En-
glish biomedical and clinical texts (e.g. (Leaman
and Lu, 2016; Crichton et al., 2017; Weber et al.,
2019)), there has been comparatively little work
on these basic resources for other languages, in-
cluding Spanish.

The PharmaCoNER task focuses on pharma-
cological compound mentions in Spanish clinical
texts, promoting the development of biomedical
text mining tools for non-English data (Gonzalez-
Agirre et al., 2019). Track 1 involves the recog-
nition and classification of entity mentions into
upper-level ontological categories (chemical, pro-
tein, etc.), and Track 2 the normalization (ground-
ing) of these mentions to identifiers in external re-
sources. We participate in Track 1.

We participate in the PharmaCoNER task using
a collection of tools developed for English as well

Item Train Devel
Documents 500 250
Tokens 177 022 85 148
Annotations 3 822 1 926

Protein 1 405 745
Chemical(+) 2 304 1 121
Chemical(-) 24 16
Other 89 44

Table 1: Data statistics.

as out-of-domain multilingual models. In particu-
lar, we use a freely available NER toolkit, NER-
suite, tailored for English biomedical literature
and a multilingual neural model, BERT, pretrained
on general domain Wikipedia articles. Thus, the
emphasis of this work is on analyzing how well
such tools can be adapted to new languages and
domains with minimal effort. We cast the task
as sequence labeling using a conventional in-out-
begin (IOB) representation of the data for learning
and prediction. The used tools are described in de-
tail in Section 3.

2 Data

The annotation involves four types of entities,
labeled in the data as PROTEINAS (proteins,
genes, and related entities), NORMALIZABLES
(chemicals that can be normalized to external re-
sources), NO NORMALIZABLES (chemicals that
cannot), and UNCLEAR (miscellaneous related en-
tities). In the following, we refer to these re-
spectively as Protein, Chemical(+), Chemical(-)
and Other. Table 1 briefly summarizes data statis-
tics. We note that compared to English language
biomedical NER resources, the number of an-
notations is somewhat limited; for example, the
JNLPBA shared task (Kim et al., 2004) data con-
tains over 50,000 training examples of similar

https://github.com/chaanim/pharmaconer
https://github.com/chaanim/pharmaconer
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Figure 1: Illustration of data formats. Left: task data in separate .txt and .ann files. Right: NERsuite format.

types, the BioCreative II GM data (Smith et al.,
2008) over 18,000 gene mentions, and the BioCre-
ative CHEMDNER (Krallinger et al., 2015) data
over 80,000 chemical mentions. We thus expect
that methods addressing the PharmaCoNER task
to benefit from pretraining or other similar meth-
ods of incorporating information from outside of
just the task data.

The task data is distributed in the simple stand-
off format first introduced for the BioNLP Shared
Task 2009 (Kim et al., 2009). To convert this data
into a version the column-based IOB format pop-
ularized by the CoNLL NER tasks and used by
many NER tools, we apply a simple conversion
script provided with the BRAT annotation tool1

(Stenetorp et al., 2012). We note that conversion
between the standoff and the token-based IOB rep-
resentations is lossless if and only if there are no
overlapping annotations in the source data and the
boundaries of the annotations match token bound-
aries. Based on an experiment on the training data,
we estimate that the conversion preserves the orig-
inal annotations exactly over 99% of the time. Fig-
ure 1 illustrates the two formats.

We note that one training file2 failed conversion
due to an off-by-one offset error. We excluded this
file in all of our experiments.

3 Methods

3.1 NERsuite

Conditional Random Fields (CRF) (Lafferty et al.,
2001) are a popular and effective model for se-
quence labeling and thus a relevant baseline in
NER work. We perform experiments with NER-
suite3, an NER toolkit that is based on the CRF-
suite (Okazaki, 2007) CRF implementation and in-
cludes rich features optimized for English biomed-
ical text. In particular, NERsuite incorporates fea-

1http://brat.nlplab.org
2S0211-69952015000200015-1
3http://nersuite.nlplab.org/

tures derived from analysis by the GENIA tagger
(Tsuruoka et al., 2005), which performs part-of-
speech tagging, chunking and lemmatization and
has been trained on English text. When applied
on Spanish input, the tags and lemmas will nec-
essarily very frequently be incorrect. We never-
theless opted to apply the system as an off-the-
shelf baseline as its rich feature set also includes
many language-independent features. We leave
the NERsuite parameters at their defaults.

3.2 BERT

In our second experiment we utilize BERT (Devlin
et al., 2018), a transformer (Vaswani et al., 2017)
based attentive neural architecture. Whereas pre-
trained BERT models have shown strong perfor-
mance for English NER tasks (Peng et al., 2019),
to our knowledge no pretrained Spanish BERT
models are readily available4. Thus we con-
duct our experiments with the multilingual BERT
model (Pires et al., 2019) trained on a Wikipedia
corpus, covering 104 languages. Whereas Span-
ish is one of the pretraining languages used for the
model, the used Wikipedia corpus is not specific
to clinical or biomedical content. We use the cased
variant of the model, which preserves the case and
accents of the characters. BERT relies on sub-
word units, shared between all the used languages,
leading to subword embeddings which can benefit
from the commonalities of similar languages, yet
are a compromise across different uses in differ-
ent languages and domains. For fine-tuning the
model, we use the Keras BERT Python library 5.

When fine-tuning the model for the NER task
at hand, we replace the original pretraining output
layers with a CRF layer and allow the optimizer to
adjust all layers of the network. The model is op-
timized with Adam (Kingma and Ba, 2014) with a

4Shallow word embeddings for Spanish are studied e.g.
by Soares et al. (2019)

5https://github.com/CyberZHG/
keras-bert

http://brat.nlplab.org
http://nersuite.nlplab.org/
https://github.com/CyberZHG/keras-bert
https://github.com/CyberZHG/keras-bert
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batch size of 16 and a learning rate of 2e-5 warmed
up from 2e-7 over the first training epoch.

We train the model for 50 epochs and evaluate
the model after every epoch on the development
set using entity-level F-scores on subword tokens.
The best performing checkpoint is used as the final
prediction model, i.e. we use early stopping with
a decreasing patience. In addition to early stop-
ping, the model is regularized with dropout (Sri-
vastava et al., 2014) within each transformer block
and weight decay (Loshchilov and Hutter, 2017).
The dropout is set to 0.1, but the weight decay is
selected in a grid search, being the only hyperpa-
rameter optimized in our experiments.

As the input for the BERT model we use the
CoNLL formatted data identical to the CRF ex-
periments (see Section 2), which is split into sen-
tences and tokenized on word-level. As the BERT
model utilizes subword units, we further retok-
enize every word independently. Due to com-
putational reasons we use a maximum length of
128 subword units for the input. This limit per-
mits running the model on low memory consumer-
grade GPUs instead of requiring data center hard-
ware. Sentences longer than the limit are split into
separate input sequences for the network. Note
that this may occasionally split entities into sepa-
rate example sequences leading to sequences start-
ing with I tags. When converting the predictions
back to the word-level CoNLL format, we assign
the predicted entity label of the first subword unit
for the entire token.

4 Results and discussion

The official PharmaCoNER evaluation criteria
measure performance on the level of entity men-
tions (rather than e.g. tokens) and require exact
identification of the offset where each mention oc-
curs and the type of the mentioned entity. We note
that this common but fairly stringent criterion pe-
nalizes many small divergences from the reference
annotation twice: if a predicted entity is otherwise
correct but e.g. differs in its ending offset from
a gold standard entity, the predicted mention is
considered a false positive, and the corresponding
gold standard entity a false negative. Performance
is evaluated in terms of precision, recall, and bal-
anced F-score over all entity types (microaverage).
To provide a more fine-grained look into the per-
formance of our approach, we perform additional
analyses breaking down performance by type as

well as considering approximate matching crite-
ria, namely left boundary matching where only
the start offsets of mentions is required to match,
right boundary matching where only end is re-
quired, and overlap matching, where any overlap-
ping spans are considered a match. We require en-
tity types to match for all criteria.

The detailed evaluation for the NERsuite and
BERT models on the development set are listed
in Tables 2 and 3, where exact matching criterion
corresponds to the official evaluation. The NER-
suite model achieves and overall F-score of 82%
showing surprisingly strong performance consid-
ering the fact that it relies on English part-of-
speech tagging, chunking and lemmatization mod-
els. The BERT model surpasses this baseline by
+6.5pp with an overall F-score of 88%. We used
the BERT model as our official submission to the
shared task resulting in an F-score of 87.38% on
the test set according to the organizers. For both
of these models the overlap evaluation shows an
improvement of 3–4pp, suggesting that the mod-
els are in effect better at detecting the entities, but
suffer from slightly inaccurate boundary detection.
For the BERT model the difference between exact
and overlap results is slightly larger, which might
be caused by the additional retokenization to sub-
word units and detokenization back to the original
CoNLL format. As the overall performance of the
BERT model is notably better than NERsuite’s, we
focus on the former in all further analyses.

To measure the BERT model’s ability to gener-
alize to unseen entity mentions, we analyze how
many of the development data entity spans are not
present in the training data and how well the model
performs on these entities in comparison to entity
spans which the model has seen during training.
We observe that 55% of the unique entity spans,
covering 36% of all occurrences, in the develop-
ment set are not present in the training data. This
suggests that strong generalization abilities are re-
quired from the model to perform well in the task.

To obtain a rough understanding of how well
the model performs on the entities unseen dur-
ing training, we measure the recall of the model
separately for entity spans seen and not seen dur-
ing training (Table 4). As can be expected the
model has an extremely high recall of 96% for
spans present in the training data, but also rela-
tively strong performance with recall of 72% for
previously unseen spans. This suggests that the
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Criterion Protein Chemical(+) Chemical(-) Other Overall
Exact 88.89/74.09/80.82 93.41/75.76/83.66 0.00/0.00/0.00 79.31/52.27/63.01 91.35/73.95/81.73
Left 92.43/77.05/84.04 95.16/77.18/85.24 0.00/0.00/0.00 82.76/54.55/65.75 93.85/75.97/83.97
Right 91.63/76.38/83.31 94.73/76.83/84.84 0.00/0.00/0.00 79.31/52.27/63.01 93.21/75.45/83.40
Overlap 95.01/79.19/86.38 96.15/78.16/86.23 0.00/0.00/0.00 82.76/54.55/65.75 95.45/77.37/85.47

Table 2: NERsuite development set results for various boundary matching criteria (precision/recall/F-score).

Criterion Protein Chemical(+) Chemical(-) Other Overall
Exact 84.87/88.86/86.82 92.99/87.51/90.17 40.00/12.50/19.05 76.47/88.64/82.11 89.05/87.44/88.24
Left 89.36/93.56/91.41 95.73/90.10/92.83 40.00/12.50/19.05 78.43/90.91/84.21 92.49/90.81/91.64
Right 87.44/91.54/89.44 93.65/88.14/90.81 40.00/12.50/19.05 76.47/88.64/82.11 90.48/88.84/89.65
Overlap 91.92/95.30/93.58 96.02/90.72/93.30 40.00/12.50/19.05 78.43/90.91/84.21 93.71/91.85/92.77

Table 3: BERT development set results for various boundary matching criteria (precision/recall/F-score).

Entities Pretraining No pretraining
All 87.44 54.00
Seen 96.13 70.16
Unseen 71.72 24.78

Table 4: Recall of the BERT model on development
set with and without pretraining on all entities, entity
spans which are also present in the training data (seen)
and entity spans which do not appear in the training
data (unseen).

model has either learned suitable subword rep-
resentations during the pretraining for detecting
pharmacological entities or is able to effectively
utilize the context in which they appear.

As the model is pretrained on multilingual out-
of-domain data, we are also interested in the ben-
efits of such pretraining. To this end we train an
identical model with randomly initialized weights
as the starting point. The same subword unit vo-
cabulary is used. This model results in far infe-
rior performance with an F-score of 56% (see Ta-
ble 5). Moreover the recall of unseen entity spans
is mere 25%, whereas for previously seen spans
the recall is 70%. Thus the pretraining, even with
multilingual Wikipedia data, seems to offer dras-
tic improvements to the model, particularly for de-
tecting entity spans not seen during training. How-
ever, using the same vocabulary makes this com-
parison slightly unfair as subword embeddings are
left in their random initial state if not present in the
training data. In the development set this impacts
around 12% of the unique subword units, which
however constitute only 2% of all subword occur-
rences.

We also note that although we have used a CRF
layer as the output of the BERT model, in our pre-
liminary experiments we observed similar results
with a fully connected output layer. This suggests

Pretraining Precision Recall F-score
Yes 89.05 87.44 88.24
No 57.62 54.00 55.75

Table 5: Development set results for BERT model with
and without pretraining.

that the transformer architecture has the capability
of implicitly modelling sequential dependencies of
the output labels, unlike earlier neural models such
as bidirectional LSTM networks, which still sub-
stantially benefit from the added CRF output layer
(Ma and Hovy, 2016; Lample et al., 2016).

5 Conclusions and future work

In this study we have demonstrated that strong re-
sults for Spanish clinical NER can be achieved
with straightforward adaptation of multilingual or
English text mining tools. In particular the mul-
tilingual BERT model pretrained on general do-
main Wikipedia articles shows competitive perfor-
mance with an F-score of 87% in the official Phar-
maCoNER evaluation.

As prior studies have shown that the multilin-
gual BERT model can also be utilized in zero-shot
settings (Pires et al., 2019), as a future work, we
will look into optimal ways of incorporating En-
glish NER datasets in this task. This can be either
achieved in zero-shot setting, training the model
purely on English NER datasets and applying on
Spanish texts or by combining both English and
Spanish training data in a multitask setting.

In addition to studying the BERT model, we
have demonstrated that a strong baseline system
for this task can also be achieved with the NER-
suite toolkit, even though it relies on feature rep-
resentations built upon POS tagging and chunking
models trained on English data, warranting the use
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of such freely available tools even in cross-lingual
settings.
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