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Introduction

In the era of machine learning and AI, the importance of data, either for training or for evaluating the
learning-based models, is more and more evident. The performance of any AI device is greatly affected
by the data it is trained on. Also, it is common that an evaluated performance of an AI device based on
one benchmark data set is critically different when evaluated on another data set. This is particularly
true for text mining where the performance strongly depends on various factors: the goal or the type and
the language of the documents. These examples dictates the importance of sharing benchmark datasets,
so that evaluation results can be comparable to each other. It is a key for efficient advancement of the
technology.

BioNLP Open Shared Tasks is organized to promote the sharing of computational tasks of biomedical
text mining and also solutions to them. Here sharing a task means sharing benchmark datasets and
evaluation systems. It is a continuation of the previous efforts organized around the BioNLP Shared
Task (BioNLP-ST) workshop series (2009, 2011, 2013, 2016).

This year, six tasks are contributed by voluntary task organizers. Two tasks, the Bacteria-Biotope
(BB) and SeeDev tasks, are a continuation of their previous editions. BB targets the extraction of
information about bacterial biotopes and phenotypes, while SeeDev focuses on extracting events of
genetic and molecular mechanisms involved in plant seed development. The PharmaCoNER task is a
named entity recognition task for pharmacological substances, compounds and proteins. Particularly it
targets Spanish texts, which brings the new challenge of dealing with multilingualism. The CRAFT task
is presented as a highly challenging task, aiming at annotating texts with rich semantics, and a full stack
of linguistic structures. AGAC proposes to extract compositional concepts for drug repurposing. Finally
RDoc is an Information Retrieval task in the field of neuroscience.

For the six tasks, a total of 45 teams participated. For the workshop, paper submissions were
open exclusively to the teams that had completed at least one task as well as the task organizers. 43
reviewers in the Program Committee selected 30 papers to be presented for the workshop out of 38
submitted papers. We are happy to present the papers and we believe it to be a rare chance to compare
various tasks of biomedical text mining, and also various solutions to them.

BioNLP-OST Organizers
- Jin-Dong Kim, DBCLS
- Claire Nédellec, INRA
- Robert Bossy, INRA
- Louise Deléger, INRA
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Abstract

One of the biomedical entity types of rele-
vance for medicine or biosciences are chem-
ical compounds and drugs. The correct de-
tection these entities is critical for other text
mining applications building on them, such as
adverse drug-reaction detection, medication-
related fake news or drug-target extraction.
Although a significant effort was made to de-
tect mentions of drugs/chemicals in English
texts, so far only very limited attempts were
made to recognize them in medical documents
in other languages. Taking into account the
growing amount of medical publications and
clinical records written in Spanish, we have
organized the first shared task on detecting
drug and chemical entities in Spanish medical
documents. Additionally, we included a clin-
ical concept-indexing sub-track asking teams
to return SNOMED-CT identifiers related to
drugs/chemicals for a collection of documents.
For this task, named PharmaCoNER, we gen-
erated annotation guidelines together with a
corpus of 1,000 manually annotated clinical
case studies. A total of 22 teams participated
in the sub-track 1, (77 system runs), and 7
teams in the sub-track 2 (19 system runs). Top
scoring teams used sophisticated deep learn-
ing approaches yielding very competitive re-

sults with F-measures above 0.91. These re-
sults indicate that there is a real interest in pro-
moting biomedical text mining efforts beyond
English. We foresee that the PharmaCoNER
annotation guidelines, corpus and participant
systems will foster the development of new re-
sources for clinical and biomedical text mining
systems of Spanish medical data.

1 Introduction

Efficient access to mentions of drugs, medications
and chemical entities contained in clinical texts,
scientific articles, patents or even the web is a
pressing need shared by biomedical researchers
and clinicians (Krallinger et al., 2017). Biomed-
ical text mining is one of the most prolific applica-
tion domains of natural language processing tech-
nologies (Zweigenbaum et al., 2007). The recog-
nition of pharmaceutical drugs/chemical entities
is a critical step required for the subsequent de-
tection of relations with other biomedically rel-
evant entities such as genes/proteins, diseases or
adverse reactions (Vazquez et al., 2011). Text
mining and information extraction systems were
published that tried to find protein-drug relations
(including ligand-protein interactions and pharma-
cogenomics information), medication-related al-
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lergies, chemical metabolic reactions, drug-drug
interactions (Herrero-Zazo et al., 2013), disease-
drug relations, as well as drug safety-related is-
sues. The correct identification of drug mentions
is also needed for other complex relation types
like drug dosage recognition, duration of medical
treatments or drug repurposing.

The importance of chemical and drug name
recognition motivated several-shared tasks in the
past, such as the CHEMDNER tracks (Krallinger
et al., 2015) or the i2b2 medication challenge
(Uzuner et al., 2010b,a), with a considerable num-
ber of participants and impact (Doan et al., 2010;
Yang, 2010).

Currently, most of the biomedical and clini-
cal NLP research, is done on English documents,
while only few tasks were carried out using non-
English texts, or were multilingual. Nonetheless,
it is important to highlight that there is a consider-
able amount of biomedically relevant content pub-
lished in other languages than English, and par-
ticularly clinical texts are entirely written in the
native language of each country.

Spanish is a language spoken by more than 572
million people in the world today, either as a na-
tive, second or foreign language. It is the second
language in the world by number of native speak-
ers with more than 477 million people. Accord-
ing to results derived from WHO statistics, just
in Spain there are over 180 thousand practicing
physicians, more than 247 thousand nursing and
midwifery personnel or 55 thousand pharmaceu-
tical personnel. These facts, and the extrapola-
tion to other Spanish speaking countries explains
why a considerable subset of the PubMed database
records corresponds to Spanish medical articles.
Moreover, PubMed does only contain a part of the
medical literature originally published in Spanish,
which is also stored in other resources such as
MEDES, SciELO, IBECS or CUIDEN.

Following the outline of previous chemi-
cal/drug NER efforts, in particular the BioCreative
CHEMDNER tracks, we have carried out the first
task on chemical and drug mention recognition
from Spanish medical texts, namely from a cor-
pus of Spanish clinical case studies. Thus, this
track addressed the automatic extraction of chemi-
cal, drug, gene/protein mentions from clinical case
studies written in Spanish. The main aim was to
promote the development of named entity recog-
nition tools of practical relevance, that is, chemi-

cal and drug mentions in non-English content, de-
termining the current-state-of-the art, identifying
challenges and comparing the strategies and re-
sults to those published for English data.

2 Methods

2.1 Track Description
The PharmaCoNER track was one of the six tracks
of the BioNLP-OST 2019 / EMNLP-IJCNLP
workshop1. It was the first community challenge
track devoted to the recognition of pharmaceuti-
cal drugs and chemical entities in medical texts in
Spanish.

For this track, two scenarios or sub-tracks were
proposed:

• NER offset and entity classification. The
first sub-track focused on the recognition and
classification of entities.

• Concept indexing. The second sub-track con-
sisted of concept indexing, where, for each
document, the participating teams had to gen-
erate the list of the unique SNOMED-CT
concept identifiers, which were compared to
the manually annotated concept IDs corre-
sponding to the pharmaceutical drugs and
chemical entities.

2.2 Track data
We prepared a manually classified collection of
clinical case report sections derived from open
access Spanish medical publications, named the
Spanish Clinical Case Corpus (SPACCC)2. The
corpus contained a total of 1,000 clinical cases /
396,988 words. It is noteworthy that this kind of
narrative shows properties of both the biomedical
and medical literature, as well as clinical records.
Case reports are considered as the scientific pa-
per of a single clinical observation. Moreover, the
clinical cases were not restricted to a single med-
ical discipline, covering a variety of medical dis-
ciplines, including oncology, urology, cardiology,
pneumology or infectious diseases. This is key to
cover a diverse set of chemicals and drugs.

The PharmaCoNER corpus had a total of 7,624
entity mentions, corresponding to four different
mention types3. Figure 1 shows a screenshot of a

1https://2019.bionlp-ost.org/
2https://github.com/PlanTL-SANIDAD/SPACCC
3For a detailed description of the mentions types, see (Ra-

bal et al., 2018).
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Figure 1: PharmaCoNER annotation example.

clinical case annotated using the BRAT tool. The
overall annotation statistics were:

• NORMALIZABLES (normalizable): 4,398
mentions of chemicals that could be manu-
ally normalized to a unique concept identifier
(primarily SNOMED-CT).

• NO NORMALIZABLES (not normaliz-
able): 50 mentions of chemicals that could
not be normalized manually to a unique
concept identifier.

• PROTEINAS (proteins): 3,009 mentions of
proteins and genes following an adaptation
of the BioCreative GPRO track annotation
guidelines. This class included also peptides,
peptide hormones and antibodies.

• UNCLEAR: 167 cases of general substance
class mentions of clinical or biomedical rel-
evance, including certain pharmaceutical for-
mulations, general treatments, chemotherapy
programs, vaccines and a predefined set of
general substances (e.g.: Estragn, Silima-
rina, Bromelana, Melanina, Vaselina, Lano-
lina, Alcohol, Tabaco, Marihuana, Cannabis,
Opio and Gluten)4.

The annotation process of the PharmaCoNER
corpus was inspired by previous annotation

4Mentions of this class were not part of the entities eval-
uated by this track, but served as additional annotations of
medical relevance.

schemes and corpora used for the BioCreative
CHEMDNER (Krallinger et al., 2015) and GPRO
tracks (Pérez-Pérez et al., 2017), translating the
guidelines used for these tracks into Spanish and
adapting them to the characteristics and needs of
clinically oriented documents by modifying the
annotation criteria and rules to cover medical in-
formation needs. This adaptation was carried
out in collaboration with practicing physicians
and medicinal chemistry experts. The adaptation,
translation and refinement of the guidelines (Ra-
bal et al., 2018) was done on a sample set of the
SPACCC corpus and linked to an iterative process
of annotation consistency analysis through inter-
annotator agreement (IAA) studies until a high an-
notation quality in terms of IAA was reached. The
final, IAA measure obtained for this corpus was
calculated on a set of 50 records that were dou-
ble annotated (blinded) by two different expert an-
notators, reaching a pairwise agreement of 93%
on the exact entity mention comparison level and
76% agreement when also the entity concept nor-
malization was taken into account. Entity nor-
malization was carried out primarily against the
SNOMED-CT knowledge base. Note that there
is a SNOMED-CT version directly released by the
Spanish Ministry of Health twice a year.

The PharmaCoNER corpus was randomly sam-
pled into three subsets: the train set (500 clini-
cal cases), and the development and test sets (250
clinical cases each). These clinical cases were

3



manually annotated using a customized version of
AnnotateIt. Then, the BRAT annotation toolkit
(Stenetorp et al., 2012) was used to correct errors
and add missing annotations. The statistics of the
number of label for each datasets are shown in Ta-
ble 1.

Table 1: Distribution of labels in the PharmaCoNER
datasets.

Label Train Dev Test Overall
NORMALIZABLES 2,304 1,121 973 4,398

NO NORMALIZABLES 24 16 10 50
PROTEINAS 1,405 745 859 3,009
UNCLEAR 89 44 34 167

Together with the test set, we released an addi-
tional collection of 3,501 documents (background
set5) to make sure that participating teams were
not able to do manual corrections and also to pro-
mote that these systems would potentially be able
to scale to larger data collections.

Moreover, we provided also the following re-
sources: (1) Spanish medical text tokenizer, sen-
tence splitter, lemmatizer and POS tagger; (2)
Dictionary of chemicals, compounds and drugs
in Spanish; (3) Sense inventory of Spanish med-
ical abbreviation and their long forms; (4) Spanish
drug naming file with prefixes and suffixes rules;
and (5) a large background set of medical and
health documents in Spanish.

2.3 Evaluation metrics

We released an evaluation script that supported the
evaluation of the predictions of the participating
teams. For both sub-tracks, the primary evaluation
metrics used consisted of standard measures from
the NLP community, namely micro-averaged pre-
cision, recall, and balanced F-score, the last one
being the official evaluation measure:

Precision: P = TP
TP+FP

Recall: R = TP
TP+FN

F-score: F1 = 2 ∗ (P∗R)
(P+R)

where TP = true positives, FP = false positive
and FN = false negative.

5The background set included the training, development
and test sets, and an additional collection of 2,751 unlabeled
clinical cases (total of 3,751 clinical cases).

Teams could submit up to five prediction files
(or system runs) in a predefined prediction for-
mat: BRAT, for sub-track 1, and TSV files, for
sub-track 2.

3 Participation and Results

3.1 Participation

To participate in the PharmaCoNER track it was
necessary to register both on the official website6

and in the CodaLab competition7. Training and
development sets were made available for down-
load on the official website8, and the evaluation
script was uploaded to GitHub9, to ensure a trans-
parent evaluation.

As we already said, submissions had to be pro-
vided in a predefined prediction format: BRAT, for
sub-track 1, and TSV files, for sub-track 2. Addi-
tionally we plan to release the corpus also in the
popular PubAnnotation format (Kim and Wang,
2012).

The participants had a period of almost two
months to develop their system. In the middle of
this period, the test and background sets were re-
leased with the 3,751 documents that the partici-
pants had to process and label, although the final
evaluation was done only on the 250 documents
corresponding to the test set. The intention was
to use the background set to enable the construc-
tion of participant-generated Silver Standard cor-
pus. As we have mentioned, the participants could
submit a maximum of 5 system runs, and, once
the submission deadline expired, we published the
Gold Standard annotations of the test set, in or-
der to ensure a transparent evaluation process and
help participants to carry out a more detailed error
analysis.

A total of 22 teams participated in the sub-track
1, submitting a total of 77 systems, and 7 teams
in the sub-track 2, submitting a total of 19 runs.
Teams from eleven different nationalities partici-
pated in the track: seven teams from Spain, three
from China, and one team from each: Finland,
France, India, Japan, Romania, Russia, United
Kingdom and the United States. Three partici-
pants belong to a commercial institution. Table

6http://temu.bsc.es/pharmaconer/
7https://competitions.codalab.org/

competitions/23159
8http://temu.bsc.es/pharmaconer/index.

php/data/
9https://github.com/PlanTL-SANIDAD/

PharmaCoNER-CODALAB-Evaluation-Script
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Table 2: Overview of Team Participation in the PharmaCoNER track.

Username Organization/Institution/Company Members Country Comm.
alily Carlos III University of Madrid 3 Spain No

ayan7246 Unaffiliated 1 India No
chaanim University of Turku 2 Finland No
CongSun Dalian University of Technology 3 China No

Edson University of Côte d’Azur 4 France No
foxlf823 UMASS Lowell 3 United States No

FSL Unaffiliated 2 Spain No
ghada.alfattni University of Manchester 3 United Kingdom No

ixamed University of the Basque Country 5 Spain No
JoyHan - - - -
lluisp Universitat Politècnica de Catalunya 1 Spain No

lukas.lange Bosch Center for Artificial Intelligence 3 Germany Yes
m-stoeckel Goethe University Frankfurt 2 Germany No

m.domrachev Unaffiliated 1 Russia No
naiven JD 1 China Yes

plubeda Universidad de Jan 4 Spain No
raduion Research Institute for AI ”Mihai Draganescu” 3 Romania No
rriveraz Carlos III University of Madrid 3 Spain No
sohrab National Institute of Advanced Industrial Science and Technology 4 Japan No
tEarth - - - -

uyaseen Siemens AG 2 Germany Yes
VSP Carlos III University of Madrid 1 Spain No

xiongying Harbin Institute of Technology 4 China Yes

2 summarizes the most relevant information about
the participants (we lack the information from two
of the teams, because they registered at CodaLab,
but not at our website).

3.2 Baseline system
We produced three baseline systems for the track:
The first one is a very simple baseline based on vo-
cabulary transfer, and the other two baseline sys-
tems are competitive baselines based on the Phar-
maCoNER Tagger (Armengol-Estapé et al., 2019),
a deep learning-based tool for automatically find-
ing chemicals and drugs in Spanish medical texts.

In the vocabulary transfer approach, each an-
notation from the train and development datasets
was transferred to the test dataset using strict string
matching. For those cases where the text was the
same, but the entity type was different, we decided
to annotate all entity types that matched that text.

In the two baselines based on the Pharma-
CoNER Tagger, we used the default parame-
ters, a hidden layer of size 300, and early stop
(best model at epoch 35). The models were
trained using the GloVe embeddings (Penning-
ton et al., 2014) from SBWC10 (from now on
baseline-glove) and the Medical Word Embed-
dings for Spanish (Soares et al., 2019) (from now
on baseline-med). The corpus was tokenized us-
ing spaCy.

10https://github.com/dccuchile/
spanish-word-embeddings

3.3 Results

Table 3 shows the results for sub-track 1 (NER off-
set and entity type classification), ordered by team
performance (first column), then system perfor-
mance (second column).

The top scoring system was submitted by
xiongying, with an F-score of 0.91052, being rel-
atively close to the next two participants: FSL,
ranked 2nd with a F-score of 0.90968, and m-
stoeckel, ranked 3rd with a F-score of 0.89888.
Participant Edson submitted five systems that
scored almost zero. Once he noticed the error, he
submitted two fixed submissions. These submis-
sions were made after the publication of the re-
sults but before the release of the test set with GS
annotations. These late submissions of Edson are
marked with an asterisks in the table, including the
hypothetical ranking of his team/systems.

Note that all of the teams were well above
the baseline based on vocabulary transfer, which
would rank last if we ignored the submission with
errors. The competitive baseline trained with the
GloVe embeddings would rank 16, and the one
trained with embeddings that are specific for clin-
ical texts in Spanish would rank 13. It is remark-
able that 12 teams out of 20 managed to beat a very
competitive baseline based on a well known Deep
Learning tool.

Table 4 shows the results for sub-track 2 (Con-
cept Indexing), ordered by team performance (first
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Table 3: Results for sub-track 1: NER offset and entity type classification.

Team Rank System Rank User Precision Recall F1

1

1

xiongying

0.91226 0.90879 0.91052
2 0.91589 0.90445 0.91013
3 0.91008 0.90662 0.90835
4 0.90751 0.90554 0.90652
5 0.90205 0.90988 0.90595

2 3 FSL 0.90625 0.91314 0.90968

3
7

m-stoeckel
0.90708 0.89082 0.89888

8 0.89297 0.89685 0.89491
13 0.88839 0.86369 0.87586

4

9

CongSun

0.90463 0.88056 0.89243
10 0.90704 0.87405 0.89024
14 0.89183 0.85939 0.87531
17 0.88732 0.85071 0.86863

5 11 naiven 0.90315 0.87079 0.88668

6

12

lukas.lange

0.88950 0.88274 0.88610
27 0.85162 0.87242 0.86189
28 0.86307 0.85885 0.86095
31 0.85078 0.86048 0.85560
32 0.85520 0.85288 0.85404

7 15 chaanim 0.87568 0.87188 0.87378

8
16

foxlf823
0.88098 0.85993 0.87033

22 0.87218 0.85939 0.86574
23 0.87674 0.85342 0.86492

9

18

ixamed

0.90222 0.83659 0.86817
21 0.90088 0.83388 0.86608
42 0.82981 0.85233 0.84092
49 0.81914 0.80402 0.81151
50 0.81914 0.80402 0.81151

10

19

sohrab

0.86881 0.86645 0.86763
26 0.87079 0.85613 0.86340
39 0.85320 0.83931 0.84620
41 0.83665 0.84528 0.84094
46 0.88483 0.77579 0.82673

11

20

uyaseen

0.90581 0.83008 0.86629
24 0.90482 0.82573 0.86347
25 0.90482 0.82573 0.86347
33 0.84644 0.85885 0.85260
37 0.88941 0.81650 0.85140

12
29

m.domrachev
0.87073 0.84473 0.85754

30 0.87073 0.84473 0.85754
- - baseline-med 0.87020 0.83713 0.85335

13
34

rriveraz
0.88538 0.82193 0.85248

35 0.88538 0.82193 0.85248
36 0.88538 0.82193 0.85248

14

38

raduion

0.90189 0.80347 0.84984
40 0.90043 0.79533 0.84462
47 0.89327 0.76330 0.82319
48 0.78281 0.84528 0.81284
52 0.92530 0.71281 0.80527

15

43

lluisp

0.88882 0.78990 0.83645
44 0.89176 0.78719 0.83622
45 0.88991 0.78556 0.83449
53 0.81160 0.76710 0.78872
61 0.73211 0.73887 0.73548

- - baseline-glove 0.83259 0.80999 0.82113

16
51

ghada.alfattni
0.85039 0.77144 0.80900

55 0.82776 0.72530 0.77315

17

54

plubeda

0.88507 0.69815 0.78058
56 0.85992 0.69653 0.76965
60 0.92602 0.61835 0.74154
62 0.84404 0.64929 0.73397

18
57

alily
0.86034 0.68893 0.76515

59 0.86981 0.67101 0.75759
19 58 VSP 0.81621 0.71607 0.76287

20

63

ayan7246

0.74668 0.61129 0.67224
67 0.43812 0.48046 0.45831
68 0.36910 0.47991 0.41728
69 0.33333 0.48046 0.39360
70 0.52283 0.19273 0.28163

21
64

JoyHan
0.88519 0.54098 0.67155

65 0.52523 0.52666 0.52594
66 0.88350 0.37193 0.52349

- - baseline-vt 0.67330 0.60641 0.63810

22

71

Edson

0.00280 0.00163 0.00206
72 0.00008 0.00163 0.00015
73 0.00007 0.00217 0.00014
74 0.00007 0.00217 0.00014
75 0.00002 0.00054 0.00004

20*
60*

Edson
0.80660 0.68920 0.74330

70* 0.63350 0.14930 0.24160
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Table 4: Results for sub-track 2: Concept Indexing.

Team Rank System Rank User Precision Recall F1
1 1 FSL 0.91108 0.92083 0.91593

2

2

ixamed

0.87964 0.82882 0.85347
3 0.87623 0.82810 0.85149
9 0.82374 0.83666 0.83015
10 0.81232 0.80884 0.81058

3

4

xiongying

0.82835 0.85021 0.83914
5 0.83809 0.83809 0.83809
6 0.82202 0.84665 0.83415
7 0.82032 0.84665 0.83327
8 0.81699 0.84379 0.83018

4
11

sohrab
0.87532 0.73609 0.79969

12 0.88003 0.73252 0.79953

5

13

plubeda

0.85207 0.63267 0.72616
14 0.82887 0.61840 0.70833
15 0.87879 0.55849 0.68295
16 0.83350 0.57846 0.68295

6 17 VSP 0.66502 0.55215 0.60335

7
18

rriveraz
0.50000 0.49287 0.49641

19 0.48641 0.49786 0.49207

Table 5: Results by category for sub-track 1.

NORMALIZABLES NO NORMALIZABLES PROTEINAS
Precision Recall F1 Precision Recall F1 Precision Recall F1

Min 0.31976 0.17986 0.28618 0.00000 0.00000 0.00000 0.32377 0.12224 0.19981
Mean 0.87217 0.81754 0.83880 0.19844 0.03276 0.04984 0.81654 0.76428 0.78494

Median 0.90977 0.86434 0.87922 0.00000 0.00000 0.00000 0.85626 0.82421 0.83445
Maximum 0.95924 0.94142 0.94253 1.00000 0.40000 0.38095 0.89831 0.89406 0.88709
Std Dev 0.12742 0.12967 0.13065 0.38104 0.06854 0.09247 0.11328 0.15302 0.13668

Best team raduion FSL xiongying
m-stoeckel

FSL FSL plubeda xiongying xiongyingsohrab
xiongying

column), then system performance (second col-
umn). The top scoring system for sub-track 2
was submitted by FSL, with a F-score of 0.91593,
showing a significantly better result when com-
pared to the second best submission (more than
6 points) provided by ixamed, with a F-score of
0.85347. The third team was xiongying, the best
participant in the sub-track 1, with a F-score of
0.83914.

Some statistics of the results are shown in Table
6. There was a high variability among the sys-
tems, with a difference of 6 point between the best
system and the median for sub-track 1, and of 10
points for sub-track 2. The difference between the
best system and the mean of all system was still
higher. This proved that the task, was quite diffi-
cult.

As additional analysis, results by category, in-
cluding the best teams for category and metric, are
shown in Table 5. The performance of the sys-
tems was systematically better for the NORMAL-
IZABLES category, 4-9 points better in respect
with the PROTEINAS category. Surprisingly, the

Table 6: Statistics by track.

Track Measure Precision Recall F1

1

Minimum 0.33333 0.19273 0.28163
Mean 0.84211 0.77916 0.80493

Median 0.88417 0.82791 0.85248
Maximum 0.92602 0.91314 0.91052
Std Dev 0.12071 0.13840 0.12819

2

Minimum 0.48641 0.49287 0.49207
Mean 0.80152 0.72885 0.75936

Median 0.82887 0.80884 0.81058
Maximum 0.91108 0.92083 0.91593
Std Dev 0.11975 0.14059 0.12057

median for the NO NORMALIZABLES category
was 0, suggesting that at least half of the systems
ignored this category.

3.4 Combination of systems

In this section, we present an experiment we per-
formed to combine the systems submitted to the
track to see if we could improve the results. We
combined the systems using a voting scenario: we
accepted as good the annotations that had been
predicted by N systems.

The first system accepted all the annotations
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predicted by, at least, one of the systems, while the
last one accepted only the annotations that were
predicted by, at least, N systems. The results of
this experiment are shown in Table 7.

As expected, as the value of N increased (the
number of required votes was increased), the re-
call got worse and the precision improved. Based
on the maximum value of F-score for sub-track 1
on the train and development sets we selected 20
as the optimum value for combining systems (F-
score of 0.98408). We used this value for N on
the test set, obtaining an F-score of 0.92355, 1.3
points better than the best system. This score was
lower than the best one that could be obtained for
the test set (0.92426, with N = 18), but the differ-
ence was (in practice) negligible.

The combined systems did not improve the re-
sults for sub-track 2. The maximum value of F-
score on the train and development sets was ob-
tained combining 6-7 systems (F-score of 0.97352
in the Dev set for N = 6). This scored 0.87073 in
the test set, 4.5 points below the best system. This
was probably a consequence of amount of systems
and the performance gap between the best systems
and the others. For the future, we will combine the
system using more sophisticated approaches.

4 Discussion and Conclusions

The results of the first chemical and drug named
entity recognition track from clinical case reports
in Spanish are very encouraging, both in terms of
the number of participants, not only from Spanish-
speaking countries, as well as in terms of the ob-
tained system results, which are already reaching
a level of performance that would make the result-
ing tools very valuable resources for processing
the vast amount of medical data generated world-
wide in Spanish.

We had structured the track into two sub-tracks
to cover different practical aspects of the resulting
systems. The named entity recognition track of
chemicals/drugs had the aim of serving as a build-
ing block task for future down-stream text min-
ing of more complex information types, includ-
ing the detection of medication duration, dosage,
drug-drug-interactions, therapeutic target relations
and drug/chemical induced adverse effects. The
concept-indexing sub-track was more concerned
with the development of sophisticated semantic re-
trieval engines and the exploitation of high impact
normative terminologies such as SNOMED CT.

Table 7: Combining systems using a voting scheme.

Track # Train Dev Test

1

1 0.77448 0.64485 0.36036
2 0.89285 0.78679 0.71539
3 0.94173 0.85545 0.78403
4 0.95583 0.88711 0.82505
5 0.96638 0.91222 0.85261
6 0.97523 0.92725 0.87124
7 0.98024 0.93859 0.88286
8 0.98452 0.94902 0.89519
9 0.98792 0.95772 0.90438
10 0.98989 0.96386 0.90828
11 0.99160 0.96906 0.91038
12 0.99319 0.97280 0.91436
13 0.99386 0.97431 0.91615
14 0.99412 0.97760 0.91880
15 0.99505 0.97808 0.92124
16 0.99518 0.97856 0.92253
17 0.99558 0.98162 0.92320
18 0.99598 0.98368 0.92426
19 0.99571 0.98362 0.92418
20 0.99571 0.98408 0.92355
21 0.99585 0.98244 0.92372
22 0.99598 0.98182 0.92074
23 0.99638 0.97740 0.91872
24 0.99638 0.97569 0.91641
25 0.99651 0.96952 0.91202
26 0.99610 0.96665 0.90815
27 0.99516 0.96294 0.90392
28 0.99421 0.95715 0.90152
29 0.99217 0.95135 0.89164
30 0.99025 0.94474 0.88598
31 0.98669 0.93575 0.88197
32 0.98641 0.92965 0.87602
33 0.98462 0.92197 0.86712
34 0.98198 0.91708 0.85794
35 0.98073 0.91311 0.85002
36 0.97738 0.90290 0.84011
37 0.97285 0.89545 0.82827
38 0.97058 0.88458 0.81402
39 0.96829 0.87545 0.80040
40 0.96397 0.86574 0.78042
41 0.95860 0.85169 0.75992
42 0.95258 0.83427 0.73265
43 0.94455 0.81401 0.69613
44 0.93128 0.79135 0.66063
45 0.91042 0.76815 0.57034
46 0.88054 0.72273 0.50117
47 0.84009 0.66146 0.46420
48 0.75949 0.57517 0.41148
49 0.34449 0.26516 0.20968

2

1 0.65485 0.63039 0.57822
2 0.81233 0.80333 0.70237
3 0.90781 0.91254 0.80749
4 0.92741 0.93277 0.81967
5 0.97599 0.96739 0.84716
6 0.98009 0.97352 0.87073
7 0.98298 0.97020 0.87106
8 0.97983 0.97061 0.87719
9 0.97207 0.94607 0.86444
10 0.96992 0.93864 0.86435
11 0.95120 0.90585 0.85479
12 0.94721 0.88803 0.84603
13 0.88231 0.80623 0.80337
14 0.87566 0.78624 0.79056
15 0.85368 0.73964 0.75661
16 0.81724 0.68416 0.72358
17 0.43734 0.38884 0.37916
18 0.43231 0.39216 0.36889
19 0.40541 0.36462 0.33152
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Surprisingly we had a considerably higher number
of participants for the NER sub-track when com-
pared to the concept-indexing sub-track. Future
evaluation efforts should potentially consider also
an entity grounding/normalization of chemical and
drug mentions in clinical case reports.

Most of the participating systems were based on
the use of sophisticated deep learning and neural
net approaches, which are becoming the state of
the art methods for named entity recognition tasks
also in specialized domains such as biomedicine
or for non-English data.

When analyzing the more difficult mention
types for participating teams, it is still clear that
very short abbreviations (1-2 letters) are cumber-
some to recognize correctly, due to their high level
of implicit ambiguity. Solving such cases would
probably require larger manually annotated cor-
pora or the generation of other complementary re-
sources specifically suited for the recognition and
resolution of short abbreviations. We did not ob-
serve any particular issues related to the clini-
cal disciplines of the case reports, thus it seems
that drug NER systems should work well across
all medical specialties. It is important to place
the very competitive results obtained for Pharma-
CoNER into its context, in terms data collections
used. When compared to the biomedical literature
or medicinal chemistry patents, clinical case re-
ports show a lower degree of variability in terms
of the chemicals and drug mentions used, as in
the clinic only a limited number of medications
and chemical entities are being used for treatment,
biochemical testing or explored in clinical settings
and analysis.

The construction of high quality Gold Stan-
dard manually annotated corpora can be consid-
ered one of the major bottlenecks for the develop-
ment of biomedical named entity recognition sys-
tems. During this task, we have promoted the col-
laborative generation of a larger Silver Standard
corpus generated through the predictions of all the
participating teams. A more detailed examination
of this resource and approaches on how to opti-
mally merge/combine multiple annotations and in
turn train new systems using this silver standard
dataset might give new insights on how to speed up
the creation of new NER tools/annotated datasets.

One of the difficulties we have also encoun-
tered during this task was due to the use of a
very popular third party platform for organizing

online shared tasks on data mining tasks, includ-
ing text mining and NLP. The explored resource,
Codalab, had a server crash, and no proper up to
date backup system in place (including user regis-
tration info, as well as data collections). Thus, the
use of resources with a more focused support for
biomedical text mining datasets, corpora, services
and shared task organization, such as PubAnno-
tation would have been a better choice for hosting
all the relevant data and predictions for biomedical
shared tasks.
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Abstract

The recognition of pharmacological sub-
stances, compounds and proteins is an essen-
tial preliminary work for the recognition of re-
lations between chemicals and other biomedi-
cally relevant units. In this paper, we describe
an approach to Task 1 of the PharmaCoNER
Challenge, which involves the recognition of
mentions of chemicals and drugs in Span-
ish medical texts. We train a state-of-the-art
BiLSTM-CRF sequence tagger with stacked
Pooled Contextualized Embeddings, word and
sub-word embeddings using the open-source
framework FLAIR. We present a new corpus
composed of articles and papers from Span-
ish health science journals, termed the Span-
ish Health Corpus, and use it to train domain-
specific embeddings which we incorporate in
our model training. We achieve a result of
89.76% F1-score using pre-trained embed-
dings and are able to improve these results
to 90.52% F1-score using specialized embed-
dings.

1 Introduction

Efficient access to information on chemicals and
pharmaceutical units has become increasingly im-
portant for researchers in various chemical dis-
ciplines. However, manual annotation of these
units to create knowledge bases is a laborious
process given the ever-increasing number of pa-
pers and patents in bio/chemical and pharmaceu-
tical research. Thus, Natural Language Process-
ing (NLP) can be employed to detect such en-
tities and their relations from the relevant litera-
ture. Previous work has been successful in de-
tecting and classifying chemical substances or in
extracting complex relations between chemical
substances (Krallinger et al., 2015; Hemati and
Mehler, 2019).

While most NLP research is conducted on En-
glish datasets, there are a considerable number
of non-English biomedically relevant texts writ-
ten in other languages, e.g. clinical texts. In order
to advance the further development of biomedi-
cal and pharmaceutical entity recognition facing
this linguistic diversity, the PharmaCoNER task
challenges participants with Named Entity Recog-
nition (NER) for pharmacological substances,
compounds and proteins on a Spanish corpus
(Gonzalez-Agirre et al., 2019b). The Pharma-
CoNER task belongs to the BioNLP Open Shared
Tasks 2019 (BioNLP-OST 2019) Workshop and
distinguishes two tracks: the first track focuses on
NER offset and entity classification, while the sec-
ond task deals with concept indexing.

In this paper we present an architecture for NER
of chemical and pharmacological units in Span-
ish texts that produces an F-score of up to 90%.
Source code and instructions for reproducing these
results are available on GitHub1 and we are offer-
ing an interactive web service for testing our mod-
els.2 The article is organized as follows: First, we
describe the resources used to train our model and
explain our methodical approach. This includes a
detailed description of the PharmaCoNER dataset
and the kind of preprocessing we performed on the
input texts. Afterwards, we give a thorough de-
scription of our architecture. Finally, we discuss
our results and give our conclusions.

2 Materials and Methods

2.1 Datasets

In this section, we describe the datasets used in
our experiments and the architecture of our NER
tagger.

1www.git.io/JenqE
2espharmaner.texttechnologylab.org
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PharmaCoNER The corpus accompanying the
PharmaCoNER task, that is, the Spanish Clinical
Case Corpus (SPACCC), contains 1 000 manually
classified clinical cases and comprises 396 988 to-
ken (Gonzalez-Agirre et al., 2019a). The corpus
was derived from open access Spanish medical
publications and (according to the creators) shows
properties of both biomedical and medical litera-
ture as well as clinical records.

The SPACCC corpus is given in brat stand-
off format3 as two separate files per document,
one containing the plain text, the other contain-
ing the annotations with character level offsets
on the raw text. We converted the corpus into
a CoNLL2003 compatible format, applying com-
mon whitespace tokenization and splitting tokens
on non-alphanumeric characters, as this increased
the performance of our model.

Spanish Health Corpus In this section, we de-
scribe the Spanish Health Corpus, a collection of
7353 diverse Spanish health and science journal
articles and papers. The corpus was obtained from
SciELO4 by means of an automated crawler.5 The
content of the articles in this corpus was down-
loaded as embedded text from the respective web-
sites and stripped of any structural elements, like
HTML tags. Then, the raw text was split into
sentences using DEEP-EOS, a neural network sen-
tence boundary detection tool created by Stefan
Schweter which is publicly available on GitHub.6

We trained a Spanish DEEP-EOS LSTM model
on 100 000 Spanish Wikipedia sentences extracted
from the Leipzig Corpora Collection (Goldhahn
et al., 2012). Our DEEP-EOS model achieves an
accuracy of 99.65% on separate 100 000 test sen-
tences. The resulting sentences were then tok-
enized based on the procedure mentioned in the
previous section. This resulted in a set of 957 648
sentences containing 32 346 137 words in total.
We used this corpus to train special word embed-
dings for our system that we believe have a posi-
tive impact on the performance of our models.

2.2 System Architecture

Our system was built with FLAIR (Akbik et al.,
2019a), an easy to use open-source NLP frame-
work that is able to produce state-of-the-art re-

3brat.nlplab.org/standoff.html
4www.scielo.org
5See our GitHub repository for the list of documents.
6www.github.com/stefan-it/deep-eos

sults for sequence tagging tasks (eg. Akbik et al.,
2018, 2019b). We follow the approach of Ak-
bik et al., using FLAIR to stack (i.e. concate-
nate) character and word embeddings to improve
recognition rates. We further expand this model by
adding sub-word embeddings to the stacked em-
beddings. These stacked embeddings serves as in-
put for a BiLSTM-CRF sequence tagger (Huang
et al., 2015).

For our best performing model, we used two
different token-level embeddings, a WANG2VEC-
based embedding (Ling et al., 2015) and a FAST-
TEXT-based embedding (Bojanowski et al., 2017),
a single byte-pair sub-word embedding (Heinz-
erling and Strube, 2018) and one context sensi-
tive character-level language model (Akbik et al.,
2019b). Figure 1 gives a visual depiction of our
best performing model. The following paragraphs
describe the used embeddings in more detail.

Pooled Contextualized Embeddings Contextu-
alized String Embeddings (Akbik et al., 2018,
CSEs) use pre-trained character-level language
models from which hidden states at the start and
end character positions of each word are extracted
to create embeddings for any string in sentence
contexts. This model is further developed by Ak-
bik et al. (2019b) who introduce an expansion to
CSEs in terms of Pooled Contextualized Embed-
dings (PCEs).

PCEs tackle the problem of embedding rare
words by applying a pooling operation on different
contextual embeddings of the word. The authors
follow the idea that words which occur in under-
specified contexts should be familiar to the reader
from previous mentions. So when a word is pro-
cessed during the training of a character-level lan-
guage model, all previous contextualized instances
of the word are pooled and concatenated with the
current instance to create a “global” word repre-
sentation (Akbik et al., 2019b). The authors exper-
iment with three pooling operations (min, max and
mean). In this way, they are able to achieve state-
of-the-art results in four major NER tasks (Akbik
et al., 2019b).

In our architecture, we employ pre-trained
Spanish Pooled Contextualized Embeddings.7

wang2vec Embeddings This model, proposed
by Ling et al. (2015), is an extension of the token-

7These models were trained by Yihwa Kim
(www.github.com/iamyihwa).
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Figure 1: The architecture of the best performing model in our experiments. The PCEs are generated from
C character features, while FASTTEXT and WANG2VEC embeddings are trained on T tokens, and BPEMB uses
S syllable input. The embeddings are stacked and serve as input for a BiLSTM-CRF Sequence Labeling Model.

level WORD2VEC model of Mikolov et al. (2013).
During training, WANG2VEC makes a prediction
for each neighboring position of the target word
instead of making a single prediction for all neigh-
bours. Thus, the resulting embeddings are better at
capturing syntactic, positional information (Ling
et al., 2015).

We trained 300 dimensional WANG2VEC-based
embeddings based on 100 iterations using default
parameters on the Spanish Health Corpus.

fastText Embeddings Unlike WORD2VEC or
WANG2VEC, FASTTEXT (Bojanowski et al., 2017)
models words as sets of character n-grams, where
all n-grams from sizes 3-6 are used during train-
ing. FASTTEXT can thus represent rare words that
were not present in the vocabulary of the train-
ing files if their skip-grams were observed dur-
ing training. Before the words are split into n-
grams, special boundary symbols are added. The
embeddings are thus also able to learn informa-
tion about word prefixes and suffixes (Bojanowski
et al., 2017). We used pre-trained 300 dimensional
Spanish FASTTEXT embeddings from Grave et al.
(2018) in our initial submission to the Pharma-
CoNER task.8

We replaced them with our own 300 dimen-
sional embeddings trained on the Spanish Health
Corpus with standard parameter settings during
our experimental phase.

8www.fasttext.cc/docs/en/
crawl-vectors.html

Byte-Pair Embeddings. Similar to FASTTEXT,
Byte-Pair embeddings (Heinzerling and Strube,
2018, BPEMB) are trained on a pre-processed cor-
pus that contains sub-word entities. But in contrast
to FASTTEXT, words in the training corpus are
represented as combinations of syllables instead of
skip-grams. These syllables or subword units are
learned from the corpus prior to the segmentation
using Byte-Pair-Encoding (Sennrich et al., 2016)
for a predefined number.

In our experiments, we used pre-trained 300
dimensional Spanish Byte-Pair embeddings made
available by Heinzerling and Strube (2018) with a
syllable vocabulary size of 100 000.9

2.3 Experiments

We conducted extensive experiments to optimize
our models. The ease of use of FLAIR enables us
to swap embeddings and optimizers on the fly and
perform a state-of-the-art hyper-parameter search.
Following the “best known configurations” for
NER tasks in English, German and Dutch accord-
ing Akbik et al.’s GitHub repository,10 we trained
the BiLSTM-CRF sequence tagger with a hidden
size of 256, a single LSTM layer (unless stated
otherwise) and no dropout. We used common
Stochastic Gradient Descent (SDG) with a learn-
ing rate of 0.1, mini-batch size of 32, an annealing
rate of 0.5 with a patience of 3 and default parame-

9www.github.com/bheinzerling/bpemb
10www.github.com/zalandoresearch/flair
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ters otherwise. The training takes about 80 epochs
with these settings.

We performed a parameter search with FLAIR’s
wrapper of the hyper parameter selection tool HY-
PEROPT (Bergstra et al., 2013). We chose our ini-
tial search parameters similar to the search con-
ducted by Akbik et al. (2019b), which includes a
learning rate ∈ {0.01, 0.05, 0.1} and mini-batch
size ∈ {8, 16, 32}. Using this parameter set we
were unable to improve our models performance
over the performance using the suggested ones.
In addition, we ran a sparse parameter search
with a different array of possible choices: hid-
den size ∈ {256, 512}, dropout ∈ [0, 0.5], num-
ber of RNN layers ∈ {1, 2} and learning rate
∈ {0.05, 0.1, 0.15}. While all of the trained mod-
els performed very well, we were unable to out-
perform our previous best model.

All experiments were performed either on a
NVIDIA GTX 1660 with 6 GiB VRAM avail-
able or on a NVIDIA GTX 1080 Ti with 11 GiB
VRAM available.

3 Evaluation

Results Table 1 compares the scores of our sys-
tems. All scores were computed using the official
evaluation script provided by the organizers of the
PharmaCoNER task on the gold standard test data,
which was released after the end of the challenge
phase. After establishing a baseline using mean-
pooled PCEs only, we added pre-trained Byte-Pair
embeddings (BPEMB-PRE) and pre-trained FAST-
TEXT (FT-PRE) embeddings. While Byte-Pair
embeddings alone were able to increase the perfor-
mance of the model by +3.61% F1-score, further
adding pre-trained FASTTEXT embeddings only
increased the systems performance about +0.11%
for a total of +3.72% against our baseline. This
confirms the observations of Akbik et al. (2019b)
according to which stacking token-level embed-
dings on PCEs can improve the performance of
the model significantly. Adding a second LSTM
layer to the BiLSTM sequence tagger decreased
the models F1-score by 0.54% as can be seen in
the second entry in row 3 of table 1.

After the challenge phase, we replaced the
pre-trained FASTTEXT embeddings with our self-
trained, specialized embeddings (FTS) and added
the specialized WANG2VEC (W2VS) embeddings.
This increased the performance of the system to
90.34% F1-score. The choice of mean-pooled

Model F1-Score Precision Recall

PCE-PRE 86.04 88.59 83.64
(BSE)

BSE + BPEMB-PRE† 89.65 90.45 88.86
(SBM)

SBM + FT-PRE

1 LSTM layer†‡ 89.76 90.69 88.85
2 LSTM layers† 89.22 89.10 89.34

SBM + FTS + W2VS

min-pooled∗ 90.31 90.02 89.71
max-pooled∗ 90.34 90.97 89.71
mean-pooled∗ 90.52 90.79 90.30

Table 1: All scores in %. BSE denotes our baseline,
while SBM denotes our first submission model. The
notation “X + Y” is to be read as “X stacked with Y”.
Legend: † indicates challenge submissions,
‡ indicates the best challenge submission,
S indicates self-trained specialized embeddings,
∗ indicates models built after the challenge deadline.

PCEs in favor of min-pooled PCEs resulted in
a further increase in performance to 90.52% F1-
score, representing a total increase of +4.48%
over our baseline and +0.76% over our best result
during the challenge phase, while choosing max-
pooled PCEs results in the highest precision score
of all our models (90.97%).

4 Conclusion and Future Work

Our experiments show that with current frame-
works like FLAIR it is possible to achieve very
good test results with little time spent on system
development or implementation. Good results can
be achieved with pre-trained models and embed-
dings that are available in many languages thanks
to the NLP community’s ongoing efforts.

Our experiments confirm our expectations re-
garding the usability of special embeddings. The
embeddings that are trained on the Spanish Health
Corpus contribute to significantly increasing the
performance of our system, even with such a small
training corpus. Our results show that the use of
domain-specific embeddings can significantly im-
prove the performance of sequence tagging mod-
els even in the case of small corpora.

We will be continuing our experiments in due
time, using larger corpora for our training. In the
mean time all our results, datasets and code neces-
sary to reproduce our experiments have been made
publicly available on GitHub and can be tested
with an interactive web service.
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Abstract

This paper presents the participation of
the VSP team for the PharmaCoNER
Tracks from the BioNLP Open Shared
Task 2019. The system consists of a neural
model for the Named Entity Recognition
of drugs, medications and chemical enti-
ties in Spanish and the use of the Spanish
Edition of SNOMED CT term search en-
gine for the concept normalization of the
recognized mentions. The neural network
is implemented with two bidirectional Re-
current Neural Networks with LSTM cells
that creates a feature vector for each word
of the sentences in order to classify the en-
tities. The first layer uses the characters of
each word and the resulting vector is ag-
gregated to the second layer together with
its word embedding in order to create the
feature vector of the word. In addition, a
Conditional Random Field layer classifies
the vector representation of each word in
one of the mention types. The system ob-
tains a performance of 76.29%, and 60.34%
in F1 for the classification of the Named
Entity Recognition task and the Concept
indexing task, respectively. This method
presents good results with a basic approach
without using pretrained word embeddings
or any hand-crafted features.

1 Introduction

Nowadays, the task of finding the essential
data about the patients in medical records is
very difficult because of the highly increasing
amount of unstructured documents generated
by the doctors. Thus, the automatic extrac-
tion of the mentions related with drugs, med-
ications and chemical entities in the clinical
case studies can reduces the time of healthcare
professionals expend reviewing these medical
documents in order to retrieve the most rele-
vant information.

Previously, some Natural Language Pro-
cessing (NLP) shared tasks were organized
in order to promote the develop of auto-
matic systems given the importance of this
task. The i2b2 shared task was the first NLP
challenge for identifying Protected Health In-
formation in the clinical narratives (Özlem
Uzuner et al., 2007). The CHEMDNER task
was focused on the Named Entity Recogni-
tion (NER) of chemical compounds and drug
names in PubMed abstracts and chemistry
journals (Krallinger et al., 2015).

The goal of the BioNLP Open Shared Task
2019 is to create NLP challenges for developing
systems in order to extract information from
biomedical corpora. Concretely, the Pharma-
CoNER Task is focusing on the recognition
of pharmacological substance, compound and
protein mentions from Spanish medical texts.

Currently, deep learning approaches over-
come traditional machine learning systems
on the majority of NLP tasks, such as text
classification (Kim, 2014), language modeling
(Mikolov et al., 2013) and machine transla-
tion (Cho et al., 2014). Moreover, these mod-
els have the advantage of automatically learn
the most relevant features without defining
rules by hand. Concretely, the LSTM-CRF
Model proposed by (Lample et al., 2016) im-
proves the performance of a CRF with hand-
crafted features for different biomedical NER
tasks (Habibi et al., 2017). The main idea of
this system is to create a word vector repre-
sentation using a bidirectional Recurrent Neu-
ral Network with LSTM cells (BiLSTM) with
character information encoded in another BiL-
STM layer in order to classify the tag of each
word in the sentences with a CRF classifier.
Following this approach, the system proposed
in (Dernoncourt et al., 2016) uses a BiLSTM-
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CRF Model with character and word levels for
the de-identification of patient notes using the
i2b2 dataset that overcomes the previous sys-
tems in this task.

This paper presents the participation of the
author, as VSP team, at the tasks proposed
by PharmaCoNER about the classification of
pharmacological substances, compounds and
proteins and the Concept Indexing of the rec-
ognized mentions from clinical cases in Span-
ish. The proposed system follows the same
approaches of (Lample et al., 2016) and (Der-
noncourt et al., 2016) for the NER task with
some modifications for the Spanish language
implemented with NeuroNER tool (Dernon-
court et al., 2017) because the architecture
obtains good performance for the recognition
of biomedical entities. In addition, a simple
SNOMED CT term search engine is imple-
mented for the concept normalization.

2 Dataset

The corpus of the PharmaCoNER task con-
tains 1,000 clinical cases derived from the
Spanish Clinical Case Corpus (SPACCC)1

with manually annotated mentions such as
pharmacological substances, compounds and
proteins by clinical documentalists. The doc-
uments are randomly divided into the training,
validation and test sets for creating, develop-
ing and ranking the different systems, respec-
tively.

The corpus contains four different entity
types:

• NORMALIZABLES : they are chemicals
that can be normalized to a unique con-
cept identifier.

• NO NORMALIZABLES : they are chem-
icals that cannot be normalized. These
mentions were used for training the sys-
tem, but they were not taken into consid-
eration for the results in the task of NER
or Concept Indexing.

• PROTEINAS : this entity type refers to
mentions of proteins and genes follow-
ing the annotation schema of BioCreative
GPRO (Pérez-Pérez et al., 2017).

1https://doi.org/10.5281/zenodo.2560316

• UNCLEAR: these mentions are cases of
general substances, such as pharmaceu-
tical formulations, general treatments,
chemotherapy programs, vaccines and a
predefined set of general substances.

Additionally, all mentions without the
NO NORMALIZABLES tag are annotated
with its corresponding SNOMED CT normal-
ization concept.

3 Method

This section presents the Neural architecture
for the classification of the entity types and
the concept normalization method in Spanish
clinical cases. Figure 1 presents the process
of the NER task using two BiLSTMs for the
character and token levels in order to create
each word representation until its classification
by a CRF.

3.1 Data preprocessing

The first step is a preprocessing of the sen-
tences in the corpus, which prepares the inputs
for the neural model. Firstly, the clinical cases
are separated into sentences using a sentence
splitter and the words of these sentences are
extracted by a tokenizer, both were adapted
for the Spanish language. For the experiments,
the previous processes were performed by the
spaCy tool in Python (Explosion AI, 2017).
Once the sentences were divided into word, the
BIOES tag schema encodes each token with
an entity type (B tag is the beginning token, I
tag is the inside token, E tag is the ending to-
ken, S tag is the single token and O tag is the
outside token). In many previous NER tasks,
using this codification is better than the BIO
tag scheme (Ratinov and Roth, 2009), but the
number of labels increases because there are
two additional tags for each class. Thus, the
number of possible classes are the 4 tags times
the 4 entity types and the O tag for the Phar-
maCoNER corpus.

3.2 BiLSTM layers

RNNs are very effective in feature learning
when the inputs are sequences. Concretely,
the Long Short-Term Memory cell (LSTM)
(Hochreiter and Schmidhuber, 1997) defines
four gates for creating the representation of
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Figure 1: Neural model for the recognition of mentions in Spanish clinical cases using the PharmaCoNER
task 2019 corpus.

each input taking the information of the cur-
rent and previous cells. Thus, each output is
a combination of the current and the previous
cell states. Furthermore, another LSTM can
be applied in the other direction from the end
of the sequence to the start in order to extract
the relevant features of each input in both di-
rections.

3.2.1 Character level

The first layer takes each word of the sentences
individually. These tokens are decomposed
into characters that are the input of the BiL-
STM. Once all the inputs are computed by the
network, the last output vectors of both direc-
tions are concatenated in order to create the
vector representation of the word according to
its characters.

3.2.2 Token level

The second layer takes the embedding of each
word in the sentence and concatenates them
with the outputs of the first BiLSTM with
the character representation. In addition, a
Dropout layer is applied to the word repre-
sentation in order to prevent overfitting in the
training phase. In this case, the outputs of

each direction in one token are concatenated
for the classification layer.

3.3 Contional Random Field Classifier

CRF (Lafferty et al., 2001) is the sequential
version of the Softmax that aggregates the la-
bel predicted in the previous output as part of
the input. In NER tasks, CRF shows better
results than Softmax because it adds a higher
probability to the correct labelled sequence.
For instance, the I tag cannot be before a B
tag or after a E tag by definition. For the pro-
posed system, the CRF classifies the output
vector of the BiLSTM layer with the token in-
formation in one of the classes.

3.4 Concept Indexing

After the NER task, the concept indexing is
applied to all recognized entities in the sen-
tences for the term normalization. To this
end, the Spanish Edition of the SNOMED CT
International Browser2 searches each mention
and gives its normalization term. Moreover,
The Spanish Medical Abbreviation DataBase

2https://prod-browser-exten.ihtsdotools.
org/
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(AbreMES-DB)3 is used in order to disam-
biguate the acronyms and the resulting term
is searched in the SNOMED CT International
Browser. In the cases where there are more
than one normalization concept for a term, a
very naive approach is followed where the first
node in the term list is chosen as the final out-
put.

4 Results and Discussion

The architecture was trained over the train-
ing set during 100 epochs with shuffled mini-
batches and choosing the best performance
over the validation set via stopping criteria.
The values of the two BiLSTM and CRF pa-
rameters for generating the prediction of the
test set are presented in Table 1. Addition-
ally, a gradient clipping keeps the weight of the
network in a low range preventing the explod-
ing gradient problem. The embeddings of the
characters and words are randomly initialized
and learned during the training of the network.
The main goal of this work is to test the per-
formance of the proposed neural model on this
dataset without using pretrained word embed-
dings or any hand-crafted features. In future
work, the impact of different pretrained word
embeddings will be covered.

Table 1: The parameters of the neural model and
their values used for the PharmaCoNER results.

Parameter Value

Character embeddings dimension 25

Character-level LSTM hidden units 25

Word embeddings dimension 300

Word-level LSTM hidden units 256

Optimizer SGD

Learning rate 0.001

Dropout rate 0.5

Gradient clipping 5

The results were measured with precision
(P), recall (R) and F-measure (F1) using the
True Positives (TP), False Positives (FP) and
False Negatives (FN) for its calculation. Ta-
ble 2 presents the results of the system over the
test set of the PharmaCoNER tasks. The per-
formance for the entity type classification and
the performance for the Concept Indexing task
are 76.29% and 60.34% in F1, respectively.

3https://zenodo.org/record/2207130#
.XHPEFYUo85k

Table 2: Official results of the neural Model for the
two tasks of the PharmaCoNER.

Task R P F1

NER 71.61% 81.62% 76.29%

Concept Indexing 55.22% 66.5% 60.34%

Table 3 presents the results of the NER task
for each entity type independently. It can be
observed that the number of FN is higher than
FP in all the classes giving better results in
Precision than in Recall. The performance
of the classes are directly proportional of the
number of instances in the training set. In or-
der to alleviate this problem, the use of over-
sampling techniques will be tackled in future
works to increase the number of examples of
the less representative classes and making this
dataset more balanced.

5 Conclusions and Future work

This paper presents a model where a neural
model classifies mentions from clinical texts
in Spanish and the Concept Indexing uses the
SNOMED CT search engine for their normal-
ization. The neural architecture is based on
RNNs in both direction of the sentences us-
ing LSTM for the computation of the outputs.
Finally, a CRF classifier performs the classi-
fication for tagging the entity types. The re-
sults shows a performance of 76.29% in F1 for
the classification of the pharmacological sub-
stances, compounds and proteins in the Phar-
maCoNER corpus and the normalization sys-
tem reaches to 60.34% in F1. In spite of the
basic approaches, the results are very promis-
ing in both tasks. As future work, it is pro-
posed to pretrain the word embeddings with
collections of biomedical documents and the
aggregation of other embeddings such as Part-
of-Speech tags, syntactic parse trees or seman-
tic tags, that could increase the representation
of each word in order to improve its classi-
fication. Moreover, fine-tuning the parame-
ters of the model according to the Pharma-
CoNER corpus will be useful in order to in-
crease the performance of the method. Fur-
thermore, adding more layers to each BiLSTM
is proposed to be included in the architecture.
In addition, other complex concept indexing
rules could be applied to chose the best nor-
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Table 3: Performance of the neural model for each category in the Named Entity Recognition Task of
the PharmaCoNER.

Label TP FN FP R P F1

NORMALIZABLES 707 266 94 72.66% 88.26% 79.71%

PROTEINAS 612 247 203 71.25% 75.09% 73.12%

UNCLEAR 20 14 6 58.82% 76.92% 66.67%

malization term in the cases that they are mul-
tiple possibilities.
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Abstract

The aim of this paper is to present our ap-
proach (IxaMed) on the PharmacoNER 2019
task. The task consists of identifying chem-
ical, drug, and gene/protein mentions from
clinical case studies written in Spanish. The
evaluation of the task is divided in two sce-
narios: one corresponding to the detection
of named entities and one corresponding to
the indexation of named entities that have
been previously identified. In order to iden-
tify named entities we have made use of
a Bi-LSTM with a CRF on top in com-
bination with different types of word em-
beddings. We have achieved our best re-
sult (86.81 F-Score) combining pretrained
word embeddings of Wikipedia and Electronic
Health Records (50M words) with contex-
tual string embeddings of Wikipedia and Elec-
tronic Health Records. On the other hand,
for the indexation of the named entities we
have used the Levenshtein distance obtaining
a 85.34 F-Score as our best result.

1 Introduction

The aim of this paper is to present our approach
in the PharmacoNER 2019 task (Gonzalez et al.,
2019), on Medical Entity Recognition and Con-
cept Indexing. The task consists of identifying
different types of entities in the clinical domain
in Spanish. The evaluation of the task is divided
in two scenarios: the detection of medical entities,
and the linking of each entity with its correspond-
ing Concept Unique Identifier, a task called Con-
cept Indexing.

The training corpus contains a manually classi-
fied collection of clinical cases derived from Open
access Spanish medical publications (SPACCC)
(Intxaurrondo, 2018). It contains a total of 1,000
clinical cases (396,988 words). This kind of nar-
rative shows properties of both the biomedical and
medical literature as well as clinical records.

In order to carry out the tasks, for Named En-
tity Recognition we have made use of a Recurrent
Neural Network (RNN) to identify named enti-
ties feeding it with different types of embeddings,
combining pretrained word embeddings and con-
textualized character-level word embeddings or
contextual string embeddings. Furthermore, for
Concept Indexing task we have opted to use a
simple but effective Levenshtein distance method.
We have achieved a F-score of 86.81 identifying
named entities and 85.34 in Concept Indexing.

2 Related work

The SemEval 2014 Task 7 (Pradhan et al., 2014)
was similar to the present competition, except for
the number and types of entities to be identified
(diseases and others) and the fact that discontinu-
ous entities were also included. Task 7 in SemEval
2014 also comprised two subtasks, medical entity
recognition and concept indexation. To tackle the
first subtask, different teams used approaches as
MaxEnt, SVM or CRF in combination with the ex-
traction of syntactic and semantic attributes. The
authors in (Tang et al., 2014) obtained the best re-
sults in strict F-Score with 78.5 on the develop-
ment set and 81.3 on the test set. Their results were
4.7 points higher than those of the second ranked
team (Kaewphan et al., 2014).

For the second subtask, namely Concept In-
dexation, the solutions proposed were very sim-
ilar among the different teams. As in the NER
task, the winner was (Tang et al., 2014) with an
accuracy of 74.1 on the test set. Their solution
was based on the cosine similarity using Vector
Space Model (VSM). The team in (Ghiasvand and
Kate, 2014) assigned the Concept Unique Iden-
tifier (CUI) code by comparing candidate strings
with the terms obtained from the training set and
the contents in the Unified Medical Language Sys-

21



tem (UMLS). They also proposed a method based
on edit distance, more precisely Levenshtein dis-
tance (Levenshtein, 1966). The second best team
(Kaewphan et al., 2014) employed word embed-
dings, word2vec (Mikolov et al., 2013), for word
representation and the cosine similarity to find the
closest standard term in UMLS. As a novelty, they
implemented a binary classification based on Sup-
port Vector Machines (SVMs).

In SemEval 2015 (task 14), the evaluation was
the only difference compared to SemEval 2014
(task 7). Besides strict evaluation (correct CUI
and complete entity identification), relaxed eval-
uation was also pursued (successful CUI assign-
ment and partly successful entity identification).
In this case, the winning team was (Pathak et al.,
2015), which obtained in the strict evaluation an
F-score of 75.7, and in the relaxed one an F-score
of 78. The methods used were similar to those
used in SemEval-2014. In this case, a CRF was
used to detect entities and a SVM classifier to de-
termine if these were joined or not (and thus catch
discontinuous entities). Regarding Concept Index-
ing, they used basically customized look-ups, like
Dictionary look-up (exact match of entity word
permutations, LVG), Customized Dictionary look-
up (split UMLS entities by function words), and
Customized Dictionary look-up (list of possible
UMLS spans and application of Levenshtein dis-
tance). The second highest ranked team (Leal
et al., 2015) obtained, for strict evaluation, an F-
score of 74 and in the relaxed one 76.5. They
employed a CRF to identify entities (also discon-
tinuous entities), and for Concept Indexing they
applied exact match on the terminology content
of the Systematized Nomenclature of Medicine -
Clinical Terms (SNOMED-CT) enriching it with
an abbreviation dictionary built on the training set.
They also implemented a comparison method ex-
ploiting SNOMED-CT tree structure, Lucene in-
dex and Levenshtein average after splitting each
recognized entity and each SNOMED-CT candi-
date.

Besides these competitions in recent years, im-
provements have been made mostly in the entity
recognition subtask using neural networks such as
Bi-LSTM + CRFs (Lample et al., 2016). (Casil-
las et al., 2019) used the tool for the detection
of entities in clinical texts in Spanish, obtain-
ing improvements with respect to previous works
(Perez et al., 2017), from an F1-Score of 70.30

to 72.01. Employing a similar system (Goenaga
et al., 2018) obtained the first position at the last
IberEval shared task (Hermenegildo Fabregat and
Araujo, 2018).

3 Resources

Apart from the tools we will present in the follow-
ing sections, we made use of external data with the
intention of completing the information the sys-
tem extracts from the corpus provided by the or-
ganization. For this purpose we employed word-
embeddings (Mikolov et al., 2013) that we have
calculated (window length = 1, dimensions = 300,
algorithm = SkipNgram) from Electronic Health
Records (50M words), together with pretrained
word-embeddings (window=5, dimensions=300,
algorithm= Skip-gram) that have been calculated
with Wikipedia2Vec (Yamada et al., 2018).

On the other hand, we have also used contex-
tual string embeddings (Akbik et al., 2018) we
have calculated from Electronic Health Records
(number of layers=1, hidden size=2,048, sequence
length=250, mini batch size=32) and Wikipedia
(number of layers=1, hidden size=1,024, sequence
length=250, mini batch size=100).

4 Methods

In this section we will explore the different meth-
ods we have used to perform the two sub-tasks of
the shared task.

4.1 Track 1: NER Offset and Entity
Classification

In this section we present our approach in order to
extract named entities in track 1 of the shared task.
For this purpose we employed a neural network
based architecture, more precisely an specific Bi-
LSTM (a RNN subclass, (Hochreiter and Schmid-
huber, 1997)) with a CRF on top of it (Lample
et al., 2016; Ma and Hovy, 2016) using as in-
put raw text and the word-embeddings we have
mentioned in section 3. This kind of neural net-
work is widely used to pursue sequence to se-
quence tagging (Ma and Hovy, 2016; Jagannatha
and Yu, 2016). One of the advantages of using Bi-
LSTM in contrast to other machine learning tech-
niques such as SVM, Perceptron or CRFs is that
the size of the context is automatically learned by
the LSTM and there is no need to perform any
complicated text preprocessing to obtain features
to feed the tool.
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One of the strengths of our approach is that it
combines different types of embeddings based on
different types of corpus. On one hand, we use
embeddings that have been calculated on a gen-
eral domain corpus (Wikipedia) and embeddings
that have been calculated on a medical domain
corpus (EHRs). On the other hand, we stack pre-
trained word embeddings, character-level embed-
dings and contextual string embeddings and we
feed the neural network with them. While the pre-
trained word embeddings and character-level em-
beddings are well known by the scientific commu-
nity, the contextual string embeddings have been
introduced recently (Akbik et al., 2018). This type
of embeddings is based on recent advances in neu-
ral Language Modeling (LM) that have allowed a
language to be modeled as distributions over se-
quences of characters instead of words (Sutskever
et al., 2014), (Graves, 2013), (Kim et al., 2016).

Recent work has shown that by learning to pre-
dict the next character on the basis of previous
characters, such models learn internal represen-
tations that capture syntactic and semantic prop-
erties: even though trained without an explicit
notion of word and sentence boundaries, they
have been shown to generate grammatically cor-
rect text, including words, subclauses, quotes and
sentences (Sutskever et al., 2014), (Graves, 2013),
(Karpathy et al., 2015).

The main features of these contextual string em-
beddings or contextualized character-level word
embeddings are the following:

• They can be pre-trained on large unlabeled
corpora.

• They are able to capture the meaning of the
words in context and are able to produce dif-
ferent embeddings for polysemous words de-
pending on their usage.

• They model words and contexts as sequences
of characters, to both better handle rare and
misspelled words as well as model subword
structures such as prefixes and endings.

Lastly, we have sent two runs for named en-
tity recognition (track 1): one run with the setup
mentioned above, Bi-LSTM + CRF stacking pre-
trained and contextual embeddings, and one run
with the same setup and using the development
corpus for training for a few epochs (fine-tuning)
as a last step.

4.2 Track 2: Concept Indexing
The normalization of given named entities con-
sists in linking named entities to concepts in stan-
dardized medical terminologies, allowing general-
ization across contexts. The task consists in as-
signing, to each term, its corresponding Concept
Unique Index. For example, “corticoide”, “corti-
coides” and ”cortecostiroides” are all normalized
to the same Concept (B-255877006). In our work,
we made use of a Text Similarity based mapping
from the given terms to different sets:

• The terms present in the training set. This
set is limited but gives an account of stan-
dard and non-standard terms present in spon-
taneously written health records.

• SNOMED-CT terms that can be considered a
standard terminology.

We tried approximate searching to guarantee a
matching, by a string-based similarity measure, as
the well-known Levenshtein distance, a standard
soft-matching approach in text normalization. We
computed the Levenshtein distance between the
input string and the set of terms that served as ref-
erence. Edit distance is used to quantify similar-
ity between two strings, counting the minimum
number of operations required to transform one
string into another. The most common metric is
the Levenshtein Distance (Levenshtein, 1966) in
where the basic edit operations are removal, inser-
tion and substitution of a single character. This
metric finds the minimum distance for each spon-
taneous diagnostic term (SpoDT) with respect to
all standard Diagnostic Terms (DictDT), obtaining
the best candidate match (see equation 1).

minLev(SpoDT,DictDTs) (1)

Hence, strings were searched in the reference-
set and ranked according to this distance.

Exact matching of spontaneous expressions in
standard dictionaries is not a good option, because
it obtains a low accuracy. By contrast, matching
with respect to previously classified non-standard
expressions is well-worthy. However, the results
show a considerable boost when using as reference
the set of spontaneous terms and the standard ref-
erence (SNOMED CT).

We also tried a different approach using a
sequence-to-sequence approach that, although it
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NER
Basic Fine-tuned
86.60 86.81

Table 1: The results we have obtained for NER task.
Basic = Combination of word embeddings and contex-
tual string embeddings as an input of a Bi-LSTM with
a CRF on top. Fine-tuned = Basic setup + fine-tuning
on development set.

Concept Indexing
Levenshtein Dist. 1 Levenshtein Dist. 2

85.14 85.34

Table 2: Results for Concept Indexing task. Leven-
shtein Distance 1 = Levenshtein distance applied to the
entities extracted by the basic setup. Levenshtein Dis-
tance 2 = Levenshtein distance applied to the entities
extracted by the fine-tuned setup.

gave promising results (an F-Score around 65%
for concept Indexing), it was around 20 absolute
points below the simplest option of using the Lev-
enshtein distance. We think that this could be in-
teresting to examine the strengths and weaknesses
of each approach, and try to combine their positive
aspects in a single combined or ensemble system,
but we leave it as future work.

5 Results

In this section we present the results we have
achieved for both tracks, NER and Concept index-
ing respectively. For this purpose we have com-
piled all the results in tables 1 and 2. If we ob-
serve the results obtained for both tracks we see
a logical correlation between F-Score obtained for
NER and the F-Score obtained for Concept Index-
ing. In other words, the better is the result for NER
the better is the result for Concept Indexing. This
is due to the fact that we use the output of the NER
system as input of the Concept Indexing system.

Furthermore, if we analyze the results for each
track we can observe we surpass the F-Score of
85.00 in all cases, thus confirming the robustness
of our approaches. For NER, applying a Bi-LSTM
with a CRF on top and feeding this neural net-
work with stacked pretrained and contextual em-
beddings we have achieved a F-Score of 86.60. In
contrast, fine-tuning on development set the pre-
viously mentioned neural network we outperform
this result by 0.21. Although the improvement is
not significant we have met our goal, that is to

say, we have outperformed the basic setup avoid-
ing overfitting.

Moreover, we have applied Levenshtein dis-
tance in order to assign a concept index to named
entities that have been identified by NER system.
We have achieved a 85.14 of F-Score when the in-
put for the Concept Indexing system are named
entities extracted by the basic NER system and a
85.34 of F-Score when the input are the named en-
tities extracted by the fine-tuned NER system.

6 Conclusions

The purpose of this work was to evaluate the
feasibility of different approaches to medical en-
tity detection and concept indexing. Entity de-
tection was dealt with a sequential tagger that
uses word embeddings and contextual string em-
beddings acquired from electronic health records
and Wikipedia. Concept normalization was ap-
proached by Text Similarity techniques. Surpris-
ingly, the Levenshtein-based system obtained rel-
atively good results, and this aspect deserves a fur-
ther study of the strengths and weaknesses of each
approach.
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Abstract

Named entity recognition has been extensively
studied on English news texts. However,
the transfer to other domains and languages
is still a challenging problem. In this pa-
per, we describe the system with which we
participated in the first subtrack of the Phar-
maCoNER competition of the BioNLP Open
Shared Tasks 2019. Aiming at pharmacolog-
ical entity detection in Spanish texts, the task
provides a non-standard domain and language
setting. However, we propose an architec-
ture that requires neither language nor domain
expertise. We treat the task as a sequence
labeling task and experiment with attention-
based embedding selection and the training
on automatically annotated data to further im-
prove our system’s performance. Our system
achieves promising results, especially by com-
bining the different techniques, and reaches up
to 88.6% F1 in the competition.

1 Introduction

The detection and classification of pharmaco-
logical and biomedical entities in texts is es-
pecially challenging due to the domain’s nature
with long and complex entity names, which usu-
ally requires the design and usage of handcrafted
rules and features. Natural language processing
(NLP) research focused on this topic for quite a
while on English texts, e.g., the drugs and chem-
ical names extraction challenge (CHEMDNER)
(Krallinger et al., 2015) or tracks for chemical en-
tity recognition at BioCreative (Pérez-Pérez et al.,
2017). Following these tasks, the Pharmaco-
logical Substances, Compounds and Proteins and
Named Entity Recognition track (PharmaCoNER)
is the first competition on this topic on Spanish
data (Gonzalez-Agirre et al., 2019).

Named entity recognition (NER) and clas-
sification is the first subtrack of Pharma-

Figure 1: Annotated sample sentences (PRO. is short
for PROTEINAS).

CoNER and aims at distinguishing four en-
tity types: PROTEINAS, NORMALIZABLES, NO-
NORMALIZABLES, and UNCLEAR. Our model
was trained on all four entity types, although the
NO-NORMALIZABLES type was not considered
during the official evaluation due to its ambiguous
definition. Two annotated sample sentences from
the training data are shown in Figure 1.

In this paper, we describe our submissions to
and their results in the first subtrack of Phar-
maCoNER. We address this task as a sequence-
labeling problem and implement a system that
relies Neither on Language Nor on Domain
Expertise (NLNDE). For this, we use a combina-
tion of different state-of-the-art approaches from
NLP to tackle its challenges without the need for
handcrafted features.

We train recurrent neural networks with con-
ditional random field (CRF) output layers which
are state of the art for different sequence labeling
tasks, such as named entity recognition (Lample
et al., 2016), part-of-speech tagging (Kemos et al.,
2019) and de-identification (Liu et al., 2017). In
our different runs, we further explore the advan-
tages of domain-specific fastText embeddings that
have been pre-trained on SciELO and Wikipedia
articles (Soares et al., 2019) to investigate the im-
pact of domain knowledge. Note that the training
of these embeddings requires only a collection of
domain-specific text but no human domain exper-
tise. Based on these models, we train an attention-
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Figure 2: Architecture of our models. The label prefixes “B-” and “I-” show how we address the task as a sequence-
labeling task. The word representations are either the concatenated embeddings (in runs S1–S3) or the attention-
based weighted embeddings (in runs S4–S5).

based embedding selection function in order to
leverage multiple different word embeddings ef-
fectively. Finally, we extend the training data with
automatically annotated data, which was sampled
from the same domain and annotated with infor-
mation from Wikidata.1

2 Methods

In this section, we present our system, the at-
tention function for embedding selection, and the
noisy channel model.

2.1 NLNDE System

In Figure 2, the architecture of our models is de-
picted, which we explain in the following.

Input Embeddings. We tokenize the input with
the tokenizer provided by the shared task organiz-
ers (Intxaurrondo, 2019). We noticed that the tok-
enizer sometimes merges multi-word expressions
into a single token joined with underscores for
contiguous words. As a result, some tokens can-
not be aligned with the corresponding entity anno-
tations. To address this, we split those tokens into
their components in a postprocessing step. Then,
we represent each token with the following em-
beddings (see bottom right box of Figure 2):

• Character embeddings: We use the con-
catenated last forward and backward hid-
den states of a bidirectional long short-term

1https://www.wikidata.org/

memory (BiLSTM) network (Hochreiter and
Schmidhuber, 1997) over character embed-
dings (50 dimensions, randomly initialized,
fine-tuned during training (Lample et al.,
2016)).

• Domain-independent fastText embeddings
(100 dimensions, pre-trained on Spanish
text (Grave et al., 2018)).

• Domain-specific fastText embeddings (100
dimensions, pre-trained on Spanish SciELO
and Wikipedia articles (Soares et al., 2019)).

• Byte-pair encoding embeddings (300 dimen-
sions, vocabulary size of 200,000, pre-trained
on Spanish text (Heinzerling and Strube,
2018)).

Note that except for the character embeddings, we
do not fine-tune any of the embeddings. All em-
beddings are concatenated into a single word rep-
resentation vector.

Word Features. We also experiment with ex-
tending the input representations with the follow-
ing features:

• Part-of-speech (POS): The POS tags are gen-
erated by the POS-tagger provided by the
shared task organizers (Intxaurrondo, 2019).
The tags are embedded into a 20-dimensional
randomly initialized embedding and learned
during training. The embedded vector is used
as the representation for the POS tag.
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• Length: For each word, we encode its length
in a one-hot vector. Words with more than
nine characters share the same vector (10 di-
mensions).

• Frequency: We consider the relative fre-
quency f of each word and bin the frequen-
cies into ten groups. The first group contains
the most frequent words that have relative
frequencies above 1% (f > 1%). The re-
maining bins are constructed in the following
manner: f > 0.5%, f > 0.1%, f > 0.05%,
etc. (one-hot encoded, 10 dimensions).

• Word shape: We distinguish between up-
percased, lowercased, starts with capital
letter, numeric, mostly numeric, punctua-
tion, mostly punctuation, only letters, alpha-
numeric and other (one-hot encoded, 10 di-
mensions).

All features are concatenated into a single feature
vector f of 50 dimensions.

BiLSTM-CRF Layers. The input representa-
tion is fed into a BiLSTM with a conditional ran-
dom field (CRF) output layer, similar to the model
of Lample et al. (2016). The CRF output layer is
a linear-chain CRF, i.e., it learns transition scores
between the output classes. For training, the for-
ward algorithm is used to sum the scores for all
possible sequences. During decoding, the Viterbi
algorithm is applied to obtain the sequence with
the maximum score.

Hyperparameters and Training. The hyperpa-
rameters are the same across all runs. We use a
BiLSTM hidden size of 256 and train the network
with the NADAM optimizer (Dozat, 2016) using a
learning rate of 0.002 and a batch size of 32. For
regularization, we employ early stopping on the
development set and apply dropout with probabil-
ity 0.5 on the input representations.

2.2 Attention for Embedding Selection
As we are combining different word embeddings,
some of them may be more beneficial for certain
words than others, e.g., domain-specific embed-
dings for in-domain words. Kiela et al. (2018)
used an attention mechanism for weighting and se-
lecting the best embeddings for each word. We ex-
tend this idea and propose the following attention
function to weight the embeddings depending on
additional word features.

For the attention-based models, all n embed-
dings e are mapped to the same size using a linear
mapping Qi ∈ RE×Ei without bias, with xi ∈ RE

being the i-th embedding ei mapped from their
original size Ei to the maximal embedding size
E = maxm(Em).

xi = Qi · ei (1)

In order to allow the model to make an informed
decision which embeddings to focus on, we use
the word features described in Section 2.1 as an
additional input to the attention function. The vec-
tor f ∈ RF representing the features for each word
is concatenated to each embedding xi. The atten-
tion weight ai for each embedding xi is computed
with the softmax function, by feeding xi and f into
a fully-connected hidden layer of size H with the
parameters W ∈ RH×E , U ∈ RH×F , V ∈ R1×H .

ai =
exp(V · tanh(Wxi + Uf))∑n
l=1 exp(V · tanh(Wxl + Uf))

(2)

Finally, the embeddings xi are weighted using
the attention weights ai resulting in the word rep-
resentation:

e =
∑

i

ai · xi (3)

Then, this word representation e ∈ RE is fed
into the BiLSTM-CRF. Compared to a concatena-
tion of the different embeddings, this results in a
lower-dimensional word representation and, thus,
requires fewer parameters in the BiLSTM layer.
The attention-based embedding selection is shown
in the upper right box of Figure 2.

2.3 Training on Noisy Data

As it was shown in multiple low-resource set-
tings (Dgani et al., 2018; Fang and Cohn, 2016;
Mnih and Hinton, 2012; Paul et al., 2019; Yang
et al., 2018), the performance of NER and other
NLP systems can be substantially improved by
training on additional noisy data which is labeled
in a distantly supervised manner (Mintz et al.,
2009). With this approach, the noisy data is cheap
to create, but also error-prone and can even de-
crease performance if used as training data with-
out noise handling as shown by Hedderich and
Klakow (2018).
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Extraction of Noisy Data. We create gazetteers
for the different entity types by extracting names
and aliases of possible entities from Wikidata for
the following categories and their subclasses:2

• PROTEINAS: enzyme, gene, hormone, pro-
tein.

• NORMALIZABLES: allotropy, alloy, amino
acid, antibody, carbohydrate, diagnostic pro-
cedure, dye, lipid, mineral, nucleotide, oil,
reagent, chemical compounds, peptide, plant,
polymer, vaccine.

• UNCLEAR and NO-NORMALIZABLES: The
gazetteer was constructed from entity men-
tions in the training data that appeared at
least twice and examples from the annotation
guidelines.

Then, we retrieve unlabeled documents from the
same domain from the SciELO archive (Packer,
1998). Finally, we use the extracted gazetteers to
automatically annotate the SciELO data with the
method from Lange et al. (2019). We use case-
insensitive string matching for PROTEINAS and
strict string matching for the other types. This
allows to create additional training instances, but
at the same time introduces noise into the system.
To avoid that the noisy labels result in a decrease
of performance, we train on the noisy data with a
special noise handling method adapted from Gold-
berger and Ben-Reuven (2016), which will be de-
scribed in the following.

Noisy Channel and Confusion Matrix. First,
we annotate each word of the training data us-
ing the same method as for generating the noisy
data. Thus, each word in the training data has
a clean, true label y and a noisy label ŷ from
which we can model the noise distribution p(ŷ =
j|y = i) with a confusion matrix, as shown in Fig-
ure 3. We transform the distribution of the pre-
dicted (clean) labels to the noisy label distribution
through a so-called noisy channel (Goldberger and
Ben-Reuven, 2016):

p(ŷ = j|x) =
k∑

i=1

p(ŷ = j|y = i)p(y = i|x) (4)

2WikiData identifiers used for the extraction: Q8047,
Q7187, Q11364, Q8054, Q81915, Q37756, Q8066, Q79460,
Q11358, Q177719, Q189720, Q11367, Q7946, Q28745,
Q42962, Q2356542, Q47154513, Q172847, Q756, Q81163,
Q134808.
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Figure 3: Confusion matrix for the automatic annota-
tion on the training data used for the noisy channel ini-
tialization.

where k is the number of classes and p(y = i|x) is
the probability of a label y having a specific class
i given the feature x.

We initialize the noisy channel weights using
the learned confusion matrix on the training set,
for which clean and noisy labels are available.

Training with Confusion Matrix. The se-
quence tagging model is then trained alternately
on the clean data with the CRF output layer and
on the noisy data with the noisy channel layer, as
shown in Figure 2. The number of noisy train-
ing instances is constantly decreased by 5% after
every training epoch to at least 100 sentences, as
we observed that the noisy data helps in particu-
lar for the first epochs, but decreases performance
if the amount is not reduced. Note that we shuf-
fle the noisy data after each training epoch. Thus,
the model is trained on new samples of noisy sen-
tences in every epoch.

3 Submissions

We submitted five runs to the PharmaCoNER
competition. All of them are based on the archi-
tecture described in Section 2.1.

S1 (Base): Our first run, the base system for all
of the following runs, uses a concatenation
of three embeddings (character, BPEmb, fast-
Text) which were all trained on Wikipedia.
Thus, this run does not include any form of
domain knowledge, and it uses neither noisy
data nor attention for embedding selection.

S2 (Domain): Our second run uses the three em-
beddings from S1 plus domain-specific fast-
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Development Test
SID P R F1 P R F1
S1 86.3 85.0 85.6 85.5 85.3 85.4
S2 87.1 85.8 86.4 86.3 85.9 86.1
S3 87.5 87.5 87.5 85.1 86.0 85.6
S4 88.0 88.0 88.0 85.2 87.2 86.2
S5 89.1 87.5 88.3 89.0 88.3 88.6

Table 1: Precision (P), Recall (R) and F1 for Task 1.

Text embeddings to incorporate knowledge
about word distributions within the domain.

S3 (Noise): Our third run extends the model of
S2 with training on additional noisy data (cf.
Section 2.3). Moreover, we use the feature
vector as an additional input, which is differ-
ent from runs S1 and S2.

S4 (Attention): The fourth run uses the attention
function for word embedding selection (cf.
Section 2.2). Apart from that, the model is
identical to S2 and only trained on clean data.

S5 (Attention+Noise): Our last run has the same
architecture as S4 but is trained on the noisy
data in addition. It thus combines domain-
independent and domain-specific word em-
beddings, attention-based embedding selec-
tion, and training on noisy data.

4 Results and Analysis

This section describes our results and analysis.

4.1 Experimental Results

In Table 1, we report the results on the Pharma-
CoNER development and test sets using the offi-
cial shared task evaluation metrics.

Adding domain-knowledge (S2) to the base
model S1 improves the performance on the devel-
opment and the test set. The training on noisy data
(S3) and the attention function alone (S4) do not
lead to strong improvements on the test set; the
noise model S3 even decreases performance. The
combination of all proposed methods (run S5 At-
tention+Noise) outperforms all other models.

While we are able to see the improvements step
by step introduced by our methods on the devel-
opment set, such improvements are not observable
one-to-one on the test set. We assume that model
S5 performs best at generalizing to unseen words
due to the training on additional data and the atten-
tion function based on basic word properties like
word length or frequency. The other models seem

Figure 4: The attention weights of our model for the
four embeddings. Darker color indicates higher weight.

to overfit on the development set, even though this
set was never used for training but only for early
stopping.

4.2 Analysis of Attention Weights
The attention-based models learn to focus mostly
on the byte-pair-encoding embeddings, as shown
in Figure 4. In particular, for words from the gen-
eral domain (positivas) and stopwords (para), our
model focuses on these embeddings. For domain-
specific words (antitiroglobulina, CAM5.2), the
model learns to focus more on the fastText embed-
dings and especially the domain-specific embed-
dings. Interestingly, the character embeddings are
never assigned a noticeable weight. This may be
attributed to the fact that the other embeddings are
all subword embeddings and that they are able to
generate meaningful vectors for out-of-vocabulary
words. Moreover, the character embeddings were
randomly initialized and had to be learned during
training while the other models were pretrained.

5 Conclusions

In this paper, we described our system for the
first subtrack of the PharmaCoNER competition.
We trained a bi-directional long short-term mem-
ory network and explored different input repre-
sentations. We proposed to use a feature-based
attention function for embedding selection and
training on noisy data, which in combination in-
creased performance by more than 3 F1 points up
to 88.6%. This shows that we can successfully
extract these special types of entities without the
need for domain or language-specific model archi-
tectures.
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Abstract 

The Biological Text Mining Unit at BSC 
and CNIO organized the first shared task 
on chemical & drug mention recognition 
from Spanish medical texts called 
PharmaCoNER (Pharmacological 
Substances, Compounds and proteins and 
Named Entity Recognition track) in 2019. 
The shared task includes two tracks: one 
for NER offset and entity classification 
(track 1) and the other one for concept 
indexing (track 2). We developed a 
pipeline system based on deep learning 
methods for this shared task, specifically, 
a subsystem based on BERT 
(Bidirectional Encoder Representations 
from Transformers) for NER offset and 
entity classification and a subsystem based 
on Bpool (Bi-LSTM with max/mean 
pooling) for concept indexing. Evaluation 
conducted on the shared task data showed 
that our system achieves a micro-average 
F1-score of 0.9105 on track 1 and a micro-
average F1-score of 0.8391 on track 2. 

1 Introduction 

Efficient access to mentions of clinical entities 
is very important for using clinical text. The way 
to extract clinical entities embedded in the text is 
natural language processing (NLP). In the last 
decades, clinical entity extraction has attracted 
plenty of attention of researchers, clinicians, and 
enterprises in the clinical domain. The 
development of technology for clinical entity 
extraction mainly benefits from related NLP 
challenges including tasks of biomedical entity 
recognition and normalization, such as the 
BioCreative (Critical Assessment of Information 
Extraction systems in Biology) challenges (e.g., 
the CHEMDNER (Chemical compound and drug 
name recognition) track (Leaman et al., 2013)), 

the i2b2 (the Center of Informatics for Integrating 
Biology and Bedside) challenges (Uzuner et al., 
2011), SemEval (Semantic Evaluation) challenges 
(Elhadad et al., 2015) and the ShARe/CLEF 
eHealth Evaluation Lab shared tasks (Kelly et al., 
2016). A large number of various kinds of 
methods have been proposed for biomedical 
entity recognition and normalization. Lots of 
machine learning methods such as conditional 
random fields (CRF) (Lafferty et al., 2001), 
structured support vector machines (SSVM) 
(Tsochantaridis et al., 2005) and bidirectional 
long-short-term memory with conditional random 
fields (BiLSTM-CRF) (Huang et al., 2015) have 
been applied for biomedical entity recognition, 
support vector machines (SVM) (Grouin et al., 
2010) and ranking based on convolutional neural 
network (CNN) (Li et al., 2017) for clinical entity 
normalization. Although there have been a few 
promising results, most of them focus on the 
clinical text in English. Recently, clinical entity 
extraction for clinical text in other languages has 
also begun to receive much attention. For 
example, in 2016, NTCIR organized the first 
challenge about information extraction from 
clinical documents in Japanese (Morita et al., 
2013). In 2017, CCKS organized the first 
challenge about information extraction from 
clinical records in Chinese (Hu et al., 2017). 

To accelerate development of techniques of 
information extraction from clinical text in 
Spanish,  Martin Krallinger et al. organized a 
shared task particular for chemical & drug 
mention recognition from Spanish medical texts 
called  PharmaCoNER in 2019 (Gonzalez-Agirre, 
Aitor et al., 2019), which includes two tracks: 
track 1 for NER offset and entity classification 
and track 2 for concept indexing. The organizers 
provided an annotated corpus of 1000 clinical 
cases, 500 cases out of which were used as the 
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training set, 250 cases as the development set and 
250 cases as the test set. We participated in this 
shared task and developed a pipeline system 
based on two latest deep learning methods: BERT 
(Bidirectional Encoder Representations from 
Transformers) (Devlin et al., 2019) and Bpool 
(Bi-LSTM with max/mean pooling) (Conneau et 
al., 2017). The system developed on the training 
and development sets achieved a micro-average 
F1-score of 0.9105 on track 1 and a micro-
average F1-score of 0.8391 on track 2 on the 
independent test set. 

2  Material and Methods  

 As shown in Figure 1, We first developed a 
preprocessing module to split clinical cases into 
sentences, tokenized the sentences and extracted 
some features for each token, then a BERT-based 
subsystem for NER offset and entity 
classification, and finally a Bpool-based system 
for concept indexing. All of them were 
individually presented in the following sections in 
detail. 

2.1 Dataset 

The PharmaCoNER organizers asked medical 
experts to annotate a corpus of 1000 clinical cases 
with chemical & drug mentions for the shared 
task according to a pre-defined guideline. The 
corpus was divided into a training set, a 
development set and a test set. The test set was 
hidden in a background set of 3751 clinical cases 
when testing during the competition. The statistics 
of the corpus, including the number of 
documents, chemical & drug mentions in 
different types are listed in Table 1, where “UNK” 
denotes unknown. It should be noted that the 
chemical & drug mentions annotated with 
UNCLEAR were not considered during the 
competition. 

2.2 Preprocessing  

We split each clinical case into sentences using 
‘;’, ‘?’, ‘!’, ‘\n’ or ‘.’ which is not in numbers, and 
further split each sentence into tokens using the 
method proposed by Liu (Liu et al., 2015), which 
was specially designed for clinical text. We 
adopted Ab3P tools 1  to extract full names of 
abbreviations, and SPACCC_POS-TAGGER tool2 
for POS tagging and lemmatization. Besides, we 
used the same way as Liu (Liu et al., 2015) to get 
each word’s word shape. 

2.3  NER offset and entity classification 

NER offset and entity is a typical NER 
problem usually recognized as a sequence 
labeling problem. In this study, we adopted “BIO” 
tagging schema to represent chemical & drug 
mentions, where ‘B’, ‘I’ and ‘O’ represent 
beginning, inside and outside of a chemical & 
drug mentions respectively, and developed a 
system based on BERT. First, character-level 
representation, POS tagging representation and 
word shape representation of each word were 
concatenated into the word representation of 
BERT, and then a CRF layer was appended to 
BERT for chemical & drug mentions recognition. 

2.4 Concept Indexing 

After chemical & drug mentions were 
recognized, we first constructed <mention, 
standard terminology> pairs as candidates for 
matching, and then built a Bpool-based matching 
model (Conneau et al., 2017) according to the 
candidates. Standard terminologies were selected 
into candidates in the following two ways:  

 
1  (https://github.com/ncbi-nlp/Ab3P) 

 2 (https://github.com/PlanTL-SANIDAD/SPACCC_POS-
TAGGER) 

Figure 1: Overview architecture of our system for the PharmaCoNER task 
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Statistic #Training #Development #Test #Background 
DOCUMENT 500 250 250 3751 
NORMALIZABLES 2304 1121 973 UNK  
NO_NORMALIZABLES 24 16 10 UNK 
PROTEINAS 1405 745 859 UNK 
UNCLEAR 89 44 0 UNK 

Table 1. Statistics of the PharmaCoNER Corpus. 

 
1) Top n terminologies ranked by Levenshtein 
distance3 with a given mention at char-level and 
at token-level. 
2) Terminologies selected by 1) and the given 
mention’s synonyms appearing in the standard 
terminology vocabulary. 

After the terminology selection, a Bpool-based 
matching model at character-level was utilized to 
judge whether two mentions were matching or 
not.  

2.5 Evaluation 

The performance of our system was 
measured by micro-average precision (P), recall 
(R), and F1-score (F1), which were calculated by 
the official tool provided by the PharmaCoNER 
organizers4.  

2.6 Experiments Setup 

In this study, for track1, we first optimized 
model on the development set and then fine-tuned 
the model on the training and development sets 
for 5 more epochs. For standard terminology 
selection, we optimized n from 10 to 50 with step 
10, and finally set it to 40. For track2, we 
optimized the model on the training and 
development sets via 10-fold cross validation. The 
hyper-parameters and parameter estimation 
algorithm used for model training were listed in 
Table 2. The pre-trained BERT5 was used as the 
initial neural language model and fine-tuned on 
all datasets provided by the shared task 
organizers. The embeddings of character, POS 
and word shape were randomly initialized from a 
uniform distribution. It is worth noting that in the 
BERT model, the update of the parameters 

 
3 https://en.wikipedia.org/wiki/Levenshtein_distance 

4 https://github.com/PlanTL-SANIDAD/PharmaCoNER-
CODALAB-Evaluation-Script 

5https://storage.googleapis.com/bert_models/2018_11_03/m
ultilingual_L-12_H-768_A-12.zip 

included in the BERT used the learning rate of 2e-
5, and the parameter update of other features used 
a learning rate of 0.003. 

 
Hyper-parameter Value 

Dimension of character 
representation BERT:30; Bpool:50 

Dimension of POS representation 30 
Dropout probability 0.1 

Learning rate BERT: 2e-5;  
Bpool: 1e-3 

Training epochs Bert:15; Bpool:20 

Parameter estimation algorithm 
BERT: adam with 

warmup; 
Bpool: adam 

Table 2. Hyper-parameters and parameter 
estimation algorithm used for deep learning 
methods. 

3 Results 

The highest micro-average precisions, recalls and 
F1-scores of our system on the two tracks were 
listed in Table 3. Our system achieved a micro-
average precision of 0.9123, recall of 0.9088 and 
F1-score of 0.9105 on track1, and a micro-
average precision of 0.8284, recall of 0.8502 and 
F1-score of 0.8391 on track2. Among three types 
of chemical & drug mentions  considered in the 
shared task, our system performed best on 
NORMALIZABLES and worst on 
NO_NORMALIZABLES for track1, which may 
be proportional to the number of mentions of each 
type. 
 

Track Type P R F1 

Track1 

NORMALIZABLE
S 0.9426 0.9291 0.9358 

NO_NORMALIZA
BLES 1.0000 0.2000 0.3333 

PROTEINAS 0.8787 0.8941 0.8863 
Overall 0.9123 0.9088 0.9105 

Track2 Overall 0.8284 0.8502 0.8391 

Table 3. The highest results of our system for 
PharmaCoNER. (P: micro-average precision; 
R: micro-average recall; F1: micro-average 
F1 score) 
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3.1 Ablation Study 

Table 4 provided additional ablation study 
results analyzing the contribution of individual 
features on track 1 and reporting the 
performance of each standard terminology 
selection method (STS) on track 2. We found 
that both character-level embedding, POS 
tagging representation, and word shape 
representation contributed towards our system 
on track 1. They brought 1.69%, 0.51%, and 
0.63% improvements on F1-score, respectively. 
On track 2, when removing the extended 
synonyms, the F1 score declined from 0.8048 to 
0.7932.  

Track model P R F1 

Track1 

BERT 0.8989 0.9087 0.9037 
- Character-
embedding 0.8981 0.8757 0.8868 

- POS tagging 0.8986 0.8986 0.8986 

- Word shape 0.8874 0.9076 0.8974 

Track2 
STS 1 0.7722 0.8153 0.7932 

STS 2 0.7826 0.8284 0.8048 

Table 4. Ablation study of track 1 and track 2 on 
the development set. (P: micro-average precision; 
R: micro-average recall; F1: micro-average F1 
score) 

4 Discussion 

For task 1, our analysis found that data 
processing had a great influence on the NER 
offset results. Separating alphabets and digitals in 
a word , for example, “PaO2” was split into ‘PaO’ 
and ‘2’ , caused some errors of entity boundary or 
entity type. Separating words by the hyphen ‘-
‘ also caused some errors. For example, “4-
methyilumbelliferyl α-D-galactosidasa” is totally 
identified as ‘PROTEINAS’, but in “daclizumab-
tacrolimus-MMF-esteroide”, “daclizumab” is 
identified as “PROTEINAS”, “tacrolimus”, 
“MMF” and “esteroide” are identified as 
“NORMILIZED”. Our experiments on the 
development set showed that the effect of 
tokenization on micro-average F1 score on NER 
was about 2%.  

There were mainly the following three types 
of errors caused by our system. (1) abbreviation 
recognition errors: it is difficult to identify 
abbreviations in a record correctly; (2) long 
entity: entities consisting of four or more tokens 
are hard to identify correctly, such as ‘anticuerpos 

antitransglutaminasa tisular IgA’. (3) drugs: 
model cannot recognize drugs such as ‘dasatinib’, 
‘nilotinib’ and so on. 

Since we experimented with a pipeline 
model, the mistakes of task 1 will be propagated 
to task 2 and there are about 8% errors caused by 
track1. In addition, about 10% errors are caused 
by the matching model. We summarized the 
modes of low recall rate by standard terminology 
selection methods when constructing <mention, 
standard terminology> pairs. The modes are: (1) 
about 40% entities are abbreviations, which is 
difficult to find the candidates from SNOMED-
CT; (2) about 20% of entities have the same 
candidates in SNOMED-CT 6 , which are not 
normalized entities in the shared task. 

For further improvements, there may be two 
directions: (1) using joint learning methods for 
task 1 and task 2. (2) integrating knowledge graph 
into our system. 

5 Conclusion 

In this study, we developed a deep learning-
based pipeline system for the PharmaCoNER 
shared task, a challenge specifically for clinical 
entity extraction from clinical text in Spanish. 
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Abstract

In this work, we introduce a Deep Learning
architecture for pharmaceutical and chemical
Named Entity Recognition in Spanish clini-
cal cases texts. We propose a hybrid model
approach based on two Bidirectional Long
Short-Term Memory (Bi-LSTM) network and
Conditional Random Field (CRF) network us-
ing character, word, concept and sense em-
beddings to deal with the extraction of se-
mantic, syntactic and morphological features.
The approach was evaluated on the Pharma-
CoNER Corpus obtaining an F-measure of
85.24% for subtask 1 and 49.36% for sub-
task2. These results prove that deep learning
methods with specific domain embedding rep-
resentations can outperform the state-of-the-
art approaches.

1 Introduction

Currently, the number of biomedical literature is
growing at an exponential rate. Therefore, the ef-
ficient access to information on biological, chemi-
cal, and biomedical data described in scientific ar-
ticles, patents, or e-health reports is a growing in-
terest in biomedical research, industrial medicine
manufacturing, and so forth. In this context, im-
proved access to chemical and drug name men-
tions in biomedical texts is a crucial step down-
stream tasks such as drug and protein interac-
tions, chemical compounds, adverse drug reac-
tions, among others.

Named Entity Recognition (NER) is one of the
fundamental tasks of biomedical text mining, in-
tending to automatically extract and identify men-
tions of entities of interest in running text, typi-
cally through their mention offsets or by classify-
ing individual tokens whether they belong to entity
mentions or not. There are different approaches
to address the NER task. Dictionary-based meth-
ods, which are limited by the size of the dictio-

nary, spelling errors, the use of synonyms, and the
constant growth of vocabulary. Rule-based meth-
ods and Machine Learning methods usually re-
quire both syntactic and semantic features as well
as specific language and domain features. One of
the most effective methods is Conditional Random
Fields (CRF) (Lafferty et al., 2001) since CRF is
one of the most reliable sequence labeling meth-
ods. Recently, deep learning-based methods have
also demonstrated state-of-the-art performance for
English (Hemati and Mehler, 2019; Pérez-Pérez
et al., 2017; Suárez-Paniagua et al., 2019) texts
by automatically learning relevant patterns from
corpora, which allows language and domain inde-
pendence. However, until now, to the best of our
knowledge, there is only one work that addresses
the generation of Spanish biomedical word em-
beddings (Armengol-Estapé Jordi, 2019; Soares
et al., 2019).

In this paper, we propose a hybrid model com-
bining two Bi-LSTM layers with a CRF layer.
To do this, we adapt the NeuroNER model pro-
posed in (Dernoncourt et al., 2017) for track 1
(NER offset and entity classification) of the Phar-
maCoNER task (Gonzalez-Agirre et al., 2019).
Specifically, we have extended NeuroNER by
adding context information, Part-of-Speech (PoS)
tags, and information about overlapping or nested
entities. Moreover, in this work, we use exist-
ing pre-trained as well as our trained word em-
bedding models: i) a word2vec/FastText Span-
ish Billion Word Embeddings models (Cardellino,
2016), which were trained on the 2014 dump of
Wikipedia ii) our medical word embeddings for
Spanish trained using the FastText model and iii)
a sense-disambiguation embedding model (Trask
et al., 2015). For track 2 (concept indexing) based
on the output of the previous step, we use full-
text search and fuzzy matching on the SNOMED-
CT Spanish Edition dictionary to obtain the corre-
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sponding index.
Experiment results on PharmarCoNER tasks

showed that our features representation improved
each of separate representations, implying that
LSTM-based compositions play different roles
in capturing token-level features for NER tasks,
thus making improvements in their combination.
Moreover, the use of specific domain word vec-
tor representations (word embeddings) outperform
general domain word vector and concept vector
representations (concept embeddings).

2 Materials and Methods

In this section, we first describe the corpora, the
training procedure and the word, concept, and
sense embedding models used in our study. Then,
we describe our system architecture for offset and
entity classification.

2.1 Corpora

The corpus was gathered from Spanish biomed-
ical texts from different multilingual biomedical
sources:

1. The Spanish Bibliographical In-
dex in Health Sciences (IBECS -
http://ibecs.isciii.es) cor-
pus that collects scientific journals covering
multiple fields in health sciences,

2. Scientific Electronic Library Online (Sci-
ELO - https://scielo.org/es/) cor-
pus gathers electronic publications of com-
plete full-text articles from scientific journals
of Latin America, South Africa, and Spain,

3. MedlineNLM corpus obtained from the
PubMed free search engine (https://
www.ncbi.nlm.nih.gov/pubmed/),

4. The MedlinePlus corpus (an online infor-
mation service provided by the U.S. Na-
tional Library of Medicine - https://
medlineplus.gov/), consists of Health
topics, Drugs and supplements, Medical En-
cyclopedia and Laboratory test information,
and

5. The UFAL corpus (https://ufal.mff.
cuni.cz/ufal_medical_corpus) is
a collection of parallel corpora of medical
and general domain texts.

Source corpus details are described in Table 1.
All the corpora are in XML (Dublin core for-

mat) and TXT format files. XML files were pro-
cessed for extract only raw text from specific XML
tags such as ”title” and ”description” from Spanish
labels, based on the Dublin Core format as shown
in Figure 1. TXT files were not processed. Raw
texts from all files were compiled in a single TXT
file. Texts were processed, setting all to lower,
removing punctuations, trailing spaces and stop
words and used as input to generate our word em-
beddings. Sentences pre-processing (split and tok-
enized) were made using Spacy 1, an open-source
python library for advanced multi-language natu-
ral language processing.

2.2 Transfer Learning

Transfer learning aims to perform a task on a
dataset using knowledge learned from a pre-
vious dataset (Giorgi and Bader, 2018). As
shown in many works, such as speech recogni-
tion (Wang and Zheng, 2015), sentence classifica-
tion (Mou et al., 2016) and Named Entity Recog-
nition (Giorgi and Bader, 2018), transfer learn-
ing improves generalization of the model, reduces
training times on the target dataset, and reduces
the amount of labeled data needed to obtain high
performance. In this work we used an existing
generic word embedding (Word2Vec embedding
trained on Spanish Wikipedia), a trained medical
embedding model, and a medical/generic sense-
disambiguation embedding.

Word embedding is an approach to represent
words as vectors of real numbers. Word embed-
ding models have gained much popularity among
the NLP community because they are able to cap-
ture syntactic and semantic information among
words. In this work, we used the Spanish Bil-
lion Words Corpora (SBWC) (Cardellino, 2016)
(W2V-SBWC), which is a pre-trained model of
word embeddings trained on different general do-
main text corpora written in Spanish (such Ancora
Corpus (Martı́ et al., 2007) and Wikipedia) using
the word2vec (Mikolov et al., 2013) implementa-
tion. The FastText-SBWC pre-trained word em-
beddings model was trained on the SBWC using
the FastText implementation.

Furthermore, we used the sense2vec (Trask
et al., 2015) model, which provides multiple dense
vector representations for each word based on the

1https://spacy.io/
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Collection\Corpus IBECS SciELO MedlineNLM MedlinePlus UFAL
Documents 168,198 161,710 330,928 1,063 265,410
Words 23,648,768 26,169,655 4,710,191 217,515 41,604,517
Unique Words 184,936 159,997 20,942 5,099 198,424

Table 1: Biomedical Spanish corpus details.

Figure 1: Dublin core format for biomedical corpus.

sense of the word. This model is able to analyze
the context of a word based on the lexical and
grammatical properties of words and then assigns
its more adequate vector. We used the Reddit Vec-
tor, a pre-trained model of sense-disambiguation
representation vectors presented by (Trask et al.,
2015). This model was trained on a collection
of general domain comments published on Reddit
(corresponding to the year 2015) written in Span-
ish and English.

2.3 Medical word and concept embeddings

We used the FastText (Bojanowski et al., 2016)
implementation to train our word embeddings us-
ing the Spanish Biomedical Corpora (SBC) de-
scribed in section 2.1 (FastText-SBC). Moreover,
we trained a concept embedding model replac-
ing biomedical concepts in the SBC with their
unique SNOMED-CT Spanish Edition identifier
(SNOMED-SBC). We used the PyMedTermino li-
brary (Lamy et al., 2015) for concept indexing. A
full-text search with the Levenshtein distance al-
gorithm (Miller et al., 2009) was applied in a first
instance for concept indexing and fuzzy search
with threshold using FuzzyDict implementation
(Hemati and Mehler, 2019) as a second approach
for concepts not found by partial matching. The
FastText model uses a combination of various sub-
components to produce high-quality embeddings.
It uses a standard CBOW or skip-gram models,
with position-dependent weighting, phrase repre-
sentations, and sub-word information in a com-
bined manner. The training parameters for each
model are shown in Table 2. Our pre-trained mod-

els can be found in Github 2 with the corpora
sources, text preprocessing, and training informa-
tion.

2.4 System Description
Our approach is based on a deep learning network
with a preprocess step, learning transfer, two re-
current neural network layers and the last layer for
CRF (see Figure 2) as proposed in (Dernoncourt
et al., 2017). The input for the first Bi-LSTM layer
are character embeddings. In the second layer, we
concatenate character embeddings from the first
layer with word, concept, and sense-disambiguate
embeddings for the second Bi-LSTM layer. Fi-
nally, the last CRF layer obtains the most suitable
labels for each token using a tag encoding format.
For more details about NeuroNER, please refer to
(Dernoncourt et al., 2017).

Our contribution consists of extending the Neu-
roNER system with additional features. In partic-
ular, Sense embeddigs ( obtained using POS tags),
concept embeddings (obtained using semantic fea-
tures) and the extended BMEWO-V encoding for-
mat has been added to the network and were as a
pre-preprocessing a step.

POS tags are concatenated to token in order
to create dense vector representations containing
word/POS information (sense embeddings) and
include this in the token embedding layer of the
network. Furthermore, concept features are dense
vector representations generated replacing con-
cepts with their unique SNOMED concept identi-

2https://github.com/rmriveraz/
PharmaCoNER
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Parameter\Model FastText-SBC SNOMED-
SBC

Number of negatives sampled 20 20
Sampling threshold 6e-5 6e-5
Minimum number of word occurrences 10 10
Minimum length of character n-gram 3 3
Maximum length of character n-gram 6 6
Size of word vectors 300 300
Epochs 10 10
Processor 4 Intel Xeon

2.00 Ghz, 8
Cores, 16 Logi-
cal Processors

4 Intel Xeon
2.00 Ghz, 8
Cores, 16 Logi-
cal Processors

RAM 32 Gb 32 Gb
Corpus Size 1Gb 1Gb
Training Time 4 hours 8 hours

Table 2: Training parameters for embeddings models built in this work.

Figure 2: The architecture of the hybrid Bi-LSTM CRF model for drug and chemical compounds identifications.
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fiers (concept embeddings) and include this in the
token embedding layer of the network.

The BMEWO-V encoding format distinguishes
the B tag for entity start, the M tag for entity con-
tinuity, the E tag for entity end, the W tag for a
single entity, and the O tag for other tokens that do
not belong to any entity. The V tag allows us to
represent nested entities. BMEWO-V is similar
to other previous encoding formarts (Borthwick
et al., 1998); however, it allows the representation
of nested and discontinuous entities. As a result,
we obtain our sentences annotated in the CoNLL-
2003 format (Tjong Kim Sang and De Meulder,
2003). An example of the BMEWO-V encoding
format applied to the sentence ”calcio iónico cor-
regido 1,16 mmol/l y magnesio 1,9 mg/dl.” (”ionic
calcium corrected 1.16 mmol / l and magnesium
1.9 mg / dl.”) can be seen in Figure 3 and Table 3.

2.4.1 First Bi-LSTM layer using character
embeddings

Word embedding models are able to capture syn-
tactic and semantic information. However, other
linguistic information such as morphological in-
formation, orthographic transcription, or part-of-
speech (POS) tags are not exploited. According
to (Ling et al., 2015), the use of character embed-
dings improves learning for specific domains and
is useful for morphologically rich languages. For
this reason, we decided to include the character-
level representations to obtain morphological and
orthographic information from words. Each word
is decomposed into its character n-grams and ini-
tialized with a random dense vector which is then
learned. We used a 25- feature vector to represent
each character. In this way, tokens in sentences are
represented by their corresponding character em-
beddings, which are the input for our Bi-LSTM
network.

2.4.2 Second Bi-LSTM layer using word and
Sense embeddings

The input for the second Bi-LSTM layer is the
concatenation of character embeddings from the
first layer with the pre-trained word or concept em-
beddings and sense-disambiguation embeddings
(described in sections 2.2 and 2.3) of the tokens
in a given input sentence. The second layer goal is
to obtain a sequence of probabilities for each tag
in the BMEWO-V encoding format. In this way,
for each input token, this layer returns six proba-
bilities (one for each tag in BMEWO-V). The final

tag should be with the highest probability for each
token.

2.5 Last layer based on Conditional Random
Fields (CRF)

To improve the accuracy of predictions, a Condi-
tional Random Field (CRF) (Lafferty et al., 2001)
model is trained, which takes as input the label
probability for each independent token from the
previous layer and obtains the most probable se-
quence of predicted labels based on the corre-
lations between labels and their context. Han-
dling independent labels for each word shows
sequence limitations. For example, consider-
ing the drug sequence labeling problem an ”I-
NORMALIZABLES” tag cannot be found before
a ”B- NORMALIZABLES” tag or a ”B- NOR-
MALIZABLES” tag cannot be found after an ”I-
NORMALIZABLES” tag. Finally, once tokens
have been annotated with their corresponding la-
bels in the BMEWO-V encoding format, the entity
mentions must be transformed into the BRAT for-
mat. V tags, which identify nested or overlapping
entities, are generated as new annotations within
the scope of other mentions.

3 Evaluation

As it was described above, our system is based
on a deep network with two Bi-LSTM layers and
the last layer for CRF. We evaluate our NER sys-
tem using the train, validation, and test datasets
(SPACCC) provided by the PharmaCoNER task
organizers (Gonzalez-Agirre et al., 2019). De-
tailed information for each datasets can be seen
in Table 4. The PharmacoNER dataset is a manu-
ally annotated corpus of 1,000 clinical cases writ-
ten in Spanish and annotated with mentions of
chemical compounds, drugs, genes, and proteins.
The dataset consists of Normalizables (4,398), No
Normalizables (50), Proteins (3,009), and Unclear
(167) labels. Further details can be found in
(Gonzalez-Agirre et al., 2019).

The PharmaCoNER task considers two sub-
tasks. Track 1 consider offset recognition and en-
tity classification of pharmacological substances,
compounds, and proteins. Track 2 considers con-
cept indexing where for each entity, the list of
unique SNOMED concept identifiers must be gen-
erated. Scope level F-measure is used as the
main metric where true positives are entities which
match with the gold standard clue words and scope
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Figure 3: BRAT annotation example from PharmaCoNER corpus sentence.

token
start
offset

end
offset tag tag

calcio 0 6 V-NORMALIZABLES W-NORMALIZABLES
iónico 8 14 V-NORMALIZABLES O
corregido 16 25 V-NORMALIZABLES O
1,16 27 31 O O
mmol/l 33 39 O O
y 41 42 O O
magnesio 43 51 V-NORMALIZABLES O
1,9 52 55 O O
mg/dl 57 62 O O
. 63 64 O O

Table 3: Tokens annotated with BMEWO-V encoding in the ConLL-2003 format.

Dataset Subset Documents Sentences Entities

PharmaCoNER
Train 500 8036 3822
Valid 250 3759 1926
Test 3751 62000

Table 4: PharmaCoNER subsets details.

boundaries assigned to the clue word. A detailed
description of evaluation can be found in the Phar-
maCoNER web 3.

3.1 Track 1 - Offset detection and Entity
Classification

The NER task is addressed as a sequence labeling
task. For track 1 we tested different configurations
with various pre-trained embeddings models. The
embedding models and their parameters are sum-
marized in Table 5. Table 6 describes our different
experiments configurations.

In Table 8, we compare the different pre-trained
models in Spanish on the validation dataset. As
shown in Table 8 specific domain word embed-
dings outperform general domain models by al-
most 5 points. For the test dataset, we applied our
best system configuration FastText-SBC + Reddit
(see Table 8) obtaining an f-score of 85.24% for
offset detection and entity classification. Further-
more, Table 7 shows the classification results ob-

3http://temu.bsc.es/pharmaconer/index.
php/evaluations

tained by our best system configuration for track 1
with a micro average of 88.10% for valid dataset.

Moreover, we compared our best system config-
uration (FastText-SBC + Reddit) with the baseline
system (NeuroNER without POS and BMEWO-V
format encoding) using the same pre-trained mod-
els and configuration. Table 9 shows that our ex-
tended system outperforms the baseline system,
which has proven that POS and BMEWO-V for-
mat to be an additional source of information that
can be leveraged by neural networks and keep our
model domain agnostic. Furthermore, the use of
specific domain word embeddings highly improve
performance as shown in Table 8.

3.2 Track 2 - Concept Indexing

For track 2, we applied the same approach de-
scribed for SNOMED-SBC model training in sec-
tion 2.3 for entities obtained in the previous task.
We used the PyMedTermino library employing a
two-stage search using full-text search and fuzzy
search for concepts not found by partial matching.
Table 10 shows our result for valid and test dataset
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Detail W2V-
SBWC

FastText-
SBWC

FastText-
SBC

SNOMED-
SBC

Reddit

Type Word Word Word Concept Sense
Corpus size 1.5 billion 1.5 billion 6 trillion 6 trillion 2 billion
Vocab size 1 million 1 million 2 million 2 million 1 million
Array size 300 300 300 300 128
Algorithm Word2Vec

Skip-gram
BOW

FastText
Skip-gram
BOW

FastText
Skip-gram
BOW

FastText
Skip-gram
BOW

Sense2Vec

Table 5: Embedding models details.

Parameter Run 1 Run 2 Run 3 Run 4
Sense-disambiguation
embedding dimension

128 128 128 128

Pre-trained word embed-
dings

FastText-
SBC +
Reddit

W2V-
SBWC +
Reddit

FastText-
SBWC +
Reddit

SNOMED-
SBC +
Reddit

Word embeddings dimen-
sion

300 300 300 300

Character embedding di-
mension

50 50 50 50

Hidden layers dimension
(for each LSTM)

100 100 100 100

Learning method SGD SGD SGD SGD
Dropout rate 0.5 0.5 0.5 0.5
Learning rate 0.005 0.005 0.005 0.005
Epochs 100 100 100 100

Table 6: System hyperparameters for each run.

Entity Precision (%) Recall (%) F-score (%)
Normalizables 92.38 86.41 89.29
No Normalizables 0.00 0.00 0.00
Proteins 93.29 85.35 89.14
Unclear 87.80 70.59 78.26
Micro-average 91.75 84.74 88.10

Table 7: Results for valid dataset entities.

Experiment Embedding Model Precision (%) Recall (%) F-score (%)
Run 4 SNOMED-SBC + Reddit 83.52 74.97 79.02
Run 2 W2V-SBWC + Reddit 83.85 75.75 79.60
Run 3 FastText-SBWC + Reddit 84.70 77.31 80.84
Run 1 FastText-SBC + Reddit 89.13 82.61 85.75

Table 8: Embeddings model results for track 1 on valid dataset.

for track 2.

Our results for track 2 are low due to a large
number of misspellings that exceed the similarity
threshold such as ”diacepam” (”diazepam”), drug

names where the identifier corresponds to the ac-
tive substance as ”durogesic” (”Duragesic”) active
ingredient ”fentanyl” (”fentanyl”), identifiers not
existing in SNOMED CT, such as CHEBI:135810
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System Precision (%) Recall (%) F-score (%)
NeuroNER 86.38 82.07 84.16
Extended NeuroNER 89.13 82.61 85.75

Table 9: Baseline comparison for track 1 on valid dataset.

and 373757009 and false positives, such as dis-
eases identified as NORMALIZABLE entities and
PROTEIN tokens not annotated in the corpus.

4 Conclusions

In this work, we propose a system for the detec-
tion of chemical compounds, drugs, genes, and
proteins in clinical narrative written in Spanish.
We address the named entity recognition task as a
sequence labeling task. Our hybrid model based
on machine and deep learning approaches only
use dense vector representations features instead
of hand-crafted word-based features. We proved
that as in other tasks such as NER, the use of dense
representation of words such as word-level em-
beddings, character-level embeddings, and sense
embeddings are helpful for named entity recogni-
tion. The hybrid system achieves satisfactory per-
formance with F-score over 85%. The extension
of NeuroNER network is domain-independent and
could be used in other fields, although generic
prebuilt word embeddings are used, new medical
Spanish word and concept embeddings have been
generated for this work.

As future work, we plan to enhance the
SNOMED-CT concept embeddings and analyze
why its performance is lower than the medi-
cal word embeddings. We plan to test whether
other supervised classifiers such as Markov Ran-
dom Fields, Optimum-Path-Forest, or CRF as
RNN would obtain more benefit from dense vec-
tor representation. That is to say, we would
use the same continuous representations with the
after-mentioned classifiers. Apart from that, we
could train word embeddings obtained from mul-
tiple multilingual biomedical corpus to obtain
multilingual word representations and test other
word representation algorithms such as concept
embeddings using UMLS or other biomedical
unique concept identifier dictionary. The mo-
tivation would be to see whether word embed-
dings generated with multilingual biomedical do-
main texts can help to improve the results and pro-
vide a deep learning model language and domain-
independent.
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Abstract

We present a neural pipeline approach that
performs named entity recognition (NER) and
concept indexing (CI), which links them to
concept unique identifiers (CUIs) in a knowl-
edge base, for the PharmaCoNER shared task
on pharmaceutical drugs and chemical enti-
ties. We proposed a neural NER model that
captures the surrounding semantic information
of a given sequence by capturing the forward-
and backward-context of bidirectional LSTM
(Bi-LSTM) output of a target span using con-
textual span representation-based exhaustive
approach. The NER model enumerates all pos-
sible spans as potential entity mentions and
classify them into entity types or no entity
with deep neural networks. For representing
span, we compare several different neural net-
work architectures and their ensembling for
the NER model. We then perform dictionary
matching for CI and, if there is no matching,
we further compute similarity scores between
a mention and CUIs using entity embeddings
to assign the CUI with the highest score to the
mention. We evaluate our approach on the two
sub-tasks in the shared task. Among the five
submitted runs, the best run for each sub-task
achieved the F-score of 86.76% on Sub-task 1
(NER) and the F-score of 79.97% (strict) on
Sub-task 2 (CI).

1 Introduction

The PharmaCoNER (Gonzalez-Agirre et al.,
2019) shared task1 is an open challenge that allows
participants to use any methodology and knowl-
edge sources for the clinical records with pro-
tected health information. The task aims at two
sub-tasks in pharmaceuticals drug and clinical do-
main: named entity recognition (NER), which is
officially called NER offset and entity classifica-
tion, and concept indexing (CI). Among these sub-

1https://2019.bionlp-ost.org/tasks

tasks, we focus on NER since NER has drawn con-
siderable attentions as the first step towards many
natural language processing (NLP) applications
including relation extraction (Miwa and Bansal,
2016), event extraction (Feng et al., 2016), and co-
reference resolution (Fragkou, 2017). Recently,
deep neural networks have shown impressive per-
formance on named entity recognition in several
domains (e.g., Lample et al. (2016)). Such models
achieved state-of-the-art results without requiring
any hand-crafted features or external knowledge
resources.

In this paper, we present a pipeline approach
that addresses both NER and CI. We mainly fo-
cus on NER and employ a neural exhaustive
model (Sohrab and Miwa, 2018; Sohrab et al.,
2019) for NER. The model detects flat and nested
entities by reasoning over all the spans within a
specified maximum size. Unlike the existing mod-
els that rely on token-level labels, our model di-
rectly employs an entity type as the label of a
span. Each span is represented as the combina-
tion of the boundary and inside representations by
using the outputs of bidirectional long short-term
memory (Bi-LSTM). We employ and compare dif-
ferent span representations following (Sohrab and
Miwa, 2018; Sohrab et al., 2019) that leads to pro-
pose a new contextual exhaustive models. The
original model (Sohrab and Miwa, 2018) simply
treated all the tokens in a span equally by tak-
ing the average of LSTM outputs corresponding
to tokens inside the span for inside representation
and concatenated them with boundary representa-
tion where context of each span is totally ignored.
Sohrab et al. (2019) proposed several extensions
for the representation including contextual span
representations and several different inside repre-
sentations. In this approach, the contextual span
representations are considered to capture only the
previous and next time steps of LSTM output of
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a target span, where the surrounding context of a
sequence from beginning to target span and end
to target span as forward- and backward-context
are ignored. Unlike the previous methods (Sohrab
and Miwa, 2018; Sohrab et al., 2019), the pro-
posed contextual exhaustive approach captures the
surrounding context representation of a given se-
quence by capturing the forward- and backward-
context of Bi-LSTM output of a target span; we
describe the details in Section 3.1.3. Besides,
the contextual exhaustive approach is extended to
leverage the output of a morphological analyser.
The spans with the representations are classified
into their entity types or non-entity. With the
mentions predicted by the NER module, we map
them to a knowledge base (KB) (i.e., SNOMED-
CT) by direct dictionary matching and similarity
scores between mentions and the names of their
candidate CUI terms. The best run for each sub-
task achieved the F-score of 86.76% on sub-task 1
(NER) and the F-scores of 79.97% on sub-task 2
(CI).

2 Related Work

Most NER work focus on flat entities. Lample
et al. (2016) proposed a LSTM-CRF (conditional
random fields) model and this has been widely
used and extended for the flat NER, e.g., Ak-
bik et al. (2018). In recent studies of neural net-
work based flat NER, Gungor et al. (2018, 2019)
have shown that morphological analysis using ad-
ditional word representations based on linguistic
properties of the words, especially for morpholog-
ically rich languages such as Turkish and Finnish,
improves the NER performances further compared
with using only representations based on the sur-
face forms of words.

Recently, nested NER has been widely inter-
ested in NLP. Zhou et al. (2004) detected nested
entities in a bottom-up way. They detected the
innermost flat entities and then found other NEs
containing the flat entities as sub-strings using
rules on the detected entities. The authors re-
ported an improvement of around 3% in the F-
score under certain conditions on the GENIA data
set (Collier et al., 1999). Recent studies show
that the conditional random fields (CRFs) can pro-
duce significantly higher tagging accuracy in flat
or nested (stacking flat NER to nested representa-
tion) NERs (Son and Minh, 2017). Ju et al. (2018)
proposed a novel neural model to address nested

entities by dynamically stacking flat NER layers
until no outer entities are extracted. A cascaded
CRF layer is used after the LSTM output in each
flat layer. The authors reported that the model
outperforms state-of-the-art results by achieving
74.5% in F-score on the GENIA data set.

Sohrab and Miwa (2018) proposed a neural
model that detects nested entities using exhaustive
approach and outperforms the state-of-the-art re-
sults by achieving 77.1% in terms of F-score on
the GENIA data set. Sohrab et al. (2019) fur-
ther extended the span representations for entity
recognition and addressed sensitive span detec-
tion tasks in the MEDDOCAN (MEDical DOC-
ument ANonymization) shared task2, and the sys-
tem achieved 93.12% and 93.52% in terms of F-
score for NER and sensitive span detection, re-
spectively.

3 Pipeline Approach for NER and
Concept Indexing

The pipeline approach consists of two modules:

• Named entity recognition that uses a contex-
tual neural exhaustive approach

• Concept indexing (CI) that generates the list
of unique SNOMED concept identifiers of
the mentions that are detected by the NER
module for each document.

3.1 Neural Named Entity Recognition

We solve the NER task, first by employing a neu-
ral exhaustive model (Sohrab and Miwa, 2018;
Sohrab et al., 2019) that leads to implement a new
contextual exhaustive approach, exhaustively con-
siders all possible contextual spans in a sentence
using a single neural network. The model detects
nested entities by enumerating all possible contex-
tual spans. The model is built upon a shared bidi-
rectional LSTM (Bi-LSTM) layer, and we con-
sider several different representations for the con-
textual span using the outputs of Bi-LSTM. Fig-
ure 1 shows the contextual exhaustive model to
detect the possible mentions. The proposed neu-
ral contextual exhaustive model consists of em-
bedding, bidirectional LSTM and exhaustive lay-
ers. we will explain each layer in the following
subsections.

2http://temu.bsc.es/meddocan/
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Figure 1: An overview of the exhaustive contextual span representations model. To compute the contextual span
representations of ‘CD 99’, the model concatenates the left-, right-, and inside-representations of Bi-LSTM output
vector and further concatenates the contextual information that are represented with the forward LSTM output
vector of ‘CD’ in the previous time step and the backward LSTM output vector of ‘99’ in the previous time step.

3.1.1 Embedding Layer
In the embedding layer, each word is represented
by concatenating the pre-trained word embedding
and character-based word representation, where
we encode the character-level information of the
word. The character-based word representation
is obtained by feeding the sequence of character
embeddings comprising a word to Bi-LSTM and
concatenate the forward and backward output rep-
resentations. Besides, we leverage the morpho-
logical analyzer3 to generate morphological tags,
where the tag for each input word is generated by
merging the lemma and part-of-speech tag of the
word. Then each tag produced by the morpholog-
ical analyzer is treated as a sequence of characters
and encoded using the character-level information
using randomly initialized character embeddings.
Specifically, we fed the sequence to a separate Bi-
LSTM and concatenate the forward and backward
outputs to obtain the morphological representation
of a word.

3.1.2 Bidirectional LSTM Layer
Given an input sentence sequence X =
{x1, ..., xn} where xi denotes the i-th word and
n denotes the number of words in the sentence se-
quence, the distributed embeddings of the words

3https://github.com/PlanTL-SANIDAD/
SPACCC_POS-TAGGER

in the sequence from the embedding layer are
fed into a Bi-LSTM layer. The Bi-LSTM layer
computes the hidden vector sequence in forward−→
h =

[−→
h1,
−→
h2, . . . ,

−→
hn

]
and backward

←−
h =

[←−
h1,
←−
h2, . . . ,

←−
hn

]
manners. We concatenate the

forward and backward outputs as hi =
[−→
hi;
←−
hi

]
,

where [; ] denotes concatenation.

3.1.3 Exhaustive Layer
The exhaustive layer enumerates all possible spans
by exhaustive combination. We generate all pos-
sible spans with the sizes less than or equal to
the maximum span size L, which is a predefined
hyper-parameter. We use (i, k) to represent the
span from i to k inclusive, where 1 ≤ i < k ≤ n
and k − i < L. We represent each span using the
outputs of the shared underlying LSTM layer and
represent span with different ways as in explained
later. We then feed the representation of each seg-
mented span to a rectified linear unit (ReLU) as an
activation function. Finally, the output of the acti-
vation layer is passed to a softmax output layer to
classify the span into a specific entity type.

In the latter part of this section, we introduce the
span representations and its several enhancements.

Contextual Span Representations with Averag-
ing For contextual span representations (Sohrab
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et al., 2019), we represent the span with three sep-
arate representations: the surrounding context rep-
resentation, the boundary representation for span
detection and the inside representation for seman-
tic type classification. We capture the context rep-
resentation of a given sequence from Bi-LSTM
output hi. Specifically, we obtain the contextual
span representation by capturing the forward- and
backward-context of Bi-LSTM output of a target
span (i, k) by concatenating vector output of pre-
vious

−→
h i−1 in forward manner, and output of pre-

vious
←−
h i−1 in backward manner. The boundary

representation is prepared to capture both ends of
the span. For this, we rely on the outputs of the Bi-
LSTM layer corresponding to the boundary words
of a target span. The inside representation is pre-
pared to capture its semantic type by encoding the
whole semantic information of the span. We use
the average of all the outputs corresponding to the
words in the span for the inside representation.
Following the above contextual, boundary, and in-
side representations, we represent the represen-
tation R(i, k)[F,L,A,R,B] (Forward-context, Left-
boundary, inside with Average, Right-boundary,
and Backward-context) of the span (i, k) as fol-
lows:

R(i, k)[F,L,A,R,B] =

−→h i−1;hi;

1

k − i+ 1

k∑

j=i

hj ;hk;
←−
h i−1


 .

(1)

Contextual Span Representations using Atten-
tion We also try an attention mechanism (Bah-
danau et al., 2015) instead of the average over
words in each span. Specifically, we replace the
inside representations using attention mechanism
as follows:

αt = wαFFNNα

(←→x t

)
, (2)

αi,t =
exp(αt)∑end(i)

k=start(i) exp(αk)
, (3)

xi =

end(i)∑

k=start(i)

αi,t
←→x t, (4)

where ←→x t is the concatenated output of the Bi-
LSTM layer over a span. xi is a weighted
sum of word vectors in span (i, k). Instead
of Equation (1), we obtain the representation

R(i, k)[F,L,A,R,B] (A for inside with Attention-
based representation) of the span (i, k) as follows:

R(i, k)[F,L,A,R,B] =
[−→
h i−1;hi;xi;hk;

←−
h i−1

]
.

(5)

Contextual LSTM-Minus-based Span Repre-
sentations We also try LSTM-Minus (Wang and
Chang, 2016) for the boundary representation4.
The left boundary is computed as the representa-
tion of the previous word of the span subtracted
from the representation of the last word of the cur-
rent span. Similarly, the right boundary is com-
puted as the representation of the next word of the
span subtracted from the representation of the first
word of the current span. In contextual LSTM-
Minus-based span representations of an input se-
quence, we compute the forward- and backward-
context of a target span as the same manner that
stated to represent the forward- and backward-
context representations of R(i, k)[F,L,A,R,B]. We
obtain the representation R(i, k)[F,L,A,R,B] (L and
R for Left- and Right-boundary based on LSTM-
Minus, respectively) of the span (i, k) as follows:

R(i, k)[F,L,A,R,B] = [
−→
h i−1;hk − hi−1;

1

k − i+ 1

k∑

j=i

hj ;hi − hk+1;
←−
h i−1].

(6)

Furthermore, the LSTM-Minus based representa-
tion using attention can be considered as:

R(i, k)[F,L,A,R,B] = [
−→
h i−1;

hk − hi−1;xi;hi − hk+1;
←−
h i−1].

(7)

Base Span Representations We further con-
sider representations without context representa-
tion (Sohrab and Miwa, 2018), which we denote
base span representations. For the base span rep-
resentations, we generate representations by elimi-
nating forward- and backward-context from Equa-
tions (1), (5)–(7) and they can be rewritten respec-
tively as:

R(i, k)[L,A,R] =


hi;

1

k − i+ 1

k∑

j=i

hj ;hk


 .

(8)
4Note that we used the bi-directional representations to

take the differences for LSTM-Minus unlike the original
one (Wang and Chang, 2016). The investigation of different
formulations is left for future work.
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R(i, k)[L,A,R] = [hi;xi;hk] . (9)

R(i, k)[L,A,R] =

hk − hi−1;

1

k − i+ 1

k∑

j=i

hj ;hi − hk+1


 .

(10)

R(i, k)[L,A,R] = [hk − hi−1;xi;hi − hk+1] .

(11)

3.2 Concept Indexing

The concept indexing (CI) requires to identify a
concept unique identifier (CUI) for every mention
span of a concept in a document. SNOMED-CT
knowledge-base is used to extract all candidates
CUI and its term names. For CI, the input is all
predicted mention span M = {m1,m2, . . . ,mn},
where mi denotes the i-th mention and n denotes
the total number of predicted mentions. Each
mention is represented as a word sequence mi =
{w1, ..., wk}. Each CUI c is an entry in a knowl-
edge base (KB) (i.e., SNOMED-CT). For the CI
task, the list of entity mention {mi}i=1,...,T needs
to be mapped to a list of corresponding CUIs
{ci}i=1,...,T .

Using the SNOMED-CT database, we first con-
duct dictionary look-up matching for each men-
tion mi with CUIs’ term names to retrieve an op-
timal CUI. If the CUI is not found for a mention,
we then compute a similarity score using the dot-
product with entity embeddings that supposedly
should capture possible related CUIs and select the
maximum score to predict the optimal CUI for a
mention.

We use fixed, continuous, task-specific entity
embeddings, namely the pre-trained entity embed-
dings of Spanish SNOMED-CT KB by extract-
ing all CUIs term name using GloVe (Pennington
et al., 2014). For the multi-token term name of a
CUI, we simply compute the average embeddings.

4 Experimental Settings

We provide empirical evidence on the effective-
ness of the pipeline architecture in both NER and
concept indexing on the PharmaCoNER5 task of

5http://temu.bsc.es/pharmaconer/

the BioNLP-OST 20196. The PharmaCoNER cor-
pus with four entity types7 is randomly split into
three subsets: train, development and test sets,
which contain 500, 250 and 250 clinical cases, re-
spectively.

Our model is implemented in the Chainer8 deep
learning framework. We employed the official
PharmCoNER evaluation script9 to evaluate our
system’s performances on both tasks.

4.1 Data Pre-processing

Each text and the corresponding annotation file
were processed by several simple rules only for
tokenization. 10 After tokenization, each text with
mapping annotation files were directly passed to
the deep neural approach for mention detection
and classification. Note that the offsets were re-
stored to the original offsets in evaluation.

4.2 Hyper-parameters

Word representations We generated task spe-
cific word embeddings of Spanish PharmaCoNER
corpus by merging the raw text of training, devel-
opment, and test (including background set) sets
using GloVe (Pennington et al., 2014). We set the
dimension of word embeddings to 200, the dimen-
sion of character embeddings for character encod-
ing to 25, and character embeddings for morpho-
logical analysis to 25.

Hidden dimensions The hidden states in the
LSTMs had 200 dimensions. Each feed forward
neural network consisted of two hidden layers
with 150 dimensions.

Learning We chose Adam (Kingma and Ba.,
2015) as the optimization algorithm with a mini-
batch size of 10. We used the same hyper-
parameters in all the experiments; we set the gra-

6https://2019.bionlp-ost.org/
7(NORMALIZABLES: mentions of chemicals that can

be manually normalized to a unique concept identifier,
NO NORMALIZABLES: mentions of chemicals that could
not be normalized manually to a unique concept identifier,
PROTEINAS: mentions of proteins, genes, peptides, pep-
tide hormones and antibodies, and UNCLEAR: cases of gen-
eral substance class mentions of clinical and biomedical rel-
evance)

8https://chainer.org/
9https://github.com/PlanTL-SANIDAD/

PharmaCoNER-Evaluation-Script
10Unlike the traditional NER models, our model is inde-

pendent from traditional ‘BIO’ tagging scheme, where ‘B’,
‘I’, and ‘O’ stand for ‘Begin’, ‘Inside’, and ‘Outside’ of
named entities respectively, so we do not need to assign such
tags to the tokens.
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Sub-task 1: NER Sub-task 2: CI
Span representation P(%) R(%) F(%) P(%) R(%) F(%)
Ensemble 86.88 86.65 86.76 87.53 73.61 79.97
CSR-Attn 87.08 85.61 86.34 88.01 73.25 79.95
CLM-Attn 85.32 83.93 84.62 87.98 72.54 79.52
CSR-Avg 84.53 83.67 84.09 86.81 71.83 78.61
BLM-Attn 77.58 88.48 82.67 88.41 68.54 77.22

Table 1: Performance of NER and CI on the test set

Label P(%) R(%) F(%) Prediction Annotation Correct
NORMALIZABLES 89.64 88.08 88.85 956 973 857
UNCLEAR 92.00 67.65 77.97 25 34 23
PROTEINAS 84.19 83.70 83.95 854 859 719
NO NORMALIZABLES 99.99 10.01 18.18 1 10 1

Overall (micro) 86.88 86.65 86.76 1, 836 1, 876 1, 600

Table 2: Sub-task 1: Categorical performance on the test set

dient clipping to 5, the dropout rate to 0.0 and
the Adam hyper-parameters to the default val-
ues (Kingma and Ba., 2015). The model was
trained for up to 10 epochs, with early stopping
based on the performance on the development set.

5 Results and Discussions

In order to evaluate the performance of NER and
concept indexing, we conducted experiments on
different sets of span representations, including
contextual span representation (CSR) with av-
eraging (CSR-Avg), CSR using attention (CSR-
Attn), contextual LSTM-Minus-based span rep-
resentations (CLM) with averaging (CLM-Avg),
CLM using attention (CLM-Attn). Besides for
base span representations (BSR), BSR with av-
eraging (BSR-Avg), BSR using attentions (BSR-
Attn), base LSTM-Minus-based span representa-
tion (BLM) with averaging (BLM-Avg), BLM us-
ing attention (BLM-Attn) are also considered. We
also report the result of ensemble learning that
combines the predictions using different span rep-
resentations to reduce the variance of predictions
and reduce the generalization error.

Table 1 shows the five submitted results of NER
and CI in terms of F-score on the test set. The
top five span representations are chosen based on
development score to submit the results. In this ta-
ble, it is shown that the ensemble approach using
maximum voting of all the approaches is effective
to improve the system performance both in NER
and CI tasks with achieving 86.67% in terms of

F-score on NER. In contrast, the CSR-Attn shows
the best performance as an individual span repre-
sentation on NER with achieving 86.34% in terms
of F-score.

In the CI task, the ensemble approach shows the
best performance by achieving 79.97% in terms of
F-score. CSR-Attn achieved 79.95% in terms of
F-score as the best individual span representation.
The pipeline approach may not be a perfect so-
lution to solve the concept indexing task, where
wrong predictions from the NER module will af-
fect the results in the second step.

Table 2 shows the categorical performances us-
ing ensemble learning of NER on the test set.
In this table, we also break down the number of
predicted and correct mentions among the gold
annotations. In this table, it can be observed
that for the classes of NORMALIZABLES and
PROTEINAS, the model shows high performance
because there are a reasonable number of train-
ing instances for the classes and the mentions
in these two classes appeared in the same docu-
ments. In contrast, for the rare classes UNCLEAR
and NO NORMALIZABLES, the performances
are low. This may be partly due to their low fre-
quency in the training set, making it hard to learn
their representation in the network.

5.1 Ablation Study

We show the performances of different NER mod-
els for Sub-tasks 1 and 2 on the development set
in Table 3 to compare the possible scenarios of the
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Sub-task 1: NER Sub-task 2: CI
Span representation P(%) R(%) F(%) P(%) R(%) F(%)
Ensemble 90.82 87.80 89.28 88.91 68.46 77.36

CSR-Attn 91.54 86.50 88.95 88.33 68.19 76.96
CSR-Avg 87.89 85.93 86.90 86.96 67.25 75.84
CLM-Attn 89.87 84.27 86.98 88.73 68.33 77.20
CLM-Avg 86.80 85.36 86.07 87.51 67.85 76.44

BSM-Attn 86.43 85.31 85.86 87.22 68.39 76.67
BSM-Avg 84.99 86.45 85.71 87.33 68.12 76.54
BLM-Attn 87.15 85.20 86.16 88.91 67.38 76.66
BLM-Avg 87.32 84.37 85.82 87.57 67.25 76.07

Table 3: Performance of NER and CI on the development set

Label P(%) R(%) F(%) Prediction Annotation Correct
NORMALIZABLES 91.61 88.58 90.07 1, 084 1, 121 993
UNCLEAR 91.11 93.18 92.13 45 44 41
PROTEINAS 89.63 86.98 88.28 723 745 648
NO NORMALIZABLES 90.00 56.25 69.23 10 16 9

Overall (micro) 90.82 87.80 89.28 1, 862 1, 926 1, 691

Table 4: Sub-task 1: Categorical performances on the development set

given solutions and to report the best system sub-
missions for NER and CI. The Sub-tasks 1 and 2
results in Table 3 shows that almost all the results
in different approaches are close to each other to
solve the Sub-tasks 1 and 2. The top four models
(i.e., CSR-Attn, CLM-Attn, CSR-Avg, and BLM-
Attn) and the ensemble of eight models are con-
sidered for test evaluation. As for the single NER
model, the results on Sub-tasks 1 and 2 in Table 3
show that attention performs better than averaging
when the other settings are same. LSTM-Minus
helps when there is no contextual information, but
it does not help when there is contextual informa-
tion.

In the CI task on development set, the en-
semble approach shows the best performance by
achieving 77.36% in terms of F-score. CLM-Attn
achieved 77.20% in terms of F-score as the best
individual span representation.

Table 4 shows the categorical performances us-
ing ensemble learning of NER on the develop-
ment set. In this table, it seems that the model
is well generalized to detect the mentions of
each classes including rare classes such as UN-
CLEAR and NO NORMALIZABLES on devel-
opment set. The categorical performances of
NORMALIZABLES and PROTEINAS in terms
of F-score are dropped marginally from devel-

opment to test scores by 1.22% and 4.33%, re-
spectively. But it is surprising that the cat-
egorical performances of the rare classes UN-
CLEAR and NO NORMALIZABLES, where the
performances in terms of F-score are significantly
dropped by 14.16% and 51.05% respectively, that
affect the overall F-score of test set. We remain
this analysis for our future work.

6 Conclusion

This paper presented a pipeline approach that inte-
grates the contextual that captures the surrounding
context of a target span and non-contextual neu-
ral exhaustive models, which consider all possi-
ble spans exhaustively, for named entity recogni-
tion (NER) and dictionary and similarity score-
based matching for concept indexing (CI), with-
out depending on any external NLP tools. The
proposed contextual exhaustive model is capable
to detect flat and nested entities from the gener-
ated mention candidates of all possible spans. The
model obtains the representation of each span us-
ing the outputs of the underlying shared bidirec-
tional LSTM layer, and it represents the different
spans by concatenating forward- and backward-
context, boundary and inside representations of
the span. Several enhancements, namely contex-
tual span representation, average representation,
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attention mechanism, LSTM-Minus, and ensem-
bling are investigated for the representations. It
then classifies the span into an entity type or non-
entity. To predict the concept unique identifier
(CUI) of a mention, the system performs dic-
tionary matching and then computes a similarity
score for a mention with no matching using entity
embeddings. Among the five submitted runs, the
best run for each Sub-task achieved the F-score of
86.76% on Sub-task 1 (NER) and the F-scores of
79.97% on Sub-task 2 (CI).

In the future direction, we will implement a
joint modeling that directly recognize entity men-
tions and link them to a concept unique identifier
in an end-to-end manner.
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Abstract
We present the approach of the Turku NLP
group to the PharmaCoNER task on Spanish
biomedical named entity recognition. We ap-
ply a CRF-based baseline approach and mul-
tilingual BERT to the task, achieving an F-
score of 88% on the development data and
87% on the test set with BERT. Our ap-
proach reflects a straightforward application
of a state-of-the-art multilingual model that is
not specifically tailored to either the language
nor the application domain. The source code
is available at: https://github.com/
chaanim/pharmaconer

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in information extraction, and the abil-
ity to detect mentions of domain-relevant enti-
ties such as chemicals and proteins is required
for the analysis of texts in specialized domains
such as biomedicine. Although a wealth of man-
ually annotated corpora and dedicated NER meth-
ods have been introduced for the analysis of En-
glish biomedical and clinical texts (e.g. (Leaman
and Lu, 2016; Crichton et al., 2017; Weber et al.,
2019)), there has been comparatively little work
on these basic resources for other languages, in-
cluding Spanish.

The PharmaCoNER task focuses on pharma-
cological compound mentions in Spanish clinical
texts, promoting the development of biomedical
text mining tools for non-English data (Gonzalez-
Agirre et al., 2019). Track 1 involves the recog-
nition and classification of entity mentions into
upper-level ontological categories (chemical, pro-
tein, etc.), and Track 2 the normalization (ground-
ing) of these mentions to identifiers in external re-
sources. We participate in Track 1.

We participate in the PharmaCoNER task using
a collection of tools developed for English as well

Item Train Devel
Documents 500 250
Tokens 177 022 85 148
Annotations 3 822 1 926

Protein 1 405 745
Chemical(+) 2 304 1 121
Chemical(-) 24 16
Other 89 44

Table 1: Data statistics.

as out-of-domain multilingual models. In particu-
lar, we use a freely available NER toolkit, NER-
suite, tailored for English biomedical literature
and a multilingual neural model, BERT, pretrained
on general domain Wikipedia articles. Thus, the
emphasis of this work is on analyzing how well
such tools can be adapted to new languages and
domains with minimal effort. We cast the task
as sequence labeling using a conventional in-out-
begin (IOB) representation of the data for learning
and prediction. The used tools are described in de-
tail in Section 3.

2 Data

The annotation involves four types of entities,
labeled in the data as PROTEINAS (proteins,
genes, and related entities), NORMALIZABLES
(chemicals that can be normalized to external re-
sources), NO NORMALIZABLES (chemicals that
cannot), and UNCLEAR (miscellaneous related en-
tities). In the following, we refer to these re-
spectively as Protein, Chemical(+), Chemical(-)
and Other. Table 1 briefly summarizes data statis-
tics. We note that compared to English language
biomedical NER resources, the number of an-
notations is somewhat limited; for example, the
JNLPBA shared task (Kim et al., 2004) data con-
tains over 50,000 training examples of similar
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Figure 1: Illustration of data formats. Left: task data in separate .txt and .ann files. Right: NERsuite format.

types, the BioCreative II GM data (Smith et al.,
2008) over 18,000 gene mentions, and the BioCre-
ative CHEMDNER (Krallinger et al., 2015) data
over 80,000 chemical mentions. We thus expect
that methods addressing the PharmaCoNER task
to benefit from pretraining or other similar meth-
ods of incorporating information from outside of
just the task data.

The task data is distributed in the simple stand-
off format first introduced for the BioNLP Shared
Task 2009 (Kim et al., 2009). To convert this data
into a version the column-based IOB format pop-
ularized by the CoNLL NER tasks and used by
many NER tools, we apply a simple conversion
script provided with the BRAT annotation tool1

(Stenetorp et al., 2012). We note that conversion
between the standoff and the token-based IOB rep-
resentations is lossless if and only if there are no
overlapping annotations in the source data and the
boundaries of the annotations match token bound-
aries. Based on an experiment on the training data,
we estimate that the conversion preserves the orig-
inal annotations exactly over 99% of the time. Fig-
ure 1 illustrates the two formats.

We note that one training file2 failed conversion
due to an off-by-one offset error. We excluded this
file in all of our experiments.

3 Methods

3.1 NERsuite

Conditional Random Fields (CRF) (Lafferty et al.,
2001) are a popular and effective model for se-
quence labeling and thus a relevant baseline in
NER work. We perform experiments with NER-
suite3, an NER toolkit that is based on the CRF-
suite (Okazaki, 2007) CRF implementation and in-
cludes rich features optimized for English biomed-
ical text. In particular, NERsuite incorporates fea-

1http://brat.nlplab.org
2S0211-69952015000200015-1
3http://nersuite.nlplab.org/

tures derived from analysis by the GENIA tagger
(Tsuruoka et al., 2005), which performs part-of-
speech tagging, chunking and lemmatization and
has been trained on English text. When applied
on Spanish input, the tags and lemmas will nec-
essarily very frequently be incorrect. We never-
theless opted to apply the system as an off-the-
shelf baseline as its rich feature set also includes
many language-independent features. We leave
the NERsuite parameters at their defaults.

3.2 BERT

In our second experiment we utilize BERT (Devlin
et al., 2018), a transformer (Vaswani et al., 2017)
based attentive neural architecture. Whereas pre-
trained BERT models have shown strong perfor-
mance for English NER tasks (Peng et al., 2019),
to our knowledge no pretrained Spanish BERT
models are readily available4. Thus we con-
duct our experiments with the multilingual BERT
model (Pires et al., 2019) trained on a Wikipedia
corpus, covering 104 languages. Whereas Span-
ish is one of the pretraining languages used for the
model, the used Wikipedia corpus is not specific
to clinical or biomedical content. We use the cased
variant of the model, which preserves the case and
accents of the characters. BERT relies on sub-
word units, shared between all the used languages,
leading to subword embeddings which can benefit
from the commonalities of similar languages, yet
are a compromise across different uses in differ-
ent languages and domains. For fine-tuning the
model, we use the Keras BERT Python library 5.

When fine-tuning the model for the NER task
at hand, we replace the original pretraining output
layers with a CRF layer and allow the optimizer to
adjust all layers of the network. The model is op-
timized with Adam (Kingma and Ba, 2014) with a

4Shallow word embeddings for Spanish are studied e.g.
by Soares et al. (2019)

5https://github.com/CyberZHG/
keras-bert
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batch size of 16 and a learning rate of 2e-5 warmed
up from 2e-7 over the first training epoch.

We train the model for 50 epochs and evaluate
the model after every epoch on the development
set using entity-level F-scores on subword tokens.
The best performing checkpoint is used as the final
prediction model, i.e. we use early stopping with
a decreasing patience. In addition to early stop-
ping, the model is regularized with dropout (Sri-
vastava et al., 2014) within each transformer block
and weight decay (Loshchilov and Hutter, 2017).
The dropout is set to 0.1, but the weight decay is
selected in a grid search, being the only hyperpa-
rameter optimized in our experiments.

As the input for the BERT model we use the
CoNLL formatted data identical to the CRF ex-
periments (see Section 2), which is split into sen-
tences and tokenized on word-level. As the BERT
model utilizes subword units, we further retok-
enize every word independently. Due to com-
putational reasons we use a maximum length of
128 subword units for the input. This limit per-
mits running the model on low memory consumer-
grade GPUs instead of requiring data center hard-
ware. Sentences longer than the limit are split into
separate input sequences for the network. Note
that this may occasionally split entities into sepa-
rate example sequences leading to sequences start-
ing with I tags. When converting the predictions
back to the word-level CoNLL format, we assign
the predicted entity label of the first subword unit
for the entire token.

4 Results and discussion

The official PharmaCoNER evaluation criteria
measure performance on the level of entity men-
tions (rather than e.g. tokens) and require exact
identification of the offset where each mention oc-
curs and the type of the mentioned entity. We note
that this common but fairly stringent criterion pe-
nalizes many small divergences from the reference
annotation twice: if a predicted entity is otherwise
correct but e.g. differs in its ending offset from
a gold standard entity, the predicted mention is
considered a false positive, and the corresponding
gold standard entity a false negative. Performance
is evaluated in terms of precision, recall, and bal-
anced F-score over all entity types (microaverage).
To provide a more fine-grained look into the per-
formance of our approach, we perform additional
analyses breaking down performance by type as

well as considering approximate matching crite-
ria, namely left boundary matching where only
the start offsets of mentions is required to match,
right boundary matching where only end is re-
quired, and overlap matching, where any overlap-
ping spans are considered a match. We require en-
tity types to match for all criteria.

The detailed evaluation for the NERsuite and
BERT models on the development set are listed
in Tables 2 and 3, where exact matching criterion
corresponds to the official evaluation. The NER-
suite model achieves and overall F-score of 82%
showing surprisingly strong performance consid-
ering the fact that it relies on English part-of-
speech tagging, chunking and lemmatization mod-
els. The BERT model surpasses this baseline by
+6.5pp with an overall F-score of 88%. We used
the BERT model as our official submission to the
shared task resulting in an F-score of 87.38% on
the test set according to the organizers. For both
of these models the overlap evaluation shows an
improvement of 3–4pp, suggesting that the mod-
els are in effect better at detecting the entities, but
suffer from slightly inaccurate boundary detection.
For the BERT model the difference between exact
and overlap results is slightly larger, which might
be caused by the additional retokenization to sub-
word units and detokenization back to the original
CoNLL format. As the overall performance of the
BERT model is notably better than NERsuite’s, we
focus on the former in all further analyses.

To measure the BERT model’s ability to gener-
alize to unseen entity mentions, we analyze how
many of the development data entity spans are not
present in the training data and how well the model
performs on these entities in comparison to entity
spans which the model has seen during training.
We observe that 55% of the unique entity spans,
covering 36% of all occurrences, in the develop-
ment set are not present in the training data. This
suggests that strong generalization abilities are re-
quired from the model to perform well in the task.

To obtain a rough understanding of how well
the model performs on the entities unseen dur-
ing training, we measure the recall of the model
separately for entity spans seen and not seen dur-
ing training (Table 4). As can be expected the
model has an extremely high recall of 96% for
spans present in the training data, but also rela-
tively strong performance with recall of 72% for
previously unseen spans. This suggests that the
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Criterion Protein Chemical(+) Chemical(-) Other Overall
Exact 88.89/74.09/80.82 93.41/75.76/83.66 0.00/0.00/0.00 79.31/52.27/63.01 91.35/73.95/81.73
Left 92.43/77.05/84.04 95.16/77.18/85.24 0.00/0.00/0.00 82.76/54.55/65.75 93.85/75.97/83.97
Right 91.63/76.38/83.31 94.73/76.83/84.84 0.00/0.00/0.00 79.31/52.27/63.01 93.21/75.45/83.40
Overlap 95.01/79.19/86.38 96.15/78.16/86.23 0.00/0.00/0.00 82.76/54.55/65.75 95.45/77.37/85.47

Table 2: NERsuite development set results for various boundary matching criteria (precision/recall/F-score).

Criterion Protein Chemical(+) Chemical(-) Other Overall
Exact 84.87/88.86/86.82 92.99/87.51/90.17 40.00/12.50/19.05 76.47/88.64/82.11 89.05/87.44/88.24
Left 89.36/93.56/91.41 95.73/90.10/92.83 40.00/12.50/19.05 78.43/90.91/84.21 92.49/90.81/91.64
Right 87.44/91.54/89.44 93.65/88.14/90.81 40.00/12.50/19.05 76.47/88.64/82.11 90.48/88.84/89.65
Overlap 91.92/95.30/93.58 96.02/90.72/93.30 40.00/12.50/19.05 78.43/90.91/84.21 93.71/91.85/92.77

Table 3: BERT development set results for various boundary matching criteria (precision/recall/F-score).

Entities Pretraining No pretraining
All 87.44 54.00
Seen 96.13 70.16
Unseen 71.72 24.78

Table 4: Recall of the BERT model on development
set with and without pretraining on all entities, entity
spans which are also present in the training data (seen)
and entity spans which do not appear in the training
data (unseen).

model has either learned suitable subword rep-
resentations during the pretraining for detecting
pharmacological entities or is able to effectively
utilize the context in which they appear.

As the model is pretrained on multilingual out-
of-domain data, we are also interested in the ben-
efits of such pretraining. To this end we train an
identical model with randomly initialized weights
as the starting point. The same subword unit vo-
cabulary is used. This model results in far infe-
rior performance with an F-score of 56% (see Ta-
ble 5). Moreover the recall of unseen entity spans
is mere 25%, whereas for previously seen spans
the recall is 70%. Thus the pretraining, even with
multilingual Wikipedia data, seems to offer dras-
tic improvements to the model, particularly for de-
tecting entity spans not seen during training. How-
ever, using the same vocabulary makes this com-
parison slightly unfair as subword embeddings are
left in their random initial state if not present in the
training data. In the development set this impacts
around 12% of the unique subword units, which
however constitute only 2% of all subword occur-
rences.

We also note that although we have used a CRF
layer as the output of the BERT model, in our pre-
liminary experiments we observed similar results
with a fully connected output layer. This suggests

Pretraining Precision Recall F-score
Yes 89.05 87.44 88.24
No 57.62 54.00 55.75

Table 5: Development set results for BERT model with
and without pretraining.

that the transformer architecture has the capability
of implicitly modelling sequential dependencies of
the output labels, unlike earlier neural models such
as bidirectional LSTM networks, which still sub-
stantially benefit from the added CRF output layer
(Ma and Hovy, 2016; Lample et al., 2016).

5 Conclusions and future work

In this study we have demonstrated that strong re-
sults for Spanish clinical NER can be achieved
with straightforward adaptation of multilingual or
English text mining tools. In particular the mul-
tilingual BERT model pretrained on general do-
main Wikipedia articles shows competitive perfor-
mance with an F-score of 87% in the official Phar-
maCoNER evaluation.

As prior studies have shown that the multilin-
gual BERT model can also be utilized in zero-shot
settings (Pires et al., 2019), as a future work, we
will look into optimal ways of incorporating En-
glish NER datasets in this task. This can be either
achieved in zero-shot setting, training the model
purely on English NER datasets and applying on
Spanish texts or by combining both English and
Spanish training data in a multitask setting.

In addition to studying the BERT model, we
have demonstrated that a strong baseline system
for this task can also be achieved with the NER-
suite toolkit, even though it relies on feature rep-
resentations built upon POS tagging and chunking
models trained on English data, warranting the use
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of such freely available tools even in cross-lingual
settings.
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of EACL demonstra-
tions, pages 102–107.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim,
Tomoko Ohta, John McNaught, Sophia Ananiadou,
and Junichi Tsujii. 2005. Developing a robust part-
of-speech tagger for biomedical text. In Panhel-
lenic Conference on Informatics, pages 382–392.
Springer.

60



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Leon Weber, Jannes Münchmeyer, Tim Rocktäschel,
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Abstract

The active gene annotation corpus (AGAC)
was developed to support knowledge discov-
ery for drug repurposing. The AGAC track
of the BioNLP Open Shared Tasks 2019 was
organized, to facilitate cross-disciplinary col-
laboration across BioNLP and Pharmacoin-
formatics communities, for drug repurposing.
The AGAC track consists of three subtasks: 1)
named entity recognition, 2) thematic relation
extraction, and 3) loss of function (LOF) / gain
of function (GOF) topic classification. The
AGAC track was participated by five teams, of
which the performance is compared and ana-
lyzed. The results revealed a substantial room
for improvement in the design of the task,
which we analyzed in terms of “imbalanced
data”, “selective annotation” and “latent topic
annotation”.
Keywords: corpus annotation, shared task,
gene mutation, drug repurposing

1 Introduction

Biomedical natural language processing
(BioNLP) has long been recognized as effec-
tive method to accelerate drug-related knowledge
discovery (Vazquez et al., 2011; Gachloo et al.,
2019). Particularly, PubMed is regarded as a main
source for knowledge discovery as it stored a vast
amount of reports on scientific discovery, and the
size keeps constantly growing (Hunter and Cohen,
2006; Cohen et al., 2016). Various corpora used
texts from PubMed. Examples include GENIA
(Kim et al., 2003), CRAFT (Cohen et al., 2017),
and BioCreative task corpora (Li et al., 2016), to
name just a few.

The growing interest in developing corpus an-
notation also has led to the development of pub-
lic annotation platform in the BioNLP commu-
nity. An example of recent progress is PubAnno-
tation (Kim and Wang, 2012; Kim et al., 2019),

which offers a versatile platform for corpus con-
struction, annotation, sharing the data, and offer-
ing them as open shared tasks (https://2019.
bionlp-ost.org/tasks).

In the context of drug-related knowledge dis-
covery, various corpora were developed. Exam-
ples include annotated corpora for adverse drug
reactions (ADR) (Roberts et al., 2017; Demner-
Fushman et al., 2018; Karimi et al., 2015; Ginn
et al., 2014; Gurulingappa et al., 2012), and those
for drug-drug interactions (DDI) (Herrero-Zazo
et al., 2013). However, as far as the authors know,
there has been no work of corpus annotation (ex-
cept AGAC-related ones) for drug repurposing.
Drug repurposing (AKA drug repositioning) is to
find new indications of approved drugs, which is
now recognized as an important mean for investi-
gating novel drug efficiency in the pharmaceutical
industry.

This paper presents the Active Gene Annota-
tion Corpus (AGAC) corpus and a shared task (the
AGAC track of BioNLP Open Shared Tasks 2019)
based on it. The design of AGAC is highly mo-
tivated by the LOF-agonist/GOF-antagonist hy-
pothesis proposed by Wang and Zhang (Wang and
Zhang, 2013), which states:

For a given disease caused by driven
gene with Loss of function (LOF) or
Gain of function (GOF), an targeted an-
tagonist/agonist is a candidate drug.

The hypothesis was well supported by experi-
ments, which encouraged large scale automatic
knowledge curation.

Actually, the hypothesis represented the ideas of
tracking the phenotypic information of gene and
it shared the similar motivation of phenome-wide
association studies (PheWAS) (Rastegar-Mojarad
et al., 2015). In PheWAS, the international clas-
sification of diseases (ICD) codes was assigned as
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the form of the phenotype to candidate single nu-
cleotide polymorphisms (SNPs) so as to investi-
gate the relevance of phenotypes and gene muta-
tion.

AGAC is a corpus annotated by human experts,
with an aim at capturing function changes of mu-
tated genes in a pathogenic context. The design
of the corpus and the guidelines were published in
2017 (Wang et al., 2018), and a case study of us-
ing such an annotated corpus for drug repurposing
was successfully performed in 2019, unveiling po-
tential associations of variations with a wide spec-
trum of human diseases (Zhou et al., 2019). Since
then, the whole annotation work took 20 months,
with involvement of four annotators.

Using the corpus the AGAC track of BioNLP
Open Shared Tasks 2019 was organized, which
was participated by 5 teams. In this paper,
both the AGAC corpus and AGAC track are
introduced, and the performance of the par-
ticipants are presented. The full information
of the AGAC track is available at the web-
site, https://sites.google.com/view/
bionlp-ost19-agac-track.

2 The AGAC corpus and shared task

2.1 Corpus preparation

We collected abstracts by Mesh terms “Mu-
tation/physiopathology” and “Genetic Disease”.
AGAC is annotated for eleven types of named en-
tities, which categorized into bio-concepts, regula-
tion types, and other entities, and for two types of
thematic relations between them. All the types of
named entities and thematic relations are defined
in the AGAC ontology (see Figure 1).

While the full description of the named entity
types can be found in the AGAC guideline book
(Wang et al., 2018), briefly speaking, it is designed
to include the entities which are relevant to genetic
variations and forthcoming phenotype changes at
molecular and cellular levels, with a focus on trac-
ing the biological semantics of LOF and GOF mu-
tations.

Since AGAC aims to annotate mutations and
the subsequent bio-processes caused by the mu-
tations, the two thematic role types, themeOf
and causeOf, of which the original use are in-
troduced by the GENIA event annotation (Kim
et al., 2008), are adopted to represent relations be-
tween AGAC entities. Note that here the use of
the themeOf and causeOf relations are a little

bit different from their use in linguistic analysis,
in the sense that they are not confined to be used
only around verbs. In AGAC, the thematic rela-
tions may be used to connect two named entities,
both in noun forms. Below is the semantics of the
two thematic relations:

• ThemeOf: a theme of an event (or a regula-
tory named entities) is the object which un-
dergoes a change of its state due to the event.

• CauseOf: a cause of an event (or a regula-
tory named entities) is the object which leads
the event to happen.

In order to help understanding of the semantics
of the AGAC entities, they are mapped to corre-
sponding MeSH terms (Lipscomb, 2000) when-
ever possible (see Figure 1).

In addition to the annotations for named entities
and relations, each abstract in AGAC is annotated
with a statement of a LOF/GOF-classified gene-
disease association. The statement is expressed by
a triple: a gene, the type of function change (GOF
or LOF), and a disease. For example, if an abstract
reports an association between a mutation of SHP-
2, which causes a GOF type of function change,
and leukemia, the abstract is annotated with the
triple, SHP-2; GOF; leukemia. Note that it is the
most straightforward form of knowledge piece to
apply the LOF-agonist/GOF-antagonist hypothe-
sis to discovery of candidate chemicals for dis-
eases, which is the primary application scenario
of AGAC.

2.2 Statistics and characteristics of AGAC
corpus

AGAC corpus is annotated by four annotators:
a main annotator and three fellow annotators.
To evaluate the quality of the annotations, inter-
annotator agreement (IAA) was measured in an
asymmetric way: the performance of the main an-
notator was assumed as the “oracle”, to which the
performance of each fellow annotator was com-
pared. The IAAs of the three annotators were 0.68,
0.78 and 0.70, respectively, in F-score.

To serve as the training and test data sets of the
AGAC shared task, the corpus was randomly di-
vided into halves: 250 abstracts for each of the
training and the test data sets. The basic statis-
tics of the abstracts, sentences, and annotations are
shown in Table 1.
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Figure 1: AGAC ontology.

Table 1: Statistics of annotations in total, training and test sets

Total Training set Test set

# of Abstracts 500 250 250

# of Sentences 5,080 2,534 2,546

# of Named entities 5,741 3,317 2,424
�Bio-concept Named Entities 2,274 1,428 846
Var (Variation) 1,304 735 569
MPA (Molecular Physiological Activity) 618 418 200
Interaction 35 28 7
Pathway 38 24 14
CPA (Cell Physiological Activity) 279 223 56
�Regulatory Named Entities 1,514 905 609
Regulation 613 215 398
Positive Regulation 406 323 83
Negative Regulation 495 367 128
�Other Entities 1,953 984 969
Disease 751 336 415
Gene 1,004 529 475
Protein 150 90 60
Enzyme 48 29 19

# of Thematic roles 4,677 2,729 1,948
ThemeOf 2,986 1,698 1,288
ThemeOf (Intra/inter sentential) (2910/76) (1657/41) (1253/35)
CauseOf 1,691 1,031 660
CauseOf (Intra/inter sentential) (1581/110) (961/70) (620/40)

64



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

The AGAC corpus is characterized in three
terms: imbalanced data, selective annotation, and
latent topic annotation.

i) Imbalanced Data: The statistics in Table 1
clearly shows that the entity distribution is
imbalanced over the entity types, e.g. 1,304
Var vs. 35 Interaction annotations, and
across the training and test data sets, e.g.,
481 vs. 200 MPA annotations in the training
and test data sets, respectively. In the mean
time, the distribution of several named en-
tities shows imbalance between training set
and test set. For instance, there are 418
MPA in training set, while the amount is 200
in test set. Similarly, the amount ratio of
Interaction and Pathway is 28:7 and
24:14. As in the thematic roles, the amount
of CauseOf in training set is mostly doubled
than that in test set.

ii) Selective Annotation: According to the
AGAC guidelines (Wang et al., 2018), anno-
tations are made only to the sentences which
carry sufficient information to mine a gene-
disease association with LOF/GOF specifi-
cation, i.e., a sentence is annotated only if
it contains specific gene, mutation, disease
mentions. In other words, the named entities
appearing in a sentence are not annotated if
the sentence misses any of the required enti-
ties. Later, it has turned out to be a tricky fea-
ture, which makes the NER task based on the
corpus a much more complicated one com-
pared to typical NER tasks (See Section 5).

iii) Latent Topic Annotation: The annotation
of each abstract with a LOF/GOF-classified
gene-disease association may be regarded as
a kind of latent topic annotation, in the sense
that the LOF/GOF context of a gene-disease
association may not be directly visible from
the text. This feature makes the AGAC
annotation unique: the annotation is really
geared toward knowledge discovery for drug
repurposing based on the LOF-agonist/GOF-
antagonist hypothesis. Note that the ago-
nist or antagonist information of a chem-
ical is available in various databases like
Drugbank (Wishart et al., 2017) or Ther-
apeutic Target Database (TTD) (Li et al.,
2017), which means, if mining of LOF/GOF-
classified gene-disease association is possible

in a large scale, mining of drug candidates for
diseases also will be possible in a large scale.

2.3 Task Definition of AGAC Track
AGAC track consists of three tasks: Task 1:
named entity recognition, Task 2: thematic re-
lation extraction, and Task 3: mutation-disease
knowledge discovery. While participants were al-
lowed to choose the tasks they would participate,
due to the dependency between the tasks, it was
expected that participating all the three tasks might
maximize the chance of high performance: Task 2
requires the result of Task 1, and Task 3 may be
benefited from the result of Task 1 and 3. Below
is the details of the three tasks:

Task 1. NER: To recognize named entities
appearing in given texts, and to assign them
their entity class, based on the AGAC on-
tology. Figure 2 shows an example, where
four spans, “protein”, “Truncating”, “DNMs”,
and “SHROOM3” are annotated as Protein,
Negative Regulation, Variation, and
Gene, respectively. The participants are required
to produce the result in the PubAnnotation JSON
format. Note that while compound nouns are

Figure 2: Annotation example for Task 1.

common, there is no discontinuous or overlapping
spans annotated as named entities, in AGAC.

Task 2. Thematic relation identification:
To identify the thematic relation, ThemeOf,
CauseOf, between named entities. Figure 3
shows an example, where two ThemeOf rela-
tions, Protein → Negative regulation
and Gene → Variation, and one CauseOf
relation, Negative regulation →
Variation, are annotated. Note that the
relation annotations are added on top of the NER
annotations. Note also that relations may be intra-
or inter-sentential, and in AGAC, 3.98% of the
relations are inter-sentential.

Task 3. Mutation-disease knowledge discovery:
To extract the triples of a gene, a function change,
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Figure 3: Annotation example for Task 2

and a disease. A function change is classified
into four classes: Loss of Function(LOF), Gain
of Function(GOF), Regulation(REG), and Com-
plex(COM). Figure 4 shows an example, where
the PubMed abstract, 25805808, is annotated with
the triple, SHROOM3; LOF; Neural tube defects.
Participants are requried to produce a text file
where a quadraple (a PubMed Id, plus a triple)
takes one line. Note that while this task is inde-

Figure 4: Annotation example for Task 3

pendent from Task 1 and 2, syntactically, it may
be benefited from the results of the two tasks, se-
mantically.

For better understanding, let us pick a sen-
tence, “Mutations in SHP-2 phosphates that
cause hyperactivation of its catalytic activity
have been identified in human leukemia, partic-
ularly juvenile myelomonocytic leukemia.” From
a biological view, hyperactivation of catalytic
activity is clearly a description of Gain-of-
Function. Henceforth, this sentence carries clear
semantic information that, a gene “SHP-2” af-
ter mutation plays a GOF function related to
the disease “juvenile myelomonocytic leukemia”.
Therefore, the Task 3 requires the triple from
this sentence, i.e., SHP-2;GOF;juvenile
myelomonocytic leukemia.

In another sentence, “Lynch syndrome (LS)
caused by mutations in DNA mismatch re-
pair genes MLH1.”, it describes the association
between disease “Lynch syndrome” and gene
“MLH1”, but the phrase “caused by” means no
loss or gain, hence the triple from this sentence

should be MLH1;REG;Lynch syndrome.
In a COM example, “Here, we describe a

fourth case of a human with a de novo KCNJ6
(GIRK2) mutation, who presented with clinical
findings of severe hyperkinetic movement disor-
der and developmental delay. Heterologous ex-
pression of the mutant GIRK2 channel alone
produced an aberrant basal inward current that
lacked G protein activation, lost K+ selectivity
and gained Ca2+ permeability.” , the descrip-
tion “lost K+ selectivity and gained Ca2+ per-
meability” shows both LOF and GOF, therefore
the function change can not be labeled as LOF or
GOF but COM, GIRK2;COM;hyperkinetic
movement disorder.

2.4 Sample data for task 1, 2, and 3
Figure 5 shows a sample text of AGAC corpus, the
format of which is JSON. The bold term “target”
is the address of the annotated text. “sourcedb” is
where the text original from, all the text in AGAC
corpus are from PubMed. “sourceid” is pmid of
the text. “text” contains the raw abstract.

1) “denotations” for Task 1:

“denotations” contains the named entity anno-
tations corresponding to Task 1. Each named
entity annotation has an “id”; a “span”: its po-
sition in the abstract; an “obj”: the named en-
tity it belongs to.

2) “relations” for Task 2:

“relations” contains the thematic roles between
the named entities, which corresponds to Task
2. Each relation contains an “id”; a “pred”: the
thematic roles; “subj” and “obj”: the named en-
tity “id” that the relation associates, and the di-
rection of the relation is from “subj” to “obj”.

Note that Task 2 requires the result of Task 1.

3) Triples for Task 3:

25805808;SHROOM3;LOF;Neural tube de-
fects Triples showed above is the result of
Task 3, which is required to be extracted
from the sample text. So, for the result
template during evaluation, the standard for-
mat of triples is: pmid;gene;function
change;disease.

The visualization of part of this sample text is
shown in Figure 5, which is presented by the an-
notation platform PubAnnotation.
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Figure 5: Sample data for Task 1, 2 and 3

3 Evaluation methods

The performance of the participants was evalu-
ated in standard precision, recall, and F-score.
For Task 1 and 2, the PubAnnotation Evalua-
tor1 tool was used, with a parameter setting for
strict span matching (soft match characters = 0 &
soft match words = 0). For task 2, for a predicted
relation to be counted as a true positive, the two
entities participating in the relation have to be cor-
rectly predicted, together with the type of the re-
lation. Note that the evaluation criteria applied to
Task 1 and 2 are very strict.

For Task 3, a custom evaluation tool was pro-
vided by the organizers Unlike Task 1 and 2, for
Task 3, a relaxed matching criteria was applied:
a “Function-Classified Gene-Disease Assciation”
(FCGDA) statement is counted as correct one if
the function classification (LOF or GOF) is cor-
rectly recognized. The motivation of using the re-
laxed matching criteria was that it was fairly a new
type of task, making a highly challenging one, and
and that prediction of the LOF/GOF context was
of the primary interest.

4 Results and observations

Overall, five teams participated in the tasks of the
AGAC track: three teams in both Task 1 and 2, one
team only in Task 1, and one team (through a late
submission) only in Task 3. The results of Task 1,
2, and 3 are presented in Table 2, 3, 4, respectively.

1https://github.com/pubannotation/
pubannotation_evaluator

Looking into the methods used by the par-
ticipants, it is observed that, although the num-
ber of participants is not so high, various meth-
ods are well mixed: a probabilistic sequence la-
beling model, e.g., CRF (Lafferty et al., 2001)),
a kernel-based linear classification model, e.g.,
SVM, modern neural network models, e.g., CNN
(Lawrence et al., 1997) and Bi-LSTM (Hochre-
iter and Schmidhuber, 1997; Sundermeyer et al.,
2012),We collected abstracts by Mesh terms “Mu-
tation/physiopathology” and “Genetic Disease”.

and also a joint learning. It is also observed that
use of BERT (Devlin et al., 2018), a pre-trained
language representation model, was popular.

4.1 Task 1

In Task 1, DX-HITSZ used “JFB-NER” model
which was a joint learning model with parameters
fine tuned bioBert. Zheng-UMASS used a hierar-
chical multi-task learning model for both Named
entity recognition and Relation Extraction. In this
model 12 entities were decomposed into three sub-
tasks: (1) Var, MPA,CPA,Enzyme for part one (2)
Gene, Pathway, Protein, Disease for part two (3)
PosReg, Interaction, NegReg, Reg for part three.
Besides, they used Bert embedding, customized
embedding, and Char level embedding to repre-
sent inputs sentences. Then, the bi-LSTM en-
coders were used as encoders for each of the sub-
tasks. YaXXX-SiXXX/LMX used Bi-LSTM CRF
with linguistic features and ensemble 3 best mod-
els on 3 data splits. Finally, DJDL-HZAU used
traditional CRF method and combined with some
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Table 2: Participants Performance of Task 1

Participants Precision Recall F-score Main NLP techniques

1st DX-HITSZ 0.63 0.56 0.60 Bert, joint learning
* Baseline 0.50 0.51 0.50 Bert, joint learning
2nd Zheng-UMASS 0.36 0.59 0.45 Bert, CNN, Bi-LSTM
3rd YaXXX-SiXXX/LMX 0.55 0.28 0.37 CRF, Bi-LSTM
4th DJDL-HZAU 0.16 0.25 0.20 CRF

*: Baseline.

Table 3: Participants Performance of Task 2

Participants Precision Recall F-score Main NLP techniques

1st Zheng-UMASS 0.40 0.31 0.35 Bert, CNN, Bi-LSTM
2nd DX-HITSZ 0.61 0.16 0.25 Bert, joint learning
3rd YaXXX-SiXXX/LMX 0.05 0.02 0.03 SVM

Table 4: Participants Performance of Task 3

Participants Precision Recall F-score Main NLP techniques

* Baseline 0.72 0.59 0.65 Bert, joint learning
L Ashok-BenevolentAI 0.26 0.20 0.23 Bert

*: Baseline
L: Late submission.

linguistic features.

4.2 Task 2

In Task 2, Zheng-UMASS used a hierarchical
multi-task learning model for both Named entity
recognition and Relation Extraction. In relation
extraction part the model shared the same encod-
ing layers with Named entity recognition part.
DX-HITSZ used a simple fine tuned bioBert, re-
fer as ”SB-RE”. The F-score they obtained is 0.35
and 0.25, respectively. Furthermore, YaXXX-
SiXXX/LMX converted the task 2 into a classifi-
cation model and used the traditional support vec-
tor machine to obtain a F-score of 0.03.

4.3 Task 3

In Task 3, Ashok-BenevolentAI used BERT as
well to extract “gene function change disease
triples. They encoded the pair of mentions and
their textual context as two consecutive sequences
and then used a single linear layer to classify their
relation into five classes. It is noted that none
of the results in Task 1 and Task 2 were jointly
learned in this model.

As the task organizer, AGAC team provided
baseline method for Task 1 and 3. We used BERT
to learn semantic structure of the sentences, and
use joint learning for output sequence labeling in
Task 1 and triple recognition in Task 3.

4.4 Summary

To sum up, the best performance for Task 1 was
0.6 in F-score, which was obtained by DX-HITSZ.
It outperformed the reference method provided by
the organizers by 0.10 in F-score. For task 2, the
base performance was 0.35, which was acheived
by Zheng-UMASS. The best performance for
Task 1 and 2 are quite low compared to other
NER and RE tasks. We attribute the reason to the
strict evaluation criteria and the selective annota-
tion characteristics of the AGAC corpus, the latter
of which is discussed in Section 5. For Task 3,
while the reference performance provided by the
organizers achieved a moderate performance, 0.65
in F-score, the only participant achieved a much
lower performance, 0.26. We attribute the reason
to the fact that the team did not use the results of
Task 1 and 2 which we expected critical to perform
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Task 3.

5 Discussion and Conclusion

In this section, the “selective annotation” and
“latent topic annotation” features of AGAC are
reviewed and future research directions are dis-
cussed.

5.1 Selective annotation makes NER
challenging

As suggested in the previous discussion, state-
of-art methods in NLP community, like BERT
and joint learning, are frequently tested in AGAC
track. Comprehensive investigation of the perfor-
mance results show the effectiveness and disad-
vantages of these method.

Unlike normal sequence labelling task, AGAC
track requires the artificial intelligence method to
perform NER only when the sentence exactly fit
the GOF/LOF topic. Here, “selective annotation”
attribute refers that only the core named entities
or phrase within a sentence which carries clear
function change semantics is annotated. Actu-
ally, the design with this attribute stem from real
scenario of the drug knowledge discovery where
curators need to trace and extract exact relevant
function change information of a mutated gene
among texts. Unfortunately, this attribute also
make AGAC track a fairly challenging task to ful-
fill.

The performances comparison in AGAC track
shows that the modern NLP strategies like BERT
propel the traditional sequence labeling task to
the full strength. Both the team won the first
position and the baseline method use BERT and
joint learning model. As a conclusion, sophisti-
cated language representative model is an effec-
tive way to handle sequence labeling in AGAC re-
search. In addition, LOF/GOF recognition with-
out using results of Task 1 and 2 failed to out-
perform the baseline method which make good
use of the named entities in AGAC. It hints that
joint learning model is a proper integrated tasks
solution for NER, thematic role recognition and
LOF/GOF triplet recognition.

In all, the “Selective annotation” attribution
make AGAC track more challenging than tradi-
tional sequence labeling task. Just mocking the
human annotator who make annotation with suffi-
cient LOF or GOF semantics consideration, a suc-
cessful model should discern the full semantics

when correctly performing the labeling. Hope-
fully, the performance of the AGAC track will be
enhanced by a design of a more intellectual learn-
ing model, which is capable of capturing both the
sequence labeling and the triple information, and
therefore making tactical adjustment.

5.2 The potential of latent topic annotation

The purpose of AGAC track for drug repurpos-
ing requires comprehensive cooperation among
BioNLP and Bioinformatics communities, even in
general, NLP and Biology communities. Though
none of the participants attempts to solve Task 3
due to the domain gap of computer science and
life science, a cross disciplinary cooperation is still
promising, especially in the era of Multi-Omics
data (Groen et al., 2016).

“Latent topic annotation” attribute refers to
comprehensive integration of drug related knowl-
edge and deep cooperation in a cross-disciplinary
manner. As mentioned in the introduction, the bi-
ological idea of the AGAC design is consistent
with the mainstream phenotype mining strategy as
PheWAS (Rastegar-Mojarad et al., 2015). In ad-
dition, the literature review as well suggests that
BioNLP and computational method shed light to
drug-related knowledge discovery (Gachloo et al.,
2019). In our early attempt of AGAC applica-
tion (Zhou et al., 2019), a PubMed-wide GOF and
LOF recognition is successfully achieved by using
AGAC as training data. Specifically, AGAC cor-
pus offers abundant semantic information in the
function change recognition, and helps to evaluate
the GOF/LOF topic of a Pubmed abstract.

All of the above facts hint that well formed
knowledge structure in AGAC is capable of en-
suring nice application of function change inves-
tigation, and good commanding of the domain
knowledge is the key point to propel the research
of drug repurposing. Henceforth, it is promis-
ing to develop deep cooperation among BioNLP
and Bioinformatics communities based on the out-
come of AGAC track competition.

6 Data Availability

The AGAC corpus is developed and
made available in the PubAnnotation plat-
form, which is technically supported by
Database Center for Life Science (DBCLS),
Japan. Link to retrieve the data: http:
//pubannotation.org/projects/
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AGAC_test/annotations.tgz.
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Abstract

The prediction of the relationship between
the disease with genes and its mutations is
a very important knowledge extraction task
that can potentially help drug discovery. In
this paper, we present our approaches for trig-
ger word detection (task 1) and the identifi-
cation of its thematic role (task 2) in AGAC
track of BioNLP Open Shared Task 2019.
Task 1 can be regarded as the traditional
name entity recognition (NER), which culti-
vates molecular phenomena related to gene
mutation. Task 2 can be regarded as rela-
tion extraction which captures the thematic
roles between entities. For two tasks, we ex-
ploit the pre-trained biomedical language rep-
resentation model (i.e., BERT) in the pipe
of information extraction for the collection
of mutation-disease knowledge from PubMed.
And also, we design a fine-tuning technique
and extra features by using multi-task learn-
ing. The experiment results show that our pro-
posed approaches achieve 0.60 (ranks 1) and
0.25 (ranks 2) on task 1 and task 2 respectively
in terms of F1 metric.

1 Introduction

Using the natural language processing methods to
discover and mine drug-related knowledge from
text has been a hot topic in recent years. For
the goal of drug repurposing, an active gene
annotation corpus (AGAC) was developed as a
benchmark dataset (Wang et al., 2018b). The
AGAC track is part of the BioNLP Open Shared
Task 2019, aims to gather text mining approaches
among the BioNLP community to propel drug-
oriented knowledge discovery. It consists of three
tasks for the extraction of mutation-disease knowl-
edge from PubMed abstracts: trigger words NER,
thematic roles identification, and mutation-disease
knowledge discovery. We participated in the trig-
ger words NER and thematic roles identification
tasks.

Recently, pre-trained models have been the
dominant paradigm in natural language process-
ing. They achieved remarkable state-of-the-art
performance across a wide range of related tasks,
such as textual entailment, natural language infer-
ence, question answering, etc. BERT, proposed
by Devlin et al. (2019), has achieved a better-
marked result in GLUE leaderboard with a deep
transformer architecture (Wang et al., 2018a).
BERT first trains a language model on an un-
supervised large-scale corpus, and then the pre-
trained model is fine-tuned to adapt to downstream
tasks. This fine-tuning process can be seen as
a form of transfer learning, where BERT learns
knowledge from the large-scale corpus and trans-
fer it to downstream tasks. While BERT was
built for general-purpose language understanding,
there are also some pre-trained models follow-
ing BERT architecture that effectively leverage
domain-specific knowledge from a large set of
unannotated biomedical texts (e.g. PubMed ab-
stracts, clinical notes), such as SciBERT (Belt-
agy et al., 2019), BioBERT (Lee et al., 2019),
NCBI BERT (Peng et al., 2019), etc. These mod-
els can effectively transfer knowledge from a large
amount of unlabeled texts to biomedical text min-
ing models with minimal task-specific architecture
modifications.

In this paper, we investigate different methods
to combine and transfer the knowledge from the
three different sources and illustrate our results on
the AGAC corpus. Our method is based on fine-
tuning BERTbase, NCBI BERT and BioBERT us-
ing multi-task learning, which has demonstrated
the efficiency of knowledge transformation (Liu
et al., 2019) and integrating models for both
tasks with ensembles. The proposed methods are
proved effective for natural language understand-
ing in the biomedical domain, and we rank first
place on task 1 (Trigger words NER) and second
place on task 2 (Thematic roles identification).
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Figure 1: The pipeline of our approach. We first split PubMed abstracts into sentences, tokenize them into words
and extract some features like POS tags, then a BERT-based method for NER offset and entity recognition, and
finally predict relations for each potential entity pair.

2 Background

The model architecture of BERT (Devlin et al.,
2019) is a multi-layer bidirectional Transformer
encoder based on the original Transformer
model (Vaswani et al., 2017). The input rep-
resentation is a concatenation of WordPiece em-
beddings (Wu et al., 2016), positional embed-
dings, and the segment embedding. A special
classification embedding ([CLS]) is inserted as the
first token and a special token ([SEP]) is added
as the final token. It is firstly pre-trained with
two strategies on large-scale unlabeled text, i.e.,
masked language model and next sentence pre-
diction. The pre-trained BERT model provides
a powerful context-dependent sentence represen-
tation and can be used for various target tasks,
i.e., text classification and machine comprehen-
sion, through the fine-tuning procedure.

Hence, the BERT model can be easily ex-
tended to the medical domain information extrac-
tion pipeline, first extracting the trigger words and
then determining the relationship between them,
as illustrated in Figure 1.

3 Our Approach

3.1 Task 1: Trigger Words NER

Task 1 aims to identify trigger words in the
PubMed digest and annotating them as correct
trigger markers or entities (Var, MPA, Interaction,
Pathway, CPA, Reg, PosReg, NegReg, Disease,
Gene, Protein, Enzyme). It can be seen as an NER
task involving the identification of many domain-
specific proper nouns in the biomedical corpus.

We first split each PubMed abstracts into sen-
tences using ’\n’ or ’.’, and convert each sen-
tence into words by NLTK1 tokenizer. After that,
words are further tokenized into its word pieces
x = (x1, . . . , xT ). Then we use a represen-
tation based on the BERT from the last layer
H = (h1, . . . ,hT ). In order to make better use
of the word-level information, POS tagging labels
and word shape embedding representation (Liu
et al., 2015) of each word 2 are also concate-
nated into the output of BERT, passing through a
single projection layer, followed by a conditional
random fields (CRF) layer with a masking con-
straint 3 to calculate the token-level label probabil-
ity p = (p1, . . . , pT ). When fine-tuning the BERT,
we found that the performance of the model per-
formed better in the case of BIO for the selec-
tion of the tagging schemes compared to BIOES.
We further extend our model to multi-task learn-
ing joint trained by sharing the architecture and
parameters. Although the differences in differ-
ent datasets, multi-task means joint learning with
other biomedical corpora. The assumption is to
make more efficient use of the data and to encour-
age the models to learn more generalized represen-
tations. More specially, the same token-level in-
formation and BERT encoder are shared and each
data set has a specific output layer, e.g., CRF layer.
Our final loss function is obtained as follows:

−
∑

λci logP (yci |xci) + λr ‖W‖2 (1)

1https://www.nltk.org/
2If a word is tokenized into several tokens, each token will

be given the same tagging labels.
3Transition mask with invalid moves as 0 and valid as 1.
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where yci denote true tag sequence and xci de-
note the input tokens for corpora ci, λci and λr
are weighted parameters.

3.2 Task 2: Thematic Roles Identification
Task 2 is to identify the thematic roles (ThemeOf,
CauseOf) between trigger words.

We treat it as a multi-label classification prob-
lem by introducing ”no relation (NA)” label.
When constructing the training data of task 2, we
use the relationship of two entities with a distance
of no more than one sentence. For NA label, ran-
dom sampling is performed. In the testing process,
relation label will be assigned to the corresponding
thematic role when its probability is maximum and
larger than the threshold. Otherwise, it will be pre-
dicted as no relation. We also anonymously use a
predefined tag (such as %Disease) to represent a
target named entity. And we additionally append
two concrete predicted entity words separated by
the [SEP] tag after each sentence. Following Shi
and Lin (2019), we also add the token-level rela-
tive distance to the subject entity information for
each token, i.e. 0 for the position t between two
entities, t − s for tokens before first entity and
t − e for tokens after second entity, where s, e
are the starting and ending positions of first and
second entity after tokenization, respectively. The
relation logits of two entities are performed using
a single output layer from the BERT, as

y = softmax(Whcls + b) (2)

where hcls denotes the hidden state of the first spe-
cial token ([CLS]).

4 Experiments

In this section, we provide the leaderboard per-
formance and conduct an analysis of the effect of
models from different settings.

4.1 Experimental Setup
The AGAC track organizers develop an active
gene annotation corpus (AGAC) (Wang et al.,
2018b; Gachloo et al., 2019), for the sake of
knowledge discovery in drug repurposing. The
track corpus consists of 1250 PubMed abstracts:
250 for public, 1000 for final evaluation. We ran-
domly split the public texts into train and develop-
ment data sets with the radio of 8:2. The training
set is used to learn model parameters, the develop-
ment set to select optimal hyper-parameters. For

Dataset #Train #Dev #Test
BC5CDR 4,559 4,580 4,796

NCBI disease 5,423 922 939
BC2GM 12,573 2,518 5,037

2010 i2b2/VA 16,315 - 27,626

Table 1: Datasets for joint learning in recognizing the
trigger words.

evaluation results, we measure the trigger words
recognition and thematic roles extraction perfor-
mance with F1 score. Table 1 shows the exter-
nal data sets used under the joint learning method.
The BIO form of these data sets is different from
that of task 1, hence we use different projection
and CRF layers. But not the more data sets, the
better. We found that the NCBI disease (Doğan
et al., 2014) and BC5CDR (Li et al., 2016) datasets
are helpful for the final results, and the perfor-
mance is reduced when using BC2GM (Smith
et al., 2008) and 2010 i2b2VA dataset (Uzuner
et al., 2011).

4.2 Implementation and Hyperparameters
We tried the original BERT4, BioBERT5 and
NCBI BERT6 pre-trained models. Each training
example is pruned to at most 384 and 512 tokens
for named entity recognition (NER) and relation
extraction (RE). We use a batch size of 5 for NER,
and 32 for RE. We also use the hierarchical learn-
ing rate in the training process so that the pre-
trained parameters and the newly added parame-
ters converge at different optimization processes.
For fine-tuning, we train the models for 20 epochs
using a learning rate of 2 × 10−5 for pre-trained
weights and 3 × 10−5 for others. The learning
parameters were selected based on the best per-
formance on the dev set. For NER, we ensemble
5 models from 5-fold cross-validation and 2 mod-
els using the normal training-validation approach.
For RE, we ensemble 3 models that used all the
construction data in training.

4.3 Main Results
Table 2 compares the results of the two tasks of
the pre-trained model in trigger words NER and
thematic roles identification. We report the im-
pact of using different pre-training models on the

4https://github.com/google-research/
bert

5https://github.com/dmis-lab/biobert
6https://github.com/ncbi-nlp/NCBI_BERT
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Task Model P R F1

Trigger Words BiLSTM+CRF 0.478 0.408 0.440
Recognition BERTbase 0.497 0.448 0.471

NCBI BERT 0.553 0.453 0.498
BioBERT 0.511 0.529 0.519

Thematic Roles BERTbase 0.758 0.890 0.818
Identification NCBI BERT 0.778 0.879 0.826

BioBERT 0.807 0.891 0.847

Table 2: Model comparision in development set with
different pre-trained models

development set results. We found that even pre-
trained models in the general field are superior to
the classic BiLSTM+CRF tagging method (Lam-
ple et al., 2016). From the last three lines of each
task, we can see that different pre-trained models
have different results under the same experimental
settings. It proves the effectiveness of pre-training
tasks in specific domain. During the fine-tuning
process of task 1, we found that the joint extrac-
tion of entities with other datasets improved our
final results.

Label P R F1
CPA 0.39 0.27 0.32
Disease 0.57 0.57 0.57
Enzyme 0.75 0.16 0.26
Gene 0.71 0.64 0.68
Interaction 0.50 0.29 0.36
MPA 0.46 0.47 0.47
NegReg 0.71 0.62 0.66
Pathway 0.83 0.36 0.50
PosReg 0.64 0.61 0.63
Protein 0.32 0.17 0.22
Reg 0.75 0.50 0.60
Var 0.64 0.63 0.64
ALL 0.63 0.56 0.60

Table 3: Precision (P), Recall (R) and F1 scores in test
set of Task 1.

The results for task 1 is summarized in Table 3.
The difference in the performance in the different
labels is partly sourced by the imbalance distribu-
tion of trigger labels in the corpus. Our method
ends up first place on the leaderboard and sub-
stantially improving upon previous state-of-the-art
methods. The results for task 2 is summarized in
Table 4. Our method ends up second place on the
leaderboard. Our method has a large discrepancy
between the development set performance and test
set performance. It may be the test set is quite
different from our constructed data set. This is

also related to how we use recognized entities,
sentence- or document-level combinations.

Label P R F1
CauseOf 0.60 0.26 0.36
ThemeOf 0.63 0.11 0.19
ALL 0.61 0.16 0.25

Table 4: Precision (P), Recall (R) and F1 scores in test
set of Task 2.

4.4 Ablation Study

As shown in Table 5, we found that adding a layer
of BiLSTM behind the BERT encoder did not im-
prove the performance of the model, resulting in a
0.04 loss of F1. For NER tasks, external features
are effective for the model’s performance. So we
verified the efficacy of word shape and POS tags
on task 1, and we found that adding this informa-
tion can increase the F1 value of our model by
more than 0.01.

Model P R F1
BioBERT 0.511 0.529 0.519
+ BiLSTM 0.502 0.448 0.473
- Word shape 0.539 0.453 0.492
- POS tags 0.518 0.482 0.499

Table 5: Ablation study of Task 1 in development set.

5 Conclusion

In this paper, we have explored the value of inte-
grating pre-trained biomedical language represen-
tation models into a pipe of information extraction
methods for collection of mutation-disease knowl-
edge from PubMed. In particular, we investigate
the use of three pre-trained models, BERTbase,
NCBI BERT and BioBERT, for fine-tuning on the
new task and reducing the risk of overfitting. By
considering the relationship between different data
sets, we achieve better results. Experimental re-
sults on a benchmark annotation of genes with
active mutation-centric function changes corpus
show that pre-trained representations help improve
baseline to attain state-of-the-art performance. In
future work, we would like to train the entity
recognition and relation extraction tasks simulta-
neously, reducing the cascading error caused by
the pipeline model in biomedical information ex-
traction.
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Abstract 

Understanding the pathogenesis of genetic 
diseases through different gene activities 
and their relations to relevant diseases is 
important for new drug discovery and drug 
repositioning. In this paper, we present a 
joint deep learning model in a multi-task 
learning paradigm for gene mutation-
disease knowledge extraction,  
DeepGeneMD, which adapts the state-of-
the-art hierarchical multi-task learning 
framework for joint inference on named 
entity recognition (NER) and relation 
extraction (RE) in the context of the AGAC 
(Active Gene Annotation Corpus) track at 
2019 BioNLP Open Shared Tasks 
(BioNLP-OST). It simultaneously extracts 
gene mutation related activities, diseases, 
and their relations from the published 
scientific literature. In DeepGeneMD, we 
explore the task decomposition to create 
auxiliary subtasks so that more interactions 
between different learning subtasks can be 
leveraged in model training. Our model 
achieves the average F1 score of 0.45 on 
recognizing gene activities and disease 
entities, ranking 2nd in the AGAC NER 
task; and the average F1 score of 0.35 on 
extracting relations, ranking 1st in the 
AGAC RE task.   

1 Introduction 

Drug repositioning has been regarded as a highly 
promising strategy for translational medicine 
(Wang and Zhang, 2013). One pharmacological 
hypothesis is that if a disease is caused by a 
mutated gene with gain of function (GOF) or loss 
of function (LOF), an antagonist/agonist chemical 
targeting the GOF/LOF mutated gene is a drug 
                                                             
* Correspondence: feifan.liu@umassmed.edu 
† Two authors contribute equally.   

candidate for this disease (Wang and Zhang, 
2013). Therefore, identifying and understanding 
the pathogenesis of genetic diseases as well as 
drug actions becomes an essential task. Among 
ways to test the above drug discovery hypothesis, 
computational methods through data mining (i.e. 
in silico) attract increasing attention over 
experimental methods (i.e. in vivo or in vitro) as 
the former ones are more cost-effective and time-
efficient (Gachloo et al., 2019).  
    PubMed contains over 28 million biomedical 
article abstracts (Fiorini et al., 2018) and continues 
to grow rapidly, providing a valuable data resource 
to mine and extract this type of knowledge in a 
large scale. The 2019 AGAC shared tasks (Wang 
et al., 2018) are organized to facilitate efforts of 
extracting gene mutation-disease knowledge. In 
this study, we will focus on task 1 and task 2. Task 
1 is a NER task where 12 concept entities 
representing different gene activities (e.g. 
variation, interaction, cell physiological activity, 
gene, protein, etc.), diseases, and regulatory 
actions (e.g. regulation, positive_regulation, 
negative_regulation, etc.) will be identified from 
free-text PubMed abstracts, while Task 2 is a RE 
task where “ThemeOf” and “CauseOf” relations 
will be extracted among entities recognized in 
Task 1. For instance, in the sentence “The 
[mutation]Variation resulted in a severe 
[loss]Negative_Regulation of [DAX1]Gene [repressor 
activity]Molecular_Physiological_Activity.”, there are three 
relations among 4 entities: (1) CauseOf: 
“mutation” ® “loss”; (2) ThemeOf: “repressor 
activity” ® “loss”; (3): ThemeOf: “DAX1” ® 
“repressor activity”. Detailed definitions of each 
entity and relation may be found in (Wang et al., 
2018).   
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Recently, text mining approaches have been 
developed to assist in the discovery of novel 
associations between existing drugs and new 
indications for hypothesis generation in 
connection with drug repurposing (Andronis et al., 
2011). The emergence of deep learning 
approaches in natural language processing (NLP) 
propelled text-mining based drug knowledge 
discovery research, especially on the NER task 
(Gachloo et al., 2019). Effectively training deep 
neural networks, however, typically requires a 
large number of labeled samples, which are often 
prohibitively expensive to obtain in real-life 
applications (Zhang and Yang, 2018). As a popular 
solution to this data insufficient problem, Multi-
Task Learning (MTL) (Caruana, 1997) has been 
widely applied and has led to successes across all 
applications of machine learning, including speech 
recognition (Deng et al., 2013), NLP (Collobert 
and Weston, 2008), computer vision (Ren et al., 
2015) and drug discovery (Ramsundar et al., 
2015).    

In this paper, we proposed DeepGeneMD, a 
joint deep learning approach in a multi-task 
learning setting for mining gene mutation-disease 
knowledge from the biomedical literature. Inspired 
by the state-of-the-art hierarchical multi-task 
learning (HMTL) approaches (Sanh et al., 2018), 
we further explore how to create additional 
subtasks interacting with each other in a 
hierarchical manner. To this end, we take into 
account the task’s inherent compositionality and 
decompose the NER task into three subtasks. 
Compared with HMTL, this creates additional 
levels of learning hierarchy between NER 
decomposed subtasks and original NER. The 
hypothesis is that through task decomposition, we 
can enrich the interactions among the semantic 
representations learned at each level of the 
hierarchy, which enables DeepGeneMD to 
incorporate diverse signals from related tasks to 
learn more effective representations for each task 
with optimal generalizability. The contributions of 
this study are: 

(1) Propose DeepGeneMD to extend 
hierarchical multi-task learning through task 
decomposition and enriched inter-task inter-
actions. 

(2) Apply advanced word representations to 
initialize semantic representations of input 
sentences. 

(3) Demonstrate the effectiveness of the 
proposed approach given limited annotated data. 

2 Hierarchical Multi-Task Learning 

The hierarchical model trained in the multi-task 
setup (Hierarchical Multi-Task Learning, HMTL) 
introduces a hierarchical inductive bias between 
different tasks by supervising low-level tasks at the 
bottom layers of the model architecture and 
supervising higher-level tasks at higher layers 
(Hashimoto et al., 2017; Sanh et al., 2018). The 
assumption is that lower-level tasks require less 
linguistic understanding than higher-level complex 
tasks while learning different levels of linguistic 
properties in the hierarchical end-to-end fashion 
enables the higher-level tasks to leverage the 
shared representation of the low-level tasks.  

We formulated the 2019 AGAC task 1 and 2 into 
a hierarchical multi-task learning problem, which 
can be addressed using the HMTL architecture 
similar to (Sanh et al., 2018). As shown in Figure 
1, the task 1 (NER, recognize gene activity 
concepts and disease entities) is considered as a 
lower-level task while task 2 (RE, extract 
relationship among concept/entity pairs) as a 
higher-level task, and the dashed lines indicate 
interactions among tasks. For a given input 
sentence, the embedding layer concatenates the 
Glove word-level embedding (Pennington et al., 
2014), contextual ELMo (Peters et al., 2018) word 
embeddings and convolutional neural network 
(CNN) based Character-level word embeddings 
(Chiu and Nichols, 2016) as each word’s expanded 
embeddings (𝑒"). The encoder of Task 1 takes the 
word embedding through multilayer BiLSTM 
(Lample et al., 2016) and outputs an encoded 
sequence (𝑒$%&)  into the final Conditional 
Random Field (CRF) layer for inferring the NER 
output. The encoder of Task 2 takes as the input the 

 

Figure 1: The HMTL (Sanh et al.) architecture for 
AGAC tasks 
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concatenated word embedding, i.e. 𝑒" , with the 
learned vector representation, i.e. 𝑒$%& , from the 
encoder of Task 1 into a linear scorer (Sanh et al., 
2018) for RE inferences. Note that the two tasks 
don’t depend on each other’s output explicitly, but 
RE does use the intermediate encoder 
representation from NER to make better decisions.  

3 The DeepGeneMD System 

Most existing efforts in HMTL approaches are 
limited to existing tasks of interest, however, 
auxiliary tasks have been shown helpful in multi-
task learning (Liebel and Körner, 2018; Niu et al., 
2019). Motivated by this idea, we introduced the 
DeepGeneMD model to create auxiliary subtasks 
into the HMTL structure to further explore the 
potential of HMTL approaches. Compared with 
previous work, the following summarizes the 
differences in our model: 
 
• Upgrade the word representations using state-

of-the-art counterparts as well as customized 
ones trained on domain data. 

• Integrate task decomposition to enable more 
interactions in the HMTL learning structure. 

• Design the hierarchical linking structure to 
accommodate decomposed subtasks, as 
shown in Figure 2. 

3.1 Word Embeddings 
Although Glove is trained on a very large corpus, 
it may still lack domain coverage when processing 
medical texts. To overcome this challenge, we 
utilized in our model a customized word 
embedding (Jagannatha and Yu, 2016) trained 
through skip-gram setting using all PubMed open 
access articles, 99,700 EHR notes, and English 
Wikipedia articles in 2015. This embedding 
contains 3 billion tokens and the embedding 
dimension is 200.  

BERT (Bidirectional Encoder Representations 
from Transformers) builds upon recent work in 
pre-training contextual representations, and have 
demonstrated new state-of-the-art performance 
when applied on various NLP tasks (Devlin et al., 
2018), compared with previous models, e.g. ELMo 
(Peters et al., 2018). Therefore, we exploited the 
BERT representations in the DeepGeneMD model 
to provide contextual representations of each word 
in the input sentence. Following  (Sanh et al., 2018), 
we also used character CNN word embeddings to 
accommodate the out of vocabulary (OOV) 
problems. As shown in Figure 2, the input of our 
model will be mapped to a concatenated vector of 
customized embedding, BERT, and character CNN 
embeddings.   

3.2 Task Decomposition 
The rationale of task decomposition is two-folds. 
First, it could create auxiliary subtasks to be 
engaged in the HMTL structure, and the 
supervision on those auxiliary tasks is expected to 
provide additional information through sharing 
their learned language representations. Second, 
decomposed subtasks reduce the complexity 
compared with the original task, holding the 
potential of learning from a unique perspective. In 
this study, we applied the task decomposition on 
the AGAC NER task in which there are 12 types of 
entities to be identified, such that each subtask 
recognizes a subset of entity types. We empirically 
set the number of subtasks as 3 based on the 
hypothesis that too many subtasks may introduce 
noise during model training.  

To determine which entity goes to which 
subtask, we calculated a statistical measure, 
roleRatio, for each entity as in equation (1) which 
is expected to capture statistical characteristics 
regarding the role each entity plays when relating 
to other entities.  

𝑟𝑜𝑙𝑒𝑅𝑎𝑡𝑖𝑜 = 𝐹𝑟𝑒𝑞234_6378/𝐹𝑟𝑒𝑞234_:7;4     (1) 

 

Figure 2: The architecture of the proposed 
DeepGeneMD model 
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Here “Freqrel_head” and “Freqrel_tail” indicate 
respectively how many times the entity serves as 
the head and tail of a participating relationship in 
the training data. Each relation starts from the head 
entity and points to the tail entity. Based on the 
value of roleRatio, we split all the entities into 3 
subgroups, each containing 4 entity types:  

Subgroup Entities 

A 
PosReg (positive regulation), NegReg 
(negative regulation), Reg (regulation), 
Interaction 

B Gene, Pathway, Protein, Disease 

C 
Enzyme, Var (variation), CPA (cell 
physiological activity), MPA 
(Molecular physiological activity) 

Table 1: Subgroups of 12 Entities for Task 
Decomposition  

In subgroup A, the roleRatio values of all the 
entities are all less than 1 indicating they are more 
likely to be the tail entity of a relation. For entities 
in subgroup B and C, we split them in a stratified 
way, each of them containing both high and low 
roleRatio entities, e.g. Gene from subgroup B and 
Enzyme from subgroup C have the largest 
roleRatio of 27 and 14.5 respectively.  

The corresponding subtasks to identify those 
subgroups are denoted as NER-A, NER-B, and 
NER-C respectively, and the original NER for 12 
entities as NER.  

3.3 Interaction Linking Structure 
There are different ways to link different subtasks 
in the HMTL structure. In our model, we designed 
the structure as shown in Figure 2. The dashed 
lines indicate interaction connections between 
tasks. The task pointed by the arrow is on the 
higher-level of HMTL layer, which has access to 
the learned language representations from all the 
other tasks pointing to it. For instance, the outputs 
of BiLSTM encoders for NER-A, NER-B, and 
NER-C are concatenated as the part of the input of 
another two higher-level tasks: (1) NER for 12 
entities (Task 1) (2) RE for two relations (Task 2). 
In addition, as NER-A, NER-B and NER-C can 
also produce outputs for Task 1, we can combine 
their prediction result in a simple ensemble 
manner, which may lead to better performance. 

4 Experiments 

4.1 Preprocessing 
We randomly selected 25 (10%) documents from 
the training data as the validation set. The model is 

trained on the remaining 225 documents and the 
performance evaluated on the validation set is used 
for model tuning. All the entities are labeled 
through BIOUL (Begin, Inside, Outside, Unit, Last) 
labeling schema.  

4.2 Hyperparameters and Implementation 
Details 

We applied the same hyperparameter setting used 
in (Sanh et al., 2018) except the following 
adjustment based on validation performance: (1) 
we increased the dropout rate from 0.2 to 0.25 for 
NER related tasks; (2) We increased the dropout 
rate from 0.2 to 0.3 for the RE task.  

We used various batch sizes (4, 8, 16, 32 and 64) 
for the RE task when training the DeepGeneMD 
system. The resulting five settings are denoted as 
DeepGeneMD-4, DeepGeneMD-8, DeepGene-
MD-16, DeepGeneMD-32, and DeepGeneMD-64. 
We also trained an HMTL Model using the 
structure in Figure 1 but with our new word 
representations, denoted as HMTL-New.  

We adopted the same training method called 
proportional-sampling as in (Sanh et al., 2018): 
after each parameter update, a task is randomly 
selected and a batch of the dataset attached to this 
task is also randomly sampled. The probability of 
sampling a task is proportional to the relative size 
of each dataset compared to the size of all the 
datasets. 

4.3 Results 
As mentioned earlier, NER results can be taken 
from different subtask module, and RE results can 
be taken from different training settings with 
different batch size. We tried different merging 
strategies when submitting results to the 
organization committee. In total, we submitted 
three runs: 

• Run1: DeepGeneMD-4 for task 1;  
HMTL-New for task 2. 

• Run2: Merged results from original NER 
task in DeepGeneMD-4 and three 
subtasks (NER-A, NER-B, NER-C) in 
DeepGeneMD-16 for task 1; 
DeepGeneMD-8 for task 2.  

• Run3: Merged results from original NER 
task in DeepGeneMD-4, NER-A subtask 
in DeepGeneMD-16, NER-B subtask in 
DeepGeneMD-32 and NER-C subtask in 
DeepGeneMD-64 for task 1; 
DeepGeneMD-8 for task 2.  

When merging results from different task 
outputs, conflicts are empirically handled by 
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prioritizing outputs from three subtasks (NER-A, 
NER-B, NER-C) based on the assumption that 
they are tailored specifically to a subset of entities.  

The overall performance of our three submitted 
runs is shown in Table 2. It is observed that Run 2 
achieved the best F1 score of 0.35 for RE and Run 
1 yielded the best F1 score of 0.45 for NER. It 
suggests that DeepGeneMD-8 benefits from task 
decomposition and more inter-task interactions for 
RE tasks. More experiments are needed to analyze 
each component’s contribution to the whole 
learning structure.  

The entity-level performance for our best-
performing NER run (Run 1) is presented in Table 
3. The performance on each entity type varies, and 
most of them achieve higher recall (e.g. 0.77 for 
Var and 0.7 for Gene) except for Protein (recall of 
0.08). There are three types of entities which the 
system fails to recognize: Pathway, Enzyme, 
Interaction. It may be due to the lack of training 
instances for those entities, which is demonstrated 
in Table 4. Those three entities have less than 30 
examples (less than 1%) in training, compared with 
more than 200 examples in most entity types. It 
also explains the low recall for protein as it has less 
than 100 (2.77%) training instances.   

Table 5 shows the detailed performance of the 
best-performing run of our system on the relation 
extraction task. The system achieved similar recall 
value (~0.31-0.32) on both relations, but the much 
higher precision score for the "CauseOf” relation 
(0.54) than “ThemeOf” (0.35).  

5 Error Analysis 

We conducted some error analysis on the 
validation dataset and some examples are shown 
below.  

• False Negatives 

[Loss of function]Var in [ROBO1]Gene is 
[associated]Reg with [tetralogy of 
Fallot]Disease and septal defects. 

In this sentence, our system only 
recognized “ROBO1” as Gene but failed 
on other entities. It could be due to the 
limited training data restricting the 
learning capacity of the model. 

• False Positives 

In 2006, mutations in progranulin gene 
(GRN) that cause haploinsufficiency 
were found in familial cases of 
frontotemporal dementia (FTD). 

Submission Precision Recall F1 

NER 
Run1 0.36 0.59 0.45 
Run2 0.33 0.64 0.44 
Run3 0.34 0.62 0.44 

RE 
Run1 0.47 0.25 0.33 
Run2 0.4 0.31 0.35 
Run3 0.4 0.3 0.34 

Table 2:  Official Submission Results in AGAC 

 
Entity Name Precision Recall F1 
Var 0.38 0.77 0.5 
Pathway - 0 0 
MPA 0.19 0.48 0.27 
CPA 0.12 0.14 0.13 
Reg 0.63 0.46 0.53 
PosReg 0.35 0.65 0.46 
NegReg 0.41 0.66 0.5 
Disease 0.45 0.57 0.5 
Gene 0.33 0.7 0.45 
Protein 0.42 0.08 0.14 
Enzyme - 0 0 
Interaction - 0 0 
Overall 0.36 0.59 0.45 

Table 3:  Entity-level NER Performance of Run1 

 

 

Relation Precision Recall F1 
CauseOf 0.54 0.32 0.4 
ThemeOf 0.35 0.31 0.33 
Overall 0.4 0.31 0.35 

Table 5:  Relation-level RE Performance of Run2  

 

 Entity Name  Count Percentage 
Var 733 22.07% 
Gene 526 15.84% 
MPA 417 12.56% 
NegReg 370 11.14% 
Disease 334 10.06% 
PosReg 327 9.85% 
CPA 227 6.84% 
Reg 215 6.47% 
Protein 92 2.77% 
Enzyme 29 0.87% 
Interaction 27 0.81% 
Pathway 24 0.72% 
Overall 3321 100% 

Table 4: Entity Statistics of Training Data 
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In this case, our model incorrectly 
recognized “haploinsufficiency” as Var 
which is not annotated in the ground-
truth. Here the contextual language (e.g. 
GRN, cause) confuses the system.  

• Potential Annotation Error 

Gain-of-function mutations in PDR1, … 

For this example, the system identified 
“mutations” as Var, and “PDR1” as Gene 
which seems reasonable, but those are not 
annotated in the ground-truth.  

 

6 Conclusion and Discussion 

We developed the DeepGeneMD system in the 
hierarchical multi-task learning setup and applied 
it to extract gene mutation-disease knowledge 
from PubMed biomedical literature. By exploring 
task decomposition and new word embeddings, the 
resulting model demonstrated promising results, 
ranking 2nd in the NER Task and 1st in the RE Task 
among all participant teams. The idea of task 
decomposition and creating additional interactions 
among different subtasks can also apply to other 
applications in the hierarchical multi-task learning 
setting. 

There are several limitations to this study. First, 
we applied a heuristic approach based on roleRatio 
value for the task decomposition, which is 
relatively ad-hoc and may not be optimal. Second, 
there are different structure candidates to engage 
different subtasks in an HMTL setting, and we 
simply made an empirical design for the current 
DeepGeneMD system, which may have limited the 
potential of mutual benefits of multiple learning 
tasks. Third, when merging results from different 
components, we assume that decomposed subtasks 
may have learned better knowledge regarding the 
corresponding subset of entities, but that 
assumption may not hold. 

For future work, we plan to tune the hyper-
parameters extensively and investigate whether 
applying different interaction linking structures 
among subtasks and leveraging various ways of 
task decomposition can further improve the 
system’s performance. In addition, we will apply 
our framework on various datasets from different 
domains to evaluate its generalizability and 
robustness.  
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Abstract

This paper presents our participation in the
AGAC Track from the 2019 BioNLP Open
Shared Tasks. We provide a solution for Task
3, which aims to extract “gene – function
change – disease” triples, where “gene” and
“disease” are mentions of particular genes and
diseases respectively and “function change” is
one of four pre-defined relationship types. Our
system extends BERT (Devlin et al., 2018), a
state-of-the-art language model, which learns
contextual language representations from a
large unlabelled corpus and whose parameters
can be fine-tuned to solve specific tasks with
minimal additional architecture. We encode
the pair of mentions and their textual context
as two consecutive sequences in BERT, sepa-
rated by a special symbol. We then use a single
linear layer to classify their relationship into
five classes (four pre-defined, as well as ‘no re-
lation’). Despite considerable class imbalance,
our system significantly outperforms a random
baseline while relying on an extremely simple
setup with no specially engineered features.

1 Introduction

Bidirectional Encoder Representations from
Transformers (BERT) is a language representation
model that has recently advanced the state of the
art in a wide range of NLP tasks (e.g. natural
language inference, question answering, sentence
classification etc.) (Devlin et al., 2018). This
is due to its capacity for learning lexical and
syntactic aspects of language (Clark et al., 2019;
Goldberg, 2019) using large unlabelled corpora.
BERT achieves much of its expressive power us-
ing a bi-directional Transformer encoder (Vaswani
et al., 2017) and a ‘predict the missing word”
training objective based on Cloze tasks (Taylor,
1953). In the biomedical domain, BioBERT (Lee
et al., 2019) and SciBERT (Beltagy et al., 2019)

learn more domain-specific language representa-
tions. The former uses the pre-trained BERT-Base
model and further trains it with biomedical text
(Pubmed1 abstracts and Pubmed Central2 full-text
articles). The latter trains a BERT model from
scratch on a large corpus of scientific text (over
80% biomedical) and learns a domain-specific
vocabulary using WordPiece tokenisation (Wu
et al., 2016).

BERT has been adapted for use in relation ex-
traction as a basis for supervised, unsupervised
and few-shot learning models (Soares et al., 2019).
A recent model, Transformer for Relation Extrac-
tion (TRE) (Alt et al., 2019) uses an architecture
similar to that of BERT by extending the Ope-
nAI Generative Pre-trained Transformer (Radford
et al., 2018), in order to perform relation classi-
fication for entity mention pairs. In contrast to
BERT, TRE uses a next word prediction objec-
tive. The model encodes the pairs and their con-
text in a sequence separated by a special symbol.
In our model, we use a similar way of encod-
ing gene-disease pairs and their textual context in
order to predict their ‘function change’ relation-
ship, but in contrast to TRE, we leverage SciB-
ERT’s domain-specific vocabulary and represen-
tations learnt from scientific text.

2 Task and data

Task description Task 3 of the AGAC track
of BioNLP-OST 2019 involves Pubmed abstract-
level relation extraction of gene-disease relations.
The relations of interest concern the function
change of the gene which affects the disease. The
four relation types are:

• Loss of Function (LOF): a gene undergoes a
mutation leading to a loss of function which

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ncbi.nlm.nih.gov/pmc/
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then affects the disease.

• Gain of Function (GOF): a gene mutation
causes a gain of function.

• Regulation (REG): the function change is ei-
ther neutral or unknown.

• Complex (COM): the function change is too
complex to be described as any of the former
relations.

To illustrate these relation types more con-
cretely, we repeat the examples given on the task
webpage. The following sentence depicts the Gain
of Function relation between SHP-2 and juvenile
myelomonocytic leukemia: ‘Mutations in SHP-
2 phosphatase that cause hyperactivation of its
catalytic activity have been identified in human
leukemias, particularly juvenile myelomonocytic
leukemia.’ In this case, ‘hyperactivation of cat-
alytic activity’ indicates Gain of Function.

An example of the Regulation relation, on the
other hand, would be the following sentence:
‘Lynch syndrome (LS) caused by mutations in
DNA mismatch repair genes MLH1.’. The phrase
‘caused by’ demonstrates an association between
MLH1 and Lynch syndrome but no information is
given on the specific nature of the mechanism re-
lating them.

Annotated corpus The training data provided
consist of 250 PubMed abstracts with annotations
of the form ‘Gene; Function change; Disease’
for each abstract. For test data, a further 1000
PubMed abstracts have been provided (without an-
notations).

Train/dev split Given that no development set
had been explicitly provided, we divided the
PubMed ids of the original training set into a
smaller training and a development set using an
80/20 split, in order to be able to prevent over-
fitting and perform early stopping. We assigned
Pubmed ids to each one of the two sets in the
prespecified proportions randomly but choosing a
random seed that ensures a small KL divergence
between the train and dev class distributions. In
the rest of the paper, we use the terms ‘train set’
or ‘training data’ to refer to 80% of the original
annotated data that we use to train our model.

Generation of negative labels The training
data contain some Pubmed ids that have no

relation annotations whatsoever (either from the
four pre-defined classes or explicitly negative).
However, negative examples are crucial for train-
ing a model for such a task given that the majority
of gene-disease pair mentions that are found in
a randomly selected abstract are not expected to
be related with a function change relationship.
To generate pairs of negative mentions, we used
a widely available Named Entity Recognition
(NER) and Entity Linking system (see Section
3) to find mentions of genes and diseases in
the abstracts. An entity mention predicted by
NER was aligned to a labelled entity mention
in the training data if they are both grounded
to the same identifier. A pair was aligned if
both its entity mentions (gene and disease) could
be aligned. In less than 20% of the pairs we
performed manual alignment in order to improve
the training signal. The dev set, however, was kept
intact to ensure strict evaluation. The resulting
distribution of relations is highly skewed towards
the negative labels (‘No relation’); the training set
has the following distribution (No relation:
0.939, GOF: 0.017, LOF: 0.03,
REG: 0.012, COM: 0.0007) while for the
dev set, it is (No relation: 0.935,
LOF: 0.027, GOF: 0.019, REG:
0.016, COM: 0.003). ‘COM‘ is the
least represented relationship with only two
examples in the train set and two in the dev set.

3 Method

This task can be decomposed into an NER step
to obtain all gene-disease mention pairs in an ab-
stract followed by a relation extraction (RE) step
to predict the relation type for each mention pair
found.

For NER, we use Pubtator (Wei et al., 2013) to
recognise spans tagged as genes or diseases. The
main focus of our paper is performing relation ex-
traction given NER labels. The reported results,
however, don’t assume gold NER labels.

Relation Extraction Model Our model is a
simple extension of SciBERT (Beltagy et al.,
2019) for use in relation extraction, inspired
by the encoding of mention pairs and textual
context used in (Alt et al., 2019). SciBERT,
which utilises the same model architecture as
BERT-base, consists of 12 stacked transformer
encoders each with 12 attention heads. It is
pre-trained using two objectives: Masked lan-

85



guage modelling (Cloze task (Taylor, 1953))
and next sentence prediction. When trained,
it is provided with sentence pairs represented
as follows: [CLS] This is sentence 1
[SEP] This is sentence 2 [SEP]. The
[SEP] token indicates when each sequence ends.
The final hidden state of the [CLS] token is fed
into a classifier to predict whether the two sen-
tences appear sequentially in the corpus. As a
result, the final hidden state of the [CLS] token
learns a representation of the relationship between
the two input sentences.

We adapt SciBERT for relation extraction
by fine-tuning the representation learnt by
the [CLS] hidden state. We encode each
pair of gene-disease mentions along with the
corresponding PubMed abstract in the fol-
lowing format: [CLS] gene-mention
disease-mention [SEP] This is the
PubMed abstract [SEP]. This input data
is fed into SciBERT and the final hidden state
of its [CLS] token is passed into a single linear
layer to predict the relation type expressed in that
abstract for that gene-disease mention pair. The
[CLS] hidden state which was pre-trained to
learn a representation of the relationship between
two sentences is now fine-tuned to learn which
relationship class exists between a gene-disease
pair (first ‘sentence’) and a PubMed abstract
(second ‘sentence’). Our encoding is similar to
the approach proposed in (Alt et al., 2019). This
adaptation, while simple, is powerful because
it is completely agnostic to domain-specific
idiosyncrasies; for example, it can be used for any
entity types and relation labels. Further, as it has
already been pre-trained on a large unstructured
corpus, it can be fine-tuned using a considerably
smaller dataset.

Model training We use negative log likelihood
of the true labels as a loss function. We train for
at most 40 epochs with early stopping based on
the dev set performance. We used two early stop-
ping criteria alternatives: the macro-averaged F1-
score over all labels and over just the positive la-
bels. Training stops if the score used as stopping
criterion does not increase on the dev set for 10
consecutive epochs or the maximum number of
epochs has been reached. The batch size is chosen
to be 32 and the maximum sequence length of each
input sequence is set to be 350 Wordpiece (sub-
word) tokens. This is due to memory constraints.

P R F1 Supp.
No rel 0.934 0.372 0.532 627
REG 0.174 0.087 0.116 11
COM 0 0 0 2
LOF 0.076 0.307 0.122 19
GOF 0.022 0.577 0.042 12
Micro-all 0.368 0.368 0.368
Macro-all 0.241 0.268 0.162
Micro-pos 0.033 0.322 0.060
Macro-pos 0.068 0.243 0.070

Table 1: Model results on the four pre-defined classes,
as well as ‘No rel’ (the negative class) when the macro-
averaged F1-score (over the positive labels only) is
used as our early stopping criterion. P, R and F1
stand for Precision, Recall and F1-score respectively;
support = true positives + false negatives. Micro-all
and Macro-all are the micro- and macro-averaged met-
rics for all classes while Micro-pos and Macro-pos are
the micro- and macro-averaged metrics for only the
positive classes (i.e. four classes excluding ‘No rel’).

For each batch, we used down-sampling to ensure
that each class was represented equally on aver-
age. When training, we observed that our results
were very sensitive to the classifier layer weight
initialisations. This same behaviour was reported
in the original BERT paper (Devlin et al., 2018).
To address this, we performed 20 random restarts
and selected the model that performs the best on
the dev set (for each of the two stopping criteria).

4 Experiments and results

We report the standard classification metrics on
the dev set: precision (P), recall (R), and F1-score
(F1). For each one of these metrics, we include
the macro-averaged values, the micro-averaged
values i) over all relation labels and ii) restricted to
just the positive ones. We also report the per-class
values (in a one-vs-all fashion). The best results
are shown for both of the early stopping criteria
used (see Tables 1 and 2).

Random sampling-based baseline We com-
pare our model performance against a simple base-
line that predicts the class label by sampling from
the categorical distribution of labels as calculated
from the training set. Given the strongly skewed
class distribution (which has low entropy of 0.46
bits, compared to 2.32 bits for a 5-class uniform
distribution, and is therefore highly predictable),
this is a strong baseline, especially for metrics re-
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P R F1 Supp.
No rel 0.937 0.761 0.840 627
REG 0 0 0 11
COM 0 0 0 2
LOF 0.214 0.040 0.067 19
GOF 0.038 0.429 0.070 12
Micro-all 0.722 0.722 0.722
Macro-all 0.238 0.246 0.196
Micro-pos 0.037 0.141 0.059
Macro-pos 0.063 0.117 0.034

Table 2: Model results on the four pre-defined classes,
as well as ‘No rel’ (the negative class) when the macro-
averaged F1-score (over all labels) is used as our early
stopping criterion. All terms used here as defined in
Table 1.

P R F1 Supp.
No rel 0.934 0.92 0.927 627
REG 0 0 0 11
COM 0 0 0 2
LOF 0.043 0.053 0.048 19
GOF 0 0 0 12
Micro-all 0.862 0.863 0.863
Macro-all 0.195 0.195 0.195
Micro-pos 0.019 0.023 0.021
Macro-pos 0.011 0.013 0.012

Table 3: Baseline results on the four pre-defined
classes, as well as ‘No rel’ (the negative class). All
terms used here as defined in Table 1.

ported on frequent classes. Table 3 summarises the
results, which have been averaged over 1,000 ran-
dom sampling experiments. As expected, all met-
rics can achieve high scores on the negative (and
by far the largest) class, illustrating how mislead-
ing micro-averaging with large classes can be as
an indicator of model performance. Some classes
have zero scores, which is unsurprising given their
very low support in the dev set.

Discussion For both early stopping criteria men-
tioned above, our model significantly outper-
formed the random baseline on macro-averaged
metrics and per-class metrics. The model obtained
relatively good performance on the positive labels
especially when taking into account the consid-
erable class imbalance. When optimised to the
macro-averaged F1-score over just the positive la-
bels, the model performance was unsurprisingly
slightly superior over the positive labels compared

to when optimised using the macro-averaged F1-
score over all labels. However, this came at the
expense of a loss in recall on the negative labels.
To generate predictions on the test set, we chose
the model optimised using the macro-averaged F1-
score over just the positive labels.

Pubtator NER performance The performance
of our relation extraction model is dependent on
the results of the named entity recognition tool.
Here we briefly summarise the performance of the
Pubtator NER tool on the dev set. There are 44
entity pairs with positive labels in the dev set. Of
these 44, Pubtator correctly identified 24 of them
with an exact string match. For the remaining 20,
14 were identified but it was not an exact string
match, and for the other 6, at least one of the en-
tities was not found. We were fairly strict for our
dev set evaluation, and so unless there was a per-
fect string match, the entities were not considered
aligned to the labelled data. This would have de-
graded our performance metrics.

5 Related work

Many biomedical relation extraction systems have
often relied hand-crafted linguistic features (Gu
et al., 2016; Peng et al., 2016) but recently also
convolutional neural networks (Nguyen and Ver-
spoor, 2018; Choi, 2018), LSTM (Li et al., 2017;
Sahu and Anand, 2018) or a combination of ma-
chine learning models and neural-network-based
encoders (Zhang et al., 2018; Peng et al., 2018).
A recent paper (Verga et al., 2018) achieves state-
of-the-art results on biomedical relation classifi-
cation for chemically-induced diseases (CDR (Li
et al., 2016)) and ChemProt (CPR (Krallinger M.,
2017)), by using a Transformer encoder (Vaswani
et al., 2017) and end-to-end Named Entity Recog-
nition and relation extraction, without, however,
leveraging transformer-based language model pre-
training. In the general domain, (Pawar et al.,
2017) and (Smirnova and Cudr-Mauroux, 2019)
provide a comprehensive review of different rela-
tion extraction paradigms and methods that have
been developed to date.

6 Conclusions and further work

We have presented a system that extracts mentions
of biomedical entities and classifies them into one
of four function change relations (or absence of a
relation). Our system leverages widely available
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language representations pre-trained on biomedi-
cal data and utilises minimal task-specific archi-
tecture, while not relying on specially engineered
linguistic features. Despite the model simplicity
and the class imbalance in the data (even within
the four non-negative classes), our model is able
to significantly outperform the random baseline.

Our model can be improved by using more re-
cent language modeling methods, such as XLNet
(Yang et al., 2019), and different ways of encoding
the mention pairs and textual context (e.g. by us-
ing not only the hidden state of the [CLS] token
but also the hidden states of the entity mentions
as input to the relationship classifier). Different
methods can be explored for addressing class im-
balance (e.g. a cost-sensitive classifier, data aug-
mentation etc). Further, an end-to-end Named En-
tity Recognition and Relation Extraction architec-
ture can be devised. It would also be interesting
to compare our model against more competitive
baselines.
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Abstract

This paper describes the Named Entity Recog-
nition system of the Institute for Artificial In-
telligence “Mihai Drăgănescu” of the Roma-
nian Academy (RACAI for short). Our best
F1 score of 0.84984 was achieved using an
ensemble of two systems: a gazetteer-based
baseline and a RNN-based NER system, de-
veloped specially for PharmaCoNER 2019.
We will describe the individual systems and
the ensemble algorithm, compare the final sys-
tem to the current state of the art, as well as
discuss our results with respect to the quality
of the training data and its annotation strategy.
The resulting NER system is language inde-
pendent, provided that language-dependent re-
sources and preprocessing tools exist, such as
tokenizers and POS taggers.

1 Introduction

Named entity recognition (NER) efforts present
two challenges: entity detection, identifying the
portion of text associated with an entity, and dis-
ambiguation, assigning the identified text to a spe-
cific entity class. At the Institute for Artificial
Intelligence “Mihai Drăgănescu” of the Roma-
nian Academy, one of the research goals focuses
on constructing an improved named entity recog-
nition system for Romanian language, including
biomedical entities. In this context, the cur-
rent PharmaCoNER 2019 competition (Gonzalez-
Agirre et al., 2019) offered the opportunity to
reconsider the existing Romanian NER system
which provided the grounds for developing new
approaches that are language-independent and
more accurate. With respect to our current Ro-
manian biomedical NER system, Mitrofan (2017)
presents a neural network based NER system that
is able to detect the beginnings and insides of en-
tities with four labels: anatomical parts, disorders,
medical procedures and chemical compounds. Al-

though we did not have the time to train this NER
system on PharmaCoNER 2019 data, our F1 score
on Spanish, when compared to the reported F1
score for the Romanian chemical compounds (the
label that best overlaps with the labels of Pharma-
CoNER 2019), is a strong indicator that we can
greatly improve the Romanian biomedical NER
system (by how much is the subject for a future
paper).

We begin by looking at state of the art ap-
proaches for NER systems, presented in Section
2 “Related work”, then we continue with the re-
sources used for this specific task, in Section 3
“Resources”, followed by a presentation of our im-
plemented algorithms and methods, in Section 4
“RACAI Systems”. Finally, system evaluation re-
sults are presented in Section 5 “System evalua-
tion”, followed by conclusions.

2 Related work

To tackle the challenges posed by BioNER, differ-
ent NER approaches were proposed. Even though
high performances have been obtained by apply-
ing classical NER approaches such as dictionary-
based methods (Sekine and Nobata, 2004), rule-
based methods (Rau, 1991), Hidden Markov Mod-
els (Zhou and Su, 2002), Conditional Random
Fields (Dingare et al., 2005), the current dominant
techniques are based on neural methods, which
will also be our focus in this paper, mainly because
we think that this is the current state of the art ap-
proach to NER.

Deep learning methods have shown impressive
results when applied to NLP and, since (Hochre-
iter and Schmidhuber, 1997) proposed Long-Short
Term Memory neural networks and Bidirectional
Long-Short Term Memory (BiLSTM) networks
(Graves, 2012), a wide variety of NER systems
have been created based on these methods.
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Santos and Guimaraes (2015) presented a
language-independent approach for NER based
on a deep neural architecture that uses word and
character-level embeddings to perform sequen-
tial classification. In order to demonstrate the
language-independence of the system, two an-
notated corpora in two different languages were
used: a Portuguese corpus - HAREM I (Milidiú
et al., 2008) and a Spanish corpus - SPA CoNLL-
2002 (Sang and F., 2002). The system obtained an
F1 score of 79% when trained on HAREM I cor-
pus and an F1 score of 82.2% for the SPA CoNLL-
2002 corpus.

Chiu and Nichols (2016) presented a NER
system based on stacked BiLSTM architecture
trained to detect four types of entities such as:
“PERSON”, “ORGANIZATION”, “LOCATION”
and “MISC”, each of the entity being annotated in
BIOES format (Beginning, Inside, Outside, End-
ing and Single). Using two lexicons extracted
from publicly-available resources the system ob-
tained an F1-score of 91.62% on CoNLL-2003
(Sang and De Meulder, 2003) corpus and 86.28%
on OntoNotes (Pradhan et al., 2013) corpus.

Shao et al. (2016) evaluated the performances
of three types of neural networks based systems
for multilingual NER. They compared a windows-
based feed-forward network, a standard BiLSTM
and a window-based BiLSTM. Word embeddings
combined with word-level features were used and
the annotation format was also BIOES. Based on
the experiments the authors concluded that: the
feed-forward neural network was outperformed in
accuracy by the standard BiLSTM and when less
information is available, the window-based BiL-
STM is more robust than the standard BiLSTM.

Soares et al. (2019) used NeuroNER (Dernon-
court et al., 2017) framework in order to perform
NER for medical domain. The Spanish Clinical
Cases Corpus (SPACCC) was used to train the
system, which is based on a LSTM neural net-
work. The biomedical corpus was previously an-
notated with four entity types, a subset of the types
PharmaCoNER 2019 uses. Using medical word-
embeddings, the system achieved an F1 score of
88.18%, outperforming the baseline system which
scored 87.76%.

3 Resources

In order to develop, train and test a NER system
several resources are needed. In this section we

review the main types of linguistic resources used
in our work:

3.1 Corpora
When applied to general domain, most of the state
of the art systems make use of the CoNLL-2002
corpus (Sang and F., 2002), which contains six
files that cover two languages: Dutch and Spanish.
The set of entity labels used for this corpus con-
tains four types of entities: PER (persons), ORG
(organizations), LOC (locations) and MISC (mis-
cellaneous).

In order to perform named entity recognition on
biomedical textual data several annotated corpora
were developed. For English there are several an-
notated corpora used for biomedical NER such as:
NCBI (Doğan et al., 2014) a gold-standard corpus
for disease mentions and concepts that contains
793 abstracts extracted from PubMed; CHEMD-
NER (Krallinger et al., 2015) a corpus of 10,000
abstracts collected from PubMed annotated with
two types of NEs: chemicals and drugs.

Lately a slightly increasing number of resources
specific to this field have been created for lan-
guages other than English. For example for
French there is the Quaero corpus (Névéol et al.,
2014) which contains 103,056 words annotated
with ten types of NEs defined using UMLS:
anatomy, chemical and drugs, devices, disorders,
geographic areas, living beings, objects, phenom-
ena, physiology, procedures. For Romanian there
is the MoNERo (Maria Mitrofan, 2019) corpus
which is a biomedical gold standard corpus and
contains 154,825 words annotated with four types
of entities: anatomy, chemicals and drugs, dis-
orders and procedures. For Spanish IxaMedGS
(Oronoz et al., 2015) is a corpus that contains
142,154 discharge records out of which 75 were
annotated with two types of NEs: diseases and
drugs; DrugSemantics corpus (Moreno et al.,
2017) has 226,729 tokens annotated with ten types
of NEs: chemical composition, disease, drug, ex-
cipient, food, medicament, pharmaceutical form,
route, therapeutic action and unit of measurement.

3.2 Word embeddings
Continuous word representations, trained on large
corpora have been proven to be useful for many
NLP tasks, including NER. It is known that neu-
ral word representations have the ability to capture
useful semantic properties and linguistic relation-
ships between words (Bakarov, 2018). Therefore
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pre-trained word embeddings are available for dif-
ferent languages, including Romanian and Span-
ish. For example in Romanian we have a set of
word embeddings (Păis, and Tufis, , 2018) computed
on the Reference Corpus for Contemporary Roma-
nian Language (CoRoLa) (Barbu Mititelu et al.,
2018) corpus.

Grave et al. (2018) released a set of pre-trained
embeddings for 157 languages calculated on texts
extracted from Wikipedia. Also for Spanish there
is a different set of pre-trained embeddings made
available by the Chile NLP group1 and calcu-
lated using the Spanish Billion Word Corpus (SB-
WCE)2.

Chiu and Nichols (2016) showed that word
embeddings vectors calculated on a specific do-
main produce better results than those obtained
from general-domain texts. Therefore (Soares
et al., 2019) calculated a set of medical word
embeddings for Spanish. They used text from
two sources: full medical articles from SciELo
database3 (100 million tokens) and biomedical
texts from Wikipedia (82 million tokens). The ex-
periments performed using this resource generated
more accurate results than those calculated based
on general-domain texts.

3.3 SNOMED CT

SNOMED CT (Systematized Nomenclature of
Medicine - Clinical Terms)4 is a multilingual
healthcare terminology built around a concept-
based ontology. It contains more than 1 million
distinct medical terms, 326,734 concepts and 19
hierarchies. Concepts are classified under hierar-
chies, of which most of them corresponding to the
types of entities instances of which are encoun-
tered by clinicians during their work (body parts,
diseases, substances, procedures, etc.). A concept
in SNOMED CT has a unique name, unique nu-
meric code, and more descriptions (one main def-
inition, several secondary and more synonyms).
This resource is available in both English and
Spanish. To use it for scientific purposes, a license
is required after completing a form. We used this
resource to extract all the available proteins and
genes. Using the SNOMED browser for Spanish5

1https://github.com/dccuchile/
spanish-word-embeddings

2http://crscardellino.github.io/SBWCE/
3https://www.scielo.org/en/
4https://www.snomed.org/snomed-ct
5https://browser.ihtsdotools.org

we extracted 9,556 proteins names.

4 RACAI Systems

4.1 RACAI Baseline

Our baseline system is an enhanced gazetteer-
based annotation tool. It takes as input multiple
files, each containing an entity list of the same
type. For example, in the PROTEINAS.txt file
there will be a list of proteins. On each line, there
will be a string containing a word or an expression
denoting a protein.

Various gazetteer annotation systems already
exist. We recall here Stanford TokensRegex
(Chang and Manning, 2014) and Stanford
RegexNER part of Stanford Core NLP (Manning
et al., 2014). However, these and similar other
systems, impose the format to correspond to some
specific regular expression syntax (or at least to
a certain fixed form textual representation). In
our case, the gazetteer resources are partially
generated directly from the training annotations
provided for the task. Therefore, the format used
is not directly checked and validated by a human
operator.

Therefore, our system does not look for ex-
pressions exactly as they are provided. Instead it
implements additional rules to improve matching
such as:

• ignore special characters (example: ‘-’ , ‘¡’,
‘(’ etc.) in both provided expressions and the
searched text;

• recognize words followed by numbers re-
gardless of the way they are written (for ex-
ample: “CAP-57”, “CAP 57”, “CAP57”).

Finally, in the case of overlapping entities be-
ing found, the longer one is kept. The software
program allows for such overlapping entities to be
saved for manual examination, but this particular
feature did not seem useful for this task. The re-
sulting annotation file is in the “.ann” format.

4.2 RPCN

RPCN stands for the “RACAI PharmaCoNER
neural network” and is, as its name suggests, a
neural network that we specifically designed for
this competition and that, ultimately, will also be
run for Romanian for which we have BioNER
training data (Maria Mitrofan, 2019).
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4.2.1 Comparison with the state of the art
and design choices

As already discussed in Section 2, NER systems
based on BiLSTMs and using convolutional neural
networks (CNNs) to encode character-based fea-
tures of the input (Chiu and Nichols, 2016) repre-
sent the current state of the art for NER task. Other
approaches used stacked BiLSTM layers in an at-
tempt to increase the generalization power of the
network or decoders which chose the most proba-
ble label output given the LSTM encoding of the
featurized input (Dernoncourt et al., 2017).

Our research goal was to test an approach based
on BiLSTMs, given the abundance of papers us-
ing this type of artificial cell and reporting very
good results. At this point, we have to mention
that all design choices of RPCN presented below
were driven by intense experimentation with the
provided training data, aiming at short training
and evaluation loops. Because the training data is
rather small in size (a bit more than 3800 training
examples), we quickly realized that running with
more complex architectures (which have more pa-
rameters) leads to overfitting. Thus, all architec-
tures with two BiLSTM layers and/or CNNs en-
coding character features were dropped early on
from our experiments.

The RPCN network differs by mainstream BiL-
STM NER networks by attempting to use an at-
tention mechanism, like the one in (Anh Nguyen
et al., 2019) (of which we did not know at the time
of our experiments), whose main function is to
model how much words surrounding labeled enti-
ties contribute to the label prediction. Also, RPCN
tries to combine (by a simple addition) indepen-
dently trained word embeddings from the medi-
cal domain with the embeddings extracted directly
from the training corpus. We found that this ap-
proach gives a significant boost of performance
(more than 10% in the F1 score) when compared
to the usage of either word embedding sources in
isolation or with general-purpose embeddings ex-
tracted from Wikipedia. We are thus able to con-
firm and supplement the findings of Soares et al.
(2019).

In relation to the featurized input that we de-
signed for RPCN, we were guided by the follow-
ing assumptions and intuitions:

• all NEs are mostly noun phrases and in
Spanish, as in Romanian, noun phrases
have a well-defined syntactic structure which

prompted the usage of POS tags as features;

• all NEs are medical substances obeying some
naming patterns, so a feature regarding words
affixes was needed;

• some proteins have specific character pat-
terns, so a “word shape” feature was also
thought to be useful (see the next subsection
for the “shape features” details);

• with an eye to the rank of our system in the
PharmaCoNER 2019 competition, we also
thought that including the gazetteer feature
(if available) directly into RPCN would in-
crease the performance of the system.

4.2.2 Architecture
RPCN is a RNN which uses LSTM cells to encode
the feature descriptions of the words coming in,
remembering the information from both left and
right contexts of the target word, which makes it
BiLSTM RNN. The network was trained to label
each word in the sequence with one of the Phar-
maCoNER target labels or with the “nothing inter-
esting here” label which we called NONE.

The RPCN architecture is presented in Figure
1. We have tried the vanilla variant and the vari-
ant enhanced with an attention mechanism, as de-
scribed by Bahdanau et al. and retained the lat-
ter for further development, as the better approach.
RPCN is written in Java 1.8, using the DeepLearn-
ing4J deep neural network Java library, version
1.0.0-beta3.

Figure 1 shows the input vectors and the BiL-
STM cell for a single input word, for example
cadenas, but we consider sequences of words,
each with its own BiLSTM cell (but shared param-
eters among words). The input vectors that go into
the BiLSTM cell are as follows:

• the WE Layer is the word embedding layer
for the input word; its output size was cho-
sen by our hyperparameter grid search pro-
cedure to be 64 (see the Training subsection
4.2.3). The word is one-hot encoded and fed
to this layer which compresses it to a 64 di-
mensional vector;

• the External WEs resource refers to our
pretrained Spanish medical word embed-
dings (Soares et al., 2019). Because the size
of these embeddings is larger than 64, one
such embedding is fed to a fully connected
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Figure 1: The RPCN neural network

layer with an output size of 64 so that we
can add (element-wise) the output of the WE
Layer with the output of this fully con-
nected layer to obtain a “unified” word em-
bedding representation for the input word;

• the PE Layer is the POS tag embedding
layer for the POS tag of the input word (a
plural noun for our example word); its out-
put size was chosen to be 16 by the hyperpa-
rameter grid searching procedure. Each POS
tag is encoded as a one-hot vector and fed to
this layer which compresses it to a 16 dimen-
sional vector;

• c,a,d,e,n and d,e,n,a,s are the
“relative-index-hot” representations of the 5
character prefix and suffix of the input word;
the vectors for each character are added to
form a single output vector. The “relative-
index-hot” stands for the use of the 1/(i+1)
quantity instead of a 1 on the corresponding
vector position, where i is the index of the
character in the input word (0-based number-
ing), and this trick allows us to encode in a

single vector both the prefix and suffix vec-
tors which are sensitive to the character or-
dering in the word;

• PROTEINAS is the one-hot representation of
the gazetteer label that is (optionally) avail-
able for the input word (if it is not available,
we use the the one-hot representation of the
“default” label NONE);

• the Shape Features resource refers to
our word shape extraction algorithm that does
the following:

– using regular expressions, sets one bit
in the feature binary vector if the in-
put word looks like a substance, e.g.
“CD34”, “CAM5.2”, “Tc99m-MDP”,
etc.

– sets one bit in the the feature binary vec-
tor if the word is a “dash prefix word”,
e.g. “alfa”, “Beta”, “β”, etc. and it is
“glued” (no spaces) to the next word; the
list of dashed prefix words has been au-
tomatically generated from the train set.
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• the SNOMED CT Features resource
refers to our Spanish SNOMED CT
“word as a feature” algorithm. Based on
our tokenized SNOMED CT gazetteer
list, in which we labeled each “(sustan-
cia)” concept description with either the
PROTEINAS or the NORMALIZABLES
labels, we counted each word and label
pair and then computed the probability
distribution P (PROTEINAS|word) and
P (NORMALIZABLES|word). Each word
is represented by a 2 float vector on how
probable it is to point to either of these two
labels. If the input word is not found in
this resource, P (PROTEINAS|word) =
P (NORMALIZABLES|word) = 0.5. To the
2 float vector we also append the relative
frequency of the word in the tokenized
SNOMED CT gazetteer list; naturally, we
skip functional words from this computa-
tion. Some example vectors, computed as
described above, are presented in Table 1.

The BiLSTM cell will combine the forward fi
and backward bi states by multiplying the state
vectors, element-wise: hi = fi · bi. This method
proved to increase the precision of the system as
the signal will be strong only if left and right evi-
dence is strong (i.e. close to 1.0). We also found
out that if we average the forward and backward
states as in hi = (fi + bi)/2, we can increase the
recall at the cost of a lower precision. The same ef-
fect (recall increase) is obtained when the forward
and backward states are concatenated.

Besides the weighted sum of the combined BiL-
STM outputs hi given by the attention layer, the
output layer (a softmax layer with the output
size equal to the number of target labels) also re-
ceives the raw inputs from the gazetteer feature,
the shape features and the SNOMED CT features,
in an effort to boost the precision of the system.

4.2.3 Training
The input text is tokenized first, using an in-house
built tokenizer for Spanish, specifically designed
for this task. The tokenizer will split words at
the dash (‘-’) boundary because we observed that
some entities contained the dash while others did
not. The tokenizer will recognize (and thus gen-
eralize) the following types of tokens: numbers
(integers, reals, Roman numerals), amounts (e.g.
“305mg”), units of measure (e.g. “mg/g”), tem-

peratures (e.g. “30◦C”) and area/volume expres-
sions (e.g. “3x2cm2”). After tokenization, the text
is POS tagged using the Stanford Core NLP suite
with the Spanish POS tagging model and the sen-
tence boundaries are detected using a simple reg-
ular expression: end of sentence punctuation fol-
lowed by whitespace and then by an uppercase let-
ter. No named entity is allowed to cross a sentence
boundary.

We used a grid searching procedure, together
with the supplied train and development data, to
optimize the hyperparameters of RPCN. The hy-
perparameters are as follows:

• the number of time steps in the sequence:
how many words are in a window of consec-
utive words that the RPCN can consider as a
training example. Tried values were in the set
{7, 11, 15, 19, 21, 25} and the best value was
set to 21;

• the size of the LSTM state vector; tried values
were in the set {64, 128, 256} and the best
value was set to 128;

• the size of the trained word embedding vec-
tor, i.e. the size of the WE Layer. Tried
values were in the set {32, 64, 128} and the
best value was set to 64;

• the size of the POS tag embedding vector, i.e.
the size of the PE Layer. Tried values were
in the set {8, 16} and the best value was set
to 16.

The train and development sets that were made
available by the task organizers were distributed as
follows: 3822 training annotations (T entries in the
“.ann” files) and 1926 development annotations.
We have randomly reshuffled the whole data set
(training plus development) into 90% training set
and 10% development set.

As far as the configuration of the computation
graph goes, we used the Xavier weight initializa-
tion method together with the Stochastic Gradient
Descent optimization algorithm and the Adam up-
dater with the default parameters. The reader can
refer to the documentation of the DeepLearning4J
library for a description of these methods.

4.2.4 Running
The incoming text is tokenized, POS tagged and
sentence split. Then, RPCN is run on consecutive
sequences of adjacent words of length 21, each
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Word P (PROTEINAS|word) P (NORMALIZABLES|word) P (word)

lormetazepam 0.0 1.0 8.379841E-6
antinuclear 0.5 0.5 1.005581E-4
oxigenasa 0.625 0.375 6.703873E-5
carveol 1.0 0.0 8.379841E-6

Table 1: SNOMED CT word features for labels PROTEINAS and NORMALIZABLES

word receiving the best label by the softmax
output, accumulating labels as the window passes
by. The label with the highest accumulated score
wins for each word. Spans of consecutive tokens
having the same non-NONE labels are the new de-
tected named entities.

The raw label assignments are post-processed to
enforce the following:

• a recognized named entity will not start or
end with a functional word;

• if there is a gazetteer annotation for a RPCN
detected span then the labels must agree and
the gazetteer span boundaries will be pre-
ferred. If the labels do not agree, both spans
are deleted.

Finally, we also apply some regular expres-
sion based rules to catch some expressions which
RPCN was not able to learn, e.g. CD[0-9]+ (a
protein) or the pattern W1 “de” W2 in which “de”
W2 receive the same label as W1.

4.3 Ensemble methods

Given the different annotator systems described
above, an ensemble system was needed. Its aim
was to take the resulting annotations from two or
more runs, with the same or different system, and
combine them using different rules in order to im-
prove the overall results. The idea behind it is
that each system could be better at detecting cer-
tain types of entities and the combined annotation
would be better overall.

Our combining system takes as input two “.ann”
files and produces another “.ann” file by applying
rules. The rules are especially useful in the case
of overlapping entities. If there are no overlap-
ping entities, then the input annotations are simply
merged. Currently there are 5 rules available:

• “PRIO1”: gives priority to the first input
file, retaining the corresponding entity anno-
tation;

• “PRIO2”: gives priority to the second input
file;

• “SMALLER”: keeps the smaller annotation,
discarding the longer one in case of entity
overlap;

• “LARGER”: keeps the longer annotation;

5 System Evaluation

5.1 Working methodology

We mentioned that the initial distribution of an-
notations in the training and development sets was
not satisfactory and thus, we have proceeded to the
random reshuffling of the whole data set followed
by a 90%/10% split. We have selected our best en-
semble method on such a random reshuffling and
training/development split.

The RACAI baseline system worked with the
annotations from the training set plus the gazetteer
list based on the Spanish SNOMED CT “(sustan-
cia)” concept descriptions which we automatically
extracted and labeled as either PROTEINAS or
NORMALIZABLES and then manually validated.

RPCN was trained on the training set and eval-
uated, along with the RACAI baseline system,
on the development set. For the official evalua-
tion run, we used all annotations from the pro-
vided data set and the SNOMED CT entries as the
gazetteer list.

5.2 Results

Table 2 presents the runs of the RACAI baseline
system, RPCN and of four ensemble methods ap-
plied to the baseline (first input) and RPCN (sec-
ond input).

The highest scores are bold-faced for the Preci-
sion (P), Recall (R) and F1 columns. According to
our evaluations, the best ensemble method (by the
F1 score which was the optimization target) is the
“LARGER” (or C4 to match the name of the sub-
mitted zip file) ensemble method. Knowing that
we are allowed to submit five different runs, based
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System P R F1
Baseline 0.8986 0.6915 0.7816
RPCN 0.9025 0.7539 0.8215
PRIO1 (C1) 0.8733 0.7764 0.8220
PRIO2 (C2) 0.8871 0.7764 0.8281
SMALLER (C3) 0.8694 0.7730 0.8183
LARGER (C4) 0.8911 0.7799 0.8318

Table 2: Development results of RACAI’s NER sys-
tems

System P R F1
Baseline 0.92530 0.71281 0.80527
RPCN 0.89327 0.76330 0.82319
PRIO1 (C1) 0.90189 0.80347 0.84984
LARGER (C4) 0.90043 0.79533 0.84462
C4M 0.78281 0.84528 0.81284

Table 3: Official PharmaCoNER 2019 results of
RACAI’s NER systems

on these evaluations, we decided to submit the out-
put of the following systems: RPCN (best preci-
sion), LARGER (C4, best F1 score) and Baseline
(official reference system). Before the submission
deadline, we also sent the PRIO1 (C1, the Base-
line priority) and an ensemble between the Base-
line and one other system that we developed for
PharmaCoNER 2019 (C4M). Table 3 presents the
official results that were communicated to us by
the task organizers.

6 Discussion and conclusions

The official evaluation results confirmed the re-
sults we obtained during development: the PRIO1
and LARGER ensembles between the Baseline
and the RPCN systems are better than each of
them, individually. RPCN definitely learned to
recognize new entities, as its recall is larger with
more than 5% than the recall of the Baseline sys-
tem.

We can also see that the precision of RPCN
dropped, as compared to the precision of the Base-
line system, with more than 3% in the official eval-
uation. This discrepancy appeared during devel-
opment as well and the main reason we found for
it was that the training data was not consistently
annotated. That is, the same expression (same
words, same casing) was annotated in a document
and was not annotated in another document. We
do not think that at this specialization level we

can justify this at a semantic level (i.e. the ex-
pression does not mean the same thing in the two
documents). Thus, during development, we au-
tomatically re-annotated the whole supplied data,
making sure the same expression is annotated ev-
erywhere with the same label (if there was an am-
biguity, the re-annotation was cancelled for the ex-
pression). By doing this, we were able to close the
precision gap between the Baseline and the RPCN
systems.

While we do not know the rank of our system
yet, our best system was scored with an F1 score
of 0.84984, which, we feel, is good performance.
We will put this system to the tests of scalability
and language-independence by using it unchanged
(but with the specialized computational resources)
in two Romanian-related tasks: as already stated,
in the identification of Romanian biomedical NEs
and in the rather different task of legal terminology
identification (e.g. EuroVoc6) in Romanian legal
texts, to be performed in the MARCELL project7.
For the latter task, we will have the chance to de-
termine if our system is able to reliably detect new
terms which are missing from the legal terminol-
ogy dictionaries.
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Abstract

To date, a large amount of biomedical content
has been published in non-English texts, es-
pecially for clinical documents. Therefore, it
is of considerable significance to conduct Nat-
ural Language Processing (NLP) research in
non-English literature. PharmaCoNER is the
first Named Entity Recognition (NER) task to
recognize chemical and protein entities from
Spanish biomedical texts. Since there have
been abundant resources in the NLP field, how
to exploit these existing resources to a new
task to obtain competitive performance is a
meaningful study. Inspired by the success of
transfer learning with language models, we in-
troduce the BERT benchmark to facilitate the
research of PharmaCoNER task. In this pa-
per, we evaluate two baselines based on Multi-
lingual BERT and BioBERT on the Pharma-
CoNER corpus. Experimental results show
that transferring the knowledge learned from
source large-scale datasets to the target do-
main offers an effective solution for the Phar-
maCoNER task.

1 Introduction

Currently, most biomedical Natural Language
Processing (NLP) tasks focus on English docu-
ments, while only few research has been carried
out on non-English texts. However, it is essential
to note that there is also a considerable amount of
biomedical literature published in other languages
than English, especially for clinical documents.
Therefore, it is of considerable significance to con-
duct NLP research in non-English literature. Phar-
maCoNER(Gonzalez-Agirre et al., 2019) is the
first Named Entity Recognition (NER) task to rec-
ognize chemical and protein entities from Span-
ish biomedical texts. Biomedical NER task is the
foundation of biomedical NLP research, which is
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often utilized as the first step in relation extraction,
information retrieval, question answering, etc.

The existing biomedical NER methods can
be roughly classified into two categories: tradi-
tional machine learning-based methods and deep
learning-based methods. Traditional machine
learning-based methods (Settles, 2005; Campos
et al., 2013; Wei et al., 2015; Leaman et al.,
2015, 2016) mainly depend on feature engineer-
ing, i.e., the design of useful features using vari-
ous NLP tools. Overall, this is a labor-intensive
and skill-dependent process. In contrast, deep
learning-based methods are more promising in
biomedical NER tasks. Since deep learning-based
methods can automatically learn features, these
methods no longer need to construct feature en-
gineering and exhibit more encouraging perfor-
mance. For examples, (Luo et al., 2017) pro-
posed an attention-based BiLSTM-CRF approach
to document-level chemical NER. (Dang et al.,
2018) proposed a D3NER model, using CRF and
BiLSTM improved with fine-tuned embeddings
of various linguistic information to recognize dis-
ease and protein/gene entities. Recently, the lan-
guage model pre-training (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2019) has proven
to be effective for improving many NLP tasks.
The fine-tuning language model (Radford et al.,
2018; Devlin et al., 2019) can transfer the knowl-
edge learned from large-scale datasets to domain-
specific tasks by simply fine-tuning the pre-trained
parameters.

Inspired by the success of transfer learning with
language models, we would like to make full
use of the existing language model resources to
implement the PharmaCoNER task. In this pa-
per, we introduce the BERT (Devlin et al., 2019)
benchmark to facilitate the research of Pharma-
CoNER task. We regard the large-scale dataset
used to train the BERT model as the source do-
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main, and the PharmaCoNER dataset as the tar-
get domain, thus considering the PharmaCoNER
task as a transfer learning problem. We evaluate
two baselines based on Multilingual BERT and
BioBERT. Experimental results show that trans-
ferring the knowledge learned from source large-
scale datasets to the target domain offers an effec-
tive solution for the PharmaCoNER task.

2 Related Work

2.1 Language Model

Learning widely used representations of words has
been an active area of research for decades. To
date, pre-trained word embeddings are considered
to be an integral part of modern NLP systems, of-
fering significant improvements over embeddings
learned from scratch (Turian et al., 2010). Re-
cently, ELMo (Peters et al., 2018) has been pro-
posed to generalize traditional word embedding
research (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017) to extract context-
sensitive features. When integrating contextual
word embeddings with existing task-specific ar-
chitectures, ELMo achieves competitive perfor-
mance for many major NLP benchmarks. More
recent studies (Radford et al., 2018; Devlin et al.,
2019) tend to exploit language models to pre-train
some model architecture on a language model ob-
jective before fine-tuning that the same model for
downstream tasks. BERT (Devlin et al., 2019),
which stands for Bidirectional Encoder Represen-
tations from Transformers (Vaswani et al., 2017),
is designed to pre-train deep bidirectional repre-
sentations by jointly conditioning on both left and
right context in all layers. The pre-trained BERT
can be fine-tuned to create competitive models for
a wide range of tasks.

2.2 Transfer Learning

Many machine learning methods work well only
under a common assumption: the training and
test data are drawn from the same feature space
and distribution (Pan and Yang, 2009). When the
distribution changes, most models need to be re-
built from scratch using newly annotated train-
ing data. However, it is an expensive and chal-
lenging process. Therefore, it would be mean-
ingful to reduce the need and effort to recollect
the annotated training data. In such scenarios,
transfer learning between task domains would be
useful. For example, (Cui et al., 2018) demon-

strate the effects of transfer learning in the com-
puter vision domain. They explore transfer learn-
ing via fine-tuning the knowledge learned from
large-scale datasets to small-scale domain-specific
fine-grained visual categorization datasets. For
NLP tasks, (Conneau et al., 2017) and (McCann
et al., 2017) also demonstrate the effects of trans-
fer learning on the natural language inference and
machine translation tasks, respectively. These
methods demonstrate the significance of transfer
learning in machine learning methods.

3 Methods

3.1 Problem Definition

The PharmaCoNER task is structured into two
sub-tracks: ’NER offset and entity classification’
and ’concept indexing’. Since we only participate
in the first track, we will explain the fist track in
detail. There are three entity types for evaluation
in the PharmaCoNER corpus, namely ’normaliz-
ables’, ’notnormalizables’ and ’proteins’. Specif-
ically, ’normalizables’ is the mentions of chemi-
cals that can be manually normalized to a unique
concept identifier. ’notnormalizables’ is the men-
tions of chemicals that could not be normalized
manually to a unique concept identifier. ’pro-
teins’ is the mentions of proteins and genes. We
used the extended BIO (Begin, Inside, Other)
tagging scheme in our experiments. Formally,
we formulate the PharmaCoNER task as a multi-
class classification problem. Given an input se-
quence S = {w1, · · · ,wi, · · · ,wn} which has pro-
cessed by WordPiece, the goal of PharmaCoNER
is to classify the tag t of token wi. Essen-
tially, the model estimates the probability P(t|wi),
where T = {B-normalizables, I-normalizables, B-
notnormalizables, I-notnormalizables, B-proteins,
I-proteins, O, X, CLS, SEP}, t ∈ T , 1≤ i≤ n.

3.2 Model Architecture

BERT (Devlin et al., 2019), which stands for bidi-
rectional encoder representations from Transform-
ers, is designed to learn deep bidirectional rep-
resentations by jointly conditioning on both left
and right context in all layers. The architecture
of BERT is illustrated in Figure 1. The pre-
trained BERT can be fine-tuned to create competi-
tive models for a wide range of downstream tasks,
such as named entity recognition, relation extrac-
tion, and question answering.

Here, we explain the architecture of BERT for
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Figure 1: The Architecture of BERT.

NER tasks. The input of BERT can represent
both a single text sentence or a pair of text sen-
tences in one sequence. BERT differentiates the
text sentences as follows: first, they separate them
with a special token ([SEP]); second, they add the
sentence A embedding to every token of the first
text sentence and the sentence B embedding to ev-
ery token of the second text sentence. Further-
more, every sequence starts with a special token
([CLS]). For a given token, the input representa-
tion is constructed by integrating the correspond-
ing token, segment, and position embeddings.
BERT provides two model sizes: BERTBASE and
BERTLARGE . For the BERT model, the number of
layers L, the hidden size H and the number of self-
attention heads A are listed as follows:

• BERTBASE : L=12, H=768, A=12, Total Pa-
rameters=110M.

• BERTLARGE : L=24, H=1024, A=16, Total
Parameters=340M.

During the shared task, we exploit Multilingual
BERT (Devlin et al., 2019) and BioBERT (Lee
et al., 2019) to implement the PharmaCoNER task.
Both the multilingual BERT and BioBERT mod-
els are pre-trained based on the BERTBASE size.
The multilingual BERT model is pre-trained on

Wikipedia in multiple languages. The BioBERT
model is pre-trained on Wikipedia, BooksCorpus,
PubMed (PubMed abstracts) and PMC (PubMed
Central full-text articles). The pre-training process
of Multilingual BERT and BioBERT is similar to
the pre-training process of BERTbase. More de-
tails about Multilingual BERT and BioBERT can
be found in the studies (Devlin et al., 2019; Lee
et al., 2019).

For the output layer, we feed the final hidden
representation hi of each token i into the softmax
function. The probability P is calculated as fol-
lows:

P(t|hi) = so f tmax(Wohi +bo) (1)

where T = {B-normalizables, I-normalizables, B-
notnormalizables, I-notnormalizables, B-proteins,
I-proteins, O, X, CLS, SEP}, t ∈ T , Wo and bo are
weight parameters. Furthermore, during the train-
ing, we use the categorical cross-entropy as the
loss function. Finally, as shown in Figure 1, we
removed the special tokens (labeled by ’X’, ’CLS’
and ’SEP’) and obtained the final BIO labels at the
post-processing step.
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4 Results and Discussion

4.1 Experimental Settings

In this section, we introduce the dataset, evalua-
tion metrics and details of the training process of
our model.

Dataset. The PharmaCoNER corpus has been
randomly sampled into three subsets: the train-
ing set, the development set and the test set. The
training set contains 500 clinical cases, and the de-
velopment set and the test set include 250 clinical
cases, respectively.

Evaluation Metrics. We apply the standard
measures precision, recall and micro-averaged F1-
score to evaluate the effectiveness of our model.
These metrics are also adopted as the evaluation
metrics during the PharmaCoNER task.

Training Details. During the PharmaCoNER
task, we utilized the training set for training the
model and exploited the development set to choose
the hyper-parameters of our model. In the predic-
tion stage, we combined the training and devel-
opment sets for training our model, and the or-
ganizers used the gold-standard test set to evalu-
ate the final results. The detailed hyper-parameter
settings are illustrated in Table 1. ’Opt.’ denotes
optimal.

Parameters Tuned range Opt.
Sequence length 128 128
Train batch size [8, 16, 32] 32
Dev batch size 8 8
Test batch size 8 8
Learning rate [1e-5, 2e-5, 3e-5] 2e-5
Epoch number [10, 50, 100, 200] 100
Warmup 0.1 0.1
Dropout 0.1 0.1

Table 1: Detailed Hyper-parameter Settings in the
PharmaCoNER task.

4.2 Experimental Results

We applied Multilingual BERT and BioBERT on
the PharmaCoNER corpus, respectively. The ex-
perimental results are shown in Table 2. ’P’, ’R’,
’F’ denote precision, recall, and micro-averaged
F1-score, respectively. It is encouraging to see
that the performance of both models is quite com-
petitive. For the multilingual BERT model, since
the model learned the Spanish language informa-
tion during the pre-training process, its F1-score

is higher, reaching 89.24%. For the BioBERT
model, it also achieves an F1-score of 89.02%.
While BioBERT was only pre-trained on the En-
glish biomedical texts, applying it to the Spanish
PharmaCoNER task still yields competitive per-
formance. The primary reason may be that there
are a large number of chemical and protein men-
tions sharing the same name in English and Span-
ish in biomedical literature. Therefore, it is fea-
sible to use the existing model pre-trained on En-
glish biomedical corpora to fine-tune the Pharma-
CoNER task. These results indicate that trans-
ferring the knowledge learned from source large-
scale datasets via fine-tuning to the target-specific
domain is an effective solution to the Pharma-
CoNER task.

Models P(%) R(%) F(%)
Multilingual BERT 90.46 88.06 89.24
BioBERT 90.70 87.41 89.02

Table 2: The Experimental Results of Multilingual-
BERT and BioBERT.

Furthermore, we manually analyzed the errors
generated by our models on the corpus test set af-
ter the PharmaCoNER task. The main errors can
be classified into three categories: (1) incorrect
boundaries, (2) missing the chemical/protein men-
tion, (3) and incorrectly distinguishing the chemi-
cal and protein mentions. By analyzing these error
examples, we infer that document-level informa-
tion or biomedical knowledge may be helpful for
the PharmaCoNER task.

5 Conclusion

In this paper, we introduce the BERT benchmark
to facilitate the research of PharmaCoNER task.
We evaluate two baselines based on Multilingual
BERT and BioBERT on the PharmaCoNER cor-
pus. It is encouraging to see that the perfor-
mance of both models is quite competitive, reach-
ing F1-scores of 89.24% and 89.02%, respectively.
Experimental results demonstrate that transferring
the knowledge learned from source large-scale
datasets to the target domain offers an effective so-
lution for the PharmaCoNER task.

In future work, we would like to explore an ap-
propriate way to integrate document-level infor-
mation or biomedical knowledge to improve the
performance of the model.
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Abstract

This paper presents a novel transfer multi-task
learning method for Bacteria Biotope rel+ner
task at BioNLP-OST 2019. To alleviate the
data deficiency problem in domain-specific in-
formation extraction, we use BERT(Devlin
et al., 2018) (Bidirectional Encoder Represen-
tations from Transformers) and pre-train it us-
ing mask language models and next sentence
prediction (Devlin et al., 2018) on both gen-
eral corpus and medical corpus like PubMed.
In fine-tuning stage, we fine-tune the relation
extraction layer and mention recognition layer
designed by us on the top of BERT to ex-
tract mentions and relations simultaneously.
The evaluation results show that our method
achieves the best performance on all metrics
(including slot error rate, precision and recall)
in the Bacteria Biotope rel+ner subtask.

1 Introduction

Information extraction aims to recognize the en-
tities and classify the relations between them in
given unstructured text. It provides cornerstone
for many downstream applications such as in-
formation extraction, knowledge base population,
and question-answering. It is a challenging task
partly because it requires elaborative human anno-
tations (Riedel et al., 2010), which could be slow
or expensive to get.

Bacteria Biotope (BB) task is an interest-
ing information extraction task aiming at ex-
tracting knowledge about bacteria biotope from
bioinfomatics literature related to microorgan-
ism. Rel+ner subtask focuses on extracting en-
tity mentions of following types: Microorganism
(MI), Habitat (HA), Phenotype (PH), Geographi-
cal (GE) and identification of the Lives In rela-
tion between a Habitat/Geographical mention and
a Microorganism mention as well as the Exhibits
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relation between a Phenotype mention and a Mi-
croorganism mention. This task intends to extract
structured triple of microorganism from unstruc-
tured biomedical text.

Some previous work has been done in handling
such an information extraction problem, including
some joint entity and relation extraction method-
ology and pipeline method which firstly do named
entity recognition (NER) and then do relation ex-
traction on the results of NER. (Zheng et al., 2017)
proposes a novel tagging schema (NTS) that en-
codes relation type in the NER tag to recognize
the named entity and extract the relation between
them jointly. This methodology has a fatal flaw
that it can not handle relation facts that share the
same entity and this phenomenon is common in
BB task. (Bekoulis et al., 2018) proposes a multi-
head selection layer (MHS) to model the rela-
tion of each entity pair which is similar to our
method. (Zeng et al., 2018) proposes a sequence
to sequence model with copy mechanism (Copy
RE). However, all above the previous work has
been done on a large-scale general dataset. While
the Bacteria Biotope rel+ner task only bases on a
domain-specific and comparatively small dataset.
Under this background, we adapt a recently widely
used transfer learning framework, BERT(Devlin
et al., 2018), and pre-train it on large-scale cor-
pus using two novel unsupervised prediction tasks
to mitigate the problem of insufficient data.

2 Model Architecture

The overall framework of the model is shown in
Figure 1. Bottom parts of the model (includ-
ing input representation, transformer encoder) are
shared by both named entity recongnition task and
relation extraction task.
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Figure 1: Diagram of Our Model

2.1 Input Feature and Representation

The input representation of each word wi in sen-
tence S = {w1, w2, ..., wN} consists of three
parts: word vector, the embedding of features
and positional encoding. A pre-trained word em-
bedding using Skip-gram (Mikolov et al., 2013)
model is used to map each word to a dense vec-
tor. The features we used are described in Table
1. Each feature is represented by a one-hot vector
and pass a feature embedding layer. Positional en-
coding is added to make the model capture the rel-
ative and absolute position of each token (Vaswani
et al., 2017). The three parts are concatenated and
fed into transformer encoder.

2.2 Transformer Encoder

Transformer is widely used in various natural lan-
guage processing task recently. We use trans-
former here to extract context features of each
token. The encoder is composed of 12 lay-
ers. Each layer consists of a multi-head self at-
tention sub-layer and point-wise fully connected
feedfoward sub-layer, a residual connection is
employed around each of the two sub-layers
(Vaswani et al., 2017). The transformer is pre-
trained using two novel unsupervised tasks includ-
ing masked language model and next sentence
predicting (Devlin et al., 2018) on the combina-
tion of BooksCorpus, English Wikipedia, PubMed
and PubMed Central (PMC) corpus. The hyper-
parameters we use to pre-train are exactly the same
as the BERTBASE of (Devlin et al., 2018). In
fine-tuning stage, the output of the transformer en-
coderHi will be fed into both mention recognition

layer and relation extraction layer.

2.3 Mention Recognition Layer

Commonly, in named entity recognition, anno-
tated data is tagged using BIO tagging schema
in which each token is assigned into one of fol-
lowing tag: B means beginning, I means in-
side and O means outside of an entity mention.
However this tagging schema is insufficient since
some entity mentions in BB task are disjoint con-
cepts with overlapping words. Taking the phrase
“serotypes A, B and C” as an example, this phrase
contains three disjoint Microorganism mentions:
“serotypes A”, “serotypes B” and “serotypes C”.
To handle these special mentions, we apply an al-
ternative tagging schema which introduce ‘H’ and
‘D’ flag, where ‘H’ indicates the overlapping to-
kens and ‘D’ indicates discontinuous tokens. Fig-
ure 2 shows an annotation example. The tag-
ging label set of this new tagging schema can be
written as {{GE,HA,PH,MI} × {H,D}} ×
{B, I}⋃{O}.

We feed the final state Hi of each token to the
softmax classification layer over the tagging set.
The conditional random field (CRF) layer takes
the sequence of output score vector Vi from the
softmax classification layer. The tag prediction
of wi in sentence s is denoted as ySi , and fur-
ther the CRF score of the tag predictions yS =
{yS1 , yS2 , ..., ySN} is defined as follows:

scoreyS = EyS + TyS (1)

E represents emission score which can be defined
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Feature Name Description
Dot Flag Feature Whether the word contains dot notations like “C. psittaci”.
Capitalization Feature Whether the first letter of the word is capitalized.
POS Tagging Feature The output for the tokenized sentence of the POS tagging tool.
Dependency Parsing Feature The output for the tokenized sentence of the dependency parsing tool.

Table 1: Input Features of Our Model and Their Description

as:

EyS =
N∑

i=1

Vi (2)

T represents transition score which can be defined
as:

TyS =
N∑

i=1

TMySi−1,y
S
i

(3)

where TMyi−1,yi means the transition probability
from tag yi−1 to yi. The conditional probability
P (y|S) can be written as follows:

P (yS |S) = escoreyS∑
y∈y∗ escorey

(4)

where y∗ is the collection of all possible tag pre-
dictions for sentence s.

Figure 2: Examples of BIOHD Tagging

2.4 Relation Extraction Layer
As depicted in Figure 1, the sequence of final state
Hi is also fed into the relation extraction layer.
We observe that each Microorganism entity may
have multiple relations with entities of other three
types. Moreover, all types of relation must con-
tain a Microorganism entity. Thus we take the Mi-
croorganism entity as the center of relation predic-
tion task.

The Microorganism entity which ends with the
word wi will be calculated the following score
with another entity end with the word wj :

Ri,j,r = σ(Wrf(Hr ∗ V i+ Tr ∗ V j + br)) (5)

where Hr, Tr and br are parameter matrices as-
sociated with relation type r. The score Ri,j,r rep-
resents probability that the Microorganism entity

ends with words wi has the relation r with another
entity ends with wordswj . f is the activation func-
tion: relu. σ is used to normalize the probability.

2.5 Multi Task Training Objective
In training stage, we fine-tune the relation extrac-
tion layer and mention recognition layer simulta-
neously using a joint loss. The training loss de-
fined by mention recognition layer can be written
as:

Lner = −logP (yS |S) (6)

Moreover, the loss function of the relation extrac-
tion layer can defined as

Lrel =
∑

i

∑

j

−logRi,j,r (7)

The loss function of the whole system can be de-
fined as

L = Lner + Lrel (8)

3 Experiment and Result

In this section, we briefly introduce the dataset,
evaluation metrics and the external resources that
we use. We present our performance on different
relation type with different metrics provided by or-
ganizers and comparison with other jointly infor-
mation extraction methodology mentioned in Sec-
tion 1 on development data.

3.1 Dataset Description
Bacteria Biotope task includes two types of doc-
uments: PubMed references (titles and abstracts)
related to microorganism, extracts from full-text
articles related to microorganisms living in food
products.

The statistics of the dataset is shown in Table
2. The training and development data released
for this task contains 133 and 66 files respectively,
with gold standard annotations. Test data contains
32 files which are used to evaluate participation.
The number of entity mentions in different file is
unbalanced, ranging from 0 to 85.
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Table 2: The Statistics of The Dataset: Number of
Files, Relations and Entities

File Entity Relation

train 133 2266 1127
development 66 1271 608

test 32 Unknown Unknown

Table 3: Performance for Each Relation Type

SER precision recall

All-types 0.954 0.509 0.351
Exhibits 0.982 0.492 0.449

Lived in-geo 1.318 0.316 0.273
Lived in-habitat 0.927 0.530 0.311

3.2 External Resources

Here we introduce some external resources that we
use in experiment. We use Google Word2vec tool
to train word embeddings on corpora composed of
PubMed, PubMed Central (PMC) corpus and En-
glish Wikipedia corpus. The LTP tool is used for
sentence level dependency parsing and the NLTK
tool is used for sentence tokenization and part of
speech tagging.

3.3 Metric and Performance Comparison

Since the entity mentions which are potential ar-
guments of each relation, are not given. In evalua-
tion metrics (precision, recall), substitution errors
are penalized. Morever, Slot Error Rate (SER) is
taken as the main evaluation metric. Table 3 shows
our results of different relation type.

We also evaluate some previous with fa-
mous jointly information extraction methodolo-
gies which are described in Section 1 on the BB
2019 development data for comparison:
NTS: Our implementation of (Zheng et al., 2017).
Instead we use the tagging schema described in
Section 2.3.
MHS: We use the code released by (Bekoulis
et al., 2018) and train the model on the training
data of BB rel+ner task.
Copy RE: Our implementation the sequence to se-
quence model using copy mechanism (Zeng et al.,
2018). We train the model using the training data
of BB rel+ner task.
Pipeline: The baseline method that we use in-
cludes two step separately: perform NER (Devlin
et al., 2018) firstly, then perform relation extrac-

Table 4: Performance indicates statistically significant
difference from our model, NTS, MHS, Copy RE and
Pipeline.

SER precision recall

Pipeline 1.472 0.231 0.294
NTS 1.456 0.261 0.288
MHS 1.183 0.381 0.302

Copy RE 1.128 0.376 0.291
Our model 0.947 0.493 0.339

tion (Devlin et al., 2018) on the results of the NER
task.

As shown in Table 4, our model achieves im-
provements on BB dataset comparing with the
other four models. Particularly, our model signifi-
cantly outperforms the Pipeline baseline by -0.525
SER.

3.4 Factor Analysis
We propose several strategies to improve the per-
formance including feature engineering and utiliz-
ing the transformer encoder. To investigate the in-
fluence of these two factors, we conduct ablation
study and list results on Table 5 .

“No” prefix in Table 5 means that we train and
evaluate our model without the corresponding fea-
ture. “No Transformer Encoder” indicates that we
replace the transformer with bi-directional lstm.

Results show that each feature listed in Table 1
plays a key role. Our model suffers serious per-
formance degradation without any one of the four
input features.

Table 5: Ablation Study

Model SER P R
Our Model 0.947 0.493 0.339
No Dot Flag Feature 0.961 0.485 0.313
No Capitalization Feature 0.956 0.489 0.324
No POS Tagging Feature 0.949 0.499 0.335
No Dependency Parsing Feature 0.951 0.487 0.333
No Transformer Encoder 0.998 0.470 0.321

4 Conclusions

In this paper, we describe our participation in Bac-
teria Biotope rel+ner subtask. We propose a trans-
fer multi-task learning framework to overcome
data deficiency and fine-tune a joint entity and re-
lation extraction model using multi-task training
objective. Though we achieve the best perfor-
mance in this subtask, we have some future direc-
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tions to improve this work furthermore: adapting
adversarial training or posterior regularization to
improve the performance of our system.
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Abstract

We participated in the BioNLP 2019 Open
Shared Tasks: binary relation extraction of
SeeDev task. The model was constructed us-
ing convolutional neural networks (CNN) and
long short term memory networks (LSTM).
The full text information and context informa-
tion were collected using the advantages of C-
NN and LSTM. The model consisted of two
main modules: distributed semantic represen-
tation construction, such as word embedding,
distance embedding and entity type embed-
ding; and CNN-LSTM model. The F1 value
of our participated task on the test data set of
all types was 0.342. We achieved the second
highest in the task. The results showed that
our proposed method performed effectively in
the binary relation extraction.

1 Introduction

The goal of Information Extraction (IE) (Finkel
et al., 2005) is to transform textual information in-
to structured information, and to focus on quick-
ly locating and finding useful information in large
amounts of data. Information Extraction (IE)
(Fader et al., 2011) is also capable of mining use-
ful data and hiding knowledge from a large num-
ber of corpus texts, which has led to some new
research methods in many disciplines. For exam-
ple, with the growing demand for key issues relat-
ed to life and biology, many biological problems
have fallen into the bottleneck due to inadequate
methods. Biological information extraction (Bio-
IE) emerges in time and attracts more and more
researchers to solve problems. For instance, in the
identification of named entities, the classification
of relationships between proteins and the extrac-
tion of links between drugs. In addition, informa-
tion extraction in the field of biology, especially
event extraction, has entered people’s views. This
will be a far-reaching task and a major biological

challenge for information extraction tasks.
The BioNLP Shared Task Series is a represen-

tative of biomolecular event extraction and has
been held four times. This year is the fifth time
that BioNLP has shared tasks. The topics in this
series include fine-grained extraction, generaliza-
tion to knowledge base construction. In addition,
the scope of this task has become more exten-
sive in each time. For instance, the BioNLP 2016
Shared Task(Nédellec et al., 2016) contained three
separate parts, the Bacteria Biotope subtask (B-
B3), the Seed Development subtask (SeeDev) and
the Genia Event subtask (GE4). However, the
BioNLP 2019 Open Shared Task contains seven
separate parts, the Integrated structure, semantic-
s and coreference subtask (CRAFT), the Pharma-
CoNER task, the Active Gene Annotation Corpus
subtask (AGAC), the BB3, the SeeDev and the Re-
search Domain Criteria subtask(RDoc).

We mainly participated in the binary relation
extraction task, which is part of the SeeDev task.
The SeeDev task (Nédellec et al., 2013)(Chaix
et al., 2016) aims to promote complex event ex-
traction on regulations in plants from scientific
articles. It focuses on events describing genetic
and molecular mechanisms involved in seed devel-
opment of the model plant, Arabidopsis thaliana.
It involves n-ary and binary relation extraction.
Meanwhile, the SeeDev task was proposed for the
first time at BioNLP Shared Task 2016(Nédellec
et al., 2016) (Mehryary et al., 2016). This 2019
edition is a rerun of the task, with an evaluation
methodology more focused on the biological con-
tribution.

Many teams participated in the BioNLP 2016
Shared Task(He et al., 2016). For example,
VERSE uses a support vector machine (SVM) and
k-fold cross-validation to identify the best param-
eters.(Lever and Jones, 2016) DUTIR uses a deep
learning method that utilizes a convolutional neu-
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ral network(Li et al., 2016). Motivated by the pre-
vious study, based on CNN, we have integrated L-
STM(Hochreiter and Schmidhuber, 1997) to solve
the defect that convolutional neural networks can
not obtain context information. After improving
the method, we got good results.

The rest of our paper is structured as follows.
Section 2 introduces models. Section 3 describes
results and discussion. Conclusions are described
in Section 4.

2 Model

The SeeDev-binary task can be thought of as
a binary relationship extraction, which specifies
whether there is interaction between the two en-
tities. In relation extraction, the semantic and syn-
tactic information of a sentence plays an impor-
tant role. Traditional methods often require the
design and extraction of complex features based
on domain-specific knowledge (such as tree ker-
nels and graphics kernels) to construct the model.
As a result, this results in a much lower corpus-
dependent generation capability. Therefore, we
use CNN to replace complex manual design fea-
ture engineering, and learn the advanced function
automation by modeling the word embedding and
fully connected neural networks from the original
input through convolution and pooling operations.
Besides, we capture relative distance information
and entity types as complementary features of the
sentence. After that, we input the data processed
by the CNN into the LSTM. Because CNN do not
get good context information, and sometimes the
connection between text contexts can help us do
relation extraction more accurately. So, LSTM can
get text context information, which allows us to
get a better result in the end.

As shown in Figure 1, the model consists of two
modules: distributed semantic representation con-
struction, such as embedded characters, distance
embedding and entity type embedding, and CNN-
LSTM module. In the next section, we will intro-
duce more details.

2.1 Data preprocessing

When doing data preprocessing, first we use the
Stanford CoreNLP(Manning et al., 2014) tool to
process the task’s data. The text is divided into
sentences and tokenized. Parts-of-speech and lem-
mas are identified and a dependency parse is gen-
erated for each sentence. Then, we further process

the preprocessed data.

2.2 Embedding

We use the context of two entities to predict the
type of relationship. In our task, the context is rep-
resented by words between two entities in a sen-
tence. Then, by analyzing the data, we observe
that different entities with different types have dif-
ferent mutual interaction probabilities if the entity
types satisfy the relationship constraints. There-
fore, the entity type of the two entities is the im-
portant factor of the predicted relationship type. In
our model, entity types are seen as a complement
to word embedding. In addition, we find that dis-
tance information usually plays an important role.
The distance can capture the relative position be-
tween two entities. So, we concatenate the word
embedding(Levy and Goldberg, 2014), type em-
bedding(Su and Wang, 2011), and distance em-
bedding(Cormode, 2003). We use the pre-trained
word embedding.1

Then, we would introduce some formulas about
word embedding, entity type embedding and dis-
tance embedding.

LTW (S) =

[< W >E1 , < W >W1 , ..., < W >Wn , < W >E2 ]

LTW ,WT (S) =

[< W >E1 , ..., < W >E2 , < W T >type(E1)]

LTW d(S) =

[< W d >d(E1,E1), ..., < W d >d(E2,E1), 0, 0]

where S stands for the sentences. E1 and E2

are the type 1 and type 2 respectively. W1 stands
for the first word. W is the word embedding ta-
ble. W T is type embedding table and W d stands
for the distance embedding table. LTW (S) is the
representation of word embedding. LTW ,WT (S)
is the representation type embedding. LTW d(S)
is the distance embedding. In the distance embed-
ding, zero vector(0) is used to pad the sentence.

1https://github.com/cambridgeltl/BioNLP-2016

111



Figure 1: Our proposed CNN-LSTM based model

model dropout batch epoch F1
CNN 0.5 64 120 0.52
CNN-LSTM 0.5 64 120 0.60

Table 1: The F1 score of CNN and CNN-LSTM on the
dev data set for SeeDev-binary task

2.3 Model training

We run our model 5 times and use the maximum
as the final result of the model. In all model runs,
the dropout(Srivastava et al., 2014) is set to 0.5.
We found that our loss function tends to stabilize
when the epoch reaches around 120. So, we think
that our model can converge at this time, so set
epoch = 120. The batch size is set to 64. And,
we use a pooling approach that combines average
pooling and max pooling.

In this task, we choose the CNN-LSTM mod-
el to compare with a single CNN model. We find
that the CNN-LSTM model works better than a s-
ingle CNN model on development data set. So, we
choose the CNN-LSTM model in the final submis-
sion.

3 Results and discussion

The SeeDev-binary task data sets consist of three
parts which are the training set, the development
set, and the test set. There are a total of 87 sections
from 20 complete articles on Arabidopsis seed de-

Cluster F1 Recall Precision
Comparison 0.5 0.6 0.43
Function 0.25 0.19 0.35
Regulation 0.34 0.47 0.27
Genic Regulation 0.23 0.24 0.22
Composition 0.35 0.57 0.25
Interaction 0.22 0.16 0.33

Table 2: The F1, recall and precision of cluster on the
test data set for SeeDev-binary task

Team F1 Recall Precision
MIC-CIS-1 0.373 0.511 0.295
YNU-junyi 0.342 0.458 0.273
Yunnan... 0.067 0.133 0.045
YNUBY 0.019 0.070 0.011

Table 3: The result of all types on the test data set for
SeeDev-binary task

Team F1 Recall Precision
MIC-CIS-1 0.443 0.606 0.349
YNU-junyi 0.394 0.528 0.314
Yunnan... 0.135 0.267 0.090
YNUBY 0.074 0.274 0.043

Table 4: The result of ignoring types on the test data
set for SeeDev-binary task
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Binary relation type F1 Recall Precision
Binds To 0.31 0.28 0.35
Composes Primary Structure 0.34 0.44 0.28
Composes Protein Complex 0 0 0
Exists At Stage 0.14 0.1 0.25
Exists In Genotype 0.42 0.64 0.31
Interacts With 0.09 0.06 0.19
Is Involved In Process 0 0 0
Is Localized In 0.27 0.52 0.18
Is Member Of Family 0.35 0.62 0.25
Is Protein Domain Of 0.25 0.39 0.18
Occurs In Genotype 0.17 0.14 0.2
Occurs During 0 0 0
Regulates Accumulation 0.17 0.19 0.15
Regulates Development Phase 0.23 0.34 0.17
Regulates Expression 0.22 0.25 0.19
Regulates Molecule Activity 0 0 0
Regulates Process 0.43 0.66 0.32
Regulates Tissue Development 0 0 0
Transcribes Or Translates To 0.34 0.38 0.32
Is Linked To 0.15 0.1 0.33
Is Functionally Equivalent To 0.64 0.57 0.74
Has Sequence Identical To 0.56 0.77 0.44

Table 5: Detailed results of our method on the test data set for SeeDev-binary task

velopment. This task defines 16 different types of
entities and 22 different types of binary relation-
ships.

Our method obtained F1 scores of 0.342 for al-
l types and 0.394 for ignoring relation types and
direction on the test set. In this task, the orga-
nizer gives the results of the evaluation obtained
from three different evaluation conditions. Com-
pared with 2016 BioNLP Shared Task, the orga-
nizer has added two more evaluations in order to
have better biological contributions. These evalua-
tion conditions are global results, relations by type
cluster, and ignoring relation types and direction,
respectively. We obtained a good score compared
to the official results from different systems, and
we ranked the second among all teams. It proves
that our proposed method has good performance
in binary relation extraction.

Table 2 shows the F1, recall and precision of
cluster on the test data sets, and Table 3 shows the
result of all types on the test data sets. Table 4
shows the result of ignoring types on the test da-
ta sets and Table 5 shows detailed results of our
method on the test data set.

4 Conclusions

We use distributed semantic representation and
CNN-LSTM model to extract the binary relation-
ship between entities, then build a word embed-
ding with rich semantic knowledge, distance em-
bedding and entity type embedding to feed it into
the CNN and learn the intrinsic relationship be-
tween the candidate entities. In the task, our F1-
score of all types is 0.342, which indicates that our
proposed method works efficiently in extraction of
binary relations.

However, using only the original words embed-
ded in CNN-LSTM may not be sufficient to un-
derstand the hidden information between words.
Using our model to get this score does not mean
that the model works well in other tasks.

In the future, we will continue to focus more on
building rich distributed semantic embedding and
we will improve our model by changing our model
structure and adjusting paraments. In addition, we
will explore various neural networks with multi-
layer architectures, such as the attention mecha-
nism and capsule networks, to solve binary rela-
tionships or event extraction problems.
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Abstract

In this paper we describe a new named en-
tity extraction system. Our work proposes a
system for the identification and annotation of
drug names in Spanish biomedical texts based
on machine learning and deep learning mod-
els. Subsequently, a standardized code using
Snomed is assigned to these drugs, for this pur-
pose, Natural Language Processing tools and
techniques have been used, and a dictionary of
different sources of information has been built.
The results are promising, we obtain 78% in
F1 score on the first sub-track and in the sec-
ond task we map with Snomed correctly 72%
of the found entities.

1 Introduction

Research in biology in the past decade has gener-
ated a large volume of available biological data.
These texts usually contain information related to
drugs, medications, chemicals, reactions, interac-
tions, etc.

Named Entity Recognition (NER) of chemical
compounds is receiving increased attention from
researchers, as it may facilitate the application of
information extraction to the pharmaceutical treat-
ment of diseases. The recognition of pharma-
ceutical drugs and chemical entities is a critical
step required for the subsequent detection of re-
lations of chemicals with other biomedically rele-
vant entities. Biomedical named entity recognition
aims to find entities in biomedical texts, an invalu-
able function that becomes very important for fur-
ther processing such as information retrieval, in-
formation extraction and knowledge discovery. At
present, it has referred to kinds of domains, such
as protein (Liu et al., 2005; Mitsumori et al., 2005;
Tsuruoka and Tsujii, 2003), gene (Liu et al., 2005;
Leser and Hakenberg, 2005) or drug (Campillos
et al., 2008).

This challenge arises to address the task of rec-
ognizing chemicals and drugs. This task has al-
ready been studied by several workshops in En-
glish, but it is important to continue researching
in other languages that have a lot of clinical infor-
mation. Thanks to this challenge, we can continue
studying one of the most widely spoken languages
in the world: Spanish. The main aim is to promote
the development of named entity recognition tools
of practical relevance, that is chemical and drug
mentions in non-English content, determining the
current-state-of-the art, identifying challenges and
comparing the strategies and results to those pub-
lished for English data.

In terms of English, there were several chal-
lenges presented recently such as CHEMDNER
Task: Chemical compound and drug name recog-
nition task (Krallinger et al., 2015) and JNLPBA
(Kim et al., 2004) that served to determine the
state of the art methodology and systems perfor-
mance in addition of providing valuable datasets
for developing new systems (Tanabe et al., 2005).
Some of the most important corpus in this domain
are GENIA (Kim et al., 2003), CRAFT (Bada
et al., 2012), CALBC (Rebholz-Schuhmann et al.,
2010) corpora or SCAI corpus (Kolárik et al.,
2008).

In this paper we introduce the participation of
the SINAI group in the challenge named Phar-
maCoNER (Pharmacological Substances, Com-
pounds and proteins and Named Entity Recog-
nition). PharmaCoNER (Gonzalez-Agirre et al.,
2019) is one of the workshops presented at
BioNLP 2019 and consists of two tracks:

1.1 Track 1: NER offset and entity
classification

In this first sub-track the main objective is to find
the chemicals and drugs within the text. For its
later evaluation it is necessary to write down the
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beginning and end position of the concept, as well
as the appropriate label. The types of entities may
be the following:

• NORMALIZABLES: those mentions of chem-
ical compounds and drugs that can be stan-
dardized with a unique identifier from a
database.

• NO NORMALIZABLES: those mentions of
chemical compounds and drugs that cannot
be normalized

• PROTEÍNAS: includes peptides, proteins,
genes, peptide hormones and antibodies.

• UNCLEAR: for plants, oils, essences,
plant principles and general formula-
tions/compositions of various compounds.

1.2 Track 2: Concept indexing
The objective of the second task was to as-
sign a unique identifier to each concept de-
tected in the previous task. The Snomed (Sys-
tematized Nomenclature of Medicine) (National
Health Service, 2019) terminology was used for
this. Snomed is an international standard dis-
tributed by the International Health Terminology
Standards Development Organisation (IHTSDO)1,
an organisation to which Spain belongs as a mem-
ber.

2 Data collection

The used corpus was Spanish Clinical Case Cor-
pus (SPACCC). This corpus contains a manually
classified collection of sections of clinical cases
derived from open-access Spanish medical jour-
nals. The corpus contains a total of 1000 clinical
cases and 396,988 words.

The organizers provided us 500 documents for
training, 250 validation documents and finally,
3751 test documents. The final collection had a
total of 16504 sentences, with an average of 16.5
sentences per clinical case. The SPACCC corpus
contains a total of 396,988 words, with an average
of 396.2 words per clinical case.

3 Methodology

Our group has participated in both sub-tasks pro-
posed by PharmaCoNER. In each sub-task we
have sent 4 runs. For the first sub-track we have

1https://www.ihtsdo.org/

created machine learning and deep learning ap-
proaches providing extra information with fea-
tures. In the second sub-track we have used the
outputs of the first task using a dictionary-based
approach.

3.1 Track 1: NER offset and entity
classification

3.1.1 Machine learning with CRF.
Conditional Random Fields (CRF) (Lafferty et al.,
2001) are a probabilistic framework for the la-
beling or segmentation of sequential data. We
used CRFsuite, the implementation provided by
Okazaki (Okazaki, 2007), as it is fast and provides
a simple interface for training and modifying the
input features.

Similar to most machine learning-based sys-
tems, the token-level CRF requires a tokenization
module at first. The tokenizer used is WordPunct-
Tokenizer of the NLTK2 library in Python.

Run 1. CRF + basic features. For the first ex-
periment, we incorporate to CRF some basic fea-
tures of each word such as isLower, isUpper, isTi-
tle, isDigit, isAlpha, isBeginOfSentence and isEn-
dIfSentece.

Run 2. CRF + basic features + features based
on medical terminology. For this experiment,
we decided to add a new feature to CRF us-
ing medical terminology to provide extra informa-
tion for each word. This feature indicated if the
word was contained in The Spanish Medical Ab-
breviation DataBase (AbreMES-DB), dictionary
of chemicals, compounds, and drugs in Span-
ish (Nomenclator for Prescription) or Snomed
in Spanish. Nomenclator for Prescription and
AbreMES-DB are resources provided by the orga-
nizers and available on the workshop website3. On
the other hand, Snomed was reduced using only
the concepts of products and substances.

3.1.2 Deep learning with BiLSTM and CNN
For this sub-track, we present a hybrid model of
bi-directional LSTMs and CNNs that learns both
character and word-level features, based on the
model of Chiu (Chiu and Nichols, 2016).

The first neural network, use the Convolutional
Neural Network (CNN) to extract character fea-
tures. For each word we employ a convolution and

2https://www.nltk.org/
3http://temu.bsc.es/pharmaconer/index.

php/resources/
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a max layer to extract a new feature vector from
the per character feature vectors such as character
embedding and character type. This model also
uses Bi-directional recurrent neural network with
Long Short-Term Memory (BiLSTM) to trans-
form word features into named entity.

The word embedding used for this task is Span-
ish Billion Word Corpus. The corpus for creating
this embedding contain 1,000,653 words and the
vector dimension is 300 (Cardellino, 2016).

Finally, the hyper-parameters used in these
Neural Networks are those proposed by Chiu.

Run 3. BiLSTM + CNN + basic features. For
this experiment, we used the model of Chiu (Chiu
and Nichols, 2016). The Bi-LSTM take the con-
catenation of the output of CNN with the word em-
bedding of each word.

Run 4. BiLSTM + CNN + basic features + fea-
tures based on medical terminology. For the
last experiment sent, we used the dictionary ex-
plained in the Run 2. In this case, the Bi-LSTM
neural network used the CNN output, the word
embedding of each word and if the word was con-
tained in the new dictionary created.

3.2 Track 2: Concept indexing
Our approach is to create a large medical termi-
nology dictionary to help map the named entity
recognized in sub-track 1 with Snomed identi-
fiers.The process for developing this task can be
seen in Figure 1 and each step of the process fol-
lowed is detailed below:

1. Construction of the drug name dictionary.

At first, a drug name dictionary was build
with different sources of knowledge related
to chemicals, drugs and medicines. Our goal
in creating this dictionary was to generate
the maximum number of synonymous con-
cepts. The sources of information used are
explained below:

(a) Wikidata: is a document-oriented
database, focused on items, which rep-
resent topics, concepts, or objects. We
downloaded from Wikidata all the el-
ements that were instances of : dis-
ease, gene, syndrome, protein, group or
class of chemical substances, structural
class of chemical compounds, medi-
cation, drug, chemical substance and

chemical compound. To make this query
easy we used SPARQL and obtained
the English and Spanish alias for each
found object. We use both languages be-
cause most synonyms come with infor-
mation in English.

(b) AbreMES-DB: the Spanish Medical
Abbreviation DataBase are extracted
from the metadata of different biomed-
ical publications written in Spanish,
which contain the titles and abstracts.

(c) Nomenclator for prescription4: is a
medicine database designed to provide
basic prescription information to health-
care information systems.

(d) Snomed: we used the dictionary ex-
plained in Section 3.1.1, Snomed was
reduced using only the concepts of prod-
ucts and substances in Spanish.

(e) Chemical symbols in Spanish: abbre-
viated signs used to identify chemical
elements of the periodic table and com-
pounds.
All these sources of information have
something in common, they all contain
synonyms, acronyms or other ways of
referring to the same entity.

2. Text pre-processing.

The second step of this architecture was to
normalize the texts in order to make the
matching of concepts. To do this we use the
spaCy library because it is a free open source
library for Natural Language Processing in
Python. with ’es core news sm’ module in
Spanish. This pre-processing consists of:

- Change the text to lower case.

- Remove accents.

- Use the lemma of each word with spaCy.

- Remove punctuation marks.

- Remove stop-word.

3. Match with drug name dictionary. At this
point, we try to match the input text (recog-
nized entity) with texts in the previously gen-
erated dictionary. If we can match them, then
we will increase the list of possible synonyms

4https://cima.aemps.es/cima/publico/
nomenclator.html
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Figure 1: Snomed code indexing process.

to have more options to find the concept in
Snomed.

4. N-grams of terms. After several tests with
the development collection, we found that in
some cases, the order of the multi-word con-
cepts did not match well. For this reason we
decided to create n-gram, where n is the size
of the multi-word concept with all possible
word combinations. This list of new n-grams
was added to the list of possible synonyms of
the concept.

5. Match Snomed concepts. Using the list of
synonyms extracted from the previous steps,
we try to match any of the synonyms with
Snomed concepts. To get as many Snomed
concepts as possible, we use a library called
Hunspell5.

Hunspell uses a special dictionary to which
we have added Snomed concepts. With this
library, we use the hunspell suggest function
where we can get similar words to the given
word. This function will return many con-
cepts of Snomed so later we must choose one
of them.

5http://hunspell.github.io/

6. Ranking of concepts by Levenshtein dis-
tance. Finally, we must choose a single
Snomed concept. For this we use the Lev-
enshtein distance (LD). LD is a measure of
the similarity between two strings, which we
will refer to as the source string and the
target string. The distance is the number
of deletions, insertions, or substitutions re-
quired to transform each synonym included
with a Snomed concept. Lastly, we chose the
Snomed concept that has the least distance
with the input text.

In Table 1 we can see some examples of how
the resources and tools applied in the archi-
tecture can contribute to the achievement of
Snomed concept mapping.

4 Results

4.1 NER offset and entity type classification.

The first evaluation consist in the classical entity-
based or instanced-based evaluation that requires
that system outputs match exactly the beginning
and end locations of each entity tag, as well as
match the entity annotation type of the gold stan-
dard annotations.

The results obtained by our team for this sub-
track are shown in Table 2.

118



Resource Input text Snomed Term Snomed Code
Wikidata adriamicina doxorrubicina 372817009
Chemical symbols Na sodio 39972003
AbreMES-DB Hb hemoglobina 38082009
Hunspell Library 6-Metil-Prednisolona metilprednisolona 116593003

Table 1: Examples of Snomed concept indexing.

Run Precision Recall F1

1 0.92602 0.61835 0.74154
2 0.88507 0.69815 0.78058
3 0.84404 0.64929 0.73397
4 0.85992 0.69653 0.76965

Table 2: Results of Track 1. NER offset and entity
classification.

Run Precision Recall F1

1 0.87879 0.55849 0.68295
2 0.85207 0.63267 0.72616
3 0.8335 0.57846 0.68295
4 0.82887 0.6184 0.70833

Table 3: Results of Track 2. Concept indexing.

In these results we can see that applying fea-
tures in both methods (Run 2 and Run 3) improves
the base model (Run 1 and Run 3). In the case
of CRF the precision decreases but the recall in-
creases and finally the F1 measure improves from
74% to 78%. For the RNN, in all the measures the
use of new features improves, obtaining 76% of
F1. For future occasions we will continue to ex-
ploit the use of new features in the different strate-
gies.

4.2 Concept indexing.

For this sub-track the main objective was to index
each document of the previous task and each con-
cept detected with a unique Snomed code. Table
3 shows the evaluation of the systems for this sub-
track.

The results are concordant to the previous task,
we use the output of each Run of sub-track 1 to
index the concepts detected with Snomed codes.
For this reason we get 72% F1 score in Run 2, and
in Run 1 we obtain 87% precision.

We are still analyzing the results obtained, in
this way, in the future we will know how we can

improve the task of indexing with terminologies,
which dictionaries to use or which Natural Lan-
guage Processing (NLP) tools we can apply.

5 Conclusion and future work

The SINAI group presents its participation in the
PharmaCoNER challenge. The first task was to
find chemical and drug mentions in the text and
assign a specific label. In the next task, the main
objective was to index each found concept with a
Snomed code.

For sub-track 1 we have developed four systems
with different machine learning and deep learn-
ing approaches adding some relevant features ob-
tained from the Snomed terminology in Spanish.
The goal of sub-track 2 is to assign a unique iden-
tifier to each detected concept of sub-track 1 and
for this we have developed a system based on a
large dictionary of medical terminology according
to the task, this dictionary provided us with a long
list of synonyms for each entity to match with a
Snomed code.

The results obtained have been as expected,
adding extra information from Snomed terminol-
ogy helps classifiers to detect relevant entities
within medical texts. On the other hand, apply
NLP techniques and tools and the creation of a
medical dictionary has contributed to find syn-
onyms for later assigning a single Snomed code.
Using our methodology, we found the correct code
for example to the input text IgG although in
Snomed this concept is described as immunoglob-
ulin G.

In future works we will continue working on
machine learning approaches and different fea-
tures of improvement. Specifically, we will create
more sophisticated Neural Networks and explore
different embeddings in Spanish. Normalization
plays an important role in this track so we will use
NLP to continue improving.
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Corinna Kolárik, Roman Klinger, Christoph M
Friedrich, Martin Hofmann-Apitius, and Juliane
Fluck. 2008. Chemical names: terminological re-
sources and corpora annotation. In Workshop on
Building and evaluating resources for biomedical
text mining (6th edition of the Language Resources
and Evaluation Conference).

Martin Krallinger, Florian Leitner, Obdulia Rabal,
Miguel Vazquez, Julen Oyarzabal, and Alfonso Va-
lencia. 2015. Chemdner: The drugs and chemical
names extraction challenge. Journal of cheminfor-
matics, 7(1):S1.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Ulf Leser and Jörg Hakenberg. 2005. What makes
a gene name? named entity recognition in the
biomedical literature. Briefings in bioinformatics,
6(4):357–369.

Hongfang Liu, Zhang-Zhi Hu, Jian Zhang, and Cathy
Wu. 2005. Biothesaurus: a web-based thesaurus of
protein and gene names. Bioinformatics, 22(1):103–
105.

Tomohiro Mitsumori, Sevrani Fation, Masaki Mu-
rata, Kouichi Doi, and Hirohumi Doi. 2005.
Gene/protein name recognition based on support
vector machine using dictionary as features. BMC
bioinformatics, 6(1):S8.

National Health Service. 2019. SNOMED Interna-
tional. http://www.snomed.org/.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs).

Dietrich Rebholz-Schuhmann, Antonio José Jimeno
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Abstract

This paper presents the fourth edition of the
Bacteria Biotope task at BioNLP Open Shared
Tasks 2019. The task focuses on the extrac-
tion of the locations and phenotypes of mi-
croorganisms from PubMed abstracts and full-
text excerpts, and the characterization of these
entities with respect to reference knowledge
sources (NCBI taxonomy, OntoBiotope ontol-
ogy). The task is motivated by the importance
of the knowledge on biodiversity for funda-
mental research and applications in microbi-
ology. The paper describes the different pro-
posed subtasks, the corpus characteristics, and
the challenge organization. We also provide
an analysis of the results obtained by partici-
pants, and inspect the evolution of the results
since the last edition in 2016.

1 Introduction

In this paper, we present the fourth edition1 of the
Bacteria Biotope (BB) task. The task was intro-
duced in 2011. It has the ambition of promot-
ing large-scale information extraction (IE) from
scientific documents in order to automatically
fill knowledge bases in the microbial diversity
field (Bossy et al., 2012). BB 2019 is part of
BioNLP Open Shared Tasks 20192. BioNLP-OST
is a community-wide effort for the comparison and
evaluation of biomedical text mining technologies
on manually curated benchmarks.

A large amount of information about microbes
and their properties that is critical for microbiol-
ogy research and development is scattered among
millions of publications and databases (Chaix
et al., 2019). Information extraction as framed by
the Bacteria Biotope task identifies relevant enti-
ties and interrelationships in the text and map them
to reference categories from existing knowledge

1https://sites.google.com/view/bb-2019
2https://2019.bionlp-ost.org/

resources. This information can thus be combined
with information from other sources referring to
the same knowledge resources. The knowledge re-
sources used in the BB task are the NCBI taxon-
omy3 (Federhen, 2011) for microbial taxa and the
OntoBiotope ontology4 (Nédellec et al., 2018) for
microbial habitats and phenotypes. The large size
of these resources relative to the small number of
training examples reflects the real conditions of IE
application development, whilst it challenges cur-
rent IE methods. The lexical richness of the two
resources partially offsets the difficulty.

Compared to the 2016 corpus that contained
only scientific paper abstracts from the PubMed
database (Deléger et al., 2016), the 2019 corpus
is enriched with extracts from full-text articles.
We introduced a new entity type (phenotype) and
a new relation type (linking microorganisms and
phenotypes). Phenotypes are observable charac-
teristics such as morphology, or environment re-
quirement (e.g. acidity, oxygen). It is very valu-
able information for studying the ability of a given
microbe to adapt to an environment (Brbić et al.,
2016). The definition of microorganism pheno-
type in the OntoBiotope ontology includes host in-
teraction characteristics (e.g. symbiont) and com-
munity behavior and growth habit (e.g. epilithic).
The task organization and the evaluation metrics
remain unchanged.

2 Task Description

The representation scheme of the Bacteria Biotope
task contains four entity types:

• Microorganism: names denoting microor-
ganism taxa. These taxa correspond to mi-
croorganism branches of the NCBI taxon-

3https://www.ncbi.nlm.nih.gov/taxonomy
4https://tinyurl.com/OntoBiotope2019

121



omy. The set of relevant taxa is given on the
BB task website.

• Habitat: phrases denoting physical places
where microorganisms may be observed;

• Geographical: names of geographical places;

• Phenotype: expressions describing microbial
characteristics.

The scheme defines two relation types:

• Lives in relations which link a microorgan-
ism entity to its location (either a habitat or
a geographical entity, or in few rare cases a
microorganism entity);

• Exhibits relations which link a microorgan-
ism entity to a phenotype entity.

Arguments of relations may occur in different
sentences. In addition, microorganisms are nor-
malized to taxa from the NCBI taxonomy. Habi-
tat and phenotype entities are normalized to con-
cepts from the OntoBiotope ontology. We used the
BioNLP-OST-2019 version of OntoBiotope avail-
able on AgroPortal 5. We used the NCBI Taxon-
omy version as available on February 2, 2019 from
NCBI website 6. Copies of both resources can be
downloaded from the task website. The microor-
ganism part of the taxonomy contains 903,191
taxa plus synonyms, while the OntoBiotope on-
tology includes 3,601 concepts plus synonyms
(3,172 for the Habitat branch and 429 for the Phe-
notype branch of the ontology).

Geographical entities are not normalized.
Figure 1 shows an example of a sentence anno-

tated with normalized entities and relations.
As in the 2016 edition, we designed three tasks,

each including two modalities, one where entity
annotations are provided and one where they are
not and have to be predicted.

2.1 Entity Normalization
The first task focused on entity normalization.

In the BB-norm modality of this task, partici-
pant systems had to normalize textual entity men-
tions according to the NCBI taxonomy for mi-
croorganisms and to the OntoBiotope ontology for
habitats and phenotypes.

In the BB-norm+ner modality, systems had to
recognize the mentions before normalizing them.

5http://agroportal.lirmm.fr/ontologies/ONTOBIOTOPE
6ftp://ftp.ncbi.nih.gov/pub/taxonomy

2.2 Relation Extraction

The second task focused on the extraction of the
two types of relations— Lives in relations among
microorganism, habitat and geographical entities,
and Exhibits relations between microorganism and
phenotype entities.

In the BB-rel modality, participant systems
only had to extract the relations, while in the
BB-rel+ner modality they had to perform entity
recognition in addition to relation extraction.

2.3 Knowledge Base Extraction

The goal of the third task is to build a knowl-
edge base using the entities and relations extracted
from the corpus. It can be viewed as the combina-
tion of the previous tasks, followed by a merging
step. Participant systems must normalize entities
and extract relations.

In the BB-kb modality, participant systems
had to perform normalization and relation extrac-
tion with entity mentions being provided. In the
BB-kb+ner modality, they had to perform entity
recognition as well.

3 Corpus Description

3.1 Document Selection

The BB task corpus consists of two types of doc-
uments: PubMed references (titles and abstracts)
related to microorganisms, and extracts from full-
text articles related to beneficial microorganisms
living in food products.

The PubMed references are the same as the 215
references of the Bacteria Biotope 2016 corpus.
They were sampled from all PubMed entries in-
dexed with a term from the Organisms/Bacteria
subtree of the MeSH thesaurus. The full selection
process is described in Deléger et al. (2016).

Full-text extracts were selected from scientific
articles about microorganisms of food interest and
annotated by microbiologist experts in the context
of the Florilege project (Falentin et al., 2017). We
reused and complemented this corpus for the BB
task.

Because manual annotation is time-consuming
and experts have limited time to dedicate to this
task, they did not annotate the full articles. In-
stead, they chose the paragraphs and sentences
they found the most informative in the articles.
Thus, this part of the BB corpus is composed of
177 extracts of variable lengths (from one single
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HabitatGeographical

Ontobiope OBT:001828
tortoise

[...] both M. agassizii and M. testudineum are present in Georgia populations of gopher tortoises

and that clinical disease is apparent in populations where both pathogens are present.

Microorganism Microorganism

Phenotype

Lives_in

Exhibits

Ontobiope OBT:002669
animal pathogen

NCBI taxon 33922
Mycoplasma agassizii

NCBI taxon 244584
Mycoplasma testudineum

Figure 1: Annotation example

sentence to a few paragraphs) selected from 20 ar-
ticles.

3.2 Annotation
The PubMed references were already annotated as
part of the 2016 edition. We revised these annota-
tions to add phenotype entities with their concept
normalization and Exhibits relations. Habitat an-
notations were also revised to take into account the
new and enriched version of the OntoBiotope on-
tology (compared to the 2016 version7).

We also extended the existing annotations of the
full-text extracts of the Florilege project by assign-
ing normalized concepts to the entities.

Annotation revision was performed by six an-
notators with backgrounds in biology, computer
science and natural language processing. All doc-
uments were annotated independently by two an-
notators and disagreements were resolved through
an adjudication phase. Detailed annotation guide-
lines (Bossy et al., 2019) were provided to the an-
notators and were regularly updated following is-
sues raised during the annotation or adjudication
phases.

The inter-annotator agreement was computed
by evaluating one of the two annotations before
adjudication against the other. Table 1 summarizes
the inter-annotator agreement for named entities,
normalization and relations. The metrics used for
inter-agreement are the same as for the evaluation
of predictions and thus are described below (5.1).

3.3 Descriptive Statistics
Table 2 gives the size of the corpus, in terms of
documents, words, sentences and annotated ele-

7http://2016.bionlp-st.org/tasks/bb2/
OntoBiotope_BioNLP-ST-2016.obo

Named-entities (F1) 0.893
Normalization (semantic similarity) 0.974
Relations (F1) 0.786
BB-norm+ner evaluation (SER) 0.322
BB-norm+ner evaluation (F1) 0.823
BB-rel+ner evaluation (SER) 0.448
BB-rel+ner evaluation (F1) 0.765
BB-kb+ner evaluation 0.723

Table 1: Inter-annotator agreement metrics (SER
stands for Slot Error Rate).

ments. The last row shows the number of unique
relations in the whole corpus, i.e. the unique pairs
of microorganism and habitat/phenotype concepts
that are in a relation. The proportion is rather high
(1,931 out of a total of 3,578 occurrences), which
reflects the rich information content of the corpus.

Documents 392
Words 60,402
Unique words 12,566
Sentences 2,646
Entity mentions 7,232
Unique entity mentions 3,300
Concepts 1,072
Relations 3,578
Unique relations between concepts 1,931

Table 2: Global statistics of the corpus

In the following, we present more detailed
statistics and highlight corpus characteristics that
may be challenging for the participants.
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3.3.1 Entities and Concepts

Table 3 shows the number of mentions, unique
(lemmatized) mentions, concepts and average
number of mentions per concept for each entity
type. Habitat entities are the most frequent, fol-
lowed by Microorganism entities. Geographical
entities are very scarce.

There is much more variation in the expression
of habitats and phenotypes than in that of microor-
ganisms. There is an average of respectively 4
and 3.5 unique mentions per habitat and pheno-
type concept while microorganisms only have 1.9.
Their proportion of unique entities out of all men-
tions is also higher (respectively 50.6% and 45.2%
vs. 38.2% for microorganisms).

The proportion of direct mappings (i.e., ex-
act string matches, taking into account lemma-
tization) between entity mentions and labels of
concepts (from the NCBI taxonomy or the Onto-
Biotope ontology) is displayed on Figure 2. It em-
phasizes once more the variability of Habitat and
Phenotype entity expressions, with respectively
72.5% and 91.2% mentions that do not exactly
match a concept label or synonym. Among exact
matches, a small proportion of mentions are not
actually normalized with the concept whose label
they match. These are “contextual normalization”
cases, i.e. entities are normalized with a more spe-
cific concept which can be inferred from the con-
text. These often correspond to lexical coreference
cases.
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Exact match Exact match w/ diff. norm.
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Figure 2: Exact matches between entity mentions and
concepts. The exact match label refers to entities ex-
actly matching the concept they are normalized with;
the exact match w/ diff. norm. label refers to entities
exactly matching a concept but normalized with a dif-
ferent one; the no exact match label refers to entities
that do not match exactly a concept.

A distinctive feature of the BB task is that mul-
tiple concepts may be assigned to a given entity
mention. Multiple normalization happens when
two (or more) concepts can describe an entity
and are all deemed necessary because each con-
cept corresponds to a different aspect of the en-
tity. An example of such a case is the Habitat en-
tity “diseased cow” which is normalized by both
the <cow> and <animal with disease> concepts.
This is the case mainly for Habitat entities (8.7%),
and rarely happens for Phenotype entities (0.6%)
and Microorganism entities (only one occurrence).

Another characteristic of the corpus is the pres-
ence of nested entities (entities embedded in an-
other larger entity) and discontinuous entities (en-
tities split in several fragments). Both phenomena
can be challenging for machine-learning methods
and are often ignored. The proportion of discon-
tinuous entities in the corpus is limited, with a total
of 3.7%. Nested entities are more frequent (17.8%
in total), especially for habitats. For instance, the
Habitat entity “cheese making factory” also con-
tains the smaller Habitat entity “cheese”.

3.3.2 Relations
Table 4 shows the number of relations for both
Lives in and Exhibits types, including intra-
sentence and inter-sentence relations. Intra-
sentence relations involve entities occurring in the
same sentence while inter-sentence relations in-
volve entities occurring in different sentences, not
necessarily contiguous. Inter-sentence relations
are known to be challenging for automatic meth-
ods. Their proportion in the corpus is not negli-
gible (17.5% in total). An example can be seen
in the following extract: Vibrios [. . . ] are ubiq-
uitous to oceans, coastal waters, and estuaries.
[. . . ] The bacterial pathogen is a growing con-
cern in North America. There is an inter-sentence
relation between the two underlined entities.

3.3.3 Training, Development and Test Sets
The BB corpus is split into training, development
and test sets. In practice, there are two test sets,
one for the modalities involving entity recogni-
tion (the “+ner” sub-tasks) and one for the modal-
ities where entity annotations are given. We kept
the corpus division of the 2016 edition for the
PubMed references. This was possible because
the gold annotations of the test set were never re-
leased to the public. Then we split the Florilege
full-text extracts using the same proportions as for
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Microorganism Habitat Phenotype Geographical
Entity mentions 2,487 3,506 1,102 137
Unique entity mentions 950 1,774 498 78
Concepts 491 440 141 N/A
Unique mentions per concept (average) 1.9 4.0 3.5 N/A

Table 3: Statistics for each entity type

Intra-sent. Inter-sent. Total
Lives In 2,099 (79.8%) 532 (20.2%) 2,631
Exhibits 852 (90.0%) 95 (10.0%) 947
Total 2,951 (82.5%) 627 (17.5%) 3,578

Table 4: Statistics for each relation type

the PubMed references. Figure 3 shows the distri-
bution of documents, entities, concepts and rela-
tions in the training, development and test sets of
the BB-kb+ner task, as an example. The propor-
tions are similar in all sub-tasks. Details for each
sub-task can be found on the task website8.
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Figure 3: Distribution of documents, entities, concepts
and relations in the training, development and test sets
(BB-kb+ner task)

The proportion of concepts seen in the train-
ing set out of all concepts present in the knowl-
edge resources is low for all entity types, which
means that there is a large number of unseen exam-
ples (0.02% for microorganisms, 7.3% for habi-
tats, and 15.6% for phenotypes). It emphasizes the
need for methods that handle few-shot and zero-
shot learning. Microorganisms have the lowest
proportion, due to the large size of the microor-
ganism taxonomies. However, the names of the

8https://sites.google.com/view/
bb-2019/dataset/corpus-statistics

microorganism entities show little variation in the
corpus compared to habitat and phenotype types,
and should be easier to recognize.

4 Supporting Resources

Supporting resources were made available to par-
ticipants. They consist of outputs from state-of-
the-art tools applied to the BB data sets (e.g., POS
tagging, syntactic parsing, NER, word embed-
dings). We proposed in-house embeddings trained
on selected relevant PubMed abstracts, and links
to external embeddings (Pyysalo et al., 2013; Li
et al., 2017) trained on PubMed and Wikipedia.
The full list of tools and resources is available on
the website.

5 Evaluation

5.1 Metrics

We used the same evaluation metrics as in the
2016 edition. The underlying rationale and for-
mula of each score is detailed in Deléger et al.
(2016); Bossy et al. (2013). Additionally we com-
pute a variety of alternate scorings in order to dis-
tinguish the strengths of each submission. The
evaluation tool was provided to participants9.

Normalization accuracy is measured through a
semantic similarity metric, and micro-averaging
across entities. Relation extraction is measured
with Recall, Precision, and F1.

However for tasks where systems must recog-
nize entities, we used the Slot Error Rate (SER) in-
stead of F1 in order to avoid sanctioning twice the
inaccuracy of boundaries. The SER measures the
amount of errors according to three types: inser-
tions (false positives), deletions (false negatives),
and substitutions (partial matches). The SER is
normalized by the number of reference items. The
higher the value the worse is the prediction, and
there is no upper bound since insertions can ex-
ceed the number of items in the reference.

9https://github.com/Bibliome/bionlp-st
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Confidence intervals were computed for each
metric with the bootstrap resampling method
(90%, n=100).

5.2 Baseline
We designed simple baselines for each sub-task in
order to provide a comparison reference. We pre-
processed the corpus with the AlvisNLP10 engine,
that performs tokenization, sentence splitting, and
lemmatization using the GENIA tagger (Tsuruoka
et al., 2005).

• BB-norm: we performed exact matching be-
tween lemmatized entities and the knowledge
resources. When no match was found, we
normalized habitats and phenotypes with the
top-level concept of the Habitat and Pheno-
type ontology branches, and microorganisms
with the high-level <Bacteria> taxon.

• BB-norm+ner: we used our exact matching
approach on the lemmatized text of the docu-
ments instead of on given entity mentions.

• BB-rel: we used a simple co-occurrence ap-
proach, linking pairs of entities occurring in
the same sentences.

• BB-rel+ner: we first detected entities using
our exact matching strategy for microorgan-
isms, habitats and phenotypes. For geograph-
ical entities, we used the Stanford Named
Entity Recognition tool (Finkel et al., 2005).
Then we linked entities occurring in the same
sentences, as for the BB-rel task.

• BB-kb: we combined the BB-norm and BB-
rel approaches.

• BB-kb+ner: we combined our BB-norm+ner
method with our co-occurrence approach.

6 Outcome

6.1 Participation
The blind test data was released on the 22nd of
July 2019 and participants were given until the
31st of July to submit their predictions. Each team
was allowed two submissions to each sub-task.

Ten teams participated to all six sub-tasks and
submitted a total of 31 runs. Table 5 details team
affiliations. Teams are from five different coun-
tries in Europe, Asia, and North America. Six of

10https://bibliome.github.io/alvisnlp/

the teams are affiliated to universities, three to in-
dustry companies, and one has a mixed university-
industry affiliation.

Team Affiliation

AliAI
(Zhang et al., 2019)

Alibaba

Amrita Cen Amrita Vishwa
Vidyapeetham

AmritaCen healthcare Amrita Vishwa
Vidyapeetham

BLAIR GMU
(Mao and Liu, 2019)

George Mason
University

BOUN-ISIK
(Karadeniz et al.,
2019)

Boğaziçi University &
Işık University

MIC-CIS
(Gupta et al., 2019)

Siemens AG &
Ludwig Maximilian
University of Munich

PADIA BacReader
(Deng et al., 2019)

Ping An Technology

UTU University of Turku

whunlp
(Xiong et al., 2019)

Wuhan University

Yuhang Wu Yunnan University

Table 5: Participating teams and their affiliations.

6.2 Participants’ Methods and Resources

As in 2016, most methods are based on Machine
Learning algorithms.

For named entity recognition, the CRF al-
gorithm is still the most used (BLAIR GMU),
though sometimes combined with a neural net-
work (MIC-CIS).

In 2016, the majority of participants used
SVMs for relation extraction. In this edition
nearly all participants used neural networks in
a diversity of architectures: multi-layer percep-
tron (Yuhang Wu), bi-LSTM (whunlp), AGCNN
(whunlp). One participant predicted relations
through filtered co-occurrences (BOUN-ISIK),
and another by bagging SVM and Logistic Regres-
sion (BLAIR GMU). Note that AliAI employed
a multi-task architecture similar to BERT (Devlin
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et al., 2019) to perform both named-entity recog-
nition and relation extraction.

The normalization task was addressed in a more
diverse manner. On one hand several distinct
ML algorithms were used to discriminate entity
categories: ensemble CNNs (PADIA BacReader),
kNN with reranking (BOUN-ISIK), or Linear
Regression (BLAIR GMU). On the other hand
MIC-CIS employed an exact and an approximate
matching algorithm.

Word embeddings trained with Word2Vec
(Mikolov et al., 2013) on a domain-specific cor-
pus (PubMed abstract, PMC articles) seem to be
an universal resource since all but one submissions
for any task used them. BLAIR GMU used con-
textual embeddings based on BERT and XLNet
(Yang et al., 2019).

Dependency parsing was used in every relation
extraction submission, and also for normalization
(BOUN-ISIK).

The most popular NLP tool libraries are Stan-
ford CoreNLP (Manning et al., 2014) and NLTK
(Bird et al., 2009). We also note that the Word-
Piece segmentation is used even in systems that
do not use BERT.

6.3 Results

In this section we report the results for all sub-
tasks, and highlight notable results as well as
a comparison with results obtained in 2016 in
the third edition of the Bacteria Biotope task in
BioNLP-ST 2016. The task site presents detailed
results, including main and alternate metrics, as
well as confidence intervals.

However comparison with 2016 is limited by
the evolution of the task. On one hand the data set
has increased approximately by 50%, and the an-
notations were revised and their quality improved.
On the other hand the tasks were made harder be-
cause the schema was enriched with an entity type
and a relation type, and the target taxa have been
extended from Bacteria only to all microorgan-
isms.

6.3.1 BB-norm and BB-norm+ner
The main results as well as the results for each en-
tity type are shown in Tables 6 and 7. BOUN-ISIK
and BLAIR GMU obtained the best overall results
for BB-norm, and MIC-CIS for BB-norm+ner.

The results for each entity type highlight differ-
ent profiles. While BOUN-ISIK predicts accurate
normalizations for habitat entities for BB-norm,

BLAIR GMU predicts better normalizations for
microorganism entities. PADIA BacReader’s pre-
dictions for habitats is on par with BOUN-ISIK,
and their normalization of phenotype entities is
outstanding.

As for BB-norm+ner, MIC-CIS consistently
predicts the best entity boundaries and normaliza-
tions for all types.

In comparison to 2016, the state of the art for
multi-word entity recognition and normalization,
like habitats and phenotypes, has improved. We
note that with the introduction of new taxa the
recognition and normalization of taxa may have
been rendered more difficult than anticipated since
the results are lower than obtained in 2016.

6.3.2 BB-rel and BB-rel+ner
The results of BB-rel and BB-rel+ner are given in
Tables 8 and 9 respectively. The table includes the
scores obtained for each relation type, as well as
the best results obtained in 2016.

The highest F-score for BB-rel was obtained by
the whunlp submission, with AliAI as a very close
contender. UTU, and very closely behind AliAI,
obtained the highest Precision, whereas BOUN-
ISIK the highest Recall. The Recall of the baseline
prediction indicates the highest recall possible for
relations contained in a single sentence. No partic-
ipating system addresses cross-sentence relations,
which appears to be the most productive lead to
increase performance.

Most submissions outperform the best predic-
tions of 2016 in at least one score, and five of the
eleven submissions obtain a significantly higher F-
score.

For BB-rel+ner, AliAI obtains the highest re-
call and precision, consistently for Lives In and
Exhibits relations. This submission also outper-
forms significantly the state of the art set in 2016.

6.3.3 BB-kb and BB-kb+ner
BLAIR GMU is the only team to submit to the
BB-kb and BB-kb+ner tasks, their results are
shown in Table 10. The knowledge-base task
and evaluation necessarily require end-to-end pre-
diction systems that must perform named-entity
recognition, entity normalization, relation extrac-
tion, as well as contributory tasks like POS-
tagging, or coreference resolution. The limited
scores obtained might be explained by the accu-
mulation of errors by successive prediction steps.

Since the data of all sub-tasks comes from the
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Team All types Habitats Phenotypes Microorganisms
Baseline 0.531 0.559 0.581 0.470
Best 2016 0.679 0.620 0.801
BOUN-ISIK-2 0.679 0.687 0.566 0.711
BLAIR GMU-2 0.678 0.615 0.646 0.783
BOUN-ISIK-1 0.675 0.687 0.566 0.700
BLAIR GMU-1 0.661 0.586 0.628 0.783
PADIA BacReader-1 0.633 0.684 0.758 0.511
AmritaCen healthcare-1 0.514 0.522 0.646 0.450

Table 6: Results for the BB-norm sub-task. The metric is the average of the semantic similarity between the
reference and the predicted normalizations. Best scores are in bold font, several scores are in bold if their difference
is not significant.

Team All types Habitat Phenotype Microorganism
Baseline 0.823 0.830 0.872 0.790
Best 2016 0.628 0.775 0.399
MIC-CIS-1 0.716 0.728 0.747 0.686
MIC-CIS-2 0.787 0.855 0.759 0.715
BLAIR GMU-1 0.793 0.785 0.775 0.810
BLAIR GMU-2 0.806 0.722 0.894 0.865
AmritaCen healthcare-1 2.571 3.626 1.597

Table 7: Results for the BB-norm+ner sub-task. The metric is the Slot Error Rate (lower is better) and takes into
account false positives and negatives, entity boundary accuracy, and normalization accuracy. Best scores are in
bold font, several scores are in bold if their difference is not significant.

Average Lives In Exhibits
Team F1 Recall Precision F1 Recall Prec. F1 Recall Prec.
Baseline 0.635 0.801 0.525 0.621 0.767 0.521 0.677 0.915 0.538
Best 2016 0.558 0.646 0.623
whunlp-1 0.664 0.702 0.629 0.643 0.664 0.624 0.725 0.829 0.644
AliAI-1 0.650 0.620 0.682 0.648 0.606 0.697 0.654 0.667 0.642
Yuhang Wu-1 0.605 0.670 0.551 0.593 0.645 0.549 0.640 0.752 0.556
BOUN-ISIK-1 0.603 0.731 0.514 0.592 0.709 0.508 0.640 0.808 0.530
BLAIR GMU-2 0.594 0.650 0.548 0.578 0.618 0.543 0.642 0.752 0.560
BOUN-ISIK-2 0.575 0.601 0.552 0.562 0.562 0.561 0.613 0.729 0.529
UTU-2 0.550 0.474 0.655 0.495 0.417 0.610 0.715 0.662 0.777
BLAIR GMU-1 0.549 0.496 0.617 0.526 0.463 0.609 0.619 0.603 0.636
UTU-1 0.529 0.428 0.694 0.505 0.403 0.679 0.603 0.510 0.738
Amrita Cen-1 0.500 0.617 0.420 0.499 0.643 0.407 0.503 0.531 0.478
Amrita Cen-2 0.493 0.610 0.414 0.491 0.642 0.397 0.505 0.502 0.507

Table 8: Results for the BB-rel sub-task. Best scores are in bold font, several scores are in bold if their difference
is not significant.
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Average Lives In Exhibits
Team SER Recall Prec. SER Recall Prec. SER Recall Prec.
Baseline 1.211 0.134 0.229 1.266 0.171 0.228 1.211 0.134 0.229
Best 2016 0.984 0.111 0.498
AliAI-1 0.954 0.351 0.509 0.941 0.309 0.520 0.982 0.449 0.492
BLAIR GMU-1 1.013 0.330 0.456 1.020 0.325 0.451 0.996 0.339 0.468
BLAIR GMU-2 1.059 0.331 0.425 1.046 0.320 0.435 1.086 0.358 0.406
UTU-1 1.085 0.209 0.332 1.091 0.182 0.307 1.069 0.272 0.382
UTU-2 1.227 0.182 0.267 1.169 0.168 0.279 1.362 0.217 0.249

Table 9: Results for the BB-rel+ner sub-task (Prec. = Precision). Best scores are in bold font, several scores are in
bold if their difference is not significant.

same pool of annotated documents, we were able
to build a BB-kb prediction by combining the best
predictions for the BB-norm and BB-rel tasks.
The combination of the microorganism normal-
ization by BLAIR GMU, the habitat and phe-
notype normalization by PADIA BacReader, and
relations by whunlp yield a much higher preci-
sion. The best result for BB-kb+ner was ob-
tained by combining the relation extraction of
BLAIR GMU and the normalization of MIC-
CIS. The named entities concurrently predicted by
the BB-norm+ner and BB-rel+ner systems were
matched by maximizing the overlap segment.

Team BB-kb BB-kb+ner
Baseline 0.216 0.264
Combined 0.505 0.290
BLAIR GMU-2 0.308 0.269
BLAIR GMU-1 0.291 0.259

Table 10: Results for the BB-kb and BB-kb+ner sub-
tasks. The metric is the average of the semantic simi-
larity between the reference and the predicted normal-
izations for all relation arguments after removing dupli-
cates at the corpus level. Best scores are in bold font,
several scores are in bold if their difference is not sig-
nificant.

7 Conclusion

The Bacteria Biotope Task arouses sustained in-
terest with a total of 10 teams participating in
the fourth edition. As usual, the relation extrac-
tion sub-tasks (BB-rel and BB-rel+ner) were the
most popular, demonstrating that this task is still
a scientific and technical challenge. The most no-
table evolution of participating systems since the
last edition is the pervasiveness of methods based
on neural networks and word embeddings. These

systems yielded superior predictions compared to
those in 2016. As mentioned previously, there is
still much room for improvement in addressing
cross-sentence relation extraction.

We also note a growing interest in the normal-
ization sub-tasks (BB-norm and BB-norm+ner).
The predictions improved for habitat entities, and
are very promising for phenotype entities. How-
ever the generalization from bacteria-only taxa in
2016 to all microorganisms in this edition proved
to pose an unexpected challenge.

Knowledge base population (BB-kb and BB-
kb+ner) is the most challenging task, since it re-
quires a wider set of capabilities. Nevertheless we
demonstrated that the combination of other sub-
task predictions allows to produce better quality
knowledge bases.

To help participants, supporting resources were
provided. The most used resources were pre-
trained word embeddings, and general-domain
named entities.

The evaluation on the test set will be maintained
online11 in order for future experiments to com-
pare with the current state of the art.
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Kriško, Tomislav Šmuc, and Fran Supek. 2016. The
landscape of microbial phenotypic traits and associ-
ated genes. Nucleic acids research, page gkw964.

Estelle Chaix, Louise Deléger, Robert Bossy, and
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Abstract

Named Entity Recognition (NER) and Rela-
tion Extraction (RE) are essential tools in dis-
tilling knowledge from biomedical literature.
This paper presents our findings from partic-
ipating in BioNLP Shared Tasks 2019. We
addressed Named Entity Recognition includ-
ing nested entities extraction, Entity Normal-
ization and Relation Extraction. Our proposed
approach of Named Entities can be general-
ized to different languages and we have shown
it’s effectiveness for English and Spanish text.
We investigated linguistic features, hybrid loss
including ranking and Conditional Random
Fields (CRF), multi-task objective and token-
level ensembling strategy to improve NER. We
employed dictionary based fuzzy and semantic
search to perform Entity Normalization. Fi-
nally, our RE system employed Support Vector
Machine (SVM) with linguistic features.

Our NER submission (team:MIC-CIS) ranked
first in BB-2019 norm+NER task with stan-
dard error rate (SER) of 0.7159 and showed
competitive performance on PharmaCo NER
task with F1-score of 0.8662. Our RE system
ranked first in the SeeDev-binary Relation Ex-
traction Task with F1-score of 0.3738.

1 Introduction

Extracting knowledge from scientific articles is a
challenging but very important problem. This be-
comes especially critical for biomedical literature
which is growing at an increasing rate of at least
4% per year, as of June 2019 there are 30 Mil-
lion documents in PubMed (Lu, 2011). Named
Entity Recognition (NER) (Settles, 2004; Gupta
et al., 2016; Lample et al., 2016) in the context of
biomedical domain refers to the task of identifying
the name of the biological entities e.g. name of a
bacteria. Relation extraction1 (RE) (Kambhatla,

* Equal Contribution
1Event extraction is treated as RE in this work
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Figure 1: An illustration of (nested) NER + Normal-
ization and Relation Extraction in Biomedical entities.
Each rectangular box spans an entity, where the over-
lapping spans indicate nested entities. E.g., fish is a
nested entity (a sub-concept) of type Habitat within
the parent entity fish pathogen of type Phenotype. The
identifiers (e.g. OBT:002669, NCBI:40269, etc.) re-
fer to unique IDs in Biomedical databases (i.e., OBT
→ OntoBiotope Ontology and NCBI→ NCBI Taxon-
omy), used to perform entity normalization (i.e., entity
linking). The arrows indicate binary relationships.

2004; McDonald et al., 2005; Lever and Jones,
2016; Gupta et al., 2018) refers to identifying re-
lations among biological entities (binary or n-ary).

Figure 1 illustrates an example of (nested) NER
and RE consisting of five entities, where three en-
tities participate in two distinct relationships. It is
often required to link named entity(s) to a unique
reference in database(s). For instance, one of
the two occurrences of fish refers to marine fish
while the second refers to a farm fish, where the
two entities are linked (or normalized) to different
identifiers (e.g., OBT:002793 and OBT:002903) in
the biomedical database (e.g., OntoBiotope Ontol-
ogy). The act of linking entities to standard en-
tities with a unique identifier is known as entity
normalization and is challenging as several entity
mentions can correspond to the same standard en-
tity (or unique identifier), e.g. E. coli, Bacillus coli
and Bacteriumcoli refer to the standard entity Es-
cherichia coli in the database. The linking process
relies on knowledge base (KB) search (heuristic
OR semantic) in order to resolve entities.

NER is a critical primitive step in the NLP
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Figure 2: System Architecture for NER task, consisting of two bi-LSTM-CRF architectures: Level1 NER to detect
parent entities and Level2 Nested NER to detect sub-concepts within the parent entities (output of Level1 NER).
Here, w e: a word embedding vector; c_e: an embedding vector for a word computed using character-level bi-
directional LSTM; t_f : a vector of additional linguistic features; B_P: B_Pathogen; B-S_H: a sub-concept of type
Habitat detected by the Level2 Nested NER run over the the parent entity.

pipeline as downstream tasks such as RE, text clas-
sification, Question Answering (QA) etc., depend
on it. Even though several methods have been de-
vised to engineer reliable NER systems; however,
most of them don’t explicitly address the extrac-
tion (or recognition) of nested entities, especially
required in the biomedical domain. Nested en-
tity is defined as an entity or sub-concept which
is part of a longer entity (i.e., a parent). For in-
stance in the Figure 1, fish is a nested entity as it is
part of a parent entity fish pathogen. In this work,
we have also investigated extracting nested enti-
ties via two bi-LSTM-CRF (Lample et al., 2016)
networks: one for parent detection and another for
nested entities with the parent entity.

2 Task Description and Contribution

We participate in the following three tasks or-
ganized by BioNLP workshop 2019: (1) Phar-
maCoNER: Recognition of pharmaceutical drugs
and chemical entities in Spanish text. (2)
BB-norm+NER: Recognition of Microorganism,
Habitat and Phenotype entities and normalization
with NCBI Taxonomy and OntoBiotope habitat
concepts. (3) SeeDev Binary RE: Binary Relation
extraction of genetic and molecular mechanisms
involved in plant seed development.

Following are our multi-fold contributions:

1. To address NER tasks, we have employed
neural network based sequence classifier,
i.e., bi-LSTM-CRF and investigated multi-
tasking of named entity detection (NED) and
language modeling (LM). We further intro-
duced hybrid loss including CRF and rank-
ing. We also incorporated linguistic features
such as POS, orthographic features, etc. We
apply the proposed modeling approaches to
both English and Spanish texts. Comparing
with other systems, our submission (Team:
MIC-CIS) is ranked 1st in BB-norm+NER
task (Bossy et al., 2019) with standard er-
ror rate of 0.7159. In PharmaCoNER task
(Gonzalez-Agirre et al., 2019), our submis-
sion scored F1-score of 0.8662.

2. To address RE task, we employed linguistic
and entity features in SVM. Our submission
(Team: MIC-CIS) is ranked 1st in SeeDev-
binary RE task (Chaix et al., 2016) with F1-
score of 0.3738.

The code to reproduce our results is avail-
able at: https://github.com/uyaseen/
bionlp-ost-2019.
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Features Description
word-cap capitalization features
POS parts-of-speech tags

ortho
orthographic features
e.g. Egg Pulp, 97 encoded as Ccc Ccccp nn

tri-gram tri-gram as features
five-gram five-gram as features
length length of the word
sdp-rel dependency relation tag

alpha-features
detect if certain linguistic pattern occurred
in the current word or the next word

Table 1: Word-level features for NER. The features are
encoded as embeddings, except the alpha features that
are represented as one-hot vector.

3 Methodology

In the following sections we discuss our proposed
model for NER and RE.

3.1 Neural Architectures for NER

Figure 2 describes the architecture of our model,
where we design two sequence taggers Level1
NER and Level2 Nested NER to extract parent
and nested entities respectively. Furthermore,
Level1 NER can be configured in two modes: (1)
LSTM-CRF (Lample et al., 2016) with word em-
beddings (w e), character embeddings (c e) and
token-level features (t f ) such as POS, capitaliza-
tion features, word shape, etc. (refer to table 1
for the complete list of word level features) (2)
LSTM-CRF+Multi-task that performs entity de-
tection and language modelling as auxiliary tasks.
Note that Level2Nested NER only operates on
the parent entities detected by Level1 NER. The
parent and nested entities are than normalized to
unique identifiers in KB by our entity normaliza-
tion algorithm.

3.1.1 BiLSTM-CRF
The input to LSTM is a sequence of word
features (w1,w2, . . . ,wn) and they compute a
hidden state for each element in the sequence
(h1,h2, . . . ,hn). This hidden state can be used to
jointly model tagging decisions using CRF (Laf-
ferty et al., 2001). CRF imposes ordering con-
straints on the tagging decisions e.g. I_Habitat
should always be preceded by B_Habitat. For an
input sentence,

W = (w1,w2, . . . ,wn),

we consider a matrix P of scores output by the
bidirectional LSTM. The size of P is n × k,

where k is the number of distinct tags, and Pi,j

corresponds to the score of the jth tag of the ith

word in a sentence. For a sequence of predictions

y = (y1, y2, . . . , yn),

we define its score to be

s(X,y) =

n∑

i=0

Ayi,yi+1 +

n∑

i=1

Pi,yi

where the matrix A express transition scores such
that Ai,j represents the score of a transition from
the tag i to tag j. We add start and end tag to
the set of possible tags, therefore, the size of A is
k + 2. During training, we minimize the negative
log-probability of the correct tag sequence:

log(p(y|X)) = s(X,y)− log


 ∑

ỹ∈YX

es(X,ỹ)




= s(X,y)− logadd
ỹ∈YX

s(X, ỹ), (1)

lossCRF = − log(p(y|X)) (2)

3.1.2 Hybrid Loss: CRF + Ranking
We use a variant of ranking loss function proposed
by dos Santos et al. (2015). Ranking maximizes
the distance between the true label y+ and the
most competitive label c−:
lossranking = max(0, 1 + (γ ∗ (m+ − y+)) +

(γ ∗ (m− + c−))
where γ is the scaling factor that penalizes the

predictions, m+ and m− are margins for correct
and incorrect labels respectively. We follow Vu
et al. (2016) to set the values of margins.

The hybrid loss function hence is the sum of
CRF tagging loss and ranking loss:

losshybrid = lossCRF + α · lossranking

where α ∈ [0, 1], weighs the contribution of rank-
ing loss in the overall loss value. During training
we minimize the hybrid loss and found it to im-
prove the F1 score for both BB-norm+NER and
PharmaCoNER tasks.

3.1.3 Multi-Tasking of Named Entity
Recognition, Detection and Language
Modelling

We employed auxiliary objectives of named-entity
detection (NED) (Aguilar et al., 2017) and bidirec-
tional language modelling (LM) (Rei, 2017) in our
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Algorithm 1 Entity Normalization

Input: NE, NE Type
Output: RF ID
Output: NE PRED (Optional)

1: RF ID = None
2: IF NE Type == ’Microorganism’:
3: found, RF ID = exact match(NE, NCBI)
4: if not found:
5: found, RF ID = fuzzy match(NE, NCBI)
6: return RF ID
7: ELSE
8: found, RF ID = exact match(NE, NCBI)
9: if not found:

10: found, RF ID = fuzzy match(NE, NCBI)
11: if found:
12: # LABEL UPDATE !
13: NE PRED = ’Microorganism’
14: return RF ID, NE PRED
15: found, RF ID = exact match(NE, OBT)
16: if not found:
17: found, RF ID = semantic search(NE, OBT)
18: return RF ID

model. Usually these auxiliary objectives acts as
regularizes (Collobert and Weston, 2008) and im-
proves the overall performance. With these multi-
tasking objectives, for each word token our model
predicts the NED tag, next word, previous word
and the NER tag2. LM and NED layers in figure
2 realizes NED and LM objectives respectively.
Note that Multi-tasking is only enabled at train
time and requires no additional labelling.

3.1.4 Nested Entities

The dataset of BB-norm+NER task contains
17.4% nested entities 3 which cannot be extracted
by standard Bi-LSTM CRF model. We employed
two Bi-LSTM-CRF models: Level1 NER model
to detect parent entities and Level2 Nested NER
model to detect nested entities. Figure 2 (right)
shows the architecture of Level2 Nested NER. The
parent entities detected by Level1 NER are fed to
Level2 Nested NER to detect nested entities in the
parent entities. Level2 Nested NER has the same
architecture as Level1 NER but without the multi-
tasking objectives. It is easy to see that current
architecture can only detect nested entities at level
2. The final output of model is the aggregation of
parent entities and nested entities.

3.1.5 Entity Normalization

The goal of entity normalization (entity linking) is
to map noisy predicted entities in text to canonical

2we used IOBES tagging scheme
3https://groups.google.com/d/msg/

bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ

entities in knowledge base (KB). This is challeng-
ing because: (1) not all variations of textual forms
for a canonical entity exists in the KB, (2) syn-
tactic variations in the predicted entity mentions
due to misspellings, abbreviations, acronyms and
boundary errors.

For BB-norm+NER task, we used two Biomed-
ical databases OntoBiotope Ontology and NCBI
Taxonomy. OntoBiotope Ontology contains 3, 602
canonical forms of type Habitat and Phenotype.
NCBI Taxonomy contains 1, 082, 401 records for
type Microorganism. We employed exact, fuzzy
and semantic (embedding) search to perform en-
tity normalization. Algorithm 1 illustrates the de-
tailed steps of our algorithm, note that type and
order of search depends on the predicted named
entity type. We also employed caching to mini-
mize pairwise comparisons and improve the over-
all run-time efficiency.

3.1.6 Post-processing for NER+norm
Our model (see Figure 2) employs CRF at decod-
ing step to impose boundary ordering constraints
on the predicted named entity types e.g. I should
always be preceded by a B token. But our model
does not always respect such ordering constraints
and therefore, we resolve boundary inconsisten-
cies at inference time to make the NER labels
consistent. Post-processing column in the Table
3 illustrates the post-processing resolving incon-
sistent labels after the voting on majority labels,
consider row r3 where post-processing correctly
imposes the semantics of boundary ordering by
changing I-Habitat to B-Habitat.

3.2 Relation Extraction

Deep Learning based methods are state of the art
in relation extraction (Wu and He, 2019; Wang
et al., 2016) but they require large amount of la-
belled training data. In cases when enormous
training data is not available than Kernel methods
like Support Vector Machines (SVM) are an op-
timal choice. We employed SVM for performing
relation extraction. One of the downsides of SVM
is that they usually require lots of hand-crafted fea-
tures to train properly. Table 2 lists computed gen-
eral and entity features.

Our best model was trained with Radial Ba-
sis Function (RBF) Kernel with value of penalty
parameter C determined by grid search for each
dataset. We employed oversampling and class-
weight penalization to handle imbalanced data.
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General Features Description Entity Features Description

bow
bag-of-words (bow) representation

entity-pos
position of entity in the bow

of the complete sentence representation

bow-partial

bow representation of the between
context (i.e. word tokens between

entity-type type of the entity mentions
target entities) including three
words to the target entities

bow-lemma
bow representation of the lemmatized

dist-entities-cat
distance between target entities

tokens in the between context as categorical
pos-tags part-of-speech tags dist-entities distance between target entities

sdp shortest dependency path as bow entity-count count of entities in between context

sdp-len
length of shortest dependency path

entity-count-cat
count of entities in between context

as scalar as categorical
sdp-rel dependency relation tag e1 type = e2 type if type of e1 and e2 is same

emb-sdp average embeddings of sdp sdp-entity sdp with entity as bow

keyword-vec
if current word is part of feature

entity-patterns
check if certain linguistic patterns

list of relations occur in the vicinity of target entities

Table 2: General and Entity features used in Relation Extraction

Tokens
Models Voting Post-

M1 M2 M3 processing
r1 Presence O O O O O
r2 of O O B-H O O
r3 fish I-H B-H I-H I-H B-H
r4 pathogen I-H I-P I-P I-P B-P
r5 Vibrio B-M B-M B-M B-M B-M
r6 salmonicida I-M O I-M I-M I-M
r7 in B-H O O O O
r8 fish B-H O B-H B-H B-H
r9 farm I-H O I-M I-H I-H

r10 . O O O O O

Table 3: NER: Ensembling and Post-processing cor-
recting individual models mistakes. Here, B, P and
M refer to Habitat, Phenotype and Microorganism, re-
spectively.

Surprisingly oversampling did not provide any
performance improvement therefore, final models
were trained only with higher class weights for mi-
nority classes. We did not normalize any input fea-
ture as it resulted in reduced performance.

In relation extraction participating entities are
not known in advance, the usual practise is to test
every valid pair of entities for a relation. We
employed heuristic of token counts between en-
tities to filter the probable invalid relations. The
value of token counts was determined using cross-
validation.

3.3 Ensemble Strategy

Bagging is a helpful technique to reduce variance
without impacting bias of the learning algorithm.
We employed a variant of Bagging (Breiman,
1996) which makes sure that every sample in the
training set is part of the development set at least

once and vice versa. We created three data folds
and trained the model using optimal configuration
on each fold, prediction on test involves majority
voting among the three trained models.

The commonly used tagging schemes (BIO,
BIOES etc.,) for NER contains information about
the boundary of an entity along with the class of
an entity, which is spitted by the model at each
time-step. Due to this dual information in a single
output, maximum voting is not trivial as models
can not only disagree on the class but also on the
boundary of an entity. Empirically we found that
our model is better at predicting the class of an
entity rather than the boundary of an entity, there-
fore, we followed the strategy class determines the
boundary. In cases when voting results in a tie, we
take the prediction of the confident model, we treat
the model trained on original train/dev split as the
confident model. We also experimented with an
extreme version of ensembling where we aggre-
gate the output of every model with distinct spans,
as expected this improves the recall but with the
cost of reduced precision. One possible optimiza-
tion to this ensemble strategy is to only aggregate
the non-overlapping spans to control reduction in
precision without much decrease in recall, we will
explore this as a future work. Table 3 shows the
ensemble correcting individual model’s erroneous
predictions.

In case of ensemble for RE, we followed the
straight forward approach of majority voting at
sentence level for each test sample.
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Task Train Dev Test
Sentence Counts

PharmaCo 8068 3748 3930

SeeDev 644 308 466

BB-norm+ner 822 413 735

PharmaCoNER Entities
NORMALIZABLES 2304 1121 859

PROTEINAS 1405 745 973

UNCLEAR 89 44 34

NO NORMALIZABLES 24 16 10

BB-norm+NER Entities
Habitat 1118 610 -

Microorganism 739 402 -

Phenotype 369 161 -

Table 4: Dataset statistics for NER

4 Experiments and Results

4.1 Dataset and Experimental Setup

Data: We employed bagging (discussed in section
3.3) to split the annotated corpus into 3-folds. We
used pre-processed versions of datasets for BB-
norm+NER4 and SeeDev5 provided by the orga-
nizers. This pre-processed version comes with
sentence splitting, word tokenization and POS tag-
ging.

PharmaCoNER: The dataset consists of four
entity types with very few mentions of type UN-
CLEAR and NO NORMALIZABLES as shown in
table 4. Entities of type UNCLEAR are ignored in
the evaluation of this shared task but we still treat
them as regular entities.

BB-norm+NER: The dataset consists of three
entity types with few mentions of type Phenotype
(see table 4). The dataset also contains 3.6% dis-
connected entities6, we did not employ any strat-
egy to handle disconnected entities and instead
treat them as separate (regular) entities.

SeeDev: The dataset consists of 22 bi-
nary relations among 16 entity types. The
dataset is highly imbalanced with zero instances
of type Regulates Molecule Activity and Com-
poses Protein Complex in the default develop-
ment set.

4https://sites.google.com/view/
seedev2019/supporting-resources

5https://sites.google.com/view/
bb-2019/supporting-resources

6https://groups.google.com/d/msg/
bb-2019/A2MuFYiPQIY/9YtMmakeBQAJ

Hyper-parameter Value
NER

learning rate 0.005
character (char) dimension 25
hidden unit::char LSTM 25

POS dimensions 25∗, 50+

Ortho dimension 25∗, 50+

hidden unit::word LSTM 200∗, 100+

word embeddings dimension 200∗, 100+

length dimension 10
sdp rel 10

alpha features 2
ranking loss::α 1.0
ranking loss::γ 1.0

RE
kernel RBF

class-weights 10.0

Table 5: Hyper parameter settings for NER and RE. *
and + denote the optimal parameters for BB-norm+ner
and PharmaCoNER respectively.

Experimental Setup: We found sub-word in-
formation to be very helpful in identifying enti-
ties and relations in biomedical domain and all
our experiments used word embeddings trained
using FastText (Bojanowski et al., 2017). For
tasks in English language we used FastText em-
beddings trained on PubMed (Zhang et al., 2019).
We don’t employ any strategy for handling imbal-
anced classes for NER but have used class weight-
ing by a factor of 10 for all positive classes for
RE. Table 5 lists the best configuration of hyper-
parameters for all the tasks.

PharmaCoNER: We used SPACCC POS-
TAGGER (Soares and gonzalez agirre, 2019)
for sentence splitting, word tokenization and
POS tagging. We trained FastText embeddings
on the following corpora: IBECS (Rodrı́guez,
2002), IULA-Spanish-English-Corpus (Marimon
et al., 2017), MedlinePlus (Miller et al., 2000),
PubMed (Lu, 2011), ScIELO (Goldenberg et al.,
2007) and PharmaCoNer (Gonzalez-Agirre et al.,
2019). We trained embeddings on two variants
of corpora: (1) Include train and development set
of PharmaCoNER (2) Include complete dataset
of PharmaCoNER. We concatenated these two
embeddings to provide complementary informa-
tion and found them to empirically work better
than the embeddings trained on individual corpora
variant. We compute micro-F1 using the script
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Configration
PharmaCoNER BB-norm+NER
P R F1 P R F1 SER

Fold=1 Fold=1
r1 BiLSTM-CRF .884 .773 .824 .809 .474 .598 .576
r2 + word-emb .892 .857 .874 .831 .526 .644 .524
r3 + ortho .909 .846 .877 .823 .515 .633 .533
r4 + POS .906 .851 .877 .827 .523 .641 .526
r5 + multi-task .907 .851 .878 .806 .528 .638 .531
r6 + length - - - .842 .487 .617 .545
r7 + ranking .912 .860 .885 .827 .535 .650 .520
r8 + search - - - .810 .600 .690 .489

Fold=2 Fold=2
r9 BiLSTM-CRF .915 .890 .902 .630 .400 .489 -

r10 all features .934 .889 .911 .719 .513 .599 -

Fold=3 Fold=3
r11 BiLSTM-CRF .899 .873 .886 .784 .699 .739 -
r12 all features .917 .877 .896 .813 .764 .788 -

Table 6: Scores on dev set using different features on
PharmaCoNER and BB-norm+NER tasks. Here, + sig-
nifies feature accumulation to the last row.

provided by the organizers on the dev set7.
BB-norm+NER: For training NER model we

compute macro-F18 (Tsai et al., 2006) on the dev
set. NER and Entity normalization together are
evaluated using Standard Error Rate (SER) (Bossy
et al., 2015). During the entity normalization step,
the fuzzy and semantic search can resolve an entity
mention to multiple normalization identifiers. Our
algorithm returns top 5 matched identifiers, how-
ever, we empirically found selecting the top most
identifier gives superior performance.

SeeDev: We adopted two strategies to create
negative relation instances for train and dev+test
set: (1)Train: only consider sentences not par-
ticipating in any positive relation (2) Dev+Test:
consider all the sentences. Negative relation in-
stances are always created only among the valid
combination of entity types. We also employed an
extended version of keywords match of Li et al.
(2016) as a feature (referred as keyword vectors in
table 2).

4.2 Results on Development Set
To investigate the impact of features we incremen-
tally enabled them and observe the affect on per-
formance on dev set.

NER: Table 6 shows the score on dev set for
PharmaCoNER and BB-norm+NER. Observe that
FastText embeddings (row r2) outperform ran-
domly initialized embeddings (row r1) and con-

7https://github.com/PlanTL-SANIDAD/
PharmaCoNER-CODALAB-Evaluation-Script

8evaluation measure with strict boundary detection

Features P R F1
r1 bow-between .0 .0 .0
r2 + class-weights .214 .196 .205
r3 + entity-type .157 .589 .248
r4 + sdp-entity .204 .540 .296
r5 + emb-sdp .212 .479 .294
r6 + lemma .220 .478 .301

Table 7: Scores on dev set using different features on
SeeDev task. Here, + signifies feature accumulation to
the last row.

tribute to biggest performance boost for both
datasets. Subsequently, Orthographic (row r3)
and POS (row r4) features9 improve the scores for
PharmaCoNER but surprisingly lower the score
for BB-norm+NER. In row r5, we perform multi-
tasking with auxiliary task of NED leading to im-
provement only for PharmaCoNER. Next, we in-
corporate hybrid loss including ranking (row r7)
which consistently improves the score on both
datasets. In row r8, we employed Brute Force
Search (discussed in section 4.3) that significantly
reduce SER for BB-norm+NER. Finally, we cre-
ate an ensemble of (r7, r10, r12) and (r8, r10, r12)
on test set for PharmaCoNER and BB-norm+NER
respectively.

RE: Table 7 shows the score on dev set for
SeeDev10. In row r1, negative instances dominate
the training set resulting in no learning. Observe
that introduction of class weights (row r2) com-
pensate the dominance of negative instances lead-
ing to F1 score of 0.205. Next, we added entity-
type (row r3) and sdp-entity (row 4) features, both
of these features significantly improves F1 score
i.e. by an absolute value of more than 4.0. Sub-
sequently, emb-sdp (row r5) and lemma (row r6)
contribute to incremental improvements. Finally,
we create an ensemble of row r6 on all three data
folds.

4.3 Analysis on Development Set

BB-norm+NER: We also explored approaching
the problem of NER and entity normalization in
a reverse manner by matching every entity men-
tion from the biomedical databases (i.e. NCBI Tax-
onomy and Ontobiotope) in every sentence. This

9Additionally, we have employed document-topic propor-
tion from neural topic models (Gupta et al., 2019a), however,
no significant gains were observed.

10Results are only reported for standard data fold as it was
not trivial to change evaluation script for non-standard folds.
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Figure 3: BB-norm+NER: Impact of brute-force
search, Level1 NER and their aggregation on SER.
Here bfs, L1 and L2 refer to brute-force search, Level1
NER and Level2 Nested NER respectively.

matching is indeed exhaustive search, we refer to
it as Brute-force search. Figure 3 shows the com-
parison of: (1) brute-force search (2) Level1 NER
(3) aggregation of brute-force search and Level1
NER (4) aggregation of brute-force search, Level1
NER and Level2 NER. Brute-force search yields
high precision but a moderately low recall with
SER value of 0.7. In comparison, Level1 NER
has significantly higher recall with a little reduc-
tion in precision yielding SER value of 0.52. The
aggregation of brute-force search and Level1 NER
improves recall and lowers SER value to 0.49. Fi-
nally, aggregation of brute-force search, Level1
NER and Level2 NER results in a balanced pre-
cision and recall values but an overall higher value
of SER. Our submission on test set employed ag-
gregation of brute-force search and Level1 NER.

SeeDev: We employed the heuristic of token
counts between target entities to filter potential
negative relation instances. With this heuristic in
place, we only consider sentences with entity dis-
tance less than or equal to threshold parameter τ .
Figure 4 shows the impact of different values of τ
on system performance. The value of τ ≤ 20 gives
significant boost in precision with minor decrease
in recall. Our submission employed the threshold
value of τ ≤ 20 between entity tokens.

4.4 Comparison with Participating Systems

SeeDev: Table 8 (left) is the official result of
SeeDev Shared Task. Our submission MIC-CIS

0.2 0.25 0.3 0.35 0.4 0.45

τ
≤

5
τ
≤

10
τ
≤

20

0.31
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Figure 4: SeeDev: Impact of ’token counts between
target entities’ heuristic on system performance.

Task: SeeDev Task: BB-norm+NER
Team P / R / F1 Team P / R / SER

MIC-CIS .294 / .511 / .373 MIC-CIS-1 .624 / .433 / .715
YNU-junyi-1 .272 / .458 / .341 MIC-CIS-2 .560 / .449 / .786

Yunnan University-1 .045 / .132 / .067 BLAIR GMU-1 .496 / .467 / .793
Yunnan University-2 .020 / .132 / .035 BLAIR GMU-2 .499 / .466 / .805

YNUBY-1 .011 / .070 / .019 baseline-1 .572 / .327 / .823

Table 8: Comparison of our system (MIC-CIS) with
top-5 participants: Scores on Test set for SeeDev and
BB-norm+NER

achieves the best score among all participating
systems with F1 score of 0.373 showing com-
pelling advantage. The system attains the high-
est precision (0.294) and recall (0.511). Precision
and recall are not balanced however, and our sys-
tem need an improvement to bring down false pos-
itives.

BB-norm+NER: Table 8 (right) shows the
comparison of performance among participating
teams on BB-norm+NER test set. Our two sub-
missions (MIC-CIS-1, MIC-CIS-2) ranked first
and second with standard error rate (SER) of
0.7159 and 0.7867 respectively. The second sub-
mission employed Level2 NER to extract nested
entities and hence has higher recall but with re-
duced precision. MIC-CIS-1 has the highest pre-
cision 0.6242 and MIC-CIS-2 has the recall close
to the best recall of BLAIR GMU-1 with score
0.4676. Precision and recall are not balanced, we
hypothesize improvement in nested entities extrac-
tion and modelling discontinuous entities will im-
prove the system recall.
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5 Conclusion and Future Work

In this paper, we described our system with which
we participate in PharmaCoNER, BB-norm+NER
and SeeDev shared tasks. Our NER system em-
ployed linguistic features, multi-tasking via auxil-
iary objectives and hybrid loss including ranking
loss to extract flat and nested entities in English
and Spanish text. Our RE system employed SVM
with linguistic features. Compared to other par-
ticipating systems, our submissions are ranked 1st

in BB-norm+NER and SeeDev task. Our system
demonstrates competitive performance on Phar-
maCoNER with F1-score of 0.8662.

In future, we would like to explore improved
modelling strategies for nested NER and discon-
tinuous entities extraction. Further, in this work
we only addressed intra-sentence RE, we would be
interested to explore approaches for inter-sentence
RE (Peng et al., 2017; Gupta et al., 2019b). More-
over, we would like to investigate interpretability
of LSTMs for NER and RE (Gupta and Schütze,
2018).
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Ba, Louise Deléger, Pierre Zweigenbaum, Philippe
Bessières, Loı̈c Lepiniec, and Claire Nedellec. 2016.
Overview of the regulatory network of plant seed de-
velopment (seedev) task at the bionlp shared task
2016. In Proceedings of the 4th BioNLP Shared
Task Workshop, BioNLP 2016, Berlin, Germany, Au-
gust 13, 2016, pages 1–11.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Ma-
chine Learning, Proceedings of the Twenty-Fifth In-
ternational Conference (ICML 2008), Helsinki, Fin-
land, June 5-9, 2008, pages 160–167.

Saul Goldenberg, Regina Célia Figueiredo Castro, and
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Abstract 

Different representations of the same con-
cept could often be seen in scientific reports 
and publications. Entity normalization (or 
entity linking) is the task to match the dif-
ferent representations to their standard con-
cepts. In this paper, we present a two-step 
ensemble CNN method that normalizes mi-
crobiology-related entities in free text to 
concepts in standard dictionaries 1 . The 
method is capable of linking entities when 
only a small microbiology-related biomed-
ical corpus is available for training, and 
achieved reasonable performance in the 
online test of the BioNLP-OST19 shared 
task Bacteria Biotope. 

1 Introduction 

With over 500K papers in the biomedical field 
published on average every year2, it is important 
to promote efficient information retrieval and 
knowledge processing from the literatures auto-
matically. Named entity recognition (NER), 
which extracts meaningful real-world objects 
from free text, and entity normalization (entity 
linking), which links ambiguous or varied ex-
tracted objects to standard concepts, are two fun-
damental natural language processing (NLP) 
tasks to approach the goal.  

With many attempts made for general entity nor-
malization (Hachey, Radford et al. 2013, Luo, 
Huang et al. 2015, Wu, He et al. 2018, Aguilar, 
Maharjan et al. 2019), biomedical entity linking 
faces more challenges handling entity variations, 
making it an enthralling field to be explored. Many 
studies endeavored to solve biomedical entity nor-
malization issues have been published (Hanisch, 
Fundel et al. 2005, Leaman and Lu 2016, Cho, 

																																																								
1 Our code is available at: 
https://github.com/OXPHOS/BioNLP 

Choi et al. 2017, Li, Chen et al. 2017, Luo, Song et 
al. 2018, Ji, Wei et al. 2019). Meanwhile, BioNLP 
Shared Tasks, one of the community-wide chal-
lenges that aim to find solutions for biomedical lit-
erature information retrieval, also addresses di-
verse tasks of entity linking (Bossy, Jourde et al. 
2011, Bossy, Golik et al. 2013, Nédellec, Bossy et 
al. 2013, Chaix, Dubreucq et al. 2016, Deléger, 
Bossy et al. 2016). However, further investigations 
are required to improve the performance of the en-
tity linking systems, especially when the available 
corpus is small. 

Here, we present a two-step neural network-
based ensemble method that links free text pre-
annotated microbiology-related entities to stand-
ard concepts using semantic information from 
pre-trained word vectors. By integrating a perfect 
match method with a shallow CNN, our model’s 
performance is comparable to the SOTA methods’ 
performance when trained with a small biomedi-
cal corpus (2258 microbiology-related entities, or 
1248 after de-duplication, from 198 microbiology 
related publications and reports) provided by the 
BioNLP-19 task Bacteria Biotope challenge.3 

We have compared our ensemble model to both 
a baseline method, of which we linked free text 
entities to the standard concepts by vector dis-
tance (Manning, Raghavan et al. 2010), and 
ABCNN, one of the SOTA models that could be 
used for entity normalization (Yin, Schütze et al. 
2016). In addition, the method was tested online, 
and the results indicated that our model achieved 
a reasonable performance for microbiology-re-
lated entities linking tasks with small corpora. 

2 Related work 

Entity normalization is a rich research field 
where diverse approaches have been proposed. 

2 http://dan.corlan.net/medline-trend/lan-
guage/absolute.html 
3	https://sites.google.com/view/bb-2019/home	
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Figure 1 Model Architecture Overview. VSM: pre-trained word vector space model. Ab3P: an abbreviation de-
tection tool developed specifically for biomedical concepts. CNN: convolutional neural network. 

Most early studies utilized morphological similar-
ity defined by editing distances between input 
terms and standard concepts to normalize the en-
tities (Ristad and Yianilos 1998, Aronson 2001). 
Later, heuristic rules were incorporated to im-
prove the performance (Hanisch, Fundel et al. 
2005, Kang, Singh et al. 2012, Karadeniz and 
Özgür 2013, Tiftikci, Şahin et al. 2016, Cho, Choi 
et al. 2017). Among them, MaCallum et al. (2012), 
DNorm (Leaman, Islamaj Doğan et al. 2013) and 
LIMSI (Grouin and Moriceau 2016) introduced 
conditional random field (CRF) to the entity link-
ing tasks, while TaggerOne (Leaman and Lu 2016) 
presented a NER and normalization joint system 
utilizing semi-markov models, and it has been 
adopted by an integrated bioconcept annotation 
and retrieval platform developed by NIH (Wei, 
Allot et al. 2019). However, many of the studies 
achieved good performance yet were limited for 
further improvements due to the common draw-
backs of rule-based methods.  

Approaches utilizing semantic information of 
the entities was made possible by the appearance 
of the word embedding technique. Word embed-
ding projects words to vector spaces, where the 
cosine similarities between the vectors indicate 
their semantic similarities. The CONTES system 
(Ferré, Zweigenbaum et al. 2017) and the follow-
ing HONOR system (Ferré, Deléger et al. 2018) 
performed entity linking tasks by minimizing the 
distances between embedded input terms and 
standard biomedical concepts. Karadeniz and 
Özgür (2019)  proposed an unsupervised method 

for entity linking tasks using word embeddings 
and a syntactic parser. 

Meanwhile, neural networks have been com-
bined with word embeddings to normalize bio-
medical entities. Limsopatham and Collier (2016) 
applied convolutional neural network (CNN) and 
recurrent neural network (RNN) to pre-trained 
word embeddings to normalize medical concepts 
in social media texts, and achieved the SOTA per-
formance on several datasets. Li et al. (2017)  uti-
lized a CNN structure to rank the candidates gen-
erated by rule-based methods. Deep neural net-
works such as multi-view CNN  and BERT have 
also been proposed to normalize biomedical enti-
ties (Luo, Song et al. 2018, Ji, Wei et al. 2019). 
However, their applications might be limited due 
to the requirement of large amount of data. 

3 Models 

Our model architecture is shown in Figure 1, 
where our major work is highlighted in blue and 
further discussed in Section 3.1-3.3. 

To process the entities from the standard dic-
tionary, let !"

# be the $-th entity from the diction-
ary, and %"& ∈ ℝ)  be the * -dimensional word 
vector of the +-th word in the entity !"

#. the em-
bedded vector ," of entity !"

#is defined as 

," = PCA( 2
34

%"&, 	789:;9<=<> = 0.95)34
&D2 ,	

where 7" ∈ ℕ
+	is the number of words present 

in a pre-trained vector space model (VSM) in the 
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entity !"
# . The VSM was created from the bio-

medical scientific literature in the PubMed data-
base and Wikipedia (Pyysalo 2013). * = 200. 
PCA was conducted to increase training effi-
ciency, where	789:;9<=<> is the reduction rate. 

The processing of the entities from free text is 
described in the following section in detail. To be 
noted, abbreviations are commonly seen in free 
text from publications and reports. For example, 
CNS, standing for the central nervous system, 
might often be used in research literature over 
topics of neuroscience, and would be annotated as 
entities to be linked. However, abbreviations, 
mostly derived from phrases, are often absent 
from the pre-trained word vector spaces and 
would interfere with the model training. To solve 
this problem, we first converted potential abbre-
viations in free text pre-annotated entity list to 
their long forms with Ab3P. Ab3P is an abbrevia-
tion detection tool developed specifically for bio-
medical concepts. It reached 96.5% precision and 
83.2% recall on 1250 randomly selected MED-
LINE records as suggested by Sohn et al (2008). 

The converted free text pre-annotated entities 
were then matched with dictionary-derived stand-
ard concepts by characters through a perfect 
match module (Section 3.1). The entities failed 
perfect matching were then fed to a set of shallow 
CNN models (Section 3.2) trained with bootstrap 
samples. Next, the outputs of the CNNs were 
mapped to standard entity vectors via cosine sim-
ilarity. The standard entity vectors output from 
the voting classifier (Section 3.3) were predicted 
as the linked results of the input entities. 

3.1 Perfect match 

We noticed that some entities from the free text 
were able to match with the standard entities by 
characters after rule-based processing. These en-
tities were then directly linked to the dictionary 
instead of being fed to the Word2Vector and CNN 
models. The rules we designed include: 
• Hyphens were replaced with spaces. 
• Characters except alphabetic letters and 

spaces were removed. 
• Case-insensitive string matching was per-

formed between the free text entities and standard 
entities.  

3.2 Shallow CNN 

The shallow CNN (Figure 1) was adapted from 
the previous ideas from Kim (2014) and Lim-
sopatham and Collier (2016) .   

To start with, let H"
I  be the $ -th input entity 

(which were provided by the task), and J"& ∈ ℝ) 
be the *-dimensional word vector of the +-th word 
in the entity H"

I, * = 200. The embedded matrix 
K" of entity H"

Iis defined as 

K" = 	 J"2⨁J"M⨁…J"34. 

Here 7" ∈ ℕO	is the number of words present 
in the pre-trained VSM (Pyysalo 2013) in the en-
tity H"

I . ⨁  is the concatenation operator. K"  is 
padded to length 8 as 98.8% of the input entities 
were composed of 8 or fewer words. For the enti-
ties with more than 8 words, average pooling was 
performed in prior with the pool size = (P, 200) 
and step= P, where P = 7/8 . In other words, 
simple average of the neighboring P words was 
calculated, so that the final embedded matrix 
would always have a length ≤ 8. 

A temporal convolution kernel followed by a 
max-over-time pooling operation and a fully con-
nected layer were applied to each K". The output 
,"	was then passed to a cosine similarity function 
to calculate the similarity scores between ,"	and 
each standard entity vector respectively. The 
standard concept with the highest score was pre-
dicted as the linked entity	,"

T. 

3.3 Ensemble mechanism with voting 

To reduce overfitting, we designed an ensemble 
method that combined 5 shallow CNNs with the 
concept of boosting (Valiant 1984). The 5 CNNs 
shared the identical architecture, but their weights 
were randomly initialized respectively. To in-
crease the generalization capability of our model, 
the CNNs were fed with training data randomly 
subsampled with bootstrap method (Efron 1982), 
with the out-of-bag samples used for cross-vali-
dation.  
The final normalized results were achieved with a 
majority-vote classifier over the outputs from the 
5 shallow CNNs. If no majority output was pre-
sent, the output from the network with the best 
cross-validation estimates would be chosen.		

3.4 Baseline model 

For each entity U"
#	in the standard dictionary 

and	U"
I	in free text, the corresponding embedded 
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    Total Number Number after de-duplication 

  
Article 
Number Habitat Phenotype 

Habitat+ 
Phenotype Habitat Phenotype 

Habitat+ 
Phenotype 

Training  133  1118  369 1487  627  176  803 
Development  66  610  161 771  348  97  445 
Test  97  924  252 1176  596  148  744 

Table 1. Data Statistics 

vector V"
#	and V"

I	are defined, respectively, as: 

V"
# = 2

34
W"&
#34

&D2 ,		V"
I = 2

34
W"&
I34

&D2 ,	

where 7" ∈ ℕO	is the number of words present 
in the pre-trained VSM in the $-th entity.  

Cosine similarity between each free text-dic-
tionary entity pair was calculated. The free text 
entity was linked to the dictionary entity with the 
highest similarity score. 

 3.5 ABCNN 

ABCNN (Yin, Schütze et al. 2016) is a state-of-
the-art deep learning model for text similarity 
learning, which could also be applied for entity 
linking tasks. The model introduced attention 
mechanism into a pair of siamese architecture-
based weight sharing CNNs (Bromley, Guyon et 
al. 1994).  

For our purpose, we used a slight variant of a 
published ABCNN model4. In addition, attention 
mechanism could be applied to different layers of 
the CNN pair according to the original publication. 
Considering the data volume and the model com-
plexity, we applied the attention mechanism to the 
input layer.	 

4 Experiments and Results 

4.1 Data and resources 

The biomedical corpus and pre-annotated entities 
were provided by BioNLP-OST19 task Bacteria 
Biotope. Table 1 shows the detailed data statistics 
provided by the task. Two types of entities were 
involved in the task: phenotype, which describes 
microbial characteristics, and habitat, which de-
scribes physical places where microorganisms 
could be observed. Dictionary with 3602 standard 
concepts was also provided by the task. In the 
original dictionary, each concept is assigned to a 
unique ID, while its hierarchical information of its 

																																																								
4	https://github.com/galsang/ABCNN 
5 https://sites.google.com/view/bb-2019/sup-
porting-resources 

direct parents is also listed. In our model, the hi-
erarchical information is omitted. 

Ab3P-detected abbreviations were provided as 
separate input files by the task organizers5. 

The 4 GB word vector space model was down-
loaded in binary format6 and extracted with py-
thon package gensim. 

4.2 Training 

Our CNN model was trained using stochastic gra-
dient descent optimizer with cosine proximity as 
the loss function. We randomly split 20% samples 
as validation dataset for each CNN and used early 
stopping criteria to determine the number of train-
ing epochs. The learning rate was fixed to 0.01. 
Batch size (2), kernel size (4) and filter number 
(5000) were determined by grid-search. 

As expected with this small volume of data, ex-
tra convolution layers led to overfitting. 

4.3 Held-out evaluation 

We used precision metrics, the official metric of 
the challenge, to evaluate the performance of our 
model and the reference models on the held-out 
development dataset respectively. 
 

Table 2. Performance of different models on develop-
ment dataset (Precision) 

	
As shown in Table 2, non-supervised baseline 

model yielded a precision score of 0.184 on the 
development dataset, while ABCNN yielded 
0.221, which might be attributed to the small 

6 http://bio.nlplab.org/ 

 Habitat Phenotype Total 
Ensemble CNN 0.624 0.615 0.622 
     Perfect match 0.863 0.937 0.869 
     Shallow CNN 0.526 0.572 0.538 
ABCNN 0.244 0.134 0.221 
baseline 0.207 0.101 0.184 
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training corpus. Our ensemble CNN model per-
formed around 3 times better than both reference 
models with an average precision score of 0.622,	
indicating the efficiency of our model. 

However, it should be noted that the perfect 
match module in our system had a remarkable 
higher precision score compared to the shallow 
CNN module, suggesting that the performance of 
the neural network could be further improved.  

We analyzed the result of the shallow CNN 
module and concluded that 3 possible reasons 
might be associated with the performance: 1) 
Missing context. For example, our model normal-
ized “children” to “child”, while the provided la-
bel was “patient with infectious disease” in arti-
cles describing children with infectious disease. 2) 
Missing hierarchical information. For example, 
our model normalized “B cell” to “cell” instead of 
“lymphocyte”, and the latter one was a more ac-
curate description. Tackling the above two issues 
would require either the context or the hierar-
chical information of the standard concepts to be 
considered in the system. 3) Wrong match. For 
example, “cats” was normalized to “dog”, sug-
gesting that the networks were not trained well to 
normalize these words. However, we noticed that 
such errors mostly came with a majority vote of 2 
or 1, which on the other hand demonstrated the 
power of the voting mechanism.	

 
 Habitat Phenotype 
PADIA_BacReader 0.684 0.758 
Challenge-provided 
baseline 

0.559 0.581 

AmritaCen 
_healthcare 

0.522 0.646 

BLAIR_GMU# 0.615 0.646 
BOUN-ISIK# 0.687 0.566 

Table 3. Performance of different models on online test 
dataset (Precision). The performance of our model 
(PADIA_BacReader) is bolded. #: Best run of the sub-
missions is considered. 

4.4 Online test 

The ensemble CNN model was then evaluated 
through online testing7.  

Our results showed a 12.5% and 17.7% preci-
sion increase in habitat and phenotype entity link-
ing tasks respectively compared to the chal-
lenged-provided baseline model (Table 3), where 
case-insensitive string matching was applied for 
																																																								
7 https://sites.google.com/view/bb-2019/pre-
diction-submission 

linking. In addition, it performed the best or 
among the best ones compared to models pro-
posed by other participants, suggesting the ad-
vantages of our model. We did not test our own 
reference models online due to the limited number 
of submissions to the challenge.  

5 Conclusions and Future direction 

We introduced a two-step neural network-based 
ensemble method that linked microbiology-re-
lated biomedical entities extracted from free text 
to standard concepts. The shallow architecture 
and ensemble mechanism on top of a perfect-
match morphological similarity method achieved 
reasonable predictions with limited training sam-
ples. The comparison with reference models sug-
gested the efficiency of our model. In addition, 
our approach could be applied to other scenarios 
where semantic linking between entities is re-
quired as well. 

Further improvement might be achieved once 
more semantic clues are incorporated, as we 
briefly discussed at the end of Section 4.3. The 
normalization deviation due to missing context 
clues did not only affect the performance of shal-
low CNN, but also affected the performance of 
perfect math as well. For example, though entity 
‘cell’ has a perfect match in standard dictionary, 
it might be referred to ‘lymphocytes’ specifically 
in a research paper discussing about immunity. 
While some efforts have been made to preserve 
hierarchical information between concepts during 
entity linking (Ferré, Deléger et al. 2018), It 
would be interesting to investigate if knowledge 
graphs derived from the standard dictionaries and 
input corpus could contribute to the semantic-
based entity normalization. 

In addition, our model assigned the same 
weight to all the words present in the VSM, which 
might compromise the performance of the system. 
For example, only the word “children” is informa-
tive in the entity “children less than five years of 
age”, as the entity is normalized to “child”. The 
presence of other words might interfere with the 
normalization. Regarding this issue, syntactic 
parsers might be adopted for performance im-
provement. 
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Abstract
This paper presents our participation at the
Bacteria Biotope Task of the BioNLP Shared
Task 2019. Our participation includes two
systems for the two subtasks of the Bacteria
Biotope Task: the normalization of entities
(BB-norm) and the identification of the rela-
tions between the entities given a biomedical
text (BB-rel). For the normalization of enti-
ties, we utilized word embeddings and syn-
tactic re-ranking. For the relation extraction
task, pre-defined rules are used. Although
both approaches are unsupervised, in the sense
that they do not need any labeled data, they
achieved promising results. Especially, for the
BB-norm task, the results have shown that the
proposed method performs as good as deep
learning based methods, which require labeled
data.

1 Introduction

The amount of electronic resources in the biomed-
ical domain and its rapid growth are major chal-
lenges for the scientists who make research in this
domain. Text mining methods which aim to auto-
matically extract useful information from the text
of these electronic resources provide convenience
to the researchers.

A number of shared tasks, including the
BioNLP Shared Tasks, have been conducted with
the goal of developing biomedical text mining
methods. In 2011, the Bacteria Biotope Task
has been conducted for the first time as a part
of the BioNLP Shared Task targeting the extrac-
tion of useful information regarding bacteria and
their habitats (Bossy et al., 2011). Since then, the
participant teams of the following shared task se-
ries developed various solutions for the problem
of bacteria biotopes (Bossy et al., 2015; Deleger
et al., 2016).

The Bacteria Biotope Task of the BioNLP
Shared Task 2019 (Bossy et al., 2019) is the fi-
nal version of the tasks that have been conducted

until now readdressing the problem of extraction
of the information regarding the bacteria biotopes.
This year’s task has presented the opportunity to
the participants to develop solutions for three sub-
problems: normalization (BB-norm), relation ex-
traction (BB-rel), and knowledge base extraction
(BB-kb). For the BB-norm task of the Bacteria
Biotope Task of the BioNLP Shared Task 2019,
the participants are expected to develop systems
to link the named entities (Microorganism, Habi-
tat, and Phenotype) in a given text through a given
ontology, when the entities are given with their
boundaries. For instance, the sample sentence
“Atypical mycobacteria causing non-pulmonary
disease in Queensland.” consists of the following
mentions: “mycobacteria” microorganism men-
tion, “causing non-pulmonary disease” pheno-
type mention, and “pulmonary” habitat mention,
which should be normalized to the “Mycobacte-
ria” term in the NCBI taxonomy, and “human
pathogen” and “lung” terms in the Onto-Biotope
ontology, respectively. For the BB-rel task of
the Bacteria Biotopes Task of the BioNLP Shared
Task 2019, the participants are required to ex-
tract the relations between the entities when the
entities are given. There are two types of re-
lations: Lives in relation, which indicates a lo-
calization relation between a Microorganism en-
tity and a Habitat/Geographical entity, and Ex-
hibits relation, which indicates a property rela-
tion between a Phenotype entity and a Microor-
ganism entity. For instance, the sample sentence
above indicates two relations: a Lives in relation
between the “Mycobacteria” Microorganism en-
tity and the “Queensland” Geographical entity,
and an Exhibits relation between the “Mycobacte-
ria” Microorganism entity and the “causing non-
pulmonary disease” Phenotype entity.

We participated at the Bacteria Biotope Task
in the BioNLP Shared Task 2019 with our sys-
tem (named as the BOUN-ISIK system) and ob-
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tained promising results in the official evaluation.
This paper presents our participating system for
two sub-tasks: one for the BB-norm (Entity Nor-
malization) sub-task and one for the BB-rel (Re-
lation Extraction) sub-task. For the entity normal-
ization sub-task, we utilized word embeddings and
syntactic re-ranking to normalize the entities. On
the other hand, for the relation extraction sub-task,
we proposed a rule-based method. Although both
systems are unsupervised, they achieved promis-
ing results. For the BB-norm sub-task, the official
results of our system achieved state-of-the-art re-
sults on the BioNLP Shared Task 2019 Bacteria
Biotope task test data set. The results have shown
that our unsupervised approach, which does not
require labeled data, performs as good as the deep
learning based methods, which require labeled
data.

1.1 Related Work

1.1.1 Named Entity Normalization

Among the previous series (2011, 2013, 2016) of
the BioNLP Shared Task, the Bacteria Biotope
Task in 2013 is the first shared task that ad-
dressed the problem of normalization of the en-
tities in the bacteria biotopes domain. In 2013,
the participant teams proposed rule-based meth-
ods and similarity-based methods. According to
the official results of the Bacteria Biotope Task of
2013, for the habitat mention normalization, the
best precision was obtained by the BOUN system,
which utilized syntactic rules and shallow linguis-
tic knowledge (Karadeniz and Ozgür, 2013; Ka-
radeniz and Özgür, 2015).

In the following series of the Bacteria Biotopes
task, the habitat mention normalization sub-task
continued to attract the attention of the re-
searchers. In the Bacteria Biotope task of the
BioNLP Shared Task 2016, the best precision
for the habitat normalization task was obtained
by the BOUN system, which utilized both ap-
proximate string matching and cosine similarity
of word-vectors weighted with Term Frequency-
Inverse Document Frequency (TF-IDF) (Tiftikci
et al., 2016).

After the Shared Tasks, the researchers contin-
ued to search for a solution for the problem of Bac-
teria Biotopes normalization (Ferré et al., 2017;
Mehryary et al., 2017; Karadeniz and Özgür,
2019). Although promising results have been ob-
tained by these approaches, the results showed that

there is still room for improvement for the normal-
ization task of bacteria biotopes.

Besides the bacteria biotopes, there exist a
significant amount of prior work on biomedical
named entity normalization for different types
of biomedical entities including genes/proteins
(Morgan et al., 2008; Hakenberg et al., 2008;
Wermter et al., 2009; Lu et al., 2011; Wei and Kao,
2011) and diseases (Leaman et al., 2013; Li et al.,
2017). However, the need for manually annotated
training data makes the adaptation of such meth-
ods to new entities difficult.

1.1.2 Relation Extraction
Several approaches, which consider the extrac-
tion of relations between various biomedical en-
tities such as protein/protein (Giuliano et al.,
2006; Airola et al., 2008; Choi, 2018), drug/drug
(Segura-Bedmar et al., 2011; Kim et al., 2015),
and gene/disease (Bravo et al., 2015) from
biomedical text, have been presented in the liter-
ature. Relation extraction in the bacteria biotopes
domain has also attracted considerable attention
owing to the BioNLP Bacteria Biotope Shared
Tasks.

Previous work in the bacteria biotopes domain
consists of the extraction of relations between bac-
teria entities and habitat entities (Localization Re-
lation Extraction) and of relations between two
habitat entities (Part Of Relation Extraction). The
participants of the BioNLP Shared Task 2011,
which is the first shared task that addressed the re-
lation extraction task of bacteria biotopes, utilized
both machine learning and rule-based approaches
for detecting the Localization and Part-of relations
among bacteria and habitats (Bossy et al., 2011).

Sub-task 2 of the Bacteria Biotope (BB) Task
in the BioNLP Shared Task 2013 also gave an-
other opportunity to scientists to address the task
of extracting the Localization and Part Of rela-
tions in the bacteria biotopes domain. For this sub-
task, the best F-score (42%) was obtained by the
TEES 2.1 system (Björne and Salakoski, 2013),
which used support vector machine classification.
After the shared task, a new sentence-level co-
occurrence approach with an anaphora resolution
component in order to handle relations that span
multiple sentences has been developed in (Karad-
eniz and Özgür, 2015), which resulted in an im-
proved F-score performance of 53% on Sub-task
2.

In the BioNLP Shared Task 2016, the VERSE
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team (Lever and Jones, 2016) achieved the best
F-score, which is 56%, on the relation extraction
sub-task of Bacteria Biotopes by utilizing support
vector machines.

2 Data Set

The data set, which was created by collecting ti-
tles and abstracts related to microorganisms from
PubMed and extracts from full-text articles re-
lated to microorganisms living in food products,
is provided by the BioNLP Shared Task 2019
BB Task organizers to the participants. The data
set, consisting of 132 training, 67 development,
and 97 test documents, was annotated by the
bioinformaticians of the Bibliome team of MIG
Laboratory at the Institut National de Recherche
Agronomique (INRA).

For the training and development phases of
BB-norm, document texts with manually anno-
tated named entities and the concepts assigned to
them through the OntoBiotope ontology (INRA,
2013) and NCBI taxonomy (NCBI, 2018) were
provided, while in the test phase, only the entity
boundaries and the entity types were given by the
task organizers.

For the training and development phases of BB-
rel, document texts with manually annotated Mi-
croorganism, Habitat, Phenotype and Geograph-
ical entities, as well as the Lives in and Exhibits
relations were provided, while in the test phase,
document texts annotated only for Microorgan-
ism, Habitat, Phenotype and Geographical entities
were given.

Since our system for the named entity normal-
ization and relation extraction of bacteria biotopes
is based on unsupervised approaches and does not
require any labeled training data, the errors of the
developed system are analyzed on the provided
training and the development sets. The test set is
used for the evaluation of the performance of the
system.

3 Named Entity Normalization

In this section of the paper, the utilized methods
for the BB-norm task are explained in detail. The
BB-norm task includes the normalization of Habi-
tat entities and Phenotype entities in a given set
of documents through the Onto-Biotope ontology
and the normalization of Microorganism entities
through the NCBI Taxonomy.

The methods developed for the normalization

of the named entities can be categorized into two
according to the type of the entities: Habitat
and Phenotype Normalization and Microorganism
Normalization.

3.1 Habitat and Phenotype Entities

For the normalization of semantically meaningful
entities such as Habitat and Phenotype entities, a
two-step approach that we have previously pro-
posed in (Karadeniz and Özgür, 2019) is adapted
to this new data set. According to this approach,
for the normalization of an entity mention, the top
k semantically most similar ontology concepts are
found at the first step using the word embedding
representations of the entity mention and the on-
tology concepts. At the second step, these top k
semantically most similar concepts are re-ranked
according to a similarity metric that utilizes the
constituency parses of the entity mention and on-
tology concept phrases. The resulting most simi-
lar ontology concept is assigned as the normalized
concept for the corresponding mention. The de-
tails of this approach are explained in the follow-
ing subsections.

3.1.1 Named Entity and Ontology Concept
Representations

In the pre-processing step, the named entity men-
tions and the ontology concept names are tok-
enized, and the stop-words are removed from the
mentions and the ontology concept names.

The intuition behind the adapted method is that
semantically similar words have similar word vec-
tors. Following this intuition, the semantic simi-
larity between named entity mentions and ontol-
ogy concept terms would be higher for the simi-
lar pairs, and lower for the dissimilar pairs, if the
words can be converted into a machine process-
able format such as real-valued vectors.

After pre-processing, to convert each word into
a real-valued vector, we utilized a pre-trained word
embedding model (Chiu et al., 2016), which has
been trained on PubMed by using the Word2Vec
tool (Mikolov et al., 2013). The corresponding
word vectors are obtained for each word by us-
ing this previously trained model. For the multi-
word named entity mentions and ontology concept
terms, the vector representations are obtained by
averaging the real-valued vectors of their compos-
ing words.
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3.1.2 Semantic Filtering
After the vector representations are obtained for
each entity mention and for each ontology con-
cept term, the semantic similarity between each
pair is computed by using the cosine similarity.
For each entity mention, the top k most similar on-
tology concepts are retained as candidates for fur-
ther processing, i.e., for syntactic weighting based
re-ranking. k is chosen as 5 based on the re-
sults obtained in our previous study (Karadeniz
and Özgür, 2019).

3.1.3 Syntactic Re-ranking
For our re-ranking approach, the assumption is
that the entity mentions are noun phrases and the
most informative words in the mentions are the
heads of the noun phrases. We used the Stanford
Parser (version 3.8.0) (Klein and Manning, 2003)
to obtain the corresponding head words of the en-
tity mentions by providing the entity mentions as
input and extracting the syntactic parses of the
mentions as output. Next, the top level rightmost
“noun” is searched in the tree structured syntac-
tic parse and assigned as the head of the mention
phrase.

The semantic similarities are recomputed using
the mathematical formulation shown in Equation
(1), which considers also the similarity between
the head words of the entity mention and ontol-
ogy concept pair. In Equation (1), SRR (m, c) is
the final computed similarity between mention m
and the candidate concept c, and SS is the semantic
similarity, in which mhead is the head word of the
mention m and chead is the head word of the con-
cept c, SS (m, c) is the similarity between mention
m and concept c computed as described in Section
3.1.1 , and w is a weighting parameter which can
take values between 0 and 1. w is chosen as 0.25
based on the results reported in our previous study
(Karadeniz and Özgür, 2019).

SRR (m, c) =
(w * SS(mhead, chead)) + ((1-w) * SS(m, c))

(1)

3.2 Microorganism Entities

The normalization of Microorganism entities com-
ponent of our system is based on exact matching
against the names and synonyms of the concepts in
the NCBI taxonomy. Error analysis on the train-
ing and developments data sets revealed that ap-
plying some rules may improve the results. For

instance, “Escherichia coli” has an exact match
that can be successfully normalized to the refer-
ent concept with an ID “562” in the NCBI tax-
onomy. In the following parts of the document,
although the “E. coli” mention indicates a clear
reference to the same concept, it can not be nor-
malized to the “Escherichia coli” concept with an
exact matching approach. In this kind of cases, if
an exact match does not exist, the previously men-
tioned similar entities in the text are searched. If a
match is found, the same concept is assigned as the
normalized concept for the corresponding mention
“E. coli”. If there does not exist a match with the
previously normalized concepts, the root concept
with an ID “2” is assigned.

4 Relation Extraction

4.1 Localization Relation Extraction

Our system for the relation extraction sub-task is
based on the naive assumption that the related en-
tities for most of the relations appear within the
same sentence. Therefore, firstly, the input texts
are split into sentences using the NLTK library.
For the extraction of Lives in relations, all the sen-
tences in the related document are searched to de-
termine whether there exists a Microorganism en-
tity and a Habitat entity or a Microorganism en-
tity and a Geographical entity in the correspond-
ing sentence. If there exists such a pair, this will
be a sign of a Lives in relation.

For any given sentence, there can be more than
one Habitat entity and Microorganism entity. For
this kind of sentences, two different approaches,
which are called smart matching and distributed
matching, are applied. In smart matching, each
Habitat entity is paired with the closest Microor-
ganism entity. In other words, the locations of
each type of entities in the sentences are checked,
and then the pairing process of the Microorgan-
ism and the Habitat entities are done based on the
proximity criteria. In distributed matching, on the
other hand, each Habitat entity is paired with ev-
ery Microorganism entity in the sentence. Dis-
tributed matching can be seen as a type of N x
N matching, while smart matching 1 x 1 match-
ing. The performance of each approach is tested
on the development data set. While there is slight
increase in the precision, the recall is observed
to decrease considerably for the smart matching
method (see Table 1). As a result, the distributed
matching approach is used in the final submission.

153



Table 1: Distributed vs Smart Matching for relation ex-
traction. Precision, Recall, F-measure values for the
development data set are reported.

Distributed Matching Smart Matching
Precision 0.491 0.576
Recall 0.785 0.515
F-measure 0.604 0.544

For the overlapping entities in which one en-
tity contains another, some relations can be ig-
nored. For instance, for the sample sentence
“An example of this fact is the presence of Psy-
chrobacter DNA on the surface of Formaggio
di Fossa cheeses”, the Habitat entity “surface
of Formaggio di Fossa cheeses”, Habitat entity
“Formaggio di Fossa cheeses”, and Habitat en-
tity “cheeses” are overlapping entities. In this
case, it would not be appropriate to build three
relations such as “Psychrobacter” - “surface of
Formaggio di Fossa cheeses”, “Psychrobacter” -
“Formaggio di Fossa cheeses”, and “Psychrobac-
ter” - “cheeses”. Instead of extracting multiple
relations, “cheeses” can be ignored and two rela-
tions between “Psychrobacter” - “surface of For-
maggio di Fossa cheeses” and “Psychrobacter” -
“Formaggio di Fossa cheeses” are extracted. This
strategy, where the shortest overlapping entity is
ignored, is called as the soft filter operation. On
the other hand, the strategy when only the longest
overlapping entity is retained and the remaining
ones are ignored, is named as the hard filter op-
eration. In hard filtering, “Psychrobacter” - “For-
maggio di Fossa cheeses” and “Psychrobacter” -
“cheeses” are ignored and only one relation be-
tween “Psychrobacter” - “surface of Formaggio
di Fossa cheeses” is extracted. The performance
of each approach is tested on the development data
set (see Table 2).

Table 2: Soft Filter vs Hard Filter for relation extrac-
tion. Precision, Recall, F-measure values for the devel-
opment data set are reported.

Soft Filter Hard Filter
Precision 0.584 0.575
Recall 0.768 0.639
F-measure 0.616 0.561

Since our rule-based system for relation extrac-
tion is based on the assumption that most of the
relations appear within the same sentences, our
system is not able to catch the relations that cross
sentence boundaries. To overcome this problem,

a new rule, which is called remote matching, is
integrated into the system. According to this rule,
if there exists only one entity type (Microorgan-
ism) in a sentence, and within a context window of
three sentences there exists only one entity (Habi-
tat or Geographical), then there is a relation be-
tween these two entities. The performance of the
remote matching rule is tested on the development
data set. The results show that the number of the
predicted relations increased, which also led to an
increase in recall. The obtained precision and re-
call values are 51.4% and 78.5%, respectively.

4.2 Exhibits Relation Extraction

Similar to the extraction of localization relations,
for the extraction of Exhibits relations, all the sen-
tences are searched for whether there exist a Mi-
croorganism entity and a Phenotype entity. The
same rules that are explained in the previous sub-
section are applied for the extraction of the Ex-
hibits relations.

5 Evaluation

In the BioNLP Shared Task 2019 Bacteria
Biotopes normalization sub-task, entities are given
with their boundaries in the text and the partici-
pants are required to predict the normalization of
the entities. In the official evaluation, for each nor-
malized Habitat/Phenotype entity, Wang similarity
W (Wang et al., 2007) is calculated to measure the
similarity between the reference concept and the
predicted concept for the normalization. The per-
formances of the submitted systems are evaluated
with their Precision values, which are calculated
as:

Precision =
∑

Sp / N (2)

where Sp indicates the total Wang similarity W
for all predictions (Deleger et al., 2016), and N is
the number of predicted entities.

In the BioNLP Shared Task 2019 Bacteria
Biotopes relation extraction sub-task, entities are
given with their boundaries in the text and the par-
ticipants are asked to predict the relations between
the entities. The performances of the submitted
systems are evaluated with their F1 (F-measure),
recall and precision values.
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5.1 Results of BB-norm

The official results obtained by our system and the
other participants for the BB-norm sub-task are
shown in Table 3. Our system (BOUN-ISIK-2)
achieved the best performance with 67.9% Preci-
sion in the BB-norm sub-task (Entity Normaliza-
tion).

Table 3: Comparison with the participant systems for
the normalization task of bacteria biotopes. Precision
values for the test data set are reported. k is set to 5 and
w to 0.25 for the proposed system (BOUN-ISIK).

System Precision
BOUN-ISIK-2 (Our system) 0.679
BLAIR GMU-2 0.678
BOUN-ISIK-1 (Our system) 0.675
BLAIR GMU-1 0.661
PADIA BacReader-1 0.633
BASELINE-1 0.531
AmritaCen healthcare-1 0.514

As the results in Table 4 demonstrate, our sys-
tem performs significantly better than the other
systems for the normalization of new Phenotype
entities in the test set (Precision: 70.8%).

Table 4: Comparison with the participant systems for
the normalization task considering only Phenotype en-
tities. Precision values for the test data set are reported.

System Phenotypes Phenotypes
(new in test)

BOUN-ISIK (Our system) 0.566 0.708
PADIA BacReader-1 0.758 0.156
BASELINE-1 0.582 0.116
BLAIR GMU-2 0.646 0.03
BLAIR GMU-1 0.628 0.03
AmritaCen healthcare-1 0.646 0.0

5.2 Results of BB-rel

The official results obtained by our system and the
other participants for the BB-rel task are demon-
strated in Table 5.

6 Conclusion

In this study, we presented two systems that are
implemented in the scope of the BioNLP Shared
Task 2019 - Bacteria Biotope Task. The aim of
the first system is the normalization of the entity
mentions in a biomedical text through the corre-
sponding ontology, whereas the goal of the second

Table 5: Comparison with the participant systems for
the relation extraction task of bacteria biotopes. F1,
Recall and Precision values for the test data set are re-
ported.

System F1 Recall Precision
whunlp-1 0.664 0.702 0.629
AliAI-1 0.650 0.620 0.682
BASELINE-1 0.635 0.801 0.525
Yuhang Wu-1 0.605 0.670 0.551
BOUN-ISIK-1 (soft filter) 0.604 0.731 0.514
BLAIR GMU-2 0.594 0.650 0.548
BOUN-ISIK-2 (hard filter) 0.575 0.601 0.552
BLAIR GMU-1 0.549 0.496 0.617
UTU-2 0.550 0.474 0.655
UTU-1 0.529 0.428 0.694
Amrita Cen-1 0.499 0.617 0.419
Amrita Cen-2 0.493 0.610 0.414

system is the extraction of localization and prop-
erty relations between the related entities when
the entities are given. Both systems are unsuper-
vised in the sense that they do not require domain-
specific labeled data, while the normalization sys-
tem makes use of word embeddings and syntac-
tic re-ranking. According to the official evalua-
tion, both of our systems achieved promising re-
sults, which have shown that the proposed meth-
ods are comparable to or better than the labeled
data driven deep learning based approaches used
in the shared task.
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Abstract

In this article, we describe our approach for
the Bacteria Biotopes relation extraction (BB-
rel) subtask in the BioNLP Shared Task 2019.
This task aims to promote the development of
text mining systems that extract relationships
between Microorganism, Habitat and Pheno-
type entities. In this paper, we propose a novel
approach for dependency graph construction
based on lexical chains, so one dependency
graph can represent one or multiple sentences.
After that, we propose a neural network model
which consists of the bidirectional long short-
term memories and an attention graph convo-
lution neural network to learn relation extrac-
tion features from the graph. Our approach is
able to extract both intra- and inter-sentence
relations, and meanwhile utilize syntax infor-
mation. The results show that our approach
achieved the best F1 (66.3%) in the official
evaluation participated by 7 teams.1

1 Introduction

The BioNLP Shared Task 2019 (Bossy et al.,
2019) is a continuation of the previous efforts or-
ganized around the BioNLP Shared Task work-
shop series (Kim et al., 2009, 2011; Nédellec et al.,
2013; Deléger et al., 2017). It aims to facilitate
development and sharing of computational tasks
of biomedical text mining and solutions to them.
The Bacteria Biotope (BB) task is one of the six
main tasks of the BioNLP Open Shared Tasks
2019. Three teams participated in the BB task
when it was first organized in 2011. INRA Bib-
liome (Ratkovic et al., 2011) achieved the best Fs-
core of 45% with the Alvis system which used dic-
tionary mapping, ontology inference and semantic
analysis for NER, and co-occurrence-based rules
for detecting relations between the entities. The
2013 BB task (Bossy et al., 2013) contained three

1Code: https://github.com/woodyXwt/BB19-rel

Figure 1: Bacteria Biotopes relation examples. The
Red, green and blue words denote Microorganism en-
tities, Habitat entities and Phenotype entities respec-
tively.

subtasks, the first one concerning recognition and
normalization of bacteria and habitat entities, and
the other two subtasks involving relation extrac-
tion. Four teams participated in these tasks, with
the UTurku TEES system (Björne and Salakoski,
2013) achieving the first places with F-scores of
42% and 14%. Compared to the 2013 BB task,
the 2016 BB task contains more subtasks and its
subtask2 only concerned relation extraction. The
team VERSE (Lever and Jones, 2016) achieved
the best F-scores of 55.8% in the subtask2.

The Bacteria Biotopes relation extraction (BB-
rel) in the BioNLP Shared Task 2019 aims
to automatically extract Microorganism-Habitat
or Microorganism-Phenotype relationships from
biomedical literature. The BB-rel task follows
the previous Bacteria Biotopes shared tasks, an-
notating directed binary relationships between Mi-
croorganism, Habitat and Phenotype entities. Fig-
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ure 1 shows some examples for each relationship.
In the BB-rel task, not all the relations occur be-
tween two entities with the same sentence. In the
preprocessing step, we found that there exist about
one fourth of all relations whose argument enti-
ties are located in different sentences. Therefore,
we need to build a model that does not only con-
sider the entity relationship within one sentence,
but also beyond the sentence boundary.

A lexical chain (Morris and Hirst, 1991) is a se-
quence of words which are semantically-similar
or related. These words are related sequentially
in the text, defining the topic of the text seg-
ment that they cover and establishing associations
between sentences. Following this observation,
some researchers have obtained success in many
NLP tasks such as word sense induction(Tao et al.,
2014) , machine translation (Mascarell, 2017) and
text (Stokes et al., 2004) segmentation. In the
BB-rel dataset, the sentences where inter-sentence
relations occur usually express the same topic or
have semantic associations each other. These fea-
tures usually appear as some related words which
can form lexical chains. Following this obser-
vation, we propose a novel approach to build an
inter-sentence dependency graph based on lexical
chains.

In this paper, we propose a novel relation ex-
traction method for the BB-rel task by incorpo-
rating dependency graphs and lexical chains into
the neural network. As shown in Figure 1, inter-
sentence relations are usually expressed in inter-
related sentences, and these sentences may con-
tain semantically-related words which can form
lexical chains. We utilize these lexical chains
and dependency graphs to build an inter-sentence
dependency graph for inter-sentence relation ex-
traction. Specifically, we utilize word embed-
ding to find the semantic relationships of words
that occur in different sentences for building re-
liable lexical chains. Then, we use the Stanford
CoreNLP toolkit (Manning et al., 2014) to ob-
tain sentence-level dependency and part-of-speech
(POS) information, and build an inter-sentence de-
pendency graph based on these information and
lexical chains.

After that, we employ a neural network model
which consists of the bidirectional long short-
term memories and attention-guided graph convo-
lutional neural networks to extract features from
the inter-sentence dependency graph. The fea-

Train Dev
Lives In 715 395
Exhibits 281 138
Total relatonships 996 533
Intra-sentence relationships 885 467
Inter-sentence relationships 111 66

Table 1: BB-rel data statistics on the training and de-
velopment set.

tures are fed into a multi-layer perceptron (MLP)
to classify the relation between an entity pair.

Our approach has two advantages. First, it is ca-
pable of extracting both intra-sentence and inter-
sentence relations by connecting the dependency
graphs of different sentences via lexical chains.
Second, it is able to leverage syntax information.
The results in the BB-rel task demonstrate the su-
periority of our method. It achieves the highest
F1-score, the second highest precision and recall
in the official evaluation.

2 Method

In this section, we first introduce our strategy of
relation candidate generation. Then, the approach
for constructing lexical chains is described. After
that, we will introduce how to build inter-sentence
dependency graphs. Lastly, the architecture of our
neural network model is described.

2.1 Relation Candidate Generation

In the BB-rel dataset, if all candidate pairs (bac-
teria and habitat or phenotype) that occur in the
document are enlisted as candidate training exam-
ples, the positive and negative examples will be-
come very unbalanced because most entity pairs
located beyond one sentence do not have any re-
lation. Based on our observations, most entity
pairs spanning more than two sentences have no
relations between them. Therefore, we consider
all entity pairs that span within two sentences as
the candidates to generate training examples. The
statistics of our dataset are summarized in Table 1.

2.2 Lexical Chain Construction

In previous work, there are mainly three ap-
proaches for constructing lexical chains. The first
one utilized WordNet (Hirst and St-Onge, 1997) to
capture the semantic relationship between words.
The second approach (Remus and Biemann, 2013)
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Figure 2: Process of lexical chain construction. Orange
words denote nouns. C is the set of lexical chains. The
similarity here refers to the cosine similarity between
word vectors. We set the threshold to 0.5.

automatically extracted lexical chains using statis-
tical methods . Another approach (Li et al., 2017)
is based on semantic word vectors. In this paper,
we assume that lexical relationships can be cap-
tured by calculating the similarity of their seman-
tic vectors. To compute similarities, we use 200-
dimensional pre-trained word vectors released by
Pyysalo et al. (2013). Moreover, we only consider
nouns for constructing the lexical chains since
they usually contain relevant information.

Given a sentence, we first use the Stanford
CoreNLP toolkit (Manning et al., 2014) to ob-
tain POS tags for each word. Then we pick
those words whose POS tags belonging to N=
(NN,NNP,NNS) as candidates for chain construc-
tion. We take one candidate at a time and check
where it should be placed. Assuming that C is the
set of lexical chains, we add each candidate w to C
according to the following steps (Figure 2):

• Step 1: each noun is treated as a candidate
w. If C is empty, we will create a new lexical
chain in C and add the current candidate w
into it.

• Step 2: for the current candidate w, we tra-
verse all the lexical chains in C and compute
the similarity between the last word of each
lexical chain and the current candidate w. If
the similarity surpasses a predefined thresh-
old, the current candidate w will be attached
to the corresponding lexical chain.

• Step 3: if the current candidate w cannot be
attached to any existing lexical chain, we will
create a new lexical chain for it.

Figure 3: An example of the dependency graph and its
corresponding adjacent matrix. If there is a dependency
relation between the node i and j in the dependency
graph, the value of the elementMij in the adjacent ma-
trix is 1.

2.3 Dependency Graph Construction

In this section, we propose an approach to build
an inter-sentence dependency graph by lexical
chains. For an entity pair that occurs within the
same sentence, we directly use their sentence de-
pendency graph. If two entities occur in different
sentences, we construct their dependency graph by
lexical chains. We design two rules to build an
inter-sentence graph. Here we define the follow-
ing notations: C is the set of lexical chains, A and
B are nouns belonging to sentence s1 and sentence
s2, respectively.

• Rule 1: if A and B exist in the same chain of
C, we will add an edge between A and B to
build an inter-sentence dependency graph.

• Rule 2: if A and B do not appear in the same
lexical chain, we will use the root nodes of
two sentences to build the dependency inter-
sentence graph.

Then we convert the dependency graph into
an adjacency matrix. An example of such pro-
cess is shown in Figure 3. Give a sequence
S = {s1, s2, ..., sn}, we considered its depen-
dency graph as an undirected graph, which can be
converted into an adjacent matrix. If there is a de-
pendency relation between nodes i and j in the de-
pendency graph, the element Mij in the adjacent
matrix is assigned with 1.
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Figure 4: The architecture of our model. The input sentence is “MRSA were isolated by oxacillin screening agar”
with a Microorganism entity “MRSA” and a Habitat entity “oxacillin screening agar”. M denotes the adjacency
matrix.

2.4 Neural Network Model

2.4.1 BiLSTM Layer

Figure 4 shows the neural network architecture of
our model. It uses the words and POS tags as in-
put. We adopt the 200-dimensional word embed-
dings and 20-dimensional POS tag embeddings.
The final representation for the token is the con-
catenation xi of the word embedding si and the
POS tag embedding pi. We initialize our word
embeddings with the pre-trained biomedical em-
beddings (Pyysalo et al., 2013) and randomly ini-
tialize the POS tag embeddings.

After obtaining the word representation se-
quence x = {x1, x2, ..., xn}, we leverage bidi-
rectional LSTMs (Hochreiter, 1998) to encode the
context information into each word. The forward
and backward hidden states (

→
hi and

←
hi) will be

concatenated, formalized as hi = [
→
hi �

←
hi].

2.4.2 Attention-Guided GCNN Layer

We employ the attention-guided graph convo-
lutional neural network (AGCNN) (Guo et al.,
2019a) to incorporate the dependency information
into word representations, which is composed of
M identical blocks. Each block has three types of
layers: attention-guided layer, densely connected
layer, linear combination layer.

In the attention guided layer, we first update the
representation of the node using a graph convolu-
tion network (GCNN) (Zhang et al., 2018). For
an L-layer GCNN, we denotes the inputs in the
first layer as g(0)1 , ..., g

(0)
n and the outputs in the last

layer as g(L)1 , ..., g
(L)
n . The g(l)i denotes the output

vectors of the node i in the l-th layer. The con-
volution operation in the l-th layer can be written
as:

gl = σ(
n∑

j=1

M̃ij ,W
lgl−1/di + bl), (1)

where W l is a linear transformation, bl is a bias
term, and σ is a nonlinear function (e.g., ReLU ).
The M̃ can be computed by M + I , where I ∈
Rn×n is an identity matrix and di =

∑n
j=1 M̃ij

is the degree of node i in the dependency graph.
Intuitively, during the graph convolution of each
layer, each node gathers all the information of its
neighboring nodes in the graph.

After the L-layer graph convolution operation,
we transform the original dependency graph into
a fully connected edge-weighted graph by con-
structing N (N is a hyper-parameter) attention-
guided adjacency matrix. Each attention-guided
adjacency matrix Ã corresponds to a completely
connected graph. In this paper, we use the multi-
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head attention(Vaswani et al., 2017) to calculate
Ã, which allows the model to focus on informa-
tion from different representation sub-spaces. The
output is computed as a weighted sum of values,
where the weight is calculated by the function of
the query and the corresponding key.

Ã(t) = softmax(QWQ
i × (KWK

i )T /
√
d)V,

(2)
where Q and K are both equal to the collective
representation hl−1 at layer l−1 of the model. The
projections are parameter matrices WQ

i ∈ Rd×d

and WK
i ∈ Rd×d. Ã(t) is the t-th attention guided

adjacency matrix corresponding to the t-th head.
Following (Guo et al., 2019b), we employ the

dense connection (Huang et al., 2017) into the our
model to capture more structural information on
the large graph. We concatenate the initial node
representation h

(l)
j and the node representations

g
(1)
j , ..., g

(l−1)
j produced in layer 1, ..., l − 1:

h
(l)
j = [xj ; g

(1)
j , ..., g

(l−1)
j ], (3)

Each densely connected layer has L sub-layers.
The dimensions of these sub-layers dhidden are de-
cided by L and the input feature dimension d. In
our model, we use dhidden = d/L.

Then we use N separate dense connection lay-
ers to modify the computation of each layer as fol-
lows (for the t-th matrix Ã(t)):

glti = ρ(
n∑

j=1

Ã(t)W l
th

l
i + blt), (4)

where t = 1, ..., N and t selects the weight ma-
trix and bias term associated with the attention
guided adjacency matrix Ã(t). The column dimen-
sion of the weight matrix increases by dhidden per
sub-layer, i.e., W l

t ∈ Rdhidden×d(l) where d(l) =
d+ dhidden(l − 1).

Finally, we use linear combination layer to in-
tegrate representations from N different densely
connected layers. Formally, the output of the lin-
ear combination layer is defined as:

gcomb =Wcombgout + bcomb, (5)

where gout is the output by concatenating outputs
from N separate densely connected layers, i.e.,
gout = [g(1); ...; g(N)] ∈ Rd×d. Wcomb ∈ Rd×d

is a weight matrix and bcomb is a bias vector for
the linear transformation.

2.4.3 Output Layer
We treat the BB-rel task as a classification task.
S = [s1, ..., sn] denotes a sequence, si is the i-
th token, Me and He denote Microorganism and
Habitat or Phenotype entities. The entities may
consist of several tokens, namely [se1 , ..., sen ] and
[sh1 , ..., shn ]. The goal of the BB-rel task is to pre-
dict whether there is a ”Live in” or ”Exhibits” re-
lationship between the entities He and Me.

After applying the attention-guided GCNN
layer to the input word vectors, we obtain the rep-
resentation for each word. The sequence represen-
tation can be obtained using the following equa-
tion:

gseque = f(g1, ..., gn), (6)

where g1, ..., gn denotes the outputs of the the
attention-guided GCNN layer and f : Rd×n →
Rd is a max-pooling function. Since we also ob-
served that the entity information is often criti-
cal for BB-rel extraction, the entity representations
Me and He are also used, given by:

gm = f(gm1 , ..., gmn),

gh = f(gh1 , ..., ghn).
(7)

Inspired by (Santoro et al., 2017; Lee et al.,
2017), we obtained the final feature for BB-rel ex-
traction by feeding the sequence and entity repre-
sentations into a multi-layer perceptron (MLP):

gfinal =MLP ([gseque; gm; gh]), (8)

where “[]” denotes the concatenation operation.
Finally, gfinal is fed into a softmax layer to com-
pute the probability distribution over all classes.
During training, our model uses the cross-entropy
loss:

loss(θ) = −
J∑

j=1

logP (yj |Sj), (9)

where J denotes the size of the training set S =
{(S1, y1), ..., (SJ , yJ)} and yj denotes the gold
answer of the j-th training instance. P (yj |Sj) de-
notes the probability that Sj belongs to yj , which
is calculated as P (yj |Sj) = softmax(gfinal).

3 Experiments

3.1 Evaluation Metrics
We send the prediction results of our model on the
test set to the task organizer for evaluation. The
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Hyper-parameter Value
Number of heads N 2
Block number M 2
Word emb size 200
POS emb size 20
LSTM hidden size 300
BiSTM layer 2
GCNN layer 2
GCNN output size 200
Dropout of GCNN 0.5
Multi-head attention head 3
Sublayers 5
dhidden 300
Epoch 100
Decay rate 0.9
Learning rate 0.5
Optimizer sgd
MLP layer 1

Table 2: Hyper-parameter setting.

Team Name P R F1
Amrita Cen 41.9 61.7 49.9
UTU 47.3 65.5 55.5
BLAIR GMU 54.7 64.9 59.4
BOUN-ISIK 51.3 73.1 60.3
Yuhang Wu 55.1 67.0 60.4
AliAI 68.2 62.0 64.9
Our method 62.9 70.2 66.3

Table 3: The official results of the BB-rel task.

performances of our model were evaluated by the
standard evaluation measures: precision (P), recall
(R) and F1-score (F1).

3.2 Hyper-parameter

The hyper-parameter setting is listed in Table 2.
We tuned hyper-parameters based on the develop-
ment set.

3.3 Official Results

The official results on the test set are shown in Ta-
ble 3. There are totally 7 teams participating in
the BB-rel task. Each team could submit up to 2
predictions. We report the top results for all teams.
As we can see, our method achieved the highest F1
(66.3%), and the second highest precision (62.9%)
and recall (70.2%).

Figure 5: Ensemble training and inference.

3.4 Ensemble Training and Inference

In relation extraction tasks, the ensemble training
and inference have proven to be an effective way to
improve performance of the neural network model
(Mehryary et al., 2016; Lim and Kang, 2018). Fol-
lowing previous work (Lim and Kang, 2018), we
improve performance of our model using the en-
semble training and inference. We sum the out-
put probabilities (logits) of ensemble members,
which are generated using the same neural net-
work model but different weight initialization.

As shown in Figure 5, M1 to M10 are the mod-
els using the same structure and hyper-parameters.
In the training phase, we independently trained
each ensemble member with different initialized
parameters. When inferring a relation for an easy
sample, the trained ensemble members make rel-
atively consistent predictions. When inferring for
a difficult sample, the trained ensemble members
may make different predictions. We incorporate
the voting results of 10 ensemble members to pro-
duce final results.

To investigate the effectiveness of ensemble
training and inference, we conducted the follow-
ing experiment on the development set. First, we
run five times of our model and average the results
as the final result of the single model as shown
in Table 4. Second, we run one time for the en-
semble training and inference. The results show
that the approach using ensemble training and in-
ference achieved relatively balanced precision and
recall, thus yielding a better F1.
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Method P R F1

Single 59.1 69.3 63.8

Ensemble 63.1 68.4 65.7

Table 4: Effects of ensemble training and inference.

Relation P R F1

Intra

Live in 61.6 60.0 60.8

Exhibits 73.4 80.6 76.8

Total 64.8 65.2 65.0

Intra+Inter

Live in 59.5 63.7 61.5

Exhibits 72.8 82.4 77.3

Total 63.1 68.4 65.7

Table 5: Results of recognizing inter- and intra-
sentence relations.

3.5 Results of Recognizing Inter- and
Intra-Sentence Relations

In this section, we discuss the performance of our
model in Intra- and inter-sentence relation. As
shown in Table 5, we obtained an F1-score of
65.0 when we only evaluated the intra-sentence re-
lationships. When we evaluated both intra- and
inter-sentence relationship, F1-score, Recall in-
crease by 0.7% and 3.2% respectively. But Pre-
cision drops by 1.7%. We can also see from the
table that the performance of ”Exhibits” relation is
better than the performance of the ”Live in” rela-
tion. Because most of the ”Exhibits” relation hap-
pen within a sentence and have a certain pattern.

3.6 Effects of Lexical Chains
In order to verify the effectiveness of construct-
ing inter-sentence dependency graphs by lexical
chains, we also conducted related experiments on
development set. The experimental results are
shown in Table 6. “lexical chains” denotes the
model employing the proposed method that con-
structs inter-sentence dependency graphs by lexi-
cal chains. “root nodes” denotes the model where
the inter-sentence dependency graphs are built us-
ing root nodes. Table 6 shows the performance
comparison of the “lexical chains” method and the
“root nodes” method on the development set. The
“lexical chains” method obtained better perfor-

Method P R F1

Root nodes 62.7 67.3 64.9

Lexical chains 63.1 68.4 65.7

Table 6: Effects of lexical chains.

Figure 6: Examples of false positives. The Red and
green words denote Microorganism and Habitat entities
respectively.

mance than the “root nodes” model. This demon-
strates our idea is effective. The relevant sen-
tences are usually expressed using relevant words.
These relevant words found by lexical chains can
be used as the associations to connect the depen-
dency graphs of different sentences. Therefore, we
can build an effective representation for an inter-
sentence entity pair.

3.7 Error Analysis

In this section, we manually analyzed what cases
lead to false positives, since those are more critical
than false negatives. Figure 6 shows some exam-
ples of false positives. The most of false positives
are caused by overlapping target entities. For ex-
ample, there is a “Live in” relation between “Lis-
teria sp.” and “chicken nugget processing plant”,
but there is no “Live in” relation between “Listeria
sp.” and “chicken” or “chicken nugget”. The rea-
son for these errors is that the model is confused
by overlapping entities with similar context.
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4 Related Work

In the natural language processing community,
there are a number of related competitions and
tasks (Wei et al., 2015; Nédellec et al., 2013;
Deléger et al., 2016). Most prior work focused on
extracting the relations within one sentence, and
ignored the relations beyond one sentence.

In the NLP community, it has proven to be ef-
fective to combine linguistic features with neural
networks for relation extraction (Zhou et al., 2015;
Miwa and Bansal, 2016). Bunescu et al. (2005)
demonstrated that the relationship of an entity pair
can be captured along their shortest dependency
path in the dependency graph because the words
on the shortest dependency path concentrate the
most relevant information and diminish redundant
information. Following this observation, several
studies (Xu et al., 2015; Liu et al., 2015) achieved
outstanding performance by combining shortest
dependency paths with various neural networks.
As deep learning develops, some attention-based
neural architectures (Zhou et al., 2016; Lin et al.,
2016) have been proposed for relation classifica-
tion and show the state-of-the-art performance.
But with a few exceptions, almost all related work
only focused on intra-sentence relation extraction,
without considering the inter-sentence relations.

Recent work has explored some approaches to
consider inter-sentence relations, such as Graph
LSTMs (Peng et al., 2017), self-attention (Verga
et al., 2018), Graph CNNs (Sahu et al., 2019).
However, none of these work investigated lexical
chains for inter-sentence relation extraction. In
the future, we will evaluate our approach on some
large-scale datasets for intra- and inter-sentence
relation extraction (Yao et al., 2019).

5 Conclusion

In this paper, we describe our approach used for
participating the Bacteria Biotope task at BioNLP-
OST 2019. Our approach achieved very com-
petitive performance in the official evaluation.
We found that the idea using lexical chains to
build inter-sentence dependency graphs is effec-
tive. Moreover, ensemble training and inference
can improve the performance of our model. The
attention-guided graph convolution neural net-
work performs well in extracting Bacteria Biotope
relations. However, our approach is not specific to
Bacteria Biotope relation extraction, and it can be
applied to other relation extraction tasks.
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Abstract 

In this paper, we present our participation 
in the Bacteria Biotope (BB) task at 
BioNLP-OST 2019. Our system utilizes 
fine-tuned language representation models 
and machine learning approaches based on 
word embedding and lexical features for 
entities recognition, normalization and 
relation extraction. It achieves the state-of-
the-art performance and is among the top 
two systems in five of all six subtasks. 

1 Introduction 

With the rapid increasing volume of biomedical 
literature, finding useful knowledge from large 
amount of scientific papers, databases or web 
pages has become more and more difficult. 
Knowledge about microbial diversity is crucial for 
the study of the microbiome and the interaction 
mechanisms of bacteria with their environment, as 
well as phylogenetic and ecology perspectives. 
Such knowledge has been produced by biology 
and bioinformatics projects in the microbiology 
domain, including food safety, health sciences and 
waste processing. However, a significant portion 
of this information is expressed in free text, e.g., 
the microbial strains experimentally identified in a 
given environment (habitat), and theirs properties 
(phenotype). Given such information, there is no 
comprehensive resource gathering the knowledge 
(Deléger et al., 2016).  

It is crucial to automatically extract information 
from heterogeneous resources as it can help with 
reaching the desired information efficiently for 
fundamental research and applications, especially 
in biomedical fields (Cohen and Hersh, 2005). Not 
only is extracting the relationships between 
biomedical terms necessary, normalizing them 
with respect to common references is equally 
important (Floyd et al., 2005; Buttigieg et al., 

2013). However, despite the recent progress in 
machine learning, text mining and natural 
language processing, automating the knowledge 
extraction pipeline is rather challenging. A system 
must first identify entities (e.g. Microorganisms or 
Habitats names) in the document through a named 
entity recognition method. Next, linguistic cues 
within the document are used to predict whether a 
relationship between each pair or group of entities 
exists and which type of relationship it is. The 
entities are normalized according to domain 
knowledge resources, so that they can be 
represented in a formal and structured way by 
using concepts from an ontology or a taxonomy. 
Scientific literature mining challenges have been 
organized to address the need of knowledge 
extraction. For instance, BioNLP Shared Task is a 
community-wide effort on the development of 
fine-grained information extraction methods in 
biomedicine since 2009.  

The Bacteria Biotope (BB) task is part of the 
BioNLP Open Shared Tasks, and has been 
previously conducted in 2016 (Deléger et al., 
2016), 2013 (Bossy et al., 2013) and 2011 (Bossy 
et al., 2011). The goal of the BB task is to provide 
a framework for the evaluation and comparison of 
automatic information extraction methods for 
Bacteria organism habitats. The 2019 BB task 
(Bossy et al., 2019) consisting of three subtasks: 
named entity recognition and normalization (BB-
norm and BB-norm+ner), entity and relation 
extraction (BB-rel and BB-rel+ner) and 
knowledge base extraction (BB-kb and BB-
kb+ner). The representation scheme of the BB task 
contains four entity types: Microorganisms, 
Habitats, Geographical places and Phenotypes. 
The normalization subtask focuses on normalizing 
the entities with taxa from NCBI Taxonomy (for 
Microorganism) and concepts from OntoBiotope 
ontology (for Habitat and Phenotype). The relation 
extraction subtask focuses on extracting Lives_In 
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relations between Microorganism, Habitat and 
Geographical entities, and Exhibits relations 
between Microorganism and Phenotype entities. 
The knowledge base extraction subtask can be 
viewed as a combination of the first two subtasks, 
aggregating their results at the corpus level. We 
participated in all subtasks in this challenge. 

A brief description of our method for the 2019 
BB task is presented in Section 2. In Section 3 we 
show the results of our method on the official BB 
test datasets and a brief discussion of the results. In 
sections 4 we conclude our participation in the BB 
task. 

2 Methods  

In this section, we present the methods we used 
while participating in the 2019 BB task. We build 
our system upon methods from successful tools in 
previous BioNLP Shared Task (Lever and Jones, 
2016; Mehryary et al., 2016), and partially reuse 
the method we designed while participating in 
other recent natural language processing 
challenges (Mao and Liu, 2019).  

Given the main purposes of the three subtasks of 
the BB task, we design three corpus-level 
components in our system: named entity 
recognition, normalization, and relation extraction. 
We do not use any additional or customized 
training data besides the BB corpus provided by 
the organizers.  

2.1 Named Entity Recognition 

The first step in the knowledge extraction process 
is to accurately recognize the names of entities in 
text. Our NER component is based on most recent 
advances in deep learning for NLP applications: 
pre-trained language representation model and 
transfer learning.  

The BB corpus is provided in the BioNLP-ST 
standoff annotation format. After the input text is 
loaded, it is converted to the CoNLL IOB (Inside, 
Outside, Beginning, respectively) format for NER 
processing. For discontinuous entities, multiple 
annotations will be tagged. Since there are only a 
small number of such entities in the corpus, we 
expect a minimal effect on the accuracy.  

Our first method builds on BERT, which was 
proposed in October 2018, and obtained state-of-

                                                           
1 https://github.com/google-
research/bert/blob/master/multilingual.md 

the-art performance on NLP tasks (Devlin et al., 
2018). BERT utilizes a multilayer bidirectional 
transformer encoder which can learn deep bi-
directional representations and can be later fine-
tuned for a variety of tasks such as NER.  Before 
BERT, deep learning models, such as Long Short-
Term Memory (LSTM) and Conditional Random 
Field (CRF) have greatly improved the 
performance in NER over the last few years 
(Huang et al., 2015). OpenAI GPT (Radford et al., 
2018) has proved the effectiveness of generative 
pre-training a language model and subsequent 
discriminative fine-tuning it on a specific natural 
language understanding task. 

 For each sentence from the BB corpus, this 
method first obtains its token representation from 
the pre-trained BERT model using a case-
preserving WordPiece model, including the 
maximal document context provided by the data. 
Next, we formulate this task as a tagging task by 
feeding the representation into a CRF (Lafferty et 
al., 2001) output layer, which is a token-level 
classifier over the NER label set.  

The pre-trained BERT models were trained on a 
large corpus (Wikipedia + BookCorpus). There are 
several pre-trained models released. In the BB 
task, we choose BERT-Large, Cased (Whole Word 
Masking, WWM) model for the following reasons: 
1) The BB corpus is in English, and for high-
resource languages, a single-language model is 
better than the multilingual model1; 2) The BERT-
Large model generally outperforms the BERT-
Base model in most NLP tasks (Tenney et al., 
2019); 3) The cased model is better than uncased 
model because the case information is important 
for the NER task2; 4) The recently released WWM 
variant of BERT-Large 3 yields improvements on 
various NLP tasks by masking whole words 
instead of random masking in original BERT in 
pre-processing. The variant of BERT model that 
trained on biomedical text, such as BioBERT (Lee 
et al., 2019), is more helpful for biomedical text 
mining tasks. However, BioBERT is based on the 
same vocabulary as the BERT-Base model, and it 
does not outperform the BERT-Large (WWM) 
model in our experiments. 

In the BB task, we represent the input passage 
as a single packed sequence using BERT 
embedding, then use a CRF layer as the tag 

2 https://github.com/google-research/bert#pre-trained-
models 
3 https://github.com/google-research/bert (5/31/2019 notes) 
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decoder. We set the maximum sequence length to 
512 in order to avoid missing entities in long 
sentences. 

Our second method builds on XLNET, which 
was proposed in June 2019, also achieved state-of-
the-art performance on various NLP tasks (Yang et 
al., 2016). XLNET is similar to BERT, but it 
overcomes the limitations of BERT. It enables 
learning bidirectional contexts using Permutation 
Language Modeling as the training objective and 
integrates ideas from the autoregressive model 
Transformer-XL to model long text. 

While the input to XLNET is similar to BERT, 
XLNET uses relative segment encoding instead of 
adding an absolute segment embedding to the word 
embedding at each position. Due to the time 
constraint, we only fine-tuned the XLNet model 
by adding a dense and softmax layer for NER on 
top of the last layer. We use the pre-trained XLNet-
Large, Cased model in the BB task.  

The result of NER is converted back to the 
standoff annotation format for normalization and 
relation extraction. 

2.2 Normalization 

In the BB normalization subtasks, our method is 
based on the vector representations of entities and 
identifiers. 

For Microorganism entities that are normalized 
to taxa from the NCBI taxonomy, we apply the 
common TFIDF weighted sparse vector space 
representations (Salton and Buckley, 1988). This 
method treats each identifier as well as its curated 
classification and nomenclature information in the 
taxonomy as a document and gets the IDF weights 
based on such content. After that, each identifier 
and each entity is represented with a TFIDF 
weighted vector. According to the cosine distance 
between the vectors of identifiers and a given 
entity, the identifier with the highest cosine 
similarity will be assigned for the given entity. The 
scikit-learn library (Pedregosa et al., 2011) is used 
for TFIDF vectorization implementation. 

For Habitat and Phenotype entities that are 
normalized to concepts from the OntoBiotope 
ontology, we use word embedding to represent 
both entity mentions and the ontology in a vector 
space.  

There are several pre-trained biomedical word 
embeddings, such as PubMed-w2v (Pyysalo et al., 
2013) and BioWordVec (Zhang et al., 2019). Based 
on the tests with the BioNLP-ST 2016 Evaluation 

Service (Deléger et al., 2016), we select the 
pubmed2018_w2v (McDonald, et al., 2018) 400-
dimensional embeddings for the output vectors, 
which is the English word embeddings pre-trained 
on biomedical texts from MEDLINE/PubMed. 

We then train a regression model to determine 
the similarity between the vectors of entities and 
the vectors of concepts. The model creates two 
training matrices for the vectors of entities and 
associated concepts respectively. After training 
with the BB corpus, the model will learn regression 
variables for predicting the similarity between new 
entities and concepts. We select the nearest concept 
as the ontology identifier for a given entity 
according to the cosine distance between the 
vectors of the concepts and the entity.  

2.3 Relation Extraction 

In the BB relation extraction subtasks, our method 
is based on the vector of a set of lexical features for 
classifying the relation types. 

We use the Stanford CoreNLP toolkit (Manning 
et al., 2014) for sentence splitting and tokenization, 
as well as dependency parsing for each sentence. 
After parsing, the entity information is associated 
with the corresponding sentence. Since inter-
sentence events still remain a challenge (Deléger et 
al., 2016), we focus on relations contained within 
a sentence. Only relations that occur entirely 
within a sentence will be associated with that 
sentence. For discontinuous entities in the BB 
corpus, we link each token overlapping with an 
entity’s annotation to that entity. In addition, the 
sentence is also parsed to generate a dependency 
graph, which is represented as a set of two nodes 
and a dependency. 

For every possible pair of entities within each 
sentence, we identify a possible relation with a 
class label. The relations annotated in the training 
data are tagged with the label “1” (denoting the 
Lives_in relation) or “2” (denoting the Exhibits 
relation). Other relations are tagged with the label 
“0” (denoting no relation). For each possible 
relation within a sentence, our method generates a 
vector from the features extracted, including the 
entity types, the unigrams between entities, the 
bigrams for the full sentence, and the edges in the 
dependency path. 

We use the scikit-learn library to implement two 
multiclass classifiers: the support vector machine 
(SVM) and the logistic regression classifiers. For 
the SVM classifier, we use the linear kernel as it is 
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fast to train and has shown good performance. The 
set of relations in the training data is used to infer 
the possible argument types for each relation, and 
to filter the predicted set of relations. 

2.4 Knowledge Base Extraction 

In the BB knowledge base subtask, we use the 
above methods to recognize mentions from the 
given corpus, normalize the mentions according to 
domain knowledge resources, and extract relations 
between these mentions. The results are combined 
to build a knowledge base, which is the set of 
Lives_in and Exhibits relations with the concepts 
of their Microorganism, Habitat and Phenotype 
arguments. 

3 Results & Discussion 

The BB corpus contains PubMed references 
related to microorganisms and extracts from full-
text articles related to microorganisms living in 
food products. In each subtask, it has been divided 
into three subsets for training, development and 
testing.  

In BB subtasks, the official evaluation and the 
ranking of the submitted systems will be based on 
Precision for BB-norm, F1 for BB-rel, Slot Error 
Rate (SER) for BB-norm+ner and BB-rel+ner, and  
Mean References for BB-kb and BB-kb+ner. Here 
we present the official results on the test sets. We 
submitted two runs for each subtask. For NER 
subtasks, the first run is based on the BERT+CRF 
model, fine-tuned using the hyperparameter values 
suggested in (Devlin et al., 2018): learning 
rate=2e-5, number of epochs=3, max sequence 
length=512, and batch size=8; the second run is 
based on the XLNET model with setting: batch 
size = 8, max length = 512, learning rate = 2e-5, 
num steps = 4,000. For normalization subtasks, the 
first run trains the regression model only with the 
training set of the normalization subtask while the 
second run trains the model with all training and 
development sets. For relation extraction subtasks, 
the first run uses the SVM classifier while the 
second run uses the logistic regression classifier.  

As shown in Table 1, while the performance of 
our system is average compared to those of other 
teams in the BB-rel subtask, we ranked second 
among all participants in the BB-rel+ner, BB-norm 
and BB-norm+ner subtasks. Since no other teams 
participated in both normalization and relation 
extraction subtasks, we are the only team that can 

finish the knowledge base extraction subtasks and 
outperforms the baselines.  

Our best runs also significantly outperformed 
the baselines in the BB-rel+ner and BB-norm 
subtasks, while the Precision of our best run in the 
BB-norm subtask is very close to the highest score 
(-0.0006). In addition, our system achieved the best 
SER for boundary accuracy of all three types of 
entities in the BB-norm+ner subtask, which 
demonstrates a good performance of our system in 
recognizing names of entities in a corpus for 
automatic knowledge extraction. However, our 
system performed poorly on entities new in test, 
which might be caused by the lack of 
generalization of the method or over-fitting of the 
machine learning model. After the release of 
golden standard results, we will conduct detailed 
error analysis to find out the actual reason and how 
each component variant contributes to the overall 
system performance. 

          Subtasks 
Submissions 

BB-rel 
F1 

BB-rel+ner 
SER 

Our 1st run 0.5495 1.0128 
Our 2nd run 0.5943 1.0587 
1st place system 0.6639 0.9539 
Baseline 0.6347 1.2109 
          Subtasks 
Submissions 

BB-norm 
Precision 

BB-norm+ner 
SER 

Our 1st run 0.6609 0.7931 
Our 2nd run 0.6782 0.8059 
1st place system 0.6788 0.7160 
Baseline 0.5310 0.8234 
          Subtasks 
Submissions 

BB-kb BB-kb+ner 
Mean References 

Our 1st run 0.2907 0.2589 
Our 2nd run 0.3077 0.2688 
Baseline 0.2160 0.2642 

          Subtasks 
Submissions 

Habitats 
NER 

Microorganisms 
NER 

SER 
Our 1st run 0.4787 0.3036 
Our 2nd run 0.4639 0.3147 
2nd place system 0.5701 0.3428 
Baseline 0.7702 0.6765 
          Subtasks 
Submissions 

Phenotypes NER 
SER 

Our 1st run 0.4955 
Our 2nd run 0.6515 
2nd place system 0.6378 
Baseline 0.8536 

Table 1:  The BB task results comparison. 
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4 Conclusions 

We described our system that participated in the 
Bacteria Biotope (BB) Task at BioNLP-OST 2019. 
Compared to previous works, our system has some 
significant differences from fundamental basis to 
the actual implementation of the model. It is 
comprehensive and has showed competitive 
performance among all participating systems 
during the BB evaluations. In future work, we will 
attempt supplemental approaches to tune our 
system to improve the robustness for unseen data 
and explore its use in practical applications such as 
biomedical knowledge bases construction. We also 
plan to make the codes available as open source. 
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Abstract

As part of the BioNLP Open Shared Tasks
2019, the CRAFT Shared Tasks 2019 pro-
vides a platform to gauge the state of the
art for three fundamental language processing
tasks — dependency parse construction, coref-
erence resolution, and ontology concept iden-
tification — over full-text biomedical articles.
The structural annotation task requires the au-
tomatic generation of dependency parses for
each sentence of an article given only the ar-
ticle text. The coreference resolution task fo-
cuses on linking coreferring base noun phrase
mentions into chains using the symmetrical
and transitive identity relation. The ontology
concept annotation task involves the identifi-
cation of concept mentions within text using
the classes of ten distinct ontologies in the
biomedical domain, both unmodified and aug-
mented with extension classes. This paper pro-
vides an overview of each task, including de-
scriptions of the data provided to participants
and the evaluation metrics used, and discusses
participant results relative to baseline perfor-
mances for each of the three tasks.

1 Introduction

With its multiple layers of annotation, the Col-
orado Richly Annotated Full Text (CRAFT) cor-
pus provides a unique foundation for integrating
natural language processing (NLP) tasks involving
structure, semantics, and coreference. As part of
the BioNLP Open Shared Tasks 2019, the CRAFT
corpus was used for the evaluation of three fun-
damental NLP tasks: dependency parse construc-
tion, coreference resolution, and ontology concept
annotation. Each of these tasks is a foundational
element to many NLP systems and their perfor-
mances can propagate downstream and directly af-
fect overall system accuracy. Dependency parses
have been successfully employed for information
extraction, e.g. from clinical records (Gupta et al.,

2018), relation extraction, e.g. identifying protein
post-translational modifications (Sun et al., 2017),
and used as features for machine learning tasks,
e.g. gene mention detection (Smith and Wilbur,
2009), among other uses. By linking noun phrases
to a referent entity, coreference systems serve as
annotation multipliers, amplifying results of en-
tity recognition systems (Cohen et al., 2017), and
have been shown to improve information extrac-
tion in biomedical text (Choi et al., 2016). The
concept annotation task, also known as named en-
tity recognition (NER), is a prerequisite for many
biomedical NLP applications. Its importance is
buttressed by the many previous shared tasks that
have included aspects of NER (Hirschman et al.,
2005; Smith et al., 2008; Krallinger et al., 2013) .
Measuring the state of the art of these foundational
tasks will inform the BioNLP community by reset-
ting the performance benchmarks and demonstrat-
ing optimal methodologies.

The CRAFT Shared Tasks (CRAFT-ST) 2019
mark the inaugural use and subsequent release of
thirty articles annotated in CRAFT that had pre-
viously been held in reserve. All 97 articles and
accompanying annotations of the CRAFT corpus
are now available in the public domain. To aug-
ment the results of the CRAFT-ST 2019, and to
account for the relatively low participation rate,
baseline systems for each task were evaluated in
the same manner as the participant systems. The
CRAFT-ST 2019 made use of the CRAFT v3.1.3
release1. Original task descriptions are available
on the CRAFT-ST website 2. An integrated scor-
ing platform capable of supporting the evaluation
of all three sub tasks of the CRAFT-ST 2019 is

1https://github.com/UCDenver-ccp/
CRAFT/releases/tag/v3.1.3;
doi:10.5281/zenodo.3460908

2https://sites.google.com/view/
craft-shared-task-2019

174



also available as a standalone system3, and as a
pre-built Docker container4.

2 The CRAFT Structural Annotation
Task

For the structural annotation task (CRAFT-SA),
participants were asked to automatically parse
full-length biomedical journal articles of the
CRAFT Corpus into dependency structures for
each sentence. The CRAFT-SA task targets de-
pendency parses as opposed to constituency parses
in order to emphasize differences that directly af-
fect the meaning of a parsed sentence; differences
in constituent parse conventions can result in parse
differences that do not affect the resultant meaning
of a parsed sentence (Clegg and Shepherd, 2007).

There have been previous shared tasks in
the general domain NLP community to eval-
uate dependency parse construction using both
the CoNLL-X (Buchholz and Marsi, 2006) and
CoNLL-U (Zeman et al., 2018) file formats. Al-
though the dependency parses initially distributed
with the CRAFT corpus more closely resemble
the older CoNLL-X format, the CRAFT depen-
dency data was transformed into a quasi-CoNLL-
U format to allow the input provided to partici-
pants to be only the text of the documents mak-
ing for a more realistic scenario compared to the
CoNLL-X shared tasks which required partici-
pants to match gold standard tokenization for eval-
uation purposes.

2.1 Data
2.1.1 Data preparation – CoNLL-X
The dependency parses distributed as part of the
CRAFT corpus are automatically derived (Choi
and Palmer, 2012) from the manually annotated
Penn Treebank style data, which identifies the
syntactic structure of each sentence. During the
course of data preparation and testing, several up-
dates were made to the Treebank data. The con-
stituency parses for two sentences that were miss-
ing from the Treebank data were added. Also, in
cases where the automatically derived dependency
parse contained multiple ROOT nodes, the corre-
sponding syntactic parse was edited, usually by
dividing into multiple sentences, to ensure each

3https://github.com/UCDenver-ccp/
craft-shared-tasks; doi:10.5281/zenodo.3460928

4https://cloud.docker.com/u/
ucdenverccp/repository/docker/
ucdenverccp/craft-eval

dependency parse contained only a single ROOT
node. Once the errors were fixed and the CoNLL-
X formatted data was finalized, the data was trans-
formed into a quasi-CoNLL-U form.

2.1.2 Data preparation – CoNLL-U
The CoNLL-U format5 is a revised version of the
CoNLL-X format that adds a number of features
such as universal part-of-speech tags, language-
specific part-of-speech tags, and a standardized
multi-language dependency format. It includes
representations of the original raw text in addition
to its segmented and tokenized form. This is re-
quired for training systems that address sentence
boundary detection and tokenization as part of ex-
tracting syntactic dependencies from raw text.

The CoNLL-X representation of the CRAFT
dependency parses was converted into CoNLL-
U format using scripts that 1) introduce docu-
ment, paragraph, and sentence boundary mark-
ers and include the original untokenized text of
each sentence, 2) supplement the Penn Treebank
part-of-speech tags with their corresponding uni-
versal tags following the mapping proposed by
the Universal Dependencies (UD) project6, and
3) introduce morphological features based on the
same part-of-speech migration guide. Spacing and
paragraph information is added to the CRAFT
CoNLL-U files by aligning the CoNLL-X files
with the raw text for each article.

We note that while the resulting data is in the
CoNLL-U format and includes UD part-of-speech
tags and features, it retains the Stanford Depen-
dency structure and labels from the CoNLL-X files
and thus, does not fully conform to the UD repre-
sentation in terms of its content.

2.2 Scoring
Scoring of the CRAFT-SA task made use of the
scoring software provided for the CoNLL 2018
Shared Task (Zeman et al., 2018). Dependency
parse performance is measured using three met-
rics, LAS, MLAS, and BLEX. We provide brief
definitions of these metrics in the following and
refer to Zeman et al. (2018) for details.

2.2.1 LAS
The Labeled Attachment Score (LAS) metric is
the de facto standard metric for evaluating de-

5https://universaldependencies.org/
format.html

6https://universaldependencies.org/
tagset-conversion/en-penn-uposf.html
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pendency parsing performance, and is commonly
defined simply as the fraction of tokens for
which the predicted head and dependency rela-
tion type (label) match the gold standard, i.e.
#correct/#tokens. In the CoNLL 2018 set-
ting applied in the CRAFT-SA task, this defi-
nition is generalized to account for cases where
the predicted tokenization does not fully match
the gold standard tokenization, and LAS is de-
fined over aligned predicted (pred-tokens)
and gold standard tokens (gold-tokens) as
the harmonic mean (F1-score) over the pre-
cision #correct/#pred-tokens and recall
#correct/#gold-tokens.

2.2.2 MLAS
The Morphology-aware Labeled Attachment
Score (MLAS) is a modification of LAS that
focuses on content words – ignoring e.g. punc-
tuation and determiners – while also taking
into account the part-of-speech, aspects of mor-
phology, and associated function words. For a
predicted token to be considered correct according
to the MLAS criteria, it must match the gold stan-
dard values for the head and dependency label (as
in LAS), and also the universal POS tag, selected
morphological features (e.g. Case, Number,
and Tense) and function words attached with
particular dependency relations (e.g. aux and
case). Similarly to LAS, MLAS is defined
for system-predicted tokenization in terms of
precision, recall and F1-score.

2.2.3 BLEX
Like MLAS, the Bilexical Dependency Score
(BLEX) is a modification of LAS that focuses
on content words, emphasizing lemmas instead of
morphology. A predicted token is correct accord-
ing to BLEX criteria if it matches the head, de-
pendency relation, and lemma of the correspond-
ing gold token. BLEX accounts for differences
between the predicted and gold tokenization simi-
larly to LAS and MLAS.

2.3 Baseline system

SyntaxNet (Andor et al., 2016), a transition-based
neural network framework built using TensorFlow
was used as the baseline system for the struc-
tural annotation task. The system was composed
of two models of similar architecture: a part of
speech (POS) tagger and a dependency parser. The
Python NLTK punkt (Bird et al., 2009) sentence

Team LAS MLAS BLEX
T013 - Run 1 65.994 0 45.618
T013 - Run 2 69.318 0 54.798
T014 - Run 1 89.695 85.549 86.631
T014 - Run 2 89.65 85.441 86.596
T014 - Run 3 89.536 85.318 86.545

Baseline 56.68 44.22 0.0

Table 1: Results showing the average score over all
test documents for each metric from the structural an-
notation (dependency parse construction) task for all
participating teams.

tokenizer was used to segment the articles into
sentences which where used as input to the POS
tagger model to generate POS annotations. The
dependency parser model uses the POS annota-
tions as input and generates dependency parses for
each sentence. Each of the models was trained us-
ing the CRAFT training data as a gold standard.

2.4 Results

Two teams submitted five runs in total for the
CRAFT-SA task (Table 1). Team T013 used
the SpaCy dependency parser with (Run1) and
without (Run2) the OGER NER system to test
whether adding semantic information in the form
of named entities can improve resultant depen-
dency parses. In the case of this evaluation, the
incorporation of an NER system caused a drop
in performance, however this decrease in perfor-
mance is confounded by tokenization differences
resulting from their system grouping entities as
single tokens. Using a neural approach and cus-
tom biomedical word embeddings, Team T014
demonstrated state of the art performance in de-
pendency parsing over biomedical text, achieving
high marks for all submitted runs. Both submit-
ted systems out-performed the baseline by a large
margin.

3 The CRAFT Coreference Resolution
Task

Coreference resolution, linking strings of text that
have the same referent, is a challenging NLP task
that offers potential benefit to downstream tasks if
done successfully. The challenge arises in linking
strings of text over long distances across a docu-
ment, or possibly between documents. The benefit
of doing so can be substantial as coreference reso-
lution has the ability to amplify results of upstream
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tasks such as concept recognition, thereby poten-
tially improving the performance of downstream
tasks, e.g. information extraction, that require ex-
plicitly represented entities. It has been estimated
that successful coreference resolution would in-
herently add over 106,000 additional concept an-
notations to the CRAFT corpus through referent
linkages (Cohen et al., 2017).

Coreference resolution is an active area in the
NLP research community, and the most relevant
previous shared task on coreference resolution is
the CoNLL-2012 Shared Task (Pradhan et al.,
2012), which evaluated identity chains curated in
the OntoNotes project (Hovy et al., 2006). The
OntoNotes corpus consists of text from conver-
sational speech, broadcast conversations, broad-
cast news, magazine articles, newswire, and web
data in three languages (English, Arabic, and Chi-
nese), covering 1M words per language. The
CRAFT corpus presents some unique challenges
to the coreference resolution task. While slightly
smaller than the OntoNotes corpus in regards to
word count (1M), 620k works is still substan-
tial, and scientific text is a domain not covered
in OntoNotes explicitly. Further, CRAFT equals
the highest median token count (24.0) per sentence
(news wire) and the second highest median sen-
tence count per document (318 vs. 565 for broad-
cast conversations) in the OntoNotes corpus. The
combination of longer sentences and more sen-
tences per document allows for an increase in the
potential distances between coreference mentions
within the sentences themselves and within each
document. Adding further complexity to the task
is CRAFT’s use of discontinuous mentions, i.e.
coreference mentions that have intervening text
(see example of a discontinuous mention in Fig-
ure 1). Discontinuous mentions comprise 5.7%
of all identity chain mentions in the CRAFT cor-
pus. This is the first task on coreference resolution
that allows for discontinuous mentions as far as the
task organizers are aware.

3.1 Data

Annotation of the identity chains in the CRAFT
corpus is described in (Cohen et al., 2017). For
the purposes of the CRAFT-CR task, the strings
of text (referred to as mentions below) that are
linked to form coreference chains must exist in
the same document, but can be localized any dis-
tance from one another. Some mentions may be

Statistic Training Test
Min IC length 2 2
Max IC length 187 157

Median IC length 3 2
Average IC length 4.77 4.70

Total IC 16,302 7,185
IC per document 243.3 239.5

Total mentions 77,755 33,749
Discont. mentions 4,485 1,845

Table 2: Descriptive statistics of the coreference reso-
lution annotations in the CRAFT training and test sets.
IC = identity chain

found to be adjacent while others may exist only
in the document title and conclusion, for exam-
ple. Two types of coreference have been resolved
for all base noun phrases in the CRAFT corpus.
Identity chains link mentions of the same refer-
ent, and can span the entire document. Apposi-
tion relations link adjacent noun phrases that have
the same referent and are not linked by a copula.
The CRAFT-CR task focuses on reproducing the
manually curated identity chains.

3.1.1 Data preparation

During the course of data preparation for the
CRAFT-CR task, some errors in the coreference
annotations were discovered, and subsequently
fixed. The most common error involved two
identity chains sharing a single base noun phrase
mention. Each shared mention was manually re-
viewed, and the two identity chains were merged
in cases where the chains were deemed to be about
the same referent. In cases where the presence of a
shared mention in one chain was clearly an error,
it was removed and the identity chains remained
distinct. The CRAFT-CR training and test data are
summarized in Table 2.

3.1.2 Data format

The CRAFT-CR task makes use of the CoNLL-
2011/2012 data format for representing identity
chains7, with a modification to enable represen-
tation of discontinuous mentions. Discontinuous
mentions are denoted by the addition of a charac-
ter or characters (non-digit) after the chain identi-
fier (integer) as depicted in Figure 1.

7See the * conll File Format heading: http://
conll.cemantix.org/2012/data.html

177



48141 0 7 high JJ - ... - (64a)
48141 0 8 and CC - ... - -
48141 0 9 low JJ - ... - (65
48141 0 10 IOP NN - ... - (64a)|65)

Figure 1: Sample representation of two coreference
mentions, high..IOP and low IOP. Note the use of
the character a in the chain identifier (64a) to indicate
a discontinuous mention for the high..IOP mention.
Empty columns 7-11 have been elided for figure layout
consideration.

3.2 Scoring

There are a wide range of coreference resolution
scoring metrics available. For historical purposes,
the five reference metrics (MUC, B3, CEAFE,
CEAFM, BLANC) of Pradhan et al. (2014) are
used to score the CRAFT-CR task. Due to their ap-
parent unreliability and their low agreement rate,
the Link-based Entity-Aware (LEA) metric pro-
posed by Moosavi and Strube (2016) is also used
to measure coreference system performance. The
LEA metric was designed specifically to address
the shortcomings of the previously used metrics.
By taking into account all coreference links and
evaluating resolved coreference relations instead
of resolved mentions, the LEA metric accurately
assesses recall and precision.

The coreference scoring implementations were
modified in two ways for the CRAFT-CR task.
First, because the CRAFT-CR data allows for
mentions with discontinuous spans, the implemen-
tations were augmented to take as input the mod-
ified CoNLL-Coref 2011/2012 file format. Sec-
ond, the implementations were updated to allow
overlapping mentions to match instead of enforc-
ing strict mention boundary matching. This option
was added to allow for a slightly more flexible,
permissive evaluation. The augmented implemen-
tations of all metrics used in the CRAFT-CR task
have been made publicly available8.

3.3 Baseline system

For comparison purposes, we evaluated the
Berkeley coreference resolution system using the
CRAFT-CR task test data (Durrett and Klein,
2013). The Berkeley system is an english coref-
erence system predicated on learning using sim-
ple, but large numbers of lexicalized features.

8https://github.com/bill-baumgartner/
reference-coreference-scorers;
doi:10.5281/zenodo.3462790

This baseline evaluation made use of the built-
in preprocessing machinery for sentence splitting,
tokenization, and parsing, and their pre-trained
CoNLL 2012 model. Prior to evaluation, results
from the Berkeley system were post-processed to
adjust for some system idiosyncrasies, e.g. replac-
ing ”-LRB-” in the ’word’ column with the ”(”
or ”[” that is found in the actual text, and then
the coreference information was mapped onto the
gold standard tokenization provided with the test
data.

3.4 Results

One team submitted three runs for evaluation in
the CRAFT-CR task (Table 3). They augmented
the state-of-the-art end-to-end neural coreference
resolution system of Lee et al. (2017) by incorpo-
rating extra syntactic features including grammati-
cal number agreements between mentions, as well
as semantic features using MetaMap to identify
entity mentions. They also investigated the use of
PubMed word vectors (Chiu et al., 2016) (Run1)
and SciBERT word vectors (Beltagy et al., 2019)
(Run2, Run3) as inputs to their model. As imple-
mented, the system of Team T010 performed ad-
mirably compared to the baseline. F-scores are in
line with some previous coreference systems used
on CRAFT (Cohen et al., 2017), thus emphasiz-
ing the challenge of coreference resolution in gen-
eral, and of coreference resolution over biomedi-
cal text in particular. While the baseline system
and Run1 of the participant system produced on
average shorter chains than those in the evaluation
set (p<0.01, Mann-Whitney U test), Run2 and
Run3 of the participant system were both able to
generate distributions of coreference chain lengths
that were not significantly different from the eval-
uation set (Run2: p=0.94, Run3: p=0.79, Mann-
Whitney U test) suggesting that inclusion of the
SciBERT embeddings helps to achieve the proper
chain length distribution.

4 The CRAFT concept annotation task

Concept annotation has been a mainstay in
BioNLP shared tasks dating back to the very
first BioCreative, which involved the detection
of gene/protein mentions in abstracts and their
subsequent normalization to gene identifiers from
model organism databases (Hirschman et al.,
2005). Detecting biomedical concepts is a foun-
dational NLP task, and performance of this task

178



Metric Run PM RM FM PCR RCR FCR

B3 T010 - Run 3 0.731 0.578 0.646 0.517 0.384 0.440
Baseline 0.552 0.294 0.384 0.379 0.195 0.257

B3
APM

T010 - Run 3 0.779 0.615 0.687 0.538 0.406 0.462
Baseline 0.685 0.364 0.476 0.435 0.224 0.296

BLANC
T010 - Run 3 0.731 0.578 0.646 0.506 0.473 0.489
Baseline 0.552 0.294 0.384 0.413 0.193 0.263

BLANCAPM
T010 - Run 3 0.779 0.616 0.688 0.513 0.480 0.496
Baseline 0.686 0.365 0.476 0.447 0.209 0.284

CEAFE
T010 - Run 3 0.731 0.578 0.646 0.454 0.354 0.398
Baseline 0.552 0.294 0.384 0.334 0.195 0.247

CEAFEAPM
T010 - Run 3 0.779 0.615 0.688 0.484 0.377 0.424
Baseline 0.685 0.364 0.476 0.393 0.230 0.290

CEAFM
T010 - Run 3 0.731 0.578 0.646 0.555 0.439 0.490
Baseline 0.552 0.294 0.384 0.429 0.228 0.298

CEAFMAPM
T010 - Run 3 0.779 0.615 0.688 0.574 0.453 0.507
Baseline 0.685 0.365 0.476 0.487 0.259 0.338

LEA
T010 - Run 3 0.731 0.578 0.646 0.475 0.345 0.400
Baseline 0.552 0.294 0.384 0.335 0.171 0.226

LEAAPM
T010 - Run 3 0.779 0.615 0.687 0.491 0.360 0.415
Baseline 0.685 0.364 0.476 0.376 0.193 0.255

MUC
T010 - Run 3 0.731 0.578 0.646 0.644 0.511 0.570
Baseline 0.552 0.294 0.383 0.450 0.233 0.307

MUCAPM
T010 - Run 3 0.779 0.616 0.688 0.665 0.527 0.588
Baseline 0.685 0.365 0.476 0.530 0.275 0.362

Table 3: Results for the coreference resolution task. Runs achieving highest coreference F-score are shown. The
APM subscript indicates that partial mention matches were allowed. PM: mention precision; RM: mention recall;
FM: mention F-score; PCR: coreference precision; RCR: coreference recall; FCR: coreference F-score

impacts many potential downstream applications.
Mapping textual mentions of ontology concepts
presents its own set of challenges. Well-known
among these are conceptual synonymy, by which
a given represented concept may be indicated by
multiple unique textual mentions, and textual pol-
ysemy, by which a given text string may refer to
multiple represented concepts. Particularly preva-
lent in the biomedical literature are acronyms and
other abbreviations of represented concepts. Ad-
ditionally, some ontologies employ standard pat-
terns for concept labels, but some of these may re-
sult in long, complex labels that are infrequently
seen in the literature (Ogren et al., 2005; Funk
et al., 2014).

The CRAFT corpus is uniquely positioned to
gauge the state of the art in ontological concept
recognition as it comprises over 159,000 con-
cept annotations spanning ten ontologies from the
Open Biomedical Ontologies (OBO) (Smith et al.,
2007) collection. Participants in the CRAFT con-

cept annotation (CRAFT-CA) task were provided
the plain-text version of each article and a file con-
taining each ontology in the OBO format9. The
CRAFT-CA task was further subdivided into two
subtasks. The first subtask involved recognition
of concepts in the original OBO files. The sec-
ond subtask involved the recognition of concepts
in the original OBO files augmented with exten-
sion classes, which are classes created by CRAFT
developers but defined in terms of proper OBO
classes. These extension classes were created for
various reasons10: Some were created to capture
mentions of concepts different from, but corre-
sponding to, concepts represented in the ontolo-
gies, e.g., functionally defined entities correspond-
ing to represented molecular functionalities. Oth-

9https://github.com/owlcollab/
oboformat

10https://github.com/UCDenver-ccp/
CRAFT/blob/master/concept-annotation/
README.md
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ers are semantically broadened forms of the rep-
resented concepts, while others were created to
unify classes from different ontologies that were
semantically equivalent so that there would not
be multiple concept annotations for the same text
spans if disparate annotation sets are aggregated.

4.1 Data
Concept annotations in the CRAFT corpus span
ten Open Biomedical Ontologies (Smith et al.,
2007), including the Chemical Entities of Biomed-
ical Interest (ChEBI) ontology (Degtyarenko et al.,
2007), the Cell Ontology (CL) (Bard et al.,
2005), the Biological Process (GO BP), Cellu-
lar Component (GO CC) and Molecular Func-
tion (GO MF) subontologies of the Gene On-
tology (Ashburner et al., 2000), the Molecular
Process Ontology (MOP)11, the NCBI Taxon-
omy (NCBITaxon) (Federhen, 2011), the Pro-
tein Ontology (PR) (Natale et al., 2010), the
Sequence Ontology (SO) (Eilbeck et al., 2005),
and the Uberon cross-species anatomy ontology
(UBERON) (Mungall et al., 2012). Note that con-
cept annotations in the CRAFT corpus are permit-
ted to have discontinuous spans with intervening
text; e.g., for the phrase somatic and germ
cells, the combination of the two substrings
somatic and cells is annotated with the con-
cept for somatic cells (CL:0002371) even
though somatic and cells are not adjacent to
one another in the text. There are over 2,300 con-
cept annotations with discontinuous spans in the
CRAFT corpus. The ontologies provided for the
CRAFT-CA task were the same versions used dur-
ing the annotation of CRAFT. As with the other
tasks, the data is divided into a training set con-
sisting of 67 full-text articles from the PMC Open
Access subset, and a test set of 30 full-text arti-
cles chosen using identical selection criteria. Con-
cept annotation of the CRAFT articles is described
in detail in Bada et al. (2012) and Bada et al.
(2017). Summary statistics showing total anno-
tation counts for the ten ontologies used in the
CRAFT corpus are shown in Table 4.

4.1.1 Data preparation
Some minor concept annotation errors were dis-
covered and addressed during preparation for
the CRAFT-CA task. These errors included an
NCBITaxon concept that was found to not exist

11http://obofoundry.org/ontology/mop.
html

in the version of the NCBI Taxonomy used to an-
notate CRAFT, as well as some erroneous exten-
sion class prefixes used in the GO MF extended
ontology file. Errors were addressed prior to the
commencement of the shared tasks.

4.1.2 Data format
The CRAFT corpus is distributed with a script
that can convert its native annotation format to a
variant of the BioNLP format12 which is used for
both input and output for the CRAFT-CA task.
This format captures span information, the con-
cept identifier, and the covered text for each anno-
tation (See Figure 2).

4.2 Scoring

The method of Bossy et al. (2013) was used to
measure performance of the concept annotation
systems with respect to the CRAFT corpus. This
method employs a hybrid measure taking into ac-
count both the degree to which the predicted anno-
tation boundaries match the reference, as well as
a similarity metric for scoring the concept match.
The boundary match uses the modified Jaccard
index scheme described in Bossy et al. (2012),
which allows for flexible matching but prefers ex-
act matches. The concept similarity metric of
Wang et al. (2007) is used to score the predicted
concepts. As suggested by Bossy et al. (2013) , the
weight factor, w, was set to 0.65, which ensures
that ancestor/descendant predictions always have
a greater value than sibling predictions, while root
predictions never yield a similarity greater than
0.5. An implementation of the scoring algorithm
has been made publicly available13.

4.3 Baseline system

We evaluated a baseline system on the CRAFT-
CA data to use as a comparison for the participant-
submitted runs. The baseline system is a two-stage
machine learning system proposed in Hailu (2019)
and trained only on the CRAFT corpus. The first
stage makes use of NERSuite (Cho et al., 2010) to
detect concept mention spans using a conditional
random field (CRF) model. The CRF model was
trained as described in Okazaki (2007), and uses as
features words, parts of speech, and constituency
parse information within a window of three tokens

12http://2013.bionlp-st.org/
file-formats

13https://github.com/UCDenver-ccp/
craft-shared-tasks; doi:10.5281/zenodo.3460928
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Ontology Training Test Ontology Training Test
CHEBI 4,548 (18) 2,200 (14) CHEBI EXT 11,915 (38) 5,248 (19)

CL 4,043 (244) 1,749 (175) CL EXT 6,275 (249) 2,872 (175)
GO BP 9,280 (493) 3,681 (272) GO BP EXT 13,954 (526) 5,847 (287)
GO CC 4,075 (80) 1,184 (14) GO CC EXT 8,495 (150) 3,217 (30)
GO MF 375 (0) 94 (0) GO MF EXT 4,070 (28) 1,822 (20)

MOP 240 (0) 101 (0) MOP EXT 386 (0) 111 (0)
NCBITaxon 7,362 (2) 3,101(0) NCBITaxon EXT 7,592 (2) 3,219 (0)

PR 17,038 (84) 6,409 (44) PR EXT 19,862 (110) 7,932 (44)
SO 8,797 (108) 3,446 (45) SO EXT 24,955 (182) 9,136 (72)

UBERON 12,269 (235) 6,551 (118) UBERON EXT 14,910 (255) 7,416 (133)

Table 4: Total and discontinuous (in parentheses) concept annotation counts by ontology for both the 67 article
training and 30 article test sets.

T1 CL:0000540 83 89 neuron
T2 CL:0002613 239 247;259 265 striatal ... neuron
T3 CL:0002613 434 442;451 457 striatal ... neuron
T4 CL:0000540 703 709 Neuron

Figure 2: Sample annotations demonstrating the BioNLP format used as input and output for the CRAFT-CA
task. Note the presence of two annotations with discontinuous spans. The document identifier is indicated in the
filename for each annotation file.

Proper OBO OBO + extension
Ontology Submission SER P R F1 SER P R F1

CHEBI
T013 - Run 3/1 0.34 0.79 0.75 0.77 0.27 0.84 0.79 0.81
Baseline 0.44 0.91 0.59 0.72 0.29 0.89 0.73 0.80

CL
T013 - Run 3/2a 0.56 0.68 0.62 0.65 0.35 0.77 0.67 0.72
Baseline 0.53 0.83 0.48 0.61 0.33 0.79 0.67 0.73

GO BP
T013 - Run 3/1 0.30 0.83 0.78 0.80 0.29 0.81 0.81 0.81
Baseline 0.39 0.83 0.64 0.72 0.29 0.84 0.74 0.79

GO CC
T013 - Run 1/2a 0.39 0.77 0.75 0.76 0.20 0.92 0.83 0.87
Baseline 0.44 0.88 0.60 0.71 0.20 0.93 0.83 0.88

GO MF
T013 - Run 2/2a 0.04 0.99 0.96 0.98 0.39 0.82 0.68 0.74
Baseline 0.07 0.99 0.92 0.95 0.45 0.82 0.56 0.66

MOP
T013 - Run 3/2a 0.27 0.81 0.94 0.87 0.34 0.89 0.73 0.79
Baseline 0.43 0.87 0.65 0.75 0.36 0.88 0.72 0.79

NCBITaxon
T013 - Run 3/2a 0.05 0.97 0.97 0.97 0.077 0.98 0.93 0.96
Baseline 0.07 0.99 0.93 0.96 0.07 0.99 0.94 0.96

PR
T013 - Run 3/1 0.68 0.50 0.59 0.54 0.73 0.49 0.46 0.47
Baseline 0.69 0.60 0.40 0.48 0.62 0.61 0.45 0.52

SO
T013 - Run 3/2a 0.16 0.90 0.88 0.89 0.13 0.92 0.91 0.92
Baseline 0.21 0.91 0.82 0.86 0.18 0.92 0.85 0.89

UBERON
T013 - Run 1/2a 0.37 0.77 0.71 0.74 0.39 0.77 0.69 0.73
Baseline 0.41 0.84 0.61 0.70 0.36 0.86 0.66 0.75

Table 5: Aggregate concept annotation results evaluated per ontology against the 30 CRAFT test documents. For
Team T013, their highest scoring run is displayed based on SER. Run identifiers indicate (proper OBO/OBO EXT).
Note that Run 2a is an unofficial run as it was submitted after the deadline, however since there were no other teams
participating, Run 2a is included in the official results. SER = Slot Error Rate; P = Precision; R = Recall; F1 =
F1-score.
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upstream and downstream of each concept men-
tion. The second stage links each textual men-
tion identified by the CRF to an ontology iden-
tifier using a stacked Bi-LSTM approach imple-
mented by the OpenNMT system (Klein et al.,
2018). By modeling concept normalization as
sequence-to-sequence translation at the character
level, the baseline system maps characters in the
text spans identified in the first stage to characters
in ontology identifiers to normalize concepts.

4.4 Results

One team submitted three runs to the CRAFT-CA
task (Table 5). They used variants of two sys-
tems, one a modified ontology-specific BioBert14

model with (Run3) and without (Run1) input from
the OGER NER system (Furrer et al., 2019) and
with weights pretrained on PubMed using iden-
tifiers from the ontologies as the tag set, and
the other a BiLSTM with ontology pretraining
(Run2). With regard to overall system perfor-
mances, marked improvement in recognition of
concepts from CHEBI, GO BP, GO MF, and SO
was observed compared to past evaluations us-
ing the CRAFT public dataset (Funk et al., 2014).
However, it is important to note that past evalua-
tions were performed on CRAFT v1/2 concept an-
notations, whereas the testing of this shared task
was performed on v3 concept annotations, which
constitute a major update of the concept annota-
tions relative to those of v1/2 (including first us-
age of extension classes), so we do not believe it
is safe to directly compare evaluations performed
on these substantially different versions of the
concept annotations. The BioBert approach aug-
mented with the OGER NER system (Run3) gen-
erally outperforms the other approaches when nor-
malizing to proper OBO concepts, whereas the Bi-
LSTM approach is generally better when the ex-
tension classes are used.

Neither the baseline system, nor any of the
submitted runs identified annotations with discon-
tinuous spans. Though annotations with discon-
tinuous spans make up only a small percentage
(1.46%) of the overall annotations, their exclusion
from system output could represent potential low
hanging fruit for improving overall system perfor-
mance. Protein Ontology concept recognition re-
mains a target for future work as system perfor-
mances did not surpass an F-score of 0.55. In-

14https://github.com/dmis-lab/biobert

clusion of the extension classes generally resulted
in improvement of performance when compared
to runs using only the proper ontology concepts,
possibly attributable to the labels and synonyms
that were provided for the extension classes. One
exception is for GO MF EXT where performance
is expected to suffer with inclusion of the exten-
sion class annotations as the proper ontology class
count was limited to a very small subset of the
original ontology. Overall, however, performance
on the CRAFT-CA task demonstrated state-of-the-
art performance for ontological concept recogni-
tion in biomedical text.

5 Conclusion

The CRAFT-ST 2019 provides a platform to gauge
performance on three fundamental NLP tasks, au-
tomated dependency parse construction, corefer-
ence resolution, and ontology concept annotation
against a high quality, manually annotated corpus
of full-text biomedical articles. Submitted runs
from participating systems demonstrate promis-
ing results, particularly with respect to automated
dependency parse construction and some aspects
of ontological concept annotation. Clear needs
for improved extraction of protein ontology con-
cepts remain, while the neural approaches used
have addressed long standing deficiencies in the
recognition of biological process concepts in text.
Coreference resolution system performances high-
light the existing challenges of coreference resolu-
tion in general, and of coreference resolution over
biomedical text in particular.

The approaches taken by participants in the
CRAFT-ST 2019 mirror the current themes in AI
and NLP today. Neural approaches are unsur-
prisingly the preferred methodology for address-
ing these NLP tasks. The CRAFT ST 2019 have
provided new benchmarks for these fundamental
NLP tasks, setting the stage for the next evolution
of system development.
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Abstract

As our submission to the CRAFT shared task
2019, we present two neural approaches to
concept recognition. We propose two differ-
ent systems for joint named entity recogni-
tion (NER) and normalization (NEN), both of
which model the task as a sequence labeling
problem. Our first system is a BiLSTM net-
work with two separate outputs for NER and
NEN trained from scratch, whereas the second
system is an instance of BioBERT fine-tuned
on the concept-recognition task. We exploit
two strategies for extending concept coverage,
ontology pretraining and backoff with a dictio-
nary lookup. Our results show that the backoff
strategy effectively tackles the problem of un-
seen concepts, addressing a major limitation of
the chosen design. In the cross-system com-
parison, BioBERT proves to be a strong basis
for creating a concept-recognition system, al-
though some entity types are predicted more
accurately by the BiLSTM-based system.

1 Introduction

We describe our submission to the CRAFT shared
task 2019. We participated in the concept an-
notation (CA) subtask, which comprises biomed-
ical named entity recognition (NER) and nor-
malization (NEN) for full-text scientific articles.
We tested two different neural architectures, a
BiLSTM-based network trained from scratch and
a transformer system obtained by fine-tuning Bio-
BERT. While NER+NEN tasks have often been
approached with a pipeline architecture (NER out-
put passed to NEN as input), we strove for tackling
both tasks jointly in a single model.

In essence, we cast the task as a sequence-
labeling problem, by directly predicting IDs as
symbolic labels. This approach has the obvious
drawback that the models will only ever predict
IDs that were seen in the training data. In order
to account for this limitation, we used different
strategies to enrich the systems with information

derived from terminology resources, such as on-
tology pretraining and combination with a rule-
based dictionary-lookup system.

The source code of our systems is pub-
licly available at https://github.com/
OntoGene/craft-st.

2 Data

The CRAFT corpus (Bada et al., 2012; Cohen
et al., 2017) is a collection of 97 full-text arti-
cles, of which 30 have been released only in the
course of the present shared task. The documents
were manually annotated with respect to 10 dif-
ferent entity types, linked to 8 manually curated
ontologies of biomedical terminology:

CHEBI: chemicals/small molecules (Chemical
Entities of Biological Interest)

CL: cell types (Cell Ontology)

GO CC: cellular and extracellular components
and regions (Gene Ontology)

GO BP: biological processes (Gene Ontology)

GO MF: molecular functionalities possessed by
genes (Gene Ontology)

MOP: chemical reactions and other molecular
processes (Molecular Process Ontology)

NCBITaxon: biological taxa and organisms
(NCBI Taxonomy)

PR: proteins, genes, and transcripts (Protein On-
tology)

SO: biomacromolecular entities, sequence fea-
tures (Sequence Ontology)

UBERON: anatomical entities (UBERON)

In addition, the annotations are distributed in an
extended variant, i. e. CHEBI EXT, CL EXT
etc., resulting in a total of 20 annotation sets.
For the extension annotations, the creators of the
CRAFT corpus modified the given ontologies in
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ES and somatic cells
CL:0002322
CL:0002371

Figure 1: Example of discontinuous and overlapping
annotations in an elliptical coordination construction.

a way to better represent actual usage of biomed-
ical entities in scientific texts. In many cases,
new concepts were added or existing ones were
replaced; some concepts were merged across on-
tologies (e. g. CL GO EXT:cell, which refers to
an unspecific cell).

The size of the ontologies varies considerably,
ranging from 5 concepts for GO MF to 1,167,358
concepts for NCBITaxon EXT. The 67 articles re-
leased for training contain a total of 575,296 to-
kens and the 30 test articles contain 239,409 to-
kens. In the training set of the corpus, PR EXT
holds the most annotations (19,862 mentions of
1075 unique IDs) and MOP has the fewest (240
mentions of 16 unique IDs). The corpus includes
1264 discontinuous annotations, which are found
most frequently among the GO BP annotations
with 493 occurrences. Of these, 788 annotations
partially overlap with another annotation of the
same type, sharing at least one token (cf. Figure 1).

Furthermore, the corpus contains 3362 annota-
tions that overlap with an annotation of a different
type. The three most common combinations are
〈CL, UBERON〉 (571), 〈GO BP, UBERON〉 (500)
and 〈CL, GO BP〉 (349). The three most com-
mon terms with cross-type annotations are “gene
expression” (161), “Mcm4/6/7” (107) and “Cln3”
(97), whereby the ten most common terms account
for 22.159% of the overlapping annotations.

For the present work, we treated each annota-
tion set as a separate dataset independent of all
others, resulting in 20 individual tasks. This is in
accordance with how the evaluation is carried out.

2.1 Preprocessing

The CRAFT corpus is distributed with annota-
tions in a stand-off format, i. e. separated from the
text. The primary format is Knowtator XML, but a
format-conversion suite is provided for producing
BioNLP format, which is more easily processed
and which is also required for the system predic-
tions by the official evaluation suite.

The stand-off formats allow representing inter-

laced annotations, such as discontinuous spans
and overlapping concepts, which often occur to-
gether (cf. Figure 1). For sequence classification,
however, two parallel sequences of tokens and la-
bels with one-to-one correspondence are required,
typically using IOB or IOBES tags. There is
no straight-forward method to represent interlaced
annotations in this format, even though potential
solutions have been proposed (Metke-Jimenez and
Karimi, 2016; Dai, 2018). Instead, we decided to
use a lossy transformation which simplifies the an-
notations during the conversion. While this means
that our systems cannot represent (and thus pre-
dict) all required types of annotations, we believe
that the phenomenon is too rare to justify the in-
crease in complexity (multi-class classification for
overlaps, additional labels for discontinuity, more
complex heuristics in postprocessing).

We used the standoff2conll suite1 for convert-
ing the annotations from BioNLP to a CoNLL-
like tab-separated format. We chose the “first-
span” strategy for resolving discontinuous spans
and “keep-longer” for overlapping concepts, the
former of which we wrote ourselves in analogy
to the existing “last-span” strategy. The stand-
off2conll suite also takes care of sentence splitting
and tokenization, using rule-based approaches.

In addition, we applied abbreviation expan-
sion using Ab3P (Sohn et al., 2008). We re-
moved short-form candidates that were all-lower-
case, consisted of only one character or had a
P-precision (Ab3P’s confidence metric) of less
than 0.9. For each article, all occurrences of
the remaining short forms were then replaced
with their best-matching long-form (highest P-
precision). Abbreviation expansion was only in-
tegrated in the BiLSTM system.

2.2 Postprocessing

Since our systems produce predictions in a
CoNLL-like format, an additional conversion step
was necessary to meet the requirements of the
evaluation suite (BioNLP format). As another
contribution to the standoff2conll tool, we wrote
a converter for the inverted direction (CoNLL to
stand-off). The converter is graceful with respect
to invalid tag sequences (e. g. O – I – O) and makes
use of existing functionality.

1https://github.com/spyysalo/
standoff2conll
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Figure 2: Occurrences of all concepts in the CRAFT
ontologies, as annotated by OGER in a large subset of
Medline+PMC, sorted by rank.

3 System Description

For the concept annotation task of the CRAFT
shared task, we tested two different neural ar-
chitectures, BiLSTM and transformer (BERT). In
addition, we used a rule-based dictionary-lookup
system (OGER), which served both as a baseline
and as an auxiliary component in the machine-
learning systems.

All three systems are applied to each of the an-
notation sets individually, i. e. each system per-
forms 20 independent predictions. For the neu-
ral systems this means that we trained 20 separate
models for each configuration; in the case of cross-
validation, the number of models is multiplied by
another factor.

In a supervised classification setup, an example-
based model can only ever predict concepts that
have been seen in the training phase. As the con-
cept vocabularies are very large for most of the
entity types, an annotated corpus with full cover-
age is out of reach. However, since the mentions
of biomedical concepts resemble a Zipfian distri-
bution (cf. Figure 2), it is often possible to achieve
reasonable performance in terms of F-Score even
with such a restricted label set. Yet a system that
is limited to the concepts of a training corpus is
undesirable in many application scenarios. For
this reason, we searched for ways to combine the
neural systems with the dictionary-based system
OGER, which requires no training and can target
the entire set of concepts from a given ontology.

Another common challenge of the neural sys-
tems, inherent to the sequence-labeling approach,
is the classification of multi-word expressions, as

each token is labeled individually. This is es-
pecially true for semantically weak tokens like
stop words, single letters, or numbers (e. g. “I”
in “Hexokinase I”). Correctly annotating these to-
kens is only possible in light of their context,
which makes them exceedingly demanding with
respect to generalization.

In contrast, OGER annotates multi-word ex-
pressions jointly with a single lookup for the entire
span. As another difference, OGER can predict
multiple concepts for the same span or even in-
terleaved spans, whereas the sequence taggers can
only assign one concept to each token.

3.1 Dictionary-based System

OGER (Basaldella et al., 2017; Furrer et al., 2019)
is a fast, reliable concept-recognition system based
on dictionary lookup. It is highly flexible in terms
of matching rules (tokenization, spelling normal-
ization) and supports a wide range of input/output
formats. For the present work, we used the fol-
lowing spelling normalization rules: translitera-
tion of Greek letter names, ise/ize conflation, and
stemming. Based on the performance on the train-
ing set, we fine-tuned the configuration on a per-
ontology basis; e. g. stemming was disabled for
NCBITaxon and PR.

3.2 BiLSTM-based System

Architecture
Our first neural sequence tagger is a network
with a bidirectional Long Short-Term Memory
(BiLSTM) (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) layer at its core. Its
architecture is illustrated in Figure 3. The input
tokens x are represented using pretrained word
embeddings (Chiu et al., 2016) and randomly ini-
tialized character embeddings, the latter of which
are transformed into a token-level vector through
a convolution and pooling operation (not shown in
the figure). The token representation is concate-
nated with a dictionary feature xO, which is a vec-
tor that encodes the predictions by OGER (using
the same dimensionality as the NEN output vector
over yC , see below).

The subsequent layers are inspired by the work
of Zhao et al. (2019), who propose a multi-task-
learning framework to jointly tackle span detec-
tion (NER) and normalization (NEN). A key step
to make NER and NEN compatible was to model
NEN as a sequence-labeling problem, where IDs
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Figure 3: Architecture of the BiLSTM-based sequence
tagger (simplified).

are predicted for each token just like span tags in
NER (cf. Figure 4). A BiLSTM layer consumes
a sequence of token representations one sentence
at a time. The sequence representation is then
forked into two output layers with soft-max ac-
tivation, which solve different tasks: The span-
detection layer predicts one of the labels yS =
{I,O,B,E,S}, as in a classical single-type NER
problem. The normalization layer predicts con-
cept labels (IDs) from yC = yCT ∪ yCP ∪ yCO , where
yCT are all labels seen in the training corpus, yCP
are the labels seen in ontology pretraining and yCO
are all labels found by OGER. The label set yC

includes the NIL symbol, which denotes the ab-
sence of a concept annotation. In addition to the
hidden states of the BiLSTM layer, the normaliza-
tion layer takes the output of the span-detection
layer as an input. In contrast to Zhao et al., there
is no symmetric feedback between the two output
layers, i. e. the span-detection layer does not “see”
the output of the normalization layer. This allows
training spans and concepts simultaneously.

Training a BiLSTM model for NER and NEN

Training is performed in two phases, ontology pre-
training and main training. In the first phase, the
model adapts to the domain of the respective en-
tity type by means of terminology entries. At
this stage, the model is trained on isolated names
and synonyms extracted from the provided ontol-
ogy files. Due to technical limitations, we re-
stricted the pretraining data to the 1000 most com-

RanBP2 modulates Hexokinase I activities
       S                   O                     B             E        O

RanBP2 modulates Hexokinase I activities
PR:13712           NIL             PR:8608   PR:8608    NIL

Figure 4: Example of labeling with IOBES tags (NER)
and concept IDs (NEN).

mon concepts of each ontology. As an approxi-
mation for determining the most commonly used
concepts in the literature, we automatically anno-
tated a large subset of Medline (26M abstracts)
and PubMed Central (725k articles) with OGER.
We sorted the annotated concepts by occurrence
and manually removed high-frequency false posi-
tives. The model is then pretrained on the top 1000
concepts for a fixed number of 20 epochs.

In the main training phase, training continues
with full sentences from the CRAFT corpus. At
this stage, the model learns to predict concept
mentions in real-world language usage, including
contextual hints, frequency distribution, and chal-
lenges like rephrasing and non-standard spelling.
While the main training is likely to override parts
of the connections learnt during ontology pretrain-
ing, others may remain to form some kind of back-
ground knowledge. Main training is performed as
6-fold cross-validation, where the held-out set of
each fold is used to determine when to stop train-
ing, using a patience value of 5 epochs. Thus, 6
models are trained for each entity type.

Agreement of NER and NEN Predictions
At prediction time, the softmax scores from all
6 models are averaged before the highest-ranking
label for a particular token is determined. Also,
when abbreviations have been expanded into mul-
tiple tokens during preprocessing, their scores are
averaged prior to label selection. The outputs for
NER and NEN are tested for agreement. Agree-
ment means that both outputs see a given token t
as either relevant or irrelevant, or formally:

(ŷSt = O ∧ ŷCt = NIL) ∨ (ŷSt 6= O ∧ ŷCt 6= NIL)

The labels ŷSt and ŷCt are chosen such that they
satisfy the above requirement, while maximizing
the overall score. In practice, we compare the
score product of the irrelevant labels (O/NIL) to
the score product of the top-ranking relevant labels
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NIL CHEBI:8608 NIL. . .

PubMed
(1M)

BERT
E[CLS] E1 E2 EN. . .
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Figure 5: A symbolic illustration of the BioBERT model as a result of a BERT model pretrained on the PubMed
corpus and fine-tuned for NEN on the CRAFT corpus.

of either output. This means that we might select
a non-best-ranking label for one of the outputs.

3.3 BERT-based System

Background: BERT and BioBERT

The multi-layer BERT model (Devlin et al., 2019)
is trained in an unsupervised setting to create
bidirectional contextual representations of a token
from unlabeled text conditioned on the left and the
right context. Two tasks are used to train the BERT
model: first, to predict whether two sentences fol-
low each other, and second, to predict a randomly
masked token. The resulting pretrained BERT
model can be applied to a large number of tasks,
such as question answering, next sentence predic-
tion, or NER. Recently it has been shown that the
use of pretrained BERT models is especially ben-
eficial to NER tasks (Devlin et al., 2019). In con-
trast to traditional models used for NER tasks such
as long short-term memory (LSTM) models and
conditional random field (CRF) models (Habibi
et al., 2017), which use context-independent word
vector representations such as Word2vec (Mikolov
et al., 2013) or GLOVE (Pennington et al., 2014),
the BERT model learns context-dependent word
vector representations.

A specialized variant of the BERT model for the
biomedical domain is the BioBERT (Lee et al.,
2019) model, which has been shown to produce
state-of-the-art results for NER in the biomedical
domain (Jin et al., 2019). The BioBERT model
is initialized using the BERT model pretrained
on general-domain data (Wikipedia, Bookcorpus)
and is then pretrained an additional 200k steps on
a corpus of one million PubMed abstracts.

Fine-tuning BioBERT for NER and NEN

For our second system in the CRAFT shared task,
we used the readily pretrained BioBERT model

available online.2 We wrote a task-specific head
for ID tagging and fine-tuned the model on the
CRAFT corpus for another 55 epochs. Like the
BiLSTM system, the model is trained to directly
predict a sequence of concept IDs from a sequence
of input tokens. Technically, we implemented this
as an adaptation of an NER tagger by extending
the tagset to all concept labels of the training set
(cf. Figures 4 and 5).

As a variant, we fine-tuned another BioBERT
model as a classical NER tagger over IOBES tags
and combined the resulting predictions with anno-
tations from OGER. Predictions were only kept if
both OGER and BERT agreed, i. e. both produced
a label different from O/NIL. This system, which
resembles a traditional NER+NEN pipeline, com-
bines the high recall of the dictionary-based sys-
tem with the context-aware span detection of an
example-based classifier.

Additionally, we combined the previous two
systems into a third system. In this variant, the ID
tagger takes precedence, whereas the span tagger
serves as a backoff model. Whenever the first sys-
tem does not predict an ID for a token, the backoff
system gets a chance to provide an ID, thus joining
the forces of two alternative approaches.

3.4 Related Work

Concept-recognition systems solve the task of de-
tecting and linking textual mentions to terminol-
ogy identifiers. In the past, this problem has of-
ten been approached with a pipeline combining
an NER tagger with a dictionary-lookup module
(e. g. Campos et al., 2013; Ghiasvand and Kate,
2014) or a rule-based system (D’Souza and Ng,
2015; Lee et al., 2016). Leaman et al. (2013) pre-
pared the ground for machine-learning approaches
to the normalization task, modeling it as a rank-

2https://github.com/naver/
biobert-pretrained
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CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

OGER (baseline) 0.5808 0.6657 0.2832 0.6838 0.8632 0.4459 0.5947 0.4581 0.5362 0.6561
B

iL
ST

M no-pretraining 0.7293 0.5939 0.7293 0.7051 0.9764 0.7932 0.9609 0.3591 0.8824 0.7076
pretraining (Run 2a) 0.7412 0.5810 0.7455 0.7191 0.9670 0.0000 0.9584 0.3526 0.8909 0.7350
pick-best 0.7442 0.5990 0.7483 0.7149 0.9670 0.8014* 0.9611 0.3596 0.9027 0.7404

B
E

R
T IDs (Run 1) 0.7555 0.6316 0.7966 0.7626 0.9221 0.8601 0.9669 0.4762 0.8933 0.7416

spans+OGER 0.6586 0.6522 0.2957 0.7603 0.9838 0.7683 0.8451 0.8026 0.8163 0.6784
IDs+spans+OGER (Run 3) 0.7700 0.6487 0.8037 0.7645 0.9561 0.8705 0.9694 0.5443 0.8954 0.7488

CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

EXT EXT EXT EXT EXT EXT EXT EXT EXT EXT
OGER (baseline) 0.6797 0.7236 0.3644 0.8220 0.6731 0.4106 0.5994 0.4826 0.4604 0.6810

B
iL

ST
M no-pretraining 0.8031 0.7263 0.7758 0.8674 0.7154 0.7996 0.9583 0.4004 0.9092 0.6900

pretraining (Run 2a) 0.8173 0.7199 0.7712 0.8725 0.7411 0.5630 0.9554 0.4005 0.9167 0.7312
pick-best 0.8168 0.7289 0.7755 0.8723 0.7438 0.7996* 0.9549 0.4122 0.9187 0.7458

B
E

R
T IDs (Run 1) 0.8143 0.7375 0.8085 0.8918 0.6530 0.8240 0.9682 0.4706 0.9056 0.7654

spans+OGER 0.7180 0.7187 0.3799 0.8862 0.6715 0.4562 0.8351 0.8011 0.5640 0.7029
IDs+spans+OGER 0.8209 0.7484 0.8138 0.8936 0.6691 0.8437 0.9722 0.5516 0.9069 0.7714

*ontology pretraining disabled

Table 1: F-Score results of our experiments using the CRAFT corpus. Underlined numbers denote submitted
results; other results were obtained in post-submission experiments. Bold figures mark the best result for each
entity type (column).

ing problem. This approach has been adopted by
many (Zhang et al., 2014; Cho et al., 2017), also
using different neural architectures (Li et al., 2017;
Liu and Xu, 2018; Tutubalina et al., 2018).

There have been continued efforts to jointly
address NER and NEN, fighting the problem of
error propagation inherent to pipeline architec-
tures. Dictionary-based approaches can detect
and normalize concept mentions in a single step
(Tseytlin et al., 2016; Pafilis et al., 2013), even
though postfiltering (Basaldella et al., 2017; Cuz-
zola et al., 2017) or other strategies are usually
required to achieve good performance. Example-
based approaches include probabilistic (Leaman
and Lu, 2016) and graphical (Lou et al., 2017;
ter Horst et al., 2017) systems for jointly learning
NER+NEN in shared or interdependent models.
Zhao et al. (2019) propose a multi-task-learning
set-up for neural NER and NEN with bidirectional
feedback, as mentioned earlier.

Recently, it has been shown that BERT mod-
els that are pretrained on biomedical and clini-
cal datasets are beneficial for the NER task in
the biomedical domain (Lee et al., 2019; Belt-
agy et al., 2019). To address the NEN task with
BERT-based models, Kim et al. (2019) combined
the BioBERT model with a rule-based approach to
multi-type resolution and a dictionary lookup for
the normalization.

4 Results

The results of our experiments are summarized
in Tables 1 and 2. The tables contain both of-
ficially submitted results (printed with underline)
and post-submission runs. The results were ob-
tained by the official evaluation suite, which mea-
sures performance in terms of Slot Error Rate
(SER) (Makhoul et al., 1999) and F-Score (F1).
Both metrics are based on the counts of matches
(true positives), insertions (false positives), dele-
tions (false negatives) and substitutions (partial
positives). The substitutions, as defined by Bossy
et al. (2013), are a way to give partial credit to
system predictions that are partially correct, e g.
when the correct ID was assigned to one token of
a multi-word expression. While F1 is a measure
of accurateness ranging from 1 (perfect) to 0 (no
matching prediction at all), SER is a measure of er-
rors ranging from 0 (perfect) to above 1 (more er-
rors than ground-truth annotations). The rankings
produced by the two metrics are not guaranteed to
be identical; in fact, we report several cases where
F1 and SER disagree on the question of which sys-
tem performed best. For both metrics, the scores
are micro-averaged across all 30 documents of the
test set.

We used the plain dictionary-based system
OGER as a baseline. For the BiLSTM system,
we compared three different configurations: no-
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CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

OGER (baseline) 0.7873 0.4862 0.9826 0.6120 0.3032 1.6238 1.0122 1.9768 1.2617 0.5584
B

iL
ST

M no-pretraining 0.4280 0.5628 0.4231 0.4829 0.0443 0.3507 0.0688 0.9017 0.1934 0.4379
pretraining (Run 2a) 0.4089 0.5781 0.3991 0.4296 0.0638 1.0000 0.0733 0.8597 0.1786 0.3913
pick-best 0.4038 0.5563 0.3956 0.4455 0.0638 0.3453* 0.0723 0.8501 0.1593 0.3864

B
E

R
T IDs (Run 1) 0.3569 0.5780 0.3145 0.3848 0.1507 0.2882 0.0580 0.7612 0.1689 0.3752

spans+OGER 0.5111 0.5000 0.8276 0.3788 0.0319 0.3762 0.2240 0.3052 0.2918 0.4749
IDs+spans+OGER (Run 3) 0.3388 0.5620 0.3047 0.3888 0.0869 0.2684 0.0537 0.6863 0.1680 0.3770

CHE- GO GO GO NCBI UBE-
BI CL BP CC MF MOP Taxon PR SO RON

EXT EXT EXT EXT EXT EXT EXT EXT EXT EXT
OGER (baseline) 0.6032 0.3361 0.8677 0.3493 0.5459 1.8108 0.9869 1.7056 1.1596 0.5210

B
iL

ST
M no-pretraining 0.3152 0.3555 0.3398 0.2076 0.4266 0.3445 0.0744 0.8354 0.1398 0.4552

pretraining (Run 2a) 0.3016 0.3547 0.3357 0.2032 0.3922 0.5564 0.0776 0.8047 0.1257 0.3943
pick-best 0.3016 0.3497 0.3333 0.2051 0.3881 0.3445* 0.0784 0.7715 0.1230 0.3730

B
E

R
T IDs (Run 1) 0.2664 0.3667 0.2867 0.1678 0.5081 0.3440 0.0538 0.7257 0.1475 0.3371

spans+OGER 0.4224 0.3417 0.7419 0.1907 0.4676 0.6432 0.2353 0.3030 0.5566 0.4450
IDs+spans+OGER 0.2571 0.3583 0.2786 0.1681 0.4999 0.3080 0.0466 0.6464 0.1466 0.3384

*ontology pretraining disabled

Table 2: SER results of our experiments using the CRAFT corpus. For mark-up (underline/bold) see Table 1.

pretraining, pretraining, and pick-best. For the no-
pretraining run, we skipped the pretraining phase
over the ontology names. The pretraining run cor-
responds to the description in Section 3.2; we (un-
officially3) submitted this run as Run 2a, except
for MOP and MOP EXT, where pretraining was
disabled since it had an extraordinarily negative
effect for this entity type in early experiments al-
ready. In the pick-best run, we trained each model
two or three times and picked the one with the
best performance on the held-out set in the cross-
validation; again, ontology pretraining was dis-
abled for MOP[ EXT] for this run.

For the transformer architecture, we also com-
pared three systems: BERT-IDs, BERT-spans+
OGER, and BERT-IDs+BERT-spans+OGER.
BERT-IDs was trained to predict concept identi-
fiers directly; we submitted these results as Run 1
(except for CL EXT, GO CC EXT, MOP EXT,
NCBITaxon EXT, and UBERON EXT, which we
analyzed only in post-submission experiments
due to time constraints). BERT-spans+OGER
combines IOBES predictions with annotations
from OGER in a pipeline fashion. The last
configuration combines the previous two in a
backoff manner; this was submitted as Run 3
(extension types post-submission only).

For many entity types, the BERT systems beat
the BiLSTM systems, which in turn clearly out-

3after the deadline, but before the release of the ground-
truth annotations

performed the dictionary-based baseline. A no-
table exception to this pattern is CL, where no neu-
ral system was as accurate as OGER. However,
the baseline is beaten by all other systems in many
cases; this is particularly true for SER, where the
baseline shows very poor performance for a num-
ber of entity types.

Among the BiLSTM systems, the effect
of ontology pretraining is somewhat heteroge-
neous; while it clearly improved performance
for some entity types (such as CHEBI[ EXT],
UBERON[ EXT]), it had a marginal or even neg-
ative effect on others (e. g. NCBITaxon[ EXT]).
As expected from the cross-validation results, on-
tology pretraining heavily decreased performance
for MOP and MOP EXT. The pick-best setting
yielded modest improvements in most of the cases.
In three cases (GO MF EXT, SO, SO EXT), this
configuration achieves the best overall scores.

Among the BERT-based systems, directly pre-
dicting IDs usually gave better results than join-
ing span predictions with OGER annotations, and
combining the two systems in a backoff manner
yielded another improvement. However, the span
detector coupled with OGER outperformed the
two ID taggers in five cases (CL, GO MF[ EXT],
PR[ EXT]), three of which constitute best over-
all scores (GO MF, PR[ EXT]). The most notable
results are the ones for PR and PR EXT, where
BERT-spans+OGER beat all other systems by a
margin of more than 0.25 F1/0.34 SER.
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BERT-IDs+
ground-truth OGER BiLSTM BiLSTM BERT-spans+ BERT-spans+

concepts pretraining pick-best OGER OGER
unique occ. P R P R P R P R P R

CHEBI 110 447 0.33 0.65 – – 0.74 0.47 0.70 0.11
CHEBI EXT 134 538 0.37 0.71 – – 0.62 0.49 0.76 0.09
CL 52 484 0.72 0.31 – – 0.88 0.22 0.59 0.04
CL EXT 52 484 0.72 0.31 – – 0.71 0.25 0.71 0.11
GO BP 120 484 0.21 0.25 – – 0.56 0.12 0.66 0.06
GO BP EXT 126 508 0.22 0.28 – – 0.29 0.18 0.62 0.07
GO CC 32 184 0.19 0.35 – – 0.50 0.17 0.49 0.06
GO CC EXT 36 231 0.28 0.47 – – 0.58 0.19 0.60 0.07
GO MF 1 1 0.10 0.50 – – – –
GO MF EXT 73 416 0.38 0.22 – – 0.57 0.15 0.54 0.04
MOP 2 2 0.08 1.00 – – – –
MOP EXT 2 2 0.08 1.00 – – – –
NCBITaxon 40 87 0.02 0.50 – – 0.40 0.34 0.75 0.22
NCBITaxon EXT 44 95 0.02 0.54 – – 0.43 0.35 0.85 0.25
PR 278 4782 0.26 0.86 0.61 4E-4 0.63 4E-4 0.81 0.74 0.69 0.15
PR EXT 309 5156 0.27 0.84 0.22 3E-3 0.34 8E-3 0.84 0.73 0.65 0.20
SO 16 101 0.04 0.87 – – 0.10 0.06 0.52 0.02
SO EXT 25 123 0.05 0.78 – – 0.28 0.47 0.85 0.41
UBERON 203 1297 0.47 0.33 0.74 2E-3 0.69 2E-3 0.74 0.25 0.59 0.06
UBERON EXT 207 1308 0.47 0.33 0.76 2E-3 0.87 1E-3 0.78 0.27 0.60 0.06

Table 3: System performance for unseen concepts: precision (P) and recall (R) calculated over the subset of
annotations and predictions of IDs that were absent from the training data. A dash (–) denotes that the system only
predicted known IDs for the given entity type. The systems BiLSTM no-pretraining and BERT-IDs are omitted as
they cannot predict unseen labels.

5 Discussion

The results show that, in general, neural sequence
taggers can be successfully applied to biomedi-
cal concept recognition, using a single model for
joint NER+NEN. Unfortunately, we cannot com-
pare our results to other work, as no other team has
submitted results to the concept-annotation task
and no official baseline is available at the time of
writing. Since the CRAFT test set has only been
released in the course of the present shared task,
it is not possible to directly benchmark our results
against previous work (such as Funk et al., 2014;
Tseytlin et al., 2016; Hailu, 2019) either. How-
ever, the tested systems allow for a comparison of
different approaches.

The strategies for extending the concept cov-
erage – a vital feature for many applications –
show a mixed picture. Pretraining on ontology
names has led to limited benefit only. While it
has demonstrated a positive effect for many entity
types, it has been able to increase the set of recog-
nized concepts only occasionally. As can be seen
in Table 3, ontology pretraining led to prediction
of IDs outside the training data in four entity types
(PR[ EXT], UBERON[ EXT]). Even though the
majority of the predicted unseen IDs is correct,
they only account for a fraction of the ground-truth

annotations.
On the other hand, combining BERT span pre-

dictions with OGER annotations resulted in cor-
rect predictions of unseen IDs for almost all en-
tity types – the exceptions being GO MF, MOP,
and MOP EXT, which suffer from a small num-
ber of concepts or positive examples in the train-
ing data. The BERT-spans+OGER system is par-
ticularly strong for PR[ EXT], where recogniz-
ing unseen concepts is especially important due
to the diversity and abundance of protein men-
tions in the literature. When this system is used
as a backoff for BERT-IDs, the recall for unseen
concepts drops due to the bias for existing knowl-
edge inherent to the ID tagger. In some cases
this bias is beneficial for precision, i. e. the ID
tagger suppresses many false-positive predictions
of OGER (e. g. CHEBI EXT, NCBITaxon[ EXT],
SO[ EXT]), while in other cases false positives
of the ID tagger hide correct OGER predictions,
leading to lower precision.

A few examples of correctly predicted IDs ab-
sent from the training corpus are given in context
in the following. BERT-IDs+BERT-spans+OGER
predicted CHEBI PR EXT:somatostatin in docu-
ment 17503968 (two occurrences):

However, the somatostatin receptor
2 (SSTR-2) antagonist PRL-2903 does
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not interfere with the ability of glucose
(at 3 and 7 mM) to inhibit glucagon se-
cretion from mouse islets [47].

The same system predicted CHEBI:60004 in doc-
ument 11604102:

Adult mouse testes were homogenized
in a buffer containing 20 mM Tris, pH
7.5, 100 mM KCl, 5 mM MgCl2, 0.3%
NP-40, 40 U/ml of Rnasin ribonuclase
inhibitor (Promega, Madison, WI), and
a mixture of 10 protease inhibitors pro-
vided [...]

BiLSTM pick-best predicted PR:000008373 in
document 16968134:

Decreased Osteogenic Differentiation
Correlates with Abnormal Distribution
of Cx43

The creators of the CRAFT corpus have put
great effort in building an annotated corpus with
high quality and consistency across all entity
types. However, the diversity of the different types
requires a lot of engineering for tackling them all.
A single approach is not sufficient to meet the
differing needs of all entity types. The experi-
ments with the test set have yielded a few surpris-
ing results, such as the comparatively good perfor-
mance of the dictionary-based approach on CL or
the outstanding scores for BERT-spans+OGER on
PR[ EXT].

Of the two concept extension strategies,
the NER+dictionary backoff has worked well,
whereas the effect of ontology pretraining was not
too conclusive. Since we tested each of the strate-
gies with only one system architecture, it is not en-
tirely clear which component contributed the most
to the success – the network architecture or the ex-
tension strategy. Testing the inverse combinations,
i. e. BERT with ontology pretraining and BiLSTM
with OGER backoff, is left for future work.
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Abstract

This paper describes our system developed for
the coreference resolution task of the CRAFT
Shared Tasks 2019. The CRAFT corpus is
more challenging than other existing corpora
because it contains full text articles. We have
employed an existing span-based state-of-the-
art neural coreference resolution system as
a baseline system. We enhance the system
with two different techniques to capture long-
distance coreferent pairs. Firstly, we filter
noisy mentions based on parse trees with in-
creasing the number of antecedent candidates.
Secondly, instead of relying on the LSTMs,
we integrate the highly expressive language
model–BERT into our model. Experimental
results show that our proposed systems sig-
nificantly outperform the baseline. The best
performing system obtained F-scores of 44%,
48%, 39%, 49%, 40%, and 57% on the test
set with B3, BLANC, CEAFE, CEAFM, LEA,
and MUC metrics, respectively. Additionally,
the proposed model is able to detect coreferent
pairs in long distances, even with a distance of
more than 200 sentences.

1 Introduction

Coreference resolution is important not only in
general domains but also in the biomedical do-
main. The Colorado Richly Annotated Full Text
(CRAFT) corpus (Cohen et al., 2017) was con-
structed with an aim of boosting the performance
of the task in the biomedical literature. Un-
like other corpora, CRAFT is comprised of full
text articles or full papers, its coreferent chains
are arbitrarily long; the mean length of corefer-
ent chains is 4 while the longest chain is 186,
which makes the resolution even more difficult
than usual. The corpus has been fully released in
the CRAFT Shared Task 2019. In this paper, we

present our approach to address the coreference
resolution task in this challenging corpus.

We employ the state-of-the-art end-to-end
coreference system (Lee et al., 2017) as our base-
line. The system generates all continuous se-
quences of words (or spans) in each sentence as
mention candidates, which means the number of
candidates increases linearly to the number of sen-
tences. Such candidates may contain a large num-
ber of noisy spans, which are spans in a sentence
that do not fit any noun phrases according to the
corresponding parse tree. Such noisy spans are of-
ten wasteful when being included in the list of can-
didates for the coreference resolution step. Espe-
cially for the CRAFT corpus, of which the average
number of sentences is more than 300, the num-
ber of noisy spans would be many and needs to
be reduced. Also, our observations on the CRAFT
corpus show that in many cases, a mention and its
antecedent are far away, e.g., a mention can occur
in the result section of a paper while its antecedent
is in the abstract section.

To address these problems, we enhance the
baseline system in two ways; we propose to filter
noisy spans by using syntactic information and in-
crease the number of antecedent candidates to cap-
ture such long-distance coreferent pairs. We fur-
ther boost the system by replacing the underlying
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) layer with the Bidirec-
tional Encoder Representations from Transformer
(BERT) model (Devlin et al., 2019)—a contextu-
alized language model that can efficiently capture
context in a wide range of NLP tasks.

We have evaluated our system on six common
metrics for coreference resolution including B3,
BLANC, CEAFE, CEAFM, LEA, and MUC us-
ing the official evaluation script provided by the
shared task organizers. By increasing the num-
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ber of antecedents and filtering noisy ones, we
could boost the recall of mention detection, hence
improving the performance of coreference resolu-
tion. When incorporating BERT into the system,
we could attain better scores in both mention de-
tection and coreference resolution at every met-
rics.

Our contributions are as follows.

• We proposed a new method to filter noisy
spans, which is a weakness of the base-
line system (Lee et al., 2017). Our filter-
ing method based on syntactic trees reduced
up to 90% noisy spans but still kept 93%
of correct mentions on the development set.
The method helps our model more computa-
tionally efficient than the baseline one, hence
allowing us to increase the number of an-
tecedent candidates to capture long-distance
coreferent pairs.

• We successfully integrated the BERT model
to replace the LSTM layers for coreference
resolution task and obtained significant im-
provement.

• Although we only experimented our model
with the CRAFT corpus, our proposed
method is general enough to be applied to
other corpora with long documents.

2 Methods

2.1 LSTM-based Baseline Model
Our model is based on the span-based end-to-end
model (Lee et al., 2017). The model employs an
exhaustive method to create any continuous se-
quences of words (spans) in each sentence. The
representation of a span from the k-th word to the
l-th word in a sentence is calculated by concate-
nating the information of the first word, last word,
head word, and the span width feature as follows:

mk,l = [hk, hl, ŵk..l, φ(k, l)] , (1)

where hk and hl are embeddings of the first and
last words calculated by a bidirectional LSTM;
ŵk..l is the weighted sum of the word vectors; and
φ(k, l) encodes the size of this span.

Mention scores are calculated using a feed-
forward neural network given the span represen-
tation.

sm(k, l) = wm · FFNNm(mk,l), (2)

where wm is a learnable weight vector; and FFNN
denotes a feed-forward neural network.

Since the span-based model generates a large
number of spans, a simple technique is used to
rank and filter spans based on a λ ratio multiplied
by the document size and choose the k best candi-
dates.

To find an antecedent for each mention, we cal-
culate the antecedent score as follows:

sa(mk,l,mu,v) = wa·FFNNa([mk,l,mu,v,

mk,l◦mu,v, φ((k, l), (u, v))]),
(3)

where wa is a learnable weight vector; ◦
denotes an element-wise multiplication and
φ((k, l), (u, v)) represents the feature vector
between the two mentions.

2.2 Coreference Resolution with BERT

Recently, BERT (Devlin et al., 2019) shows sig-
nificant improvement on various tasks in compar-
ison with other deep learning models including
LSTMs. This highly expressive language model is
able to capture contextual information effectively.
We, therefore, aim at investigating whether this ar-
chitecture can work effectively on coreference res-
olution in comparison with the previous LSTM-
based models.

In the BERT model, contextual representations
are assigned to sub-words in each word. We use
the representation of the last subword in a word as
the representation of the word and calculated the
span representation using Equation 1. Since the
pre-trained BERT model just supports sentences
up to 512 sub-words, we utilize a sliding window
technique with a window size of 512 and stride
of 256 for longer sentences and then retrieve sub-
word embeddings from windows so that each sub-
word has maximum left and right context. We
adapted the mention score and antecedent score
functions as Equations 2 and 3.

2.3 Learning Parse Trees to Filter Mentions

A weakness of the span-based baseline model is
that the greedy method generates a large number
of noisy, mostly meaningless, spans. Although
Lee et al. (2017) proposed to select k-best candi-
dates but this strategy is problematic when work-
ing on long documents, in which a mention is
probably far away from its true antecedents while
there are a large number of noisy candidates be-
tween them.
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Figure 1: Three patterns corresponding to three gold mentions are extracted from the parse tree: “a diurnal rhythm
with IOP” (pattern: (NP,IN,NP)), “the dark period of the day” (pattern: (NP)), “the day” (pattern: (NP))

In order to overcome this issue, we propose to
filter noisy spans based on their syntactic infor-
mation. We observe that in the task like corefer-
ence resolution, mentions usually follow syntac-
tic structures such as noun phrases. We therefore
learn a syntactic parsing model to parse sentences
and then extract patterns of gold mentions based
on the resulting parse trees.

The end-to-end parsing model is trained jointly
by the two following steps.

• Part-of-speech (POS) classifier: given raw
sentences from the training set, words are
split into sub-words with corresponding vec-
tors from BERT embeddings. The last sub-
word embedding of each word is used as the
word embedding and passed through a linear
layer to predict POS tags. The gold label POS
tags are obtained from the CRAFT training
set. Predicted POS tags and the raw texts will
be used as the input for the parsing model.

• Parser: our model is based on the con-
stituency parsing model (Kitaev and Klein,
2018), in which parse trees were built based
on a self-attentive encoder and achieved
state-of-the-art performance on the Penn

Treebank. Unlike their model, we replaced
the self-attentive encoder by BERT.

Figure 1 presents an example of using a parse
tree to extract patterns of gold mentions. In this
example, three patterns corresponding to three
gold mentions are extracted: (NP, IN, NP), (NP),
and (NP).

In the coreference resolution model, generated
spans that match with the learned patterns are fed
into the span representation layer to create span
embeddings, while unmatched spans are ignored.

3 Experimental Settings

3.1 Dataset

The organizer provided two subsets of the CRAFT
corpus (Cohen et al., 2017): one for training and
one for testing systems. To estimate our model be-
fore submitting testing results, we further divided
the original training set into two subsets, namely
training and development sets. Table 1 shows the
statistics numbers of these three subsets.

3.2 Compared Models

In order to show the effect of our proposed meth-
ods, we compare the following models.
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Train Dev Test
No. documents 60 7 30
No. sentences 19,575 2,156 9,099
Avg. sentences/doc 326.25 308.0 303.3
No. mentions 69,413 8,342 33,749
No. discon. men. 4,041 444 1,845
No. coreference. 14,679 1,623 7,185

Table 1: Characteristics of the CRAFT corpus. (discon.
men.: discontinuous mentions)

• LSTM: this is the baseline model (Lee et al.,
2017) based on LSTM. This model obtained
the state-of-the-art performance on general
domain. In this setting, all generated spans
are used for calculating mention scores. The
number of antecedent candidates was 250
and the λ = 0.25.

• LSTM filter: this is the same as the LSTM
baseline model, but we applied the filtering
method and increased the antecedent number
to 600 instead of 250.

• BERT: we employed the pre-trained SciB-
ERT model (Beltagy et al., 2019) instead of
using the LSTM as the baseline model. The
number of antecedent candidates was 600.

• BERT filter: we used the same settings as
BERT but we combined it with the filtering
method.

• E2E MetaMap (Trieu et al., 2018): this
model is based on the baseline model (Lee
et al., 2017) but it particularly incorpo-
rated semantic type features extracted from
the MetaMapLite (Demner-Fushman et al.,
2017) to address biomedical documents. The
maximum antecedent was 250.

The E2E MetaMap implementation is based
on the Tensorflow repository.1 Meanwhile, the
LSTM, LSTM filter, and BERT filter are based on
the PyTorch repository.2

For the BERT model, we employed the Py-
Torch Pretrained BERT repository.3 We trained

1https://github.com/kentonl/e2e-coref/
tree/1f37582e68

2https://github.com/allenai/allennlp/
tree/master/allennlp/models/coreference_
resolution

3https://github.com/huggingface/
pytorch-pretrained-BERT/tree/34cf67fd6c

Syntactic Patterns Frequency Ratio (%)
NP 40,639 58.55
NN 10,746 15.48
NML 3,462 4.99
PRP$ 1,012 1.46
NN, NN 1,012 1.46
NP, NN 678 0.98
LS 647 0.93

Table 2: The most frequent patterns of mentions in the
training set. Please check Appendix A for the definition
of relevant Penn Treebank labels.

the model with the Adam optimizer (Kingma and
Ba, 2015). We included gradient clipping and
dropout.

4 Results and Discussion

We firstly present the results of extracting patterns
to filter mentions. We then report and discuss the
performance of our models on the official test set.
In order to deeply investigate the effect of the pro-
posed method, we describe the intensive results of
ablation tests on the development set. We finally
conduct analysis to see how each model works
on each group of sentence-level distance between
mentions and antecedents.

4.1 Patterns of Gold Mentions
Table 2 reports some patterns4 with the highest
frequencies in the training set. In total, we ex-
tracted 1,561 unique patterns. To avoid low qual-
ity filtering, we kept patterns with a minimum fre-
quency threshold of 5. The threshold was chosen
from our experiments so that we could filter a large
number of noisy spans but still kept a high recall
on the development set. Specifically, this filtering
method helps to reduce up to 90% noisy spans but
still kept 93% of correct mentions on the develop-
ment set.

4.2 Evaluation on the Test Set
The results on the official test set are presented in
Table 3. In summary, our BERT filter obtained the
best performance on both mention and coreference
detection in all metrics.

Mention detection For mention detection, most
models obtained approximately the same preci-
sion of more than 70%. However, the recall

4The tag set in our patterns follows Penn Treebank POS
tags.
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Metric Model
Mention Coreference

P R F P R F

B3

LSTM 0.7565 0.3578 0.4858 0.6177 0.1583 0.2520
LSTM filter 0.7292 0.4187 0.5320 0.5764 0.2524 0.3511
BERT 0.7416 0.5603 0.6383 0.5151 0.3544 0.4199
BERT filter 0.7314 0.5778 0.6456 0.5166 0.3838 0.4404
E2E MetaMap 0.6713 0.5272 0.5906 0.5247 0.2791 0.3644

BLANC

LSTM 0.7565 0.3578 0.4858 0.6434 0.2153 0.3227
LSTM filter 0.7292 0.4187 0.5320 0.6471 0.3903 0.4869
BERT 0.7416 0.5603 0.6383 0.5376 0.4350 0.4809
BERT filter 0.7314 0.5778 0.6456 0.5056 0.4731 0.4888
E2E MetaMap 0.6713 0.5272 0.5906 0.5297 0.4140 0.4648

CEAFE

LSTM 0.7565 0.3578 0.4858 0.3590 0.2076 0.2631
LSTM filter 0.7292 0.4187 0.5320 0.4100 0.2408 0.3034
BERT 0.7416 0.5603 0.6383 0.4366 0.3305 0.3762
BERT filter 0.7314 0.5778 0.6456 0.4544 0.3537 0.3978
E2E MetaMap 0.6713 0.5272 0.5906 0.3545 0.3101 0.3308

CEAFM

LSTM 0.7565 0.3578 0.4858 0.5141 0.2431 0.3301
LSTM filter 0.7292 0.4187 0.5320 0.5847 0.3357 0.4265
BERT 0.7416 0.5603 0.6383 0.5432 0.4104 0.4676
BERT filter 0.7314 0.5778 0.6456 0.5551 0.4385 0.4900
E2E MetaMap 0.6713 0.5272 0.5906 0.4662 0.3662 0.4102

LEA

LSTM 0.7565 0.3578 0.4858 0.5733 0.1331 0.2161
LSTM filter 0.7292 0.4187 0.5320 0.5415 0.2265 0.3194
BERT 0.7416 0.5603 0.6383 0.4692 0.3135 0.3759
BERT filter 0.7314 0.5778 0.6456 0.4753 0.3454 0.4000
E2E MetaMap 0.6713 0.5272 0.5906 0.4864 0.2433 0.3244

MUC

LSTM 0.7565 0.3578 0.4858 0.6765 0.3007 0.4164
LSTM filter 0.7292 0.4187 0.5320 0.6656 0.3798 0.4837
BERT 0.7416 0.5603 0.6383 0.6412 0.4842 0.5517
BERT filter 0.7314 0.5778 0.6456 0.6445 0.5111 0.5701
E2E MetaMap 0.6713 0.5272 0.5906 0.5995 0.4564 0.5182

Table 3: Results on the test set. The three official submissions of our team were BERT, BERT filter and
E2E MetaMap. The non-coreference scores of BLANC are reported in Appendix B.

of the BERT filter is much higher than those of
the LSTM and LSTM filter (57% vs. 35% and
41%, respectively). Consequently, the F-score of
the BERT filter is 16% and 11% points higher
than the LSTM and LSTM filter, respectively.
The E2E MetaMap is 5% points lower than the
BERT filter in F-score.

Coreference detection By obtaining the high-
est recall in mention detection, the BERT filter
could achieve the highest scores in coreference
detection in all metrics. Using the mention fil-
tering improved the baseline LSTM from 4-16%
points in F-score varied by metrics. When replac-
ing LSTM by BERT and combining with mention
filtering, we obtained significant improvements:

+19% points of B3 and LEA; +16% points of
MUC, BLANC and CEAFM; and +13% points of
CEAFE in F-score.

The E2E MetaMap performance is higher than
the LSTM and LSTM filter, but lower than the
BERT filter. As aforementioned, the LSTM
model is based on the PyTorch implementation
while the E2E MetaMap is based on the Tensor-
flow repository. Therefore it is difficult to verify
whether performance difference comes from us-
ing MetaMap features or from the implementation.
Due to time constraint, we have not conducted ex-
periments to clarify the reasons yet. We will leave
this as our future work.
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Metric Model
Mention Coreference

P R F P R F

B3

LSTM 0.7716 0.3782 0.5076 0.6387 0.1763 0.2764
LSTM filter 0.7193 0.4396 0.5457 0.5725 0.2572 0.3550
BERT 250 0.7288 0.5675 0.6381 0.5258 0.32 0.3979
BERT 0.7094 0.5742 0.6347 0.4807 0.3596 0.4115
BERT filter 0.7066 0.6014 0.6498 0.5021 0.3855 0.4361

BLANC

LSTM 0.7716 0.3782 0.5076 0.5665 0.1487 0.2356
LSTM filter 0.7193 0.4396 0.5457 0.5503 0.2235 0.3179
BERT 250 0.7288 0.5675 0.6381 0.5129 0.3256 0.3983
BERT 0.7094 0.5742 0.6347 0.4691 0.3168 0.3782
BERT filter 0.7066 0.6014 0.6498 0.5141 0.3757 0.4341

CEAFE

LSTM 0.7716 0.3782 0.5076 0.3659 0.2536 0.2996
LSTM filter 0.7193 0.4396 0.5457 0.4123 0.3252 0.3636
BERT 250 0.7288 0.5675 0.6381 0.3888 0.3672 0.3777
BERT 0.7094 0.5742 0.6347 0.4115 0.3674 0.3882
BERT filter 0.7066 0.6014 0.6498 0.4176 0.3993 0.4083

CEAFM

LSTM 0.7716 0.3782 0.5076 0.5285 0.2591 0.3477
LSTM filter 0.7193 0.4396 0.5457 0.5757 0.3518 0.4368
BERT 250 0.7288 0.5675 0.6381 0.5073 0.3952 0.4443
BERT 0.7094 0.5742 0.6347 0.5143 0.4163 0.4602
BERT filter 0.7066 0.6014 0.6498 0.5308 0.4518 0.4881

LEA

LSTM 0.7716 0.3782 0.5076 0.5974 0.1507 0.2407
LSTM filter 0.7193 0.4396 0.5457 0.5370 0.2276 0.3197
BERT 250 0.7288 0.5675 0.6381 0.4811 0.2805 0.3544
BERT 0.7094 0.5742 0.6347 0.4383 0.3196 0.3696
BERT filter 0.7066 0.6014 0.6498 0.4619 0.3464 0.3959

MUC

LSTM 0.7716 0.3782 0.5076 0.7065 0.3117 0.4325
LSTM filter 0.7193 0.4396 0.5457 0.6658 0.3783 0.4825
BERT 250 0.7288 0.5675 0.6381 0.6418 0.4743 0.5455
BERT 0.7094 0.5742 0.6347 0.6144 0.4850 0.5421
BERT filter 0.7066 0.6014 0.6498 0.6271 0.5179 0.5673

Table 4: Results on the development set.

4.3 Ablation Tests

We conducted experiments on the development
set to show the effect of using mention filtering
and BERT. In order to directly compare between
BERT and LSTM, we also conducted an exper-
iment with BERT and set a value of 250 to the
number of antecedent candidates. We named it
as BERT 250. Meanwhile, LSTM, LSTM filter,
BERT, BERT filter have the same settings as de-
scribed in Section 3.2. All of the results are re-
ported in Table 4.

Mention Filtering When we used mention fil-
tering, the mention detection precision dropped
6% points in the case of LSTM, but in the case of
BERT it was almost the same. However, the filter-

ing helped to improve recall in both cases, which
is important to the coreference detection step. As
a result, in the coreference resolution step, men-
tion filtering improved 2-8% points of F-score in
all metrics.

Using BERT Using BERT could significantly
boost the performance of the baselines in both
mention detection and coreference resolution. For
mention detection, BERT produced almost the
same precision with the LSTM but much higher
recall (+17% points), which led to an increase
of 10% points in F-score. For coreference de-
tection, BERT-based models outperformed the
LSTM-based ones from 4-14% points of F-scores
in all metrics.

In summary, when combining both techniques
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Figure 2: Numbers of correct predictions (true positives) grouped by sentence-level distance between a mention
and its antecedent in the development set. The detail results are reported in Appendix C.

(BERT filter vs. LSTM), we could make a signif-
icant increase of more than 14% points in F-score
for mention detection and from 11% to 20% points
in F-score in all metrics for coreference resolution
on the development set.

4.4 Analysis
To investigate the effect of distance between a
mention and its antecedent(s) on each model, we
calculated the number of true positive coreference
predictions in the development set and grouped
them by sentence-level distance. Specifically, we
divided the number of true positive predictions
into five groups: ≤10, 11-50, 51-100, 101-200,
and >200. The first two groups can be considered
as short-distance coreference, e.g., abstract papers
like the BioNLP dataset (Nguyen et al., 2011) with
an average of nine sentences per document. Mean-
while, the other three groups can be considered
as long-distance coreference like full papers in the
CRAFT corpus.

Distribution of coreferent pairs in gold data
As illustrated in Figure 2, only about 40.85% of
the gold pairs are in the groups of short distance
while the other 59.15% of them are in the groups
of long distance. This means that if a model cannot
deal with long distance coreference, pairs of men-
tions and antecedents in this region cannot be dis-
covered. Among those long distance pairs, 47.8%
are in between 51-200 sentences while the number
of pairs whose distance is more than 200 is about
11.35%.

The effect of mention filtering The results in
Figure 2 revealed that by using the filtering meth-
ods, we could effectively address long-distance
coreferent pairs. It can be seen from the figure
that the baseline model was good enough when
working on short distance pairs, and the filtering
may slightly harm the performance. However, for
longer distances, the filtering contributed to in-
creases of 5.46%, 55.26%, 84.60% and 100% for
the groups of 11-50, 51-100, 101-200, and >200,
respectively, in comparison with the baseline.

The effect of BERT Without using the filtering
method, BERT itself could capture a fairly large
number of long-distance pairs, which was even
better than the LSTM filter model.

Long-distance coreference When summing up
the results of long-distance groups, i.e., three
groups of 51-100, 101-200, and >200, we found
that the LSTM filter and BERT filter models
could predict 71.89% and 83.63% higher num-
ber of long-distance pairs than the LSTM one,
which indicates the effect of our model in us-
ing the filtering method and BERT for long docu-
ments. Additionally, for the most tough case of de-
tecting pairs in the distance of more than 200 sen-
tences, our LSTM filter model predicted 874 cor-
rect pairs (about 1.18% of the gold pairs), and the
BERT filter model predicted 1,081 correct pairs
(about 1.46% of the gold pairs). Meanwhile, the
LSTM model failed to detect pairs in this group.
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Recall problem It is necessary to note that al-
though our model improved the baseline LSTM
and obtained promising results, the recall is still
low in all groups of distance. For instance, the
best performing model, i.e., BERT filter could
cover only 50.90%, 45.38%, 39.08%, 31.71%, and
12.82% of the gold pairs in the groups of <=10,
11-50, 51-100, 101-200, >200, respectively. This
is an open issue that we will address in the future.

5 Conclusion

In this paper, we particularly address the chal-
lenge of coreference resolution in full text articles
in the CRAFT Shared Task 2019. Specifically,
we employ the span-based end-to-end model (Lee
et al., 2017) and enhance the model by utilizing a
syntax-based mention filtering method and BERT.
To filter noisy mentions, we jointly train a parsing
model with a POS classifier to obtain parse trees of
sentences. We then generate syntactic patterns of
gold mentions based on the resulting parse trees.
Any mentions that satisfy the generated patterns
will be fed into the coreference resolution model.
We finally incorporate BERT into our model. Ex-
perimental results on the CRAFT corpus indicate
that the proposed method is effective in capturing
long-distance coreferences in long documents.
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A Penn Treebank Labels

For the Penn Treebank labels in our syntactic pat-
terns, we follow the BioMedical Treebank tagset
definition (Warner et al., 2004). Please refer to Ta-
ble 5 for the detail description.

B Non-Coreference Results

Unlike other metrics, the BLANC metric also con-
tains non-coreference results. We report the re-
sults of the test set in Table 6.

C Results on (Mention-Antecedent) Pair
Distance

We present the detail results of each model and
the corresponding gold coreference grouped by
the sentence-level distance of mention-antecedent
pairs in Table 7. The results are calculated in five
groups of distance: <=10, 11-50, 51-100, 101-
200, >200.
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Tag Description
NP noun phrase
NN noun, singular or mass
NML sub-NP nominal substrings
PRP$ possessive pronoun
LS list item marker

Table 5: The definition of relevant Penn Treebank labels.

Metric Model
Mention Non-Coreference

P R F P R F BLANC-F

BLANC
LSTM 0.7565 0.3578 0.4858 0.5725 0.1314 0.2137 0.2682
LSTM filter 0.7292 0.4187 0.5320 0.5432 0.1796 0.2699 0.3784
BERT 0.7416 0.5603 0.6383 0.5537 0.3172 0.4033 0.4421
BERT filter 0.7314 0.5778 0.6456 0.5383 0.3356 0.4135 0.4512
E2E MetaMap 0.6713 0.5272 0.5906 0.4488 0.2812 0.3457 0.4053

Table 6: Non-coreference results for the BLANC metric on the testing set.

Model
<=10 11-50 51-100

TP G.R O.R TP G.R O.R TP G.R O.R
(%) (%) (%) (%) (%) (%)

LSTM 3,588 34.61 4.83 5,230 26.22 7.05 1,735 10.43 2.34
LSTM filter 3,164 30.52 4.26 5,532 27.73 7.45 3,878 23.31 5.23
BERT 250 5,347 51.58 7.20 9,015 45.19 12.15 5,115 30.75 6.89
BERT 4,651 44.87 6.27 8,062 40.41 10.86 5,381 32.35 7.25
BERT filter 5,276 50.90 7.11 9,053 45.38 12.20 6,502 39.08 8.76
Group Gold 10,366 100 13.97 19,949 100 26.88 16,636 100 22.41

Model
101-200 >200

TP G.R O.R TP G.R O.R
(%) (%) (%) (%)

LSTM 484 2.57 0.65 0 0.00 0.00
LSTM filter 3,143 16.69 4.23 874 10.37 1.18
BERT 250 4,163 22.10 5.61 527 6.25 0.71
BERT 4,798 25.47 6.46 620 7.35 0.84
BERT filter 5,974 31.71 8.05 1,081 12.82 1.46
Group Gold 18,837 100 25.38 8,431 100 11.36
Total Gold 74,219

Table 7: Results of models on each distance group; TP: True Positive; G.R: Group Ratio = True Positive/Group
Gold; O.R: Overall Ratio = True Positive/Total Gold
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Abstract

We present the approach taken by the
TurkuNLP group in the CRAFT Structural An-
notation task, a shared task on dependency
parsing. Our approach builds primarily on
the Turku neural parser, a native dependency
parser that ranked among the best in the recent
CoNLL tasks on parsing Universal Dependen-
cies. To adapt the parser to the biomedical
domain, we considered and evaluated a num-
ber of approaches, including the generation of
custom word embeddings, combination with
other in-domain resources, and the incorpora-
tion of information from named entity recogni-
tion. We achieved a labeled attachment score
of 89.7%, the best result among task partici-
pants.

1 Introduction

Syntactic analysis (parsing) is a fundamental task
in natural language processing (NLP) and a pre-
requisite for many related tasks. There is a long
tradition of research in automatic parsing target-
ing both constituency (phrase structure) and de-
pendency representations, with most work focus-
ing on the analysis of English news texts (Marcus
et al., 1994). Syntactic analyses are required also
by many methods for the analysis of biomedical
text; for example, information extraction methods
commonly rely on the shortest path over syntactic
dependencies to identify how entities mentioned in
text are related (Airola et al., 2008; Björne et al.,
2009; Liu et al., 2013; Luo et al., 2016). The
performance of parsers is known to be domain-
dependent: to create high-quality analyses of e.g.
biomedical texts, the tools should be trained on an-
notated corpora reflecting the domain (Miwa et al.,
2010). Syntactically annotated corpora of domain
texts are thus required for much of biomedical
NLP. These resources should also preferably fol-
low the relevant standards in the representation of

syntactic analyses to allow methods developed to
these standards to be applied also for biomedical
domain texts, thus allowing biomedical NLP to
benefit from advances in parsing technology.

The CRAFT Structural Annotation (SA) task,
organized in 2019 is a shared task on dependency
parsing largely following the setting of the popular
Conference on Computational Natural Language
Learning (CoNLL) 2017 and 2018 shared tasks on
dependency parsing (Zeman et al., 2017, 2018).
These tasks emphasize real-world scenarios by
casting the task as analyzing raw text (rather than
e.g. pre-tokenized and tagged text) and applying
universal, language-independent representations.
The CRAFT SA task follows these tasks in provid-
ing only plain text as input, requiring participat-
ing systems to perform sentence segmentation, to-
kenization, part-of-speech tagging, lemmatization,
and the identification of morphological features in
addition to analyzing the syntactic structure of the
input sentences. CRAFT SA also adopts the for-
mat and evaluation tools of the CoNLL tasks, and
its representation matches the universal represen-
tation of these tasks in part. The CRAFT task is
differentiated from the many corpus resources ap-
plied in the CoNLL tasks specifically in focusing
on biomedical domain texts, and CRAFT is unique
among syntactically annotated biomedical corpora
in that its texts are drawn from full-text articles,
rather than only article titles and abstracts.

We participated in the CRAFT SA task using an
approach that builds primarily on the Turku neural
parser (Kanerva et al., 2018), a native dependency
parsing system that previously ranked among the
best systems in the CoNLL 2018 task. As the
parser is fully retrainable, designed to accept the
format used for the CRAFT data, and agnostic to
the details of the representation, it was possible to
train it for the CRAFT task with little modifica-
tion. Additionally, as the parser has not been de-
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veloped or previously applied to biomedical En-
glish, we consider a number of modifications and
adaptions to improve on its performance, finding
in particular that the strong baseline performance
of the parser can be further improved through ini-
tialization with in-domain word vectors.

2 Background

Biomedical domain models have been available
for a number of constituency parsers (e.g. Char-
niak and Johnson (2005), McClosky and Char-
niak (2008)) and have been widely applied in do-
main information extraction efforts, frequently in
conjunction with heuristic conversions into depen-
dency representations such as Stanford dependen-
cies (De Marneffe and Manning, 2008). There
have also been native dependency parsers avail-
able for the domain, such as Pro3Gres (Schnei-
der and Rinaldi, 2004) and, later, GDep (Miyao
et al., 2008), nevertheless the abovementioned
McClosky-Charniak parser with Stanford depen-
dencies conversion was the workhorse of biomed-
ical dependency parsing for nearly a decade. Also
the treebanks available for training the parsers
in the biomedical domain have traditionally been
constituency-based, for instance the Penn BioIE
(Kulick et al., 2004) and especially the GENIA
treebank (Tateisi et al., 2005). The BioInfer cor-
pus (Pyysalo et al., 2007) was the first domain
corpus to adopt Stanford Dependencies as the na-
tive annotation scheme, coinciding with a gener-
ally growing interest in dependency parsing and
its applications.

The CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007) ad-
dressed multilingual dependency parsing, and
while data was provided for different languages
in the same format, the underlying representation
(e.g. dependency types) was not standardized in
these tasks. These tasks also included only predic-
tion of syntactic trees, whereas tokenization and
part-of-speech tags were given for the participants.

In recent years, there has been an increased in-
terest in native dependency parsing, reflected in ef-
forts such as Universal Dependencies (UD) (Nivre
et al., 2016) and the CoNLL 2017 and 2018 shared
tasks on multilingual parsing using UD data (Ze-
man et al., 2017, 2018). While these efforts have
covered a wide range of languages, genres and text
domains, and introduced end-to-end parsing from
plain text as the objective, they have not specifi-

Train Test
Documents 67 30

Sentences 21 731 9 099
Tokens 561 032 232 619

Table 1: CRAFT Structural Annotation statistics

Train Devel Eval
Documents 47 10 10

Sentences 15 007 3 421 3 303
Tokens 387 473 91 306 82 253

Table 2: CRAFT Train data split for development

cally involved scientific articles or biomedical do-
main texts.

3 Data

3.1 CRAFT data

The primary resource used for training systems for
the task is the CRAFT corpus syntactic annotation
provided by the task organizers. Table 1 summa-
rizes the key statistics of the data.

The test annotations were only made available
after participants had submitted their predictions,
and no train/development split was defined for the
provided data. For development purposes, we thus
split the provided training dataset of 67 documents
randomly into a set of 47 used for training, a devel
set of 10 used for early stopping during training,
and 10 used for evaluation during development.
The statistics of this split are shown in Table 2

The original CRAFT corpus syntactic annota-
tion uses a modified Penn Treebank (PTB) con-
stituency formalism (Verspoor et al., 2012), and
the dependency annotation provided for the task
was automatically created by conversion from the
constituency representation. The source data was
first converted into the CoNLL-X format using the
SD dependency representation and PTB POS tags
using the approach of (Choi and Palmer, 2012),
and this data was then further converted into the
CoNLL-U format with custom scripts.

The resulting task dataset is in the UD format
(CoNLL-U), but it only partially follows the UD
standard in terms of its content. In particular,
while the POS tags and morphological features
conform to UD, the dependency representation –
arguably the most important part of the data – does
not, instead matching the SD representation of the
CoNLL-X version of the data. Figure 1 shows SD

207



Figure 1: Illustration of Stanford Dependencies (top) and Universal Dependencies (bottom) analyses for an exam-
ple sentence (from PMCID:15207008). The CRAFT dependency annotation follows the former representation.

and UD analyses for an example sentence from
the CRAFT data. While a number of dependen-
cies are identical between the two (e.g. nsubj), in
UD dependencies primarily relate content words
(e.g. verbs and nouns), with function words such
as adpositions being dependents of content words
rather than mediating their relations such as in SD
(cf. binds to TBPH in Figure 1). There are also
a number of minor differences such as the attach-
ment of coordinating conjunctions to the first con-
stituent in SD and the nearest to the right in UD.

While this discrepancy does not prevent the use
of tools that are agnostic to the details of the rep-
resentation (including many UD parsers), it does
mean that the data is incompatible with existing
UD resources and greatly complicates combina-
tion with other corpora, none of which are avail-
able in this particular hybrid SD/UD CoNLL-U
representation. We expand on this issue below in
Section 6.2.

3.2 Word vectors

We considered a number of previously released
word vectors for initializing the parser. As
a baseline we use the English word embed-
dings by Ginter et al. (2017) trained on general
English extracted from Wikipedia and Internet
crawls. These embeddings are trained using the
word2vec (Mikolov et al., 2013) tool with lower-
cased data, skip-gram algorithm, window size of
10 and 100 dimensions. The vectors were orig-
inally provided for the CoNLL 2017 and 2018
multilingual parsing shared task, and thus used by
many of the participating systems in their English
parsing models. We also considered a number of
word vectors induced specifically on biomedical
text for domain tasks, including those created by
Pyysalo et al. (2013)1 and Chiu et al. (2016)2.

1http://bio.nlplab.org/
2https://github.com/cambridgeltl/

BioNLP-2016

3.3 Unlabelled data

To induce new word vectors (Section 4.3) and
conduct co-training experiments (Section 5.2), we
used unlabelled texts from PubMed titles and ab-
stracts and PubMed Central (PMC) full texts. The
data was drawn from the PubMed 2017 baseline
distribution and a 2017 download of the PMC
Open Access subset.3 The texts were segmented
into sentences using the GENIA sentence split-
ter and then tokenized using the PTBTokenizer in-
cluded in Stanford CoreNLP tools (Manning et al.,
2014) and the tokenized sentences shuffled ran-
domly. The resulting dataset consists of 12.5 bil-
lion tokens in 500 million sentences. As the text
of the full-text articles of the CRAFT corpus con-
tains characters outside of the basic ASCII charac-
ter set, we created word vectors on the original ex-
tracted texts instead of first applying a mapping to
ASCII characters as was done in a number of sim-
ilar previous efforts (e.g. (Pyysalo et al., 2013)).

4 Methods

4.1 Turku Parser

Our primary parser used in all experiments is the
Turku Neural Parser Pipeline4 (Kanerva et al.,
2018), a full parser pipeline meant for end-to-end
analysis from raw text into UD. The pipeline in-
cludes sentence and word segmentation, part-of-
speech and morphological tagging, syntactic pars-
ing, and lemmatization.

The segmentation component in the Turku
pipeline is built using UDPipe (Straka and
Straková, 2017), where the token and sentence
boundaries are jointly predicted using a single-
layer bidirectional GRU network. Universal
(UPOS) and language-specific (XPOS) part-of-
speech tags, as well as morphological features

3We used 2017 data as we had a plain text version readily
available from previous work.

4https://turkunlp.org/
Turku-neural-parser-pipeline/

208



(FEATS) are predicted with a modified version
of the one published by Dozat et al. (2017), a
time-distributed classifier over tokens in a sen-
tence embedded using bidirectional LSTM net-
work. The tagger has two separate classifica-
tion layers, one for universal part-of-speech and
one originally used for language-specific part-of-
speech tags. The bidirectional encoding is shared
between both classifiers. In the modified ver-
sion (Kanerva et al., 2018), the second classifier is
used to jointly predict the language-specific POS
tags together with morphological features by sim-
ply concatenating the two input columns into one.
The syntactic analysis is based on a graph-based
parser by Dozat et al. (2017), a biaffine classi-
fier with MST decoder on top of a bidirectional
LSTM network. The lemmatizer component by
Kanerva et al. (2019) is a sequence-to-sequence
model, where the lemma is generated one charac-
ter at a time from the given input word form and
morphological features.

In the Turku parser pipeline, all these compo-
nents are wrapped into a single system. All com-
ponents directly supports training with CoNNL-U
formatted treebanks while being completely label
agnostic, thus not requiring the treebank to ac-
tually follow the UD guidelines and label sets.
Therefore, the parser can be trained on CRAFT
corpus as is. The Turku Parser was ranked sec-
ond on LAS and MLAS, and first on BLEX on the
CoNLL-2018 Shared Task, making it highly com-
petitive.

4.2 UDPipe

UDPipe5 (Straka and Straková, 2017) is an easily
trainable parsing pipeline including segmentation,
morphological tagging, lemmatization and syntac-
tic parsing. UDPipe has long been the “go-to” UD
parser and has also served as the organizers’ base-
line in the 2017 and 2018 CoNLL Shared Tasks
on Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Tokenization and sentence seg-
mentation is implemented jointly, using a single-
layer GRU network, predicting for each character
whether it is a sentence boundary, token bound-
ary, or token-internal. The tagger is an averaged
perceptron disambiguating from a set of candidate
analyses generated based on the last four charac-
ters of the word. Lemmatization is carried out by
generating a set of candidate lemma rules, each

5http://ufal.mff.cuni.cz/udpipe

of which produce a lemma by removing and pos-
sibly substituting characters from the word prefix
and suffix. As in tagging, an averaged perceptron
then disambiguates among the candidates. The de-
pendency parser is a transition-based parser with a
feed-forward neural network serving as the classi-
fier that decides on the next transition taken by the
parser.

4.3 Word vectors

For inducing new sets of word vectors, we used
the word2vec6 (Mikolov et al., 2013) and Fast-
Text7 (Joulin et al., 2016; Bojanowski et al., 2017)
tools. In brief, these tools generate a vector rep-
resentation for each token based on the similarity
of the contexts in which they appear in a large cor-
pus of unannotated text. Word vectors were in-
duced on texts extracted from PubMed abstracts
and PMC Open Access publications (Section 3.3)
using both the skip-gram and continuous bag-
of-words (CBOW) models implemented in both
tools. Model parameters were primarily kept at
their default values, but we performed a series of
experiments with different values of the window
parameter, which has been found to be particularly
impactful in previous work (Chiu et al., 2016).

4.4 Evaluation

The CRAFT SA shared task adopted the evalua-
tion metrics and evaluation implementation of the
CoNLL’18 shared task. In particular, performance
was evaluated in terms of the Labeled attachment
score (LAS), Morphology-aware labeled attach-
ment score (MLAS), and Bi-lexical dependency
score (BLEX) metrics, defined as follows (Zeman
et al., 2018):

LAS The percentage of nodes having correctly
assigned parent token, as well as correct type of
the dependency relation. All tokens are considered
in the evaluation, including also punctuation.

MLAS Similar to LAS, but with an additional
requirement of having also functional dependents
and certain morphological features predicted cor-
rectly. In addition the metric is calculated only
based on content bearing words discarding func-
tional words and punctuation. Thus, MLAS mea-
sures the percentage of content words having cor-
rectly assigned parent token, relation type, func-

6https://github.com/tmikolov/word2vec
7https://fasttext.cc/
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Parser Word vectors LAS
Turku Bio, word2vec/CBOW (window 2) 89.86
Turku Bio (CRAFT tokens), word2vec/CBOW (default parameters) 89.78
Turku Bio (CRAFT tokens), word2vec/CBOW (win2) 89.69
Turku Bio, word2vec/CBOW (default parameters) 89.55
Turku Bio, word2vec/CBOW (window 20) 89.73
Turku Bio, FastText/CBOW (default parameters) 89.50
Turku Bio, word2vec/skipgram (default parameters) 89.63
Turku CoNLL 89.27
UDPipe Bio, word2vec/CBOW (window 2) 85.00
UDPipe CoNLL 84.66
UDPipe Bio, word2vec/CBOW (default parameters) 84.22

Table 3: Development set results with different word vectors. CoNLL = baseline CoNLL shared task word vectors,
Bio = custom word vectors induced on PubMed and PMC articles, CRAFT tokens = input text tokenized with
model trained on CRAFT data. (For details on the word2vec and FastText tools, their CBOW and skipgram
models, and parameters, see Section 3.2)

tional dependents and certain morphological fea-
tures.

BLEX The proportion of correct relations be-
tween two content bearing words with an addi-
tional requirement that the lemma of the depen-
dent must be correct. Functional words and punc-
tuation tokens are discarded.

As LAS is the best established and most fre-
quently applied of these metrics, we focused on
optimizing this metric during development and
report results for experiments conducted during
development in terms of LAS only. For the fi-
nal three test set submissions, we provide re-
sults for the full set of metrics implemented in
the CoNLL evaluation script. In addition to the
three metrics above, this includes measures of to-
ken, sentence and word segmentation agreement
with gold (Tokens, Sentences and Words met-
rics), agreement of the universal (UPOS) and
language-specific (XPOS) part-of-speech tags and
morphological features (UFeats), the three previ-
ous together (AllTags), and agreement on lemmas
(Lemmas). We refer to Zeman et al. (2018) for
further details on these additional metrics.

We note that in the CRAFT test set evaluation,
performance for each metric was calculated as an
average of the results for the 30 test set documents,
rather than over the catenation of the documents as
in the CoNLL evaluation.

5 Results

During the development of our system, we consid-
ered a number of approaches in an iterative and in-
cremental process. In this section, we first present
the strategies we found effective, namely the use
of custom in-domain word vectors and data aug-

mentation. We then present the results from our
three test set submissions and an analysis of these
results using various additional metrics.

5.1 Word vectors

A simple but highly effective way to adapt ma-
chine learning systems that operate on vector rep-
resentations of words to new domains is to ini-
tialize them with word embeddings induced on
domain texts. We evaluated a variety of previ-
ously introduced and newly induced word embed-
dings in this way (see above) using both the Turku
and UDPipe parsers, and summarize results for
notable baseline vectors and selected in-domain
word vectors in Table 3.

We find that using the general out-of-domain
CoNLL word vectors, the parsers already achieve
high baseline LAS scores, 84.66% for UDPipe
and 89.27% for our primary, Turku system. In
our limited experiments with UDPipe we found
somewhat mixed results from the use of custom
biomedical domain word vectors. For the Turku
parser, a number of the in-domain word embed-
dings did prove effective, with the best-performing
combination of data preprocessing, model and pa-
rameters achieving a LAS of 89.86%, a 5% rel-
ative reduction in LAS error from the CoNLL
word vector baseline. Regarding the alternative
settings for inducing word vectors, we broadly
found CBOW to be more effective than the skip-
gram model and small windows to be more effec-
tive than either default parameters or large win-
dows. We did not see an advantage of FastText
over word2vec vectors and conducted the major-
ity of our experiments with the latter tool.

Two of the runs submitted for the final evalua-
tion used settings from these experiments, namely
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Parser Word vectors Extra data (size, source) LAS
Turku Bio, word2vec/CBOW (window 2) 4k sentences, PMC 89.92
Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC and PubMed 89.87
Turku Bio, word2vec/CBOW (window 2) 6k sentences, PubMed 89.78
Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC 89.84
Turku Bio, word2vec/CBOW (window 2) 20k sentences, PMC 89.41

Table 4: Development set results with extra training data

Bio, word2vec/CBOW (window 2) and CRAFT
tokenized, word2vec/CBOW (default parameters).

5.2 Training data augmentation

After identifying the word vectors that achieved
the highest LAS score for this data, we imple-
mented and evaluated multiple techniques to in-
crease the number of training examples beyond
the given training data. Most of the approaches
we considered failed to improve on performance,
largely due to incompatibilities in annotation (see
Section 6.1), but we found limited success with a
co-training approach (Blum and Mitchell, 1998).

Specifically, we first used the best Turku and
UDPipe parser models introduced in our previous
experiments to analyze a large sample of unanno-
tated text from PubMed abstracts and PMC full
text articles. We then compared the results to
identify sentences that are identically segmented
and tokenized and given identical syntactic analy-
ses (heads and dependency relations) by the two
systems. We then created random samples of
varying sources and sizes from this data, generat-
ing comparatively high-quality automatically an-
notated additional training data. This data was
combined with the original CRAFT training data
to create an extended training set that was then
used to create a new model with the Turku parser.
We present a selection of development results
from this setting in Table 4.

While we achieved some minor improvements
in some of the experiments, the co-training ap-
proach did not improve the performance as system
as much as could be hoped based on e.g. the ef-
fectiveness of self-training for parsing (McClosky
et al., 2006). There may be a number of reasons
for the limited effectiveness of our approach, po-
tentially including sub-domain mismatch between
our unlimited samples of PubMed and PMC doc-
uments and the comparatively narrow and focused
domain of CRAFT texts. We nevertheless chose to
include the model with the best result in these ex-
periments with 4k sentences, PMC as extra train-
ing data to include in our final submissions.

5.3 Test set results

The properties of the three runs we submitted to
the task are summarized in Table 5 together with
their development and test set LAS scores. We
find that test set performance closely follows the
results of development experiments, producing the
same ranking of the three runs as well as results
within 0.3% points of the development results in
all three cases.

As expected on the basis of the development ex-
periments, the two runs without extra training data
are highly competitive, and augmenting the train-
ing data via co-training while keeping the word
vectors constant provides only a modest benefit.
Nevertheless, the run that combined custom in-
domain word vectors and co-training to adapt the
Turku parser to biomedical text achieved the high-
est performance not only among our runs but also
out of all six runs submitted to the task.

5.4 Analysis of final results

Table 6 provides a detailed look at the perfor-
mance of our three final submissions using all met-
rics implemented in the CoNLL 2018 shared task
evaluation script (see Section 4.4). All of the met-
rics are averaged F1 scores across all 30 test files.

We find very similar results across all three runs.
Segmentation performance is acceptable for sen-
tence splitting (over 97.5%) and very high for tok-
enization (over 99.5%), indicating limited remain-
ing benefit from further focus on identifying sen-
tence and token boundaries. Part-of-speech tags
(UPOS and XPOS) as well as morphological fea-
tures are each assigned at a high level of consis-
tency (approx9̇8% each), and lemmas are correctly
identified in approx. 99% of cases, indicating that
the parser is well adapted to the challenges of
specialized biomedical domain terminology. The
only metrics showing notable remaining room for
improvement are dependency-based (last five rows
in Table 6). The relatively close results for the
unlabeled and labeled attachment score metrics
(UAS and LAS) indicate that the identification of
the correct dependency relation is not a key factor
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Parser Word vectors Extra data LAS(dev) LAS(test)
Turku Bio, word2vec/CBOW (window 2) 4k sentences, pmcoa articles 89.92 89.695
Turku Bio, word2vec/CBOW (window 2) No 89.86 89.650
Turku Bio (CRAFT tokens), word2vec/CBOW (defaults) No 89.78 89.536

Table 5: Final submission results on test data

Metrics Run 1 Run 2 Run 3
Tokens 99.593 99.555 99.593
Sentences 97.590 97.621 97.590
Words 99.593 99.555 99.593
UPOS 98.221 98.179 98.184
XPOS 97.806 97.758 97.789
UFeats 98.282 98.233 98.265
AllTags 97.752 97.718 97.729
Lemmas 98.999 98.981 99.048
UAS 90.942 90.882 90.794
LAS 89.695 89.650 89.536
CLAS 87.373 87.294 87.201
MLAS 85.549 85.441 85.318
BLEX 86.630 86.595 86.544

Table 6: Final submission test results for all metrics

limiting the performance of the parser, and that the
remaining challenges for substantially advancing
the performance of the system lie specifically in
more accurately recovering the dependency struc-
ture of the sentences.

6 Discussion

In the following, we briefly discuss a number of
ideas we considered that failed to improve on the
performance of the parser and address the relation-
ship between the CRAFT SA task data and Uni-
versal Dependencies.

6.1 What did not work
During the relatively brief development period for
participating in the shared task, we considered
a number of variants and potential extensions of
our approach that failed to improve on the perfor-
mance of the system. Although these were not
developed and evaluated with the rigor required
to report full experimental results, we summarize
some of these ideas here in the hope that they may
help others in their work.

Corpus combinations As the CRAFT depen-
dency annotations were created by automatic con-
version from PTB source, we considered the pos-
sibility of combining the task training data with
additional similarly converted annotations. We

performed several preliminary experiments con-
verting the PTB Wall Street Journal section (Mar-
cus et al., 1994) and the original GENIA treebank
data (Tateisi et al., 2005) as well as a version of the
GENIA treebank that as previously converted us-
ing the Stanford Dependency Converter.8 The re-
sults of these experiments were disappointing; ini-
tial single-corpus experiments using the converted
data failed to reach the expected level of perfor-
mance, and all combinations of this data with
CRAFT data resulted in decreased performance.
We also initially considered attempting combina-
tions with English corpora from the Universal De-
pendencies collection, but abandoned this idea due
to incompatibilities in the representations (see be-
low).

Entity mentions As the CRAFT corpus anno-
tation integrates not only syntactic but also entity
mention (or concept) annotation, there is an op-
portunity to integrate information on named enti-
ties and related concepts into the parsing process.9

Briefly, the intuition is that a model that has in-
formation on which tokens are e.g. part of chemi-
cal or species names could better parse their men-
tions and associated text. To explore this idea, we
converted the CRAFT concept annotation into a
token-level begin-in-out (BIO) representation us-
ing custom tools, and appended these annotations
into the XPOS column of the CoNLL-U data, cre-
ating merged POS and entity tags. We then trained
on this data, creating joint models that integrate
dependency parsing and entity mention informa-
tion. However, the performance of these models
was mixed, with minimal improvements in few
cases and a reduction in LAS in others, and we
chose not to pursue the idea further.

Previously introduced in-domain word embed-
dings Throughout development, we evaluated
many word vectors, including both previously in-
troduced and newly induced as well as biomedi-
cal domain and out-of-domain embeddings. The

8https://github.com/allenai/
genia-dependency-trees

9This idea was also advanced by the organizers in the
CRAFT SA task description.
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general pattern we found was the vectors intro-
duced for the CoNLL shared task represented a
very strong baseline, and many in-domain word
vectors previously made available by the biomedi-
cal NLP community (including ones previously in-
troduced by some of the authors) failed to improve
on the results achieved with these vectors. We
were only consistently able to improve over the
CoNLL word vector baseline by newly inducing
custom in-domain word vectors for the parser. We
attribute some of this effect to the differences in
the dimensionality of previously introduced vec-
tors: although the parser can be configured to ac-
cept vectors of any size, some part of its devel-
opment may have specifically optimized for the
100-dimensional CoNLL word vectors. It is also
likely that part of the effect is explained by the
presence of non-ASCII characters in the CRAFT
data, as many in-domain word vectors were cre-
ated on texts specifically mapped to ASCII as a
pre-processing step.

6.2 CRAFT and Universal Dependencies

Universal Dependencies have become the de facto
standard representation for computational depen-
dency parsing, and the UD repository10, contain-
ing over 100 UD treebanks covering more than
70 languages as of this writing, is a key interface
connecting corpus creators and researchers work-
ing on parsing technology. There are several po-
tential benefits to a biomedical domain UD cor-
pus, especially the potential for combining exist-
ing English resources and domain transfer tech-
niques. However, the CRAFT Structural Annota-
tion shared task dataset differs from UD standards
and conventions on a number of points, hindering
its adoption as a UD resource.

Most obviously, despite being provided in the
CoNLL-U format, the CRAFT data does not fully
adopt UD types and annotation conventions. As
noted above, the dependency relation types are
drawn from a predecessor of UD, Stanford de-
pendencies (SD), and the dependency annotation
similarly follows SD rather than UD conventions.
While the SD and UD representations are quite
similar in many ways, they differ systematically
in particular in that UD emphasizes content words
over function words (see also Figure 1) and di-
verge in many details of the representation.

We also noted that the lemmas in the CRAFT
10https://universaldependencies.org/

data don’t always correspond to the canonical (or
base) forms of the words. In addition to numbers
expressed as digits all having the lemma value “0”,
spelled-out cardinal numbers (e.g. “one”) have
the value “#crd#” in place of a lemma, ordinal
numbers (e.g. “first”) have “#ord#”, and hyper-
links (e.g. “http://www.ncbi.nlm.nih.gov/”) have
“#hlink#”. These exceptions are not part of UD
and contrary to the representation of lemmas in ex-
isting English UD resources.

Based on our experience with the SD and
UD representations and in creating UD corpora
by conversion from other formats, we believe it
should be possible to automatically convert the
present CRAFT corpus annotations into a full
UD representation using a combination of existing
tools and some deterministic mappings addressing
issues specific to this data. Such conversion would
allow the inclusion of the corpus in the UD repos-
itory, increasing the availability of biomedical En-
glish training data to the parsing community.

7 Conclusions

In this paper, we have presented the approach of
the TurkuNLP team to the CRAFT SA depen-
dency parsing shared task. Building on the ba-
sis of the Turku neural parser and UDPipe, we
considered a number of modifications and adapta-
tions to better address the full-text biomedical do-
main articles of the task, including the induction
of custom word vectors and the extension of the
training data with additional automatically parsed
data. Experiments showed the Turku parser to
clearly outperform the UDPipe baseline at the task
and demonstrated that initializing the parser with
custom in-domain word vectors could further im-
prove on its strong off-the-shelf performance. Our
adapted version of the Turku parser achieved the
highest result on the test set of the shared task with
a labeled attachment score of 89.7%.

All of the tools and resources applied in this
work, as well as the newly trained parsing mod-
els, are made available under open licenses.
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Abstract

BioNLP Open Shared Tasks (BioNLP-OST) is
an international competition organized to fa-
cilitate development and sharing of computa-
tional tasks of biomedical text mining and so-
lutions to them. For BioNLP-OST 2019, we
introduced a new mental health informatics
task called “RDoC Task”, which is composed
of two subtasks: information retrieval and
sentence extraction through National Institutes
of Mental Health’s Research Domain Criteria
framework. Five and four teams around the
world participated in the two tasks, respec-
tively. According to the performance on the
two tasks, we observe that there is room for
improvement for text mining on brain research
and mental illness.

1 Introduction and Motivation

The breadth of brain research is too expansive to
be effectively curated without computational tools
especially involving machine learning models. For
example, a Pubmed search for “Brain” on August
12, 2019, revealed 854,612 articles1. More specif-
ically, an August 12, 2019 search for the single
mental illness diagnosis of “depression” revealed
530,519 articles2. And a search for anxiety re-
vealed 224,305 articles3. It is not possible for re-
searchers to functionally analyze all of the criti-
cal data patterns both within a single diagnosis or
across diagnoses that could be revealed by those
articles.

The challenge of curating brain research has
been further complicated by the National Institute
of Mental Health’s adoption of the Research Do-
main Criteria (RDoC) [6]. Since 1952, the Diag-
nostic and Statistical Manual of Mental Disorders

1Pubmed search for Brain conducted on August 12, 2019
2Pubmed search for depression conducted on August 12,

2019
3Pubmed search for anxiety conducted on August 12,

2019

and International Classification of Diseases [5]
(popularly known as DSM and ICD, respectively),
have “reigned supreme” as the single “overarch-
ing model of psychiatric classification” [14]. That
supremacy began to crumble in 2010 when the
National Institute of Mental Health launched the
RDoC initiative, an alternate framework to con-
ceptually organize and direct biological research
on mental disorders [1]. The RDoC initiative in-
tends “to foster integration not only of psychologi-
cal and biological measures but also of the psycho-
logical and biological constructs those measures
measure” [13].

The RDoC initiative has fostered significant de-
bate among brain health researchers. It has also
created a significant categorization challenge -
specifically how to curate articles completed under
the DSM-ICD criteria so their data can be incorpo-
rated into the RDoC model. Brain science cannot
afford to lose critical insights from the numerous
articles on different sides of the categorization di-
vide. Hence, it is vital that all existing and fu-
ture biomedical literature related to brain research
is correctly categorized with respect to the RDoC
terminology in addition to DSM-ICD models.

However, manual curation of brain research ar-
ticles using RDoC terminology by human anno-
tators can be highly resource-consuming due to
several reasons. RDoC framework is comprehen-
sive and complex. It is made up six major do-
mains of human functioning, which is further bro-
ken down to multiple constructs that comprise dif-
ferent aspects of the overall range of functions4.
The RDoC matrix helps describe these constructs
using several units of analysis such as molecules
and circuits. On top of this, the rate of publication
of biomedical literature (and by extension brain re-

4https://www.nimh.nih.gov/research/research-funded-
by-nimh/rdoc/definitions-of-the-rdoc-domains-and-
constructs.shtml
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search related literature) is growing at an exponen-
tial rate [10]. This means that the gap between an-
notated versus unannotated articles will continue
to grow at an alarming rate unless more efficient
means of automated annotation is developed soon.

In order to invite text mining teams around the
world to develop informatics models for RDoC,
we introduced the RDoC Task5 at this years’
BioNLP-OST 2019 workshop6. RDoC task is a
combination of two subtasks focusing on a subset
of RDoC constructs: (a) Task 1 (RDoC-IR) - re-
trieving PubMed Abstracts related to RDoC con-
structs, and (b) Task 2 (RDoC-SE) - extracting the
most relevant sentence for a given RDoC construct
from a known relevant abstract. Both these tasks
represent two very important steps of the typical
triage process [10], which are finding the articles
related to RDoC constructs and then extracting a
specific snippet of information that is useful for
curation or downstream tasks such as automatic
text summarization [15].

There have been several shared tasks on text
mining from biomedical literature and clinical
notes in the last decade [19, 12] as well as a
few shared tasks related to mental health top-
ics ([4, 18, 22, 21, 30]). CLPsych 2015 Shared
Task [4] focused on identifying depression and
PTSD users from twitter data, while the same
task from the following year (i.e. CLPsych 2016
Shared Task [18]) revolved around classifying the
severity of peer support forum posts. One of the
i2b27 challenges from 2011 focused on the senti-
ment analysis of suicide notes [22, 21].

In 2017, Uzuner et al. introduced the “The
RDoC for Psychiatry” challenge, which was com-
posed of three tracks: de-identification of men-
tal health records [28], determination of symp-
tom severity from a psychiatric evaluation of a pa-
tient) related to one of the RDoC domains) [9],
and the use of mental health records released
through the challenge for answering novel ques-
tions [32, 29, 7]. In contrast, the RDoC task is
a combination of information retrieval and sen-
tence extraction from Biomedical literature related
to RDoC constructs.

To generate benchmark data for the RDoC task,
three annotators were used to curate the gold-
standard datasets. The registration for the RDoC

5https://sites.google.com/view/rdoc-task/home
6http://2019.bionlp-ost.org
7https://www.i2b2.org/

Task opened in March of 2019. Over 30 teams
around the world registered for the two tasks.
Training data in two batches were released in the
month of April. Test data, again in two batches,
were released in June. The participants were asked
to submit their final predictions by June 19. Even-
tually, 4 and 5 groups each competed in Tasks 1
and 2, respectively. The final results were made
public immediately after the submission deadline.

Two (out of four) and four (out of five) teams
each outperformed the baseline methods in task 1
and 2, respectively. The increase in performance
over the baselines were more noticeable in task
2 suggesting that information retrieval for RDoC
task may be more challenging. There was quite a
lot of variation across the several RDoC constructs
used for the tasks suggesting that the complexity
of different constructs may hinder certain models
and construct-specific methods or models may be
a requirement in the future. Overall observations
from the RDoC Task highlights the need for more
sophisticated method development.

The rest of the paper is organized as fol-
lows. Section 2 describes the benchmark or gold-
standard data preparation process, development of
training and test sets, submission requirements,
baseline methods used by the organizers, and the
performance measures used for the evaluation.
Section 3 presents and discusses the overall results
for the two tasks. Finally, Section 4 summarizes
the task findings as well as describes the potential
future work.

2 RDoC Task setup

RDoC Task is a combination of two subtasks. Par-
ticipants were allowed to choose to participate in
one or both tasks. Task 1 is on retrieving PubMed
Abstracts related to RDoC constructs, while Task
2 is on extracting the most relevant sentences for
an RDoC construct from an already relevant ab-
stract.

In task 1, participants are given a set of PubMed
abstracts and they are required to rank abstracts ac-
cording to relevance for various RDoC constructs.
In task 2, participants are given a set of PubMed
abstracts relevant for an RDoC construct, and they
are required to extract the most relevant sentence
from each abstract for the corresponding RDoC
construct.
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2.1 Timeline

The RDoC Task was organized in two main phases
(a) Training phase (8 weeks, from April-June
2019), and (b) Evaluation phase (1 week in mid-
June). At the beginning of the training phase,
participants were provided with labeled data (i.e.
Training data) and they were expected to develop
and fine-tune their models using these known la-
bels. At the beginning of the Evaluation phase,
unlabeled data (i.e. Test data) was made available
to the participants. They were required to predict
labels for this data and submit the predictions to
the organizers at the end of the Evaluation phase.
Finally, the organizers used the (with-held) labels
of the test data for evaluating the accuracy of sub-
missions.

2.2 The benchmark preparation

For the RDoC Task, 8 RDoC constructs out of
25 total constructs from the latest version of the
RDoC matrix8 were used. The motivation was to
restrict ourselves to a subset of RDoC framework
for which benchmark data can be gathered within
a reasonable time-frame. However, these 8 con-
structs completely cover two of the six domains in
the RDoC framework – namely Negative Valence
Systems and Arousal and Regulatory Systems as
shown in Table 1.

Table 1: Subset of RDoC constructs used for this task
and their domain.

Domain Construct

Negative Valence Acute Threat (Fear)
Systems Potential Threat (Anxiety)

Frustrative Nonreward
Sustained Threat
Loss

Arousal/Regulatory Arousal
Systems Circadian Rhythms

Sleep and Wakefulness

Under the guidance of the Subject Matter Ex-
perts from the National Alliance of Mental Ill-
ness (NAMI) Montana, the RDoC task benchmark
was created by using Entrez e-search utility [26]
to search the PubMed database to collect abstracts
related to RDoC constructs. That is, we start by

8https://www.nimh.nih.gov/research/research-funded-by-
nimh/rdoc/constructs/rdoc-matrix.shtml

using the RDoC construct name as the only key-
word to retrieve relevant articles.

If such an approach does not generate the de-
sired number of articles or is too ambiguous on its
own (e.g., Loss construct), we have utilized terms
from the Behaviors unit of the RDoC matrix in ad-
dition to the construct name.

For example, the The query used for
Loss construct was “Loss”“Amotivation”
or “Loss”“Anhedonia” or “Loss”“Crying”
or “Loss”“Guilt” or “Loss”“Rumination”
or “Loss”“Sadness” or “Loss”“Shame” or
“Loss”“Withdrawal” or “Loss”“Worry”. This
retrieves about 315 articles, whereas using only
“Loss” as the sole query retrieves too many
articles (approximately one million articles).

Other queries follow a similar format as Loss
when very few (<200) or too many (>10,000)
articles were retrieved with the RDoC construct
name as the only keyword. 200 abstracts was
the desired minimum number of abstracts per con-
struct that we were planning to send to each an-
notator. So, if the initial search retrieved less ar-
ticles, it was deemed too narrow for our objec-
tive, and we added terms from the Behavior ele-
ments belonging to that construct to retrieve more
than 200 articles. For example, for the construct
Frustrative Nonreward, a PubMed search with the
construct name only returns 52 abstracts (retrieved
on 09/30/2019)9. The RDoC page for Frustrative
Nonreward contains one element under the Behav-
ior unit: “physical and relational aggression”10.
Then, using this term, the search query becomes:
“Frustrative Nonreward” or “physical aggression”
or “relational aggression”, which returns 736 ab-
stracts.

10,000 was a rough estimation of an excessively
inclusive search term as determined by our Sub-
ject Matter Expert. In other words, the construct
name on its own (construct Loss, for example) has
a very general definition, resulting in retrieving
a large heterogeneous set of articles. Therefore,
in these situations, other more specific terms de-
scribing the construct were used to limit the scope.
Upon generating a search query that retrieves a
satisfactory number of articles, we sort them by
relevance to the query used.

Then the above-retrieved articles were provided

9https://www.ncbi.nlm.nih.gov/pubmed/?term=Frustrativ
e+Nonreward

10https://www.nimh.nih.gov/research/research-funded-by-
nimh/rdoc/constructs/frustrative-nonreward.shtml
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to three annotators for curation (an example of the
annotation guidelines used is available online11).
For each construct, they were asked to read the ti-
tle and the abstract and determine whether it pro-
vides enough evidence that the abstract was re-
lated to the construct. If it was related it was
annotated as “positive” (or “negative” otherwise).
In addition, they were asked to identify up to 3
most relevant sentences to the abstract (i.e. the
sentences that provide most evidence that the ab-
stract is related to the said construct). The inter-
annotator agreements are given in Table 2. Ex-
ample annotation of an abstract is depicted in Fig-
ure 1.

While acknowledging we generated a closed set
of articles for the information retrieval task, we
emphasize that this complete process was guided
by NAMI experts. They typically use keyword
search for first finding relevant articles. Then
they use manual curation to remove false positives.
Hence, our benchmark datasets are developed us-
ing this approach. We wanted the RDoC Task to
resemble how a typical curator would find infor-
mation in this domain.

Table 2: Inter-annotator agreement of Task 1 and Task
2. κfree: Free-Marginal Multirater Kappa [24] com-
puted online12

RDoC Construct
κfree κfree
Task 1 Task 2

Acute Threat 0.37 0.24
Potential Threat 0.45 0.27
Frustrative Nonreward 0.24 0.20
Sustained Threat 0.18 0.14
Loss 0.25 0.29

Arousal 0.64 0.35
Circadian Rhythms 0.95 0.35
Sleep & Wakefulness 0.97 0.51

We consolidated the labels from the three an-
notators using the majority vote (i.e. if at least 2
annotators agreed on a label, that was used as the
final label for the abstract). In addition, we col-
lected all the most relevant sentences by the three
annotators (i.e. set union) as the final set of sen-
tences. This means each abstract could have up
to 9 most relevant sentences. In our dataset, at
most 6 sentences were observed. This consoli-

11https://montana.box.com/s/kh0hmyn1jcj5ajvr2nibq4iw
wgiv3led

dated data was used to create training and test sets
as described below.

We believe that the task of identifying the most
relevant sentence was more challenging for the
annotators than the task of identifying whether a
given abstract was related to an RDoC construct
or not (for the latter task, annotators were choosing
between two labels while for the former, they were
choosing from k sentences in the abstract). There-
fore, it was possible that there would be more vari-
ability in annotations for the former task. So, we
used the set union to allow for more flexibility.

2.3 Train, Test and Submission data

In the context of the RDoC task, training data
refers to the labeled data sets initially provided to
the participants for developing their models. Test
sets refer to the unlabeled (i.e. with withheld la-
bels) data sets for which they were asked to submit
predictions. All the datasets are available online13.

For each construct, two separate sets of articles
(referred to as Set 1 and Set 2) were annotated.
Data from the Set 1 and Set 2 were allocated for
training and test data, respectively. Annotators
were not aware of this distinction. Set 1 and Set
2 splits were randomly performed per each con-
struct separately before annotation. Therefore, ex-
plicit stratified sampling was not applicable.

For each construct, a random subset of positive
examples from Set 1 was used as the training ex-
amples for both Task 1 and 2 (negative examples
were not provided). 80% of random abstracts from
Set 2 were used as the test set for Task 1 (this in-
cluded both positive and negative examples). The
subset of positive examples in the rest of the Set
2 (i.e. 20%) was used as the test set for Task 2
(negative examples were not used).

2.3.1 Train data
As mentioned above, we provided the participants
of the RDoC task with training examples for each
of these 8 RDoC constructs. For task 1, the train-
ing examples are randomly selected subsets of
positive abstracts for each of the RDoC constructs
as shown in Table 3. For task 2, we provided up
to 6 most relevant sentences for each of the ab-
stract provided as part of Task 1 train data. In other
words, the same set of PubMed IDs were used for
training data of both tasks. The distribution of
the training examples across the eight constructs is

13https://www.cs.montana.edu/rdoc-task/data/
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Title: Characteris�cs of Physical Aggression in Children of Immigrant Mothers 
and Non-immigrant Mothers: A Cross-Sec�onal Analysis of the Survey of Young 
Canadians. 

Abstract: Physical aggression (PA) is important to regulate as early as the 
preschool years in order to ensure healthy development of children. This study 
aims to determine the prevalence and characteris�cs of PA in children of 
immigrant and non-immigrant mothers. Bivariate and mul�variable logis�c 
regression was performed, with the outcome, PA, and covariates including 
maternal, child, household and neighbourhood characteris�cs. Twenty percent 
of children of non-immigrant mothers and 16% of children of immigrant mothers 
reported PA. The characteris�cs of PA differ between children of immigrant 
versus non-immigrant mothers therefore healthcare providers, policy makers, 
and researchers should be mindful to address PA in these two groups separately, 
and find ways to tailor current recommended coping strategies and teach 
children alterna�ve ways to solve problems based on their needs. 

RDoC Construct: Sustained Threat

This study 
aims to determine the prevalence and characteris�cs of PA in children of 
immigrant and non-immigrant mothers.

RDoC Construct: Sustained Threat

Figure 1: An example of annotating an abstract for both Task 1 and Task 2. The abstract is annotated positive for
Sustained Threat (Task 1; highlighted in purple) and the most relevant sentence in the abstract is identified (Task
2; highlighted in yellow).

provided in the Table 3 and the distribution of the
number of most relevant sentences per construct is
shown in Table 4.

Table 3: The number of training examples (positively
labeled abstracts) provided for Tasks 1 and 2 across
constructs.

RDoC construct # Abstracts %

Acute Threat (Fear) 39 14.7
Potential Threat (Anxiety) 27 10.2
Frustrative Nonreward 21 7.9
Sustained Threat 18 6.8
Loss 28 10.5

Arousal 38 14.3
Circadian Rhythms 47 17.7
Sleep and Wakefulness 48 18.1

Total 266 100.0

2.3.2 Test data
The Task 1 test set provided the participants with
a random list of 999 relevant (positive) and irrele-
vant articles (negative) for each of the RDoC con-
structs (but without the actual labels). The label
distribution is given in Table 5. The task 2 test
set provided the participants with a list of relevant
articles from which they had to extract a relevant
sentence with respect to the given RDoC category.
The set of abstracts used for test sets of task 1 and

2 were mutually independent for obvious reasons.
The distribution of the test set for task 2 across
constructs is shown in Table 6 and the distribution
of the number of most relevant sentences per con-
struct is provided in Table 4.

2.3.3 Participant Submissions
For task 1, participants were required to submit
scores for each abstract in the test set. Scores
should correspond to the predicted relevance of the
abstract to the given construct. For task 2, partici-
pants were required to submit sentences from each
abstract that is predicted as the most relevant sen-
tence to the given construct. Submitting a score
was not required.

Participants uploaded their submissions through
an online web application14. We designed the web
system to validate the content format of each sub-
mission before uploading the file(s) in the server.
Upon finding a line that is not properly formatted,
the system alerts the participant with an error mes-
sage including the ill-formatted line number. If the
file(s) are properly formatted, the system uploads
the submission in the server, automatically ana-
lyzes the submission using python scripts and im-
mediately reports the scores of two selected con-
structs, Acute Threat (Fear) and Loss, back to the
participant.

The participants were allowed to make an un-

14https://www.cs.montana.edu/rdoc-task/
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Table 4: Distribution of the number of most relevant (gold-standard) sentences in abstracts for each construct in
the training data. #x: the percentage of abstracts with x relevant sentences.

RDoC Construct
Train Data Test Data

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4

Acute Threat (Fear) 0.0 15.4 35.9 35.9 10.3 2.6 15.8 31.6 42.1 10.5
Potential Threat (Anxiety) 11.1 33.3 55.6 0.0 0.0 0.0 38.2 35.3 20.6 5.9
Frustrative Nonreward 4.8 47.6 47.6 0.0 0.0 0.0 54.3 37.1 8.6 0.0
Sustained Threat 5.6 61.1 33.3 0.0 0.0 0.0 38.9 41.7 16.7 2.8
Loss 10.7 25.0 42.9 21.4 0.0 0.0 61.8 32.4 5.9 0.0

Arousal 7.9 63.2 28.9 0.0 0.0 0.0 23.1 53.8 15.4 7.7
Circadian Rhythms 2.1 51.1 46.8 0.0 0.0 0.0 20.0 40.0 26.7 13.3
Sleep and Wakefulness 10.4 62.5 27.1 0.0 0.0 0.0 26.7 36.7 30.0 6.7

Table 5: The number of abstracts in test set for task
1. Pos and %: number of positively labeled abstracts
and their percentages, and Neg: number of negatively
labeled abstracts.

RDoC construct # Pos % # Neg

Acute Threat (Fear) 53 67.1 26
Potential Threat (Anxiety) 124 89.2 15
Frustrative Nonreward 96 66.7 48
Sustained Threat 82 56.2 64
Loss 90 65.2 48

Arousal 97 89.8 11
Circadian Rhythms 123 100.0 0
Sleep and Wakefulness 121 99.2 1

Total 786 78.7 213

limited number of submissions and the scores
from past submissions were discarded upon a new
submission. This meant they could re-submit until
they achieved a satisfactory performance for the
above two constructs. The performance scores
for all the constructs were made available imme-
diately after the submission deadline. The older
scores were only discarded for the purposes of the
final evaluation. However, these scores are re-
tained for potential future research.

2.4 Baseline methods

We used TF-IDF [23] with smooth IDF weights
and cosine similarity [27] to calculate the similar-
ity score for each document against a query and
used these scores to rank the documents by rele-
vance. Regardless of the task, we used the cor-
responding construct name concatenated with its
definition as the query string. We used the def-

Table 6: The number of abstracts and their percentages
in test set for task 2.

RDoC construct # Abstracts %

Acute Threat (Fear) 19 7.8
Potential Threat (Anxiety) 34 13.9
Frustrative Nonreward 35 14.3
Sustained Threat 36 14.8
Loss 34 13.9

Arousal 26 10.7
Circadian Rhythms 30 12.3
Sleep and Wakefulness 30 12.3

Total 244 100.0

initions of constructs as defined by the National
Institute of Mental Health listed online15.

For task 1, each document is the title concate-
nated with the corresponding abstract and the sim-
ilarity scores are used to rank the articles for each
construct. For task 2, documents are the sen-
tences of the abstracts and the top-ranked sentence
per abstract was returned based on the similarity
scores. All the baseline models were implemented
using the Scikit-learn Python library [20]. No pre-
processing techniques were applied to the abstract
text. In addition to the above TFIDF-based base-
line, we also used BM25 [25] as a baseline. But
due to its comparatively lower performance on
both tasks 1 and 2, BM25 values are not reported
in this paper.

15https://www.nimh.nih.gov/research/research-funded-
by-nimh/rdoc/definitions-of-the-rdoc-domains-and-
constructs.shtml
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2.5 Metrics used for evaluation

For task 1, we use Mean Average Precision
(MAP) [16] as the performance measure because
it is one of the most frequently used measures for
IR [31, 8, 11]. First, we compute the Average
Precision (AP) for each construct independently
and macro-average across the constructs to com-
pute the Mean Average Precision. For task 2, due
to the non-applicability of utilizing popular stan-
dard measures such as precision and recall [3], we
define the Accuracy as the percentage of abstracts
with correctly predicted most relevant sentence. If
at least one of the gold-standard sentences match
the predicted sentence, it is counted as 1 and 0 oth-
erwise (therefore, note that this measure is not the
same as the typical accuracy measure used in Nat-
ural Language Processing and Machine Learning.
We average across constructs to get the Macro Av-
erage Accuracy.

It should be pointed out that, technically, there
is no “negative” class for the task 2 (in the tra-
ditional sense used for predictive models). Par-
ticipants are given abstracts already known to be
relevant to a construct. They are asked to sub-
mit just one sentence that they think is the most
relevant (or that helps them the most for finding
the relevance between the given abstract and the
construct). Hence the participants are unable to
gain undue advantages due to any class imbalances
even though the above-defined performance mea-
sure may closely resemble the typical “Accuracy”.
Also, since we did not collect confidence scores
for task 2, we did not compute threshold indepen-
dent measures such as AUROC (area under the
ROC curve).

3 Results and Discussion

Inter-annotator agreements for many of the con-
structs in both tasks 1 and 2 are relatively low (see
table 2). According to the annotators, there were
several reasons why information retrieval and sen-
tence extraction with RDoC was reasonably chal-
lenging. The very generalized nature of the RDoC
constructs, as well as ambiguity in the language
stating the purpose/hypothesis/results of the ex-
periment, made it difficult to find the relevance of
a given abstract to an RDoC construct. The way
the abstracts were written, made it seem such that
it could be potentially tied to/or not, to various
RDoC sentences.

Annotators reported that they had difficulties

with the ‘Sustained Threat’ and the ‘Frustrative
Non-Reward’ constructs. For example, some an-
notators felt that every abstract that they read was
related to Frustrative Non-Reward construct be-
cause many of the abstracts specifically studied the
relational and physical aggressive behaviors. Al-
though a lot of the studies tested these behaviors,
it was challenging to figure out if they were “di-
rectly” related to Frustrative Non-Reward or not.
For instance, several studies comparatively tested
relational and physical aggression between gen-
ders (2 behaviors of Frustrative Non-Reward), but
the abstracts didn’t explicitly mention “withdrawal
or prevention” of a reward (the definition). There-
fore, when annotating, if they’ve felt that the re-
search would benefit or help further understand
Frustrative Non-Reward and its associated behav-
iors, they’ve annotated it as related (this included
environmental, social, and biological factors influ-
encing relational and physical aggression).

Over thirty teams registered to participate in at
least one of the RDoC tasks. Eventually, 5 teams
submitted their predictions; four teams submitted
for both tasks and one team for only task 1. In the
following analysis, we will be using the unique
team identifiers (assigned during the task regis-
tration16) for referring to the 5 teams. Note that
these team identifiers bear no significance other
than identifying different teams.

3.1 Task 1: Information Retrieval

Four teams submitted their predictions for this task
and their scores are reported in Table 7. Bold en-
tries indicate the highest score for the correspond-
ing construct. Although included in Table 7, we
excluded the two constructs, Circadian Rhythms
and Sleep and Wakefulness, from the final anal-
ysis since these constructs contain one and zero
negative articles, respectively, leading to perfect
performance (see Table 5). Team 30 achieved the
highest mean average precision (0.86) among all
teams. Though Team 10 achieved the second-
highest mean average precision (0.85) that is very
close to the highest, we found a statistically sig-
nificant difference between the scores of these
two teams (paired t-test, p=0.005, α = 0.05).
Team 30 achieved the highest scores for Frustra-
tive Nonreward, Loss and Potential Threat (Anxi-
ety) whereas Team 10 achieved the highest scores
for the other three constructs. Though it seems the

16https://sites.google.com/view/rdoc-task/registration
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scores achieved by the Team 10 and 30 is close
to the baseline, we found these scores to be sta-
tistically significantly higher from the baseline for
both Team 10 (paired t-test, p=0.022) and Team
30 (paired t-test, p=0.043) using α = 0.05.

The last column in Table 7 reports the aver-
age score for the corresponding construct. It is
seemingly easier to rank the relevant articles for
Arousal and Potential Threat (Anxiety) whereas it
is moderately difficult for Sustained Threat. Sus-
tained Threat being more challenging for IR may
be explained by the fact that the annotators also
found it to be the most challenging construct for
task 1 annotation.

3.2 Task 2: Sentence Extraction

Five teams submitted their predictions for this task
and their scores are reported in Table 8. Bold en-
tries indicate the highest score for the correspond-
ing construct. Team 30 again achieved the high-
est macro average accuracy (0.58) among all the
teams and the highest score for five out of eight
constructs. Team 7 achieved the highest score for
the rest of the three constructs with significant im-
provement over Team 30. Construct-wise highest
scores of Sustained Threat, Arousal and Circadian
Rhythms, achieved by either Team 7 or Team 30,
are higher by about 0.27 compared to the baseline
performance. In addition, the highest scores for
other constructs are also higher by more than 0.17
compared to the baseline performance.

Frustrative Nonreward has the lowest average
score (0.31) among all the constructs. Moreover,
its highest score (0.43) is also the lowest among all
the highest scores. So, extracting the most relevant
sentences for Frustrative Nonreward is seemingly
more difficult compared to the other constructs.

Typically, participating teams performed rela-
tively better on shorter abstracts (see Table 9),
which is intuitive due to that fact the models have
a higher chance of finding the most similar sen-
tences for shorter abstracts. Similarly, they per-
formed well for abstracts with more gold-standard
sentences (see Table 10). This is also intuitive
because when there are more gold-standard sen-
tences, there is a higher chance of matching one of
them.

4 Conclusion and Future work

We introduced a novel mental health informatics
task called RDoC task at this years BioNLP-OST

2019 workshop. RDoC task is a combination of
two subtasks on information retrieval and sentence
extraction using the RDoC framework. Originally,
over 30 teams registered, highlighting a signifi-
cant interested in mental health informatics and/
or RDoC. Eventually, four and five teams partici-
pated in the information retrieval and sentence ex-
traction tasks, respectively.

Overall results show that the top-performing
team was able to easily outperform the baseline
models for most of the constructs. On the other
hand, the baseline methods outperform at least one
system (often more). This is surprising given that
the baseline models are not sophisticated. One
reason could be that the baseline methods do not
utilize training data, while the participating meth-
ods may have been overfitted to the training data.
Another reason could be, these simple baselines
perform better than (most likely more complex)
participating models due to working with shorter
documents (i.e. abstracts). If the full texts were
made available, models primarily depended on
TFIDF may struggle to achieve good performance.
Regardless, this calls for more sophisticated meth-
ods for both tasks because any other sophisticated
method (such as Lucene [17] or MetaMap [2])
used a baseline may have outperformed even more
participating teams.

The publicly made available gold-standard data
should serve as a valuable resource for the brain
research/ mental health and RDoC researchers and
curators going forward. In the future iterations of
the RDoC task, we would like to incorporate either
all available or a well-representative set of RDoC
constructs covering all domains. We plan to im-
prove the quality of benchmark data using “rec-
onciliation” instead of “majority voting” as well
as using improved search that uses MeSH and/ or
other vocabularies.

And equally important aspect would be to ex-
plore information extraction tasks such as extract-
ing various entities under different RDoC units of
analysis, which is likely more useful for the cura-
tors. This would also mean an exploration of in-
corporating full text in addition to abstracts will be
required due to the abundance of entities existing
in the full articles compared to just the abstract.
Last but not least, exploring clever ways to main-
tain the enthusiasm of the registered teams would
be highly valuable to the overall success of the fu-
ture iterations of the RDoC task .
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Table 7: Performance of retrieving PubMed Abstracts related to the corresponding RDoC construct (Task 1). Four
teams participated (T10, T21, T22, and T30). IQR: inter-quartile range. Bolded scores are the highest across all
teams per the construct.

RDoC construct Baseline T10 T21 T22 T30 Avg IQR

Acute Threat (Fear) 0.74 0.89 0.83 0.67 0.85 0.81 0.17
Potential Threat (Anxiety) 0.90 0.87 0.89 0.81 0.94 0.88 0.10
Frustrative Nonreward 0.70 0.69 0.67 0.61 0.73 0.68 0.10
Sustained Threat 0.64 0.64 0.64 0.41 0.63 0.58 0.18
Loss 0.77 0.74 0.71 0.61 0.78 0.71 0.14

Arousal 0.95 0.93 0.91 0.84 0.92 0.90 0.07
Circadian Rhythms 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Sleep and Wakefulness 1.00 1.00 1.00 0.98 1.00 1.00 0.02

Mean Average Precision 0.84 0.85 0.83 0.74 0.86 – –

Table 8: Performance of extracting the most relevant sentence from each abstract related to the corresponding
RDoC construct (Task 2). Five teams participated (T7, T10, T21, T22, and T30). IQR: inter-quartile range.

RDoC construct Baseline T7 T10 T21 T22 T30 Avg IQR

Acute Threat (Fear) 0.53 0.58 0.68 0.37 0.47 0.74 0.57 0.29
Potential Threat (Anxiety) 0.41 0.41 0.32 0.15 0.38 0.59 0.37 0.27
Frustrative Nonreward 0.23 0.43 0.34 0.11 0.29 0.37 0.31 0.20
Sustained Threat 0.19 0.47 0.36 0.14 0.47 0.42 0.37 0.22
Loss 0.53 0.26 0.56 0.26 0.62 0.74 0.49 0.42

Arousal 0.46 0.46 0.62 0.12 0.42 0.73 0.47 0.41
Circadian Rhythms 0.43 0.70 0.47 0.10 0.60 0.47 0.47 0.37
Sleep and Wakefulness 0.43 0.33 0.50 0.17 0.57 0.60 0.43 0.34

Macro Average Accuracy 0.40 0.46 0.48 0.18 0.48 0.58 – –

Table 9: Variation of Accuracy over various size of ab-
stract. #m-n: abstracts with m to n sentences.

RDoC construct #3-8 #9-14 #15-20

Acute Threat 0.60 0.64 0.40
Potential Threat 0.47 0.39 –
Frustrative Nonreward 0.28 0.25 0.50
Sustained Threat 0.39 0.32 0.40
Loss 0.62 0.60 0.31

Arousal 0.53 0.39 –
Circadian Rhythms 0.38 0.54 0.00
Sleep & Wakefulness 0.58 0.42 –
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Abstract

This paper presents our system details and re-
sults of participation in the RDoC Tasks of
BioNLP-OST 2019. Research Domain Cri-
teria (RDoC) construct is a multi-dimensional
and broad framework to describe mental health
disorders by combining knowledge from ge-
nomics to behaviour. Non-availability of
RDoC labelled dataset and tedious labelling
process hinders the use of RDoC framework
to reach its full potential in Biomedical re-
search community and Healthcare industry.
Therefore, Task-1 aims at retrieval and rank-
ing of PubMed abstracts relevant to a given
RDoC construct and Task-2 aims at extrac-
tion of the most relevant sentence from a given
PubMed abstract. We investigate (1) atten-
tion based supervised neural topic model and
SVM for retrieval and ranking of PubMed ab-
stracts and, further utilize BM25 and other rel-
evance measures for re-ranking, (2) supervised
and unsupervised sentence ranking models uti-
lizing multi-view representations comprising
of query-aware attention-based sentence rep-
resentation (QAR), bag-of-words (BoW) and
TF-IDF. Our best systems achieved 1st rank
and scored 0.86 mAP and 0.58 macro average
accuracy in Task-1 and Task-2 respectively.

1 Introduction

The scientific research output of the biomedical
community is becoming more sub-domain special-
ized and increasing at a faster pace. Most of the
biomedical domain knowledge is in the form of
unstructured text data. Natural Language Process-
ing (NLP) techniques such as relation extraction
and information retrieval have enabled us to effec-
tively mine relevant information from a large cor-
pus. These techniques have significantly reduced
the time and effort required for knowledge min-

* : Equal Contribution

ing and information extraction from past scientific
studies and electronic health reports (EHR).

Information Retrieval (IR) is the process of
retrieving relevant information from an un-
structured text corpus, which satisfies a given
query/requirement, for example Google search,
email search, database search etc. This is gen-
erally achieved by converting the query and the
document collection into an external representa-
tion which by preserving the important semanti-
cal information can reduce the IR processing time.
This external representation can be generated us-
ing either statistical approach i.e., word counts
or distributed semantical approach i.e., word em-
beddings. Therefore, there is a motivation to
develop such IR system which can understand
the specialized sub-domain language and domain-
specific jargon of biomedical domain and assist re-
searchers and medical professionals by effectively
and efficiently retrieving most relevant informa-
tion given a query.

RDoC Tasks aims at exploring information re-
trieval (IR) and information extraction (IE) tasks
on selected abstracts from PubMed dataset. While
Task-1 aims to rank abstracts i.e., coarse gran-
ularity, Task-2 aims to rank sentences i.e., fine
granularity and hence the term multi-grain. An
RDoC construct combines information from mul-
tiple sources like genomics, symptoms, behaviour
etc. and therefore, is a much broader way of de-
scribing mental health disorders than symptoms
based approach. Table 1 shows the association be-
tween PubMed abstracts and RDoC constructs de-
pending on the semantic knowledge of the high-
lighted content words. Both of these tasks aim in
the direction of ease of accessibility of PubMed
abstracts labelled with diverse RDoC constructs
so that this information can reach its full poten-
tial and can be of help to biomedical researchers
and healthcare professionals.
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PMID RDoC Construct PubMed Abstract

14998902 Acute Threat Fear

Title: Mother lowers glucocorticoid levels of preweaning rats after acute threat.
Abstract: Exposure to a deadly threat, an adult male rat, induced the release
of corticosterone in 14-day-old rat pups. The endocrine stress response was
decreased when the pups were reunited with their mother immediately after exposure.
These findings demonstrate that social variables can reduce the consequences of
an aversive experience.

21950094 Sleep Wakefulness

Title: Central mechanisms of sleep-wakefulness cycle
Abstract: Brief anatomical, physiological and neurochemical basics of the
regulation of wakefulness, slow wave (NREM) sleep and paradoxical (REM) sleep
are regarded as representing by the end of the first decade of the second millennium.

Table 1: RDoC construct - This table shows two PubMed abstracts labelled with two different RDoC construct
and PubMed ID (PMID). Highlighted words (blue and red) in each abstract shows content words which together
provide the semantic understanding of the corresponding RDoC constructs.

2 Task Description and Contributions

RDoc-IR Task-1: The task aims at retrieving and
ranking the PubMed abstracts (within each of the
eight clusters) that are relevant for the RDoC con-
struct (i.e, a query) related to the cluster in the ab-
stract appears. The training data consists of ab-
stracts (title + sentences) each annotated with one
or more RDoC constructs. Test data consists of ab-
stracts without annotation and the goal is to submit
a ranked lists of relevant articles for each medical
domain RDoC construct.

RDoc-IE Task-2 The task aims at extracting the
most relevant sentence from each PubMed abstract
for the corresponding RDoC construct. The input
consists of an abstract (title t and sentences s) for
an RDoC construct q. The training data consists of
abstracts each annotated with one RDoC construct
and the most relevant sentence. Test data con-
tains abstracts relevant for RDoC constructs and
the goal is to submit a list of predicted most rele-
vant sentence for each abstract.

Our Contributions: Following are our multi-
fold contributions in this paper:

(1) RDoC-IR Task-1: We perform document
(or abstract) ranking in two steps, first using su-
pervised neural topic model and SVM. Moreover,
we have introduced attentions in supervised neural
topic model, along with pre-trained word embed-
dings from several sources. Then, we re-rank doc-
uments using BM25 and similarity scores between
query and query-aware attention-based document
representation.

Comparing with other participating systems in
the shared task, our submission is ranked 1st with
a mAP score of 0.86.

(2) RDoC-IE Task-2: We have addressed the

sentence ranking task by introducing unsupervised
and supervised sentence ranking schemes. More-
over, we have employed multi-view representa-
tions consisting of bag-of-words, TF-IDF and
query-aware attention-based sentence representa-
tion via enhanced query-sentence interactions. We
have also investigated relevance of title with the
sentences and coined ways to incorporate both
query-sentence and title-sentence relevance scores
in ranking sentences with an abstract.

Comparing with other participating systems in
the shared task, our submission is ranked 1st

with a macro average accuracy of 0.58. Our
code is available at https://github.com/
YatinChaudhary/RDoC_Task.

3 Methodology

In this section, we first describe representing a
query, sentence and document using local and dis-
tributed representation schemes. We further de-
scribe enhanced query-document (query-title and
query-content) and query-sentence interactions to
compute query-aware document or sentence rep-
resentations for Task-1 and Task-2, respectively.
Finally, we discuss the application of supervised
neural topic modeling in ranking documents for
task 1 and introduce unsupervised and supervised
sentence rankers for Task-2.

3.1 Query, Sentence and Document Vectors
In this paper, we deal with texts of different
lengths in form of query, sentence and document.
In this section, we describe the way we represent
the different texts.

Bag-of-words (BoW) and Term frequency-
inverse document frequency (TF-IDF): We use
two the local representation schemes: BoW and
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TF-IDF (Manning et al., 2008) to compute sen-
tence/document vectors.

Embedding Sum Representation (ESR):
Word embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014) have been successfully used
in computing distributed representation of text
snippets (short or long). In ESR scheme, we
employ the pre-trained word embeddings from
FastText (Bojanowski et al., 2017) and word2vec
(Mikolov et al., 2013). To represent a text (query,
sentence or document), we compute the sum of
(pre-trained) word vectors of each word in the
text. E.g., ESR for a document d with D words
can be computed as:
ESR(d) = d̃ =

∑D
i=1 e(di) where, e ∈ RE is

the pre-trained embedding vector of dimension E
for the word di.

Query-aware Attention-based Representa-
tion (QAR) for Documents and Sentences: Un-
like ESR, we reward the maximum matches be-
tween a query and document by computing density
of matches between them, similar to McDonald
et al. (2018). In doing so, we introduce a weighted
sum of word vectors from pre-trained embeddings
and therefore, incorporate importance/attention of
certain words in document (or sentence) that ap-
pear in the query text.

For an enhanced query-aware attention based
document (or sentence) representation, we first
compute an histogram ai(d) ∈ RD of attention
weights for each word k in the document d (or

sentence s) relative to the ith query word qi, us-
ing cosine similarity:

ai(d) = [ai,k]Dk=1 where, ai,k =
e(qi)

Te(dk)

||e(qi)|| ||e(dk)||
for each kth word in the document d. Here, e(w)
refers to an embedding vector of the word w.

We then compute an query-aware attention-
based representation Φi(d) of document d from
the viewpoint of ith query word by summing the
word vectors of the document, weighted by their
attention scores ai(d):

Φi(d) =

D∑

k=1

ai,k(d) e(dk) = ai(d)� [e(dk)]Dk=1

where � is an element-wise multiplication opera-
tor.

Next, we compute density of matches between
several words in query and the document by sum-
ming each of the attention histograms ai for all the
query terms i. Therefore, the query-aware docu-
ment representation for a document (or sentence)
relative to all query words in q is given by:

QAR(d) = Φq(d) =

|q|∑

i

Φi(d) (1)

Similarly, a query-aware sentence representa-
tion Φq(s) and query-aware title representation
Φq(t) can be computed for the sentence s and doc-
ument title t, respectively.
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For query representation, we use ESR scheme
as q̃ =

∑|q|
i=1 e(wi).

Figure 2 illustrates the computation of query-
aware attention-based sentence representation.

3.2 Document Neural Topic Models
Topic models (TMs) (Blei et al., 2003) have shown
to capture thematic structures, i.e., topics appear-
ing within the document collection. Beyond inter-
pretability, topic models can extract latent docu-
ment representation that is used to perform docu-
ment retrieval. Recently, Gupta et al. (2019a) and
Gupta et al. (2019b) have shown that the neural
network-based topic models (NTM) outperform
LDA-based topic models (Blei et al., 2003; Srivas-
tava and Sutton, 2017) in terms of generalization,
interpretability and document retrieval.

In order to perform document classification and
retrieval, we have employed supervised version of
neural topic model with extra features and further
introduced word-level attention in a neural topic
model, i.e. in DocNADE (Larochelle and Lauly,
2012; Gupta et al., 2019a).

Supervised NTM (SupDocNADE): Docu-
ment Neural Autoregressive Distribution Estima-
tor (DocNADE) is a neural network based topic
model that works on bag-of-words (BoW) repre-
sentation to model a document collection in a lan-
guage modeling fashion.

Consider a document d, represented as v =
[v1, ..., vi, ..., vD] of size D, where vi ∈ {1, ..., Z}
is the index of ith word in the vocabulary and Z is
the vocabulary size. DocNADE models the joint
distribution p(v) of document v by decomposing
p(v) into autoregressive conditional of each word
vi in the document, i.e., p(v) =

∑D
i=1 p(vi|v<i),

where v<i ∈ {v1, ..., vi−1}.
As shown in Figure 1 (left), DocNADE com-

putes each autoregressive conditional p(vi|v<i)
using a feed forward neural network for i ∈
{1, ..., D} as,

p(vi = w|v<i) =
exp(bw + Uw,:h(v<i))∑
w′ exp(bw′ + Uw′,:h(v<i))

hi(v<i) = f(c +
∑

j<i

W:,vj )

where, f(·) is a non-linear activation function,
W ∈ RH×Z and U ∈ RZ×H are encoding and
decoding matrices, c ∈ RH and b ∈ RZ are
encoding and decoding biases, H is the number
of units in latent representation hi(v<i). Here,

hi(v<i) contains information of words preceding
the word vi. For a document v, the log-likelihood
L(v) and latent representation h(v) are given as,

Lunsup(v) =
D∑

i=1

log p(vi|v<i) (2)

h(v) = f(c +

D∑

i=1

W:,vi) (3)

Here, L(v) is used to optimize the topic model
in unsupervised fashion and h(v) encodes the
topic proportion. See Gupta et al. (2019a) for fur-
ther details on training unsupervised DocNADE.

Here, we extend the unsupervised version to
DocNADE with a hybrid cost Lhybrid(v), consist-
ing of a (supervised) discriminative training cost
p(y = q|v) along with an unsupervised genera-
tive cost p(v) for a given query q and associated
document v:

Lhybrid(v) = Lsup(v) + λ · Lunsup(v) (4)

where λ ∈ [0, 1]. The supervised cost is given by:

Lsup(v) = p(y = q|v) = softmax(d + S h(v))

Here, S ∈ RL×H and d ∈ RL are output matrix
and bias, L is the total number of unique RDoC
constructs (i.e., unique query labels).

Supervised Attention-based NTM (a-
SupDocNADE): Observe in equation 3 that the
DocNADE computes document representation
h(v) via aggregation of word embedding vectors
without considering attention over certain words.
However, certain content words own high impor-
tant, especially in classification task. Therefore,
we have introduced attention-based embedding
aggregation in supDocNADE (Figure 1, left):

h(v) = f(c +

D∑

i=1

αiW:,vi) (5)

Here, αi is an attention score of each word i in the
document v, learned via supervised training.

Additionally, we incorporate extra word fea-
tures, such as pre-trained word embeddings from
several sources: FastText (Efast) (Bojanowski
et al., 2017) and word2vec (Eword2vec) (Mikolov
et al., 2013). We introduce these features by con-
catenating he(v) with h(v) in the supervised por-
tion of the a-supDocNADE model, as

he(v) = f
(
c+

D∑

i=1

αi(E
fast
:,vi +Eword2vec

:,vi )
)

(6)
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Therefore, the classification portion of a-
supDocNADE with additional features is given by:

p(q|v) = softmax(d + S′ · concat(h(v),he(v)))

where, S′ ∈ RH′×L and H ′ = H + Efast +
Eword2vec.

3.3 Traditional Methods for IR

BM25: A ranking function proposed by Robert-
son and Zaragoza (2009) is used to estimate the
relevance of a document for a given query.

BM25-Extra: The relevance score of BM-25 is
combined with four extra features: (1) percentage
of query words with exact match in the document,
(2) percentage of query words bigrams matched
in the document, (3) IDF weighted document vec-
tor for feature #1, and (4) IDF weighted document
vector for feature #2. Therefore, BM25-Extra re-
turns a vector of 5 scores.

3.4 System Description for RDoC Task-1

RDoC Task-1 aims at retrieving and ranking of
PubMed abstracts (title and content) that are rel-
evant for 8 RDoC constructs. Participants are pro-
vided with 8 clusters, each with a RDoC construct
label and required to rank abstracts within each
cluster based on their relevance to the correspond-
ing cluster label. Each cluster contains abstracts
relevant to its RDoC construct, while some (or
most) of the abstracts are noisy in the sense that

they belong to a different RDoC construct. Ide-
ally, the participants are required to rank abstracts
in each of the clusters by determining their rele-
vance with the RDoC construct of the cluster in
which they appear.

To address the RDoc Task-1, we learn a map-
ping function between latent representation h(v)
of a document (i.e.., abstract) v and its RDoC con-
struct, i.e., query words q in a supervised fashion.
In doing so, we have employed supervised clas-
sifiers, especially supervised neural topic model
a-supDocNADE (section 3.2) for document rank-
ing. We treat q as label and maximize p(q|v) lead-
ing to maximize Lhybrid(v) in a-supDocNADE
model.

As demonstrated in Figure 1 (right), we perform
document ranking in two steps:

(1) Document Relevance Ranking: We build
a supervised classifier using all the training docu-
ments and their corresponding labels (RDoC con-
structs), provided with the training set. At the
test time, we compute prediction probability score
p(CID = q|vtest(CID))) of the label=CID for
each test document vtest(CID) in the cluster,
CID. This prediction probability (or confidence
score) is treated as a relevance score of the docu-
ment for the RDoC construct of the cluster. Fig-
ure 1(right) shows that we perform document
ranking using the probability scores (col-2) of the
RDoC construct (e.g. loss) within the cluster C1.
Observe that a test document with least confidence
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for a cluster are ranked lower within the clus-
ter and thus, improving mean average precision
(mAP). Additionally, we also show the predicted
RDoC construct in col-1 by the supervised classi-
fier.

(2) Document Relevance Re-ranking: Sec-
ondly, we re-ranked each document v (ti-
tle+abstract) within each cluster (with label q)
using unsupervised ranking, where the relevance
scores are computed as: (a) reRank(BM25-
Extra): sum each of the 5 relevance scores to
get the final relevance, and (b) reRank(QAR):
cosine-similarity(QAR(v), q̃).

3.5 System Description for RDoC Task-2

The RDoC Task-2 aims at extracting the most rel-
evant sentence from each of the PubMed abstract
for the corresponding RDoC construct. Each ab-
stract consists of title t and sentences s with an
RDoC construct q.

To address RDoc Task-2, we first compute
multi-view representation: BoW, TF-IDF and
QAR (i.e., Φq(s

j)) for each sentence sj in an ab-
stract d. On other hand, we compute ESR repre-
sentation for RDoC construct (query q) and title t
of the abstract d to obtain q̃ and t̃, respectively.
Figure 2 and section 3.1 describe the computation
of these representations. We then use the repre-
sentations (Φq(s

j), t̃ and q̃) to compute a rele-
vance scores of a sentence sj relative to q and/or t
via unsupervised and supervised ranking schemes,
discussed in the following section.

3.5.1 Unsupervised Sentence Ranker
As shown in Figure 2, we first extract representa-
tions: Φq(s

j), t̃ and q̃ for the sentence sj query
q and title t. During ranking sentences within an
abstract for the given RDoC construct q, we also
consider title t in computing the relevance score
for each sentence relative to q and t. It is inspired
from the fact that the title often contains relevant
terms (or words) appearing in sentence(s) of the
document (or abstract). On top, we observe that q
is a very short text and non-descriptive, leading to
minimal text overlap with s.

We compute two relevance scores: rq and rt for
a sentence sj with respect to a query q and title t,
respectively.

rq = sim(q̃,Φq(s
j)) and rt = sim(t̃,Φq(s

j))

Now, we devise two ways to combine the rele-

vance scores rq and rt in unsupervised paradigm:

version1: runsup1 = rq · rq + rt · rt

Observe that the relevance scores are weighted by
itself. However, the task-2 expects a higher impor-
tance to the relevance score rq over qt. Therefore,
we coin the following weighting scheme to give
higher importance to rq only if it is higher than rt
otherwise we compute a weight factor r′t for rt.

version2: runsup2 = rq · rq + r′t · rt

where r′t is compute as:

r′t = (rt > rq)|rt − rq|

The relevance score runsup2 is effective in rank-
ing sentences when a query and sentence does not
overlap. In such a scenario, a sentence is scored
by title, penalized by a factor of |rt − rq|.

At the end, we obtain a final relevance score
runsupf for a sentence sj by summing the relevance
scores of BM25-Extra and runsup1 or runsup2 .

3.5.2 Supervised Sentence Ranker
Beyond unsupervised ranking, we further investi-
gate sentence ranking in supervised paradigm by
introducing a distance metric between the query
(or title) and sentence vectors.

Figure 2 describes the computation of relevance
score for a sentence sj using a supervised sentence
ranker scheme. Like the unsupervised ranker (sec-
tion 3.5.1), the supervised ranker also employs
vector representations: Φq(s

j), t̃ and q̃. Using the
projection matrix G, we then apply a projection to
each of the representation to obtain Φp

q(sj), t̃p and
q̃p. Here, the operator ⊗ performs concatenation
of the projected vector with its input via residual
connection. Next, we apply a Manhattan distance
metric to compute similarity (or relevance) scores,
following Gupta et al. (2018):

rsup = exp
(
−||(Φp

q(s
j), q̃p)+β (Φp

q(s
j), t̃p)||2

)

where β ∈ [0, 1] controls the relevance of title,
determined by cross-validation. A final relevance
score rsupf ∈ [0, 1] is computed by feeding a vec-
tor [rsup, rsupsiamese, BM25-extra] into a supervised
linear regression, which is trained end-to-end by
minimizing mean squared error between the rsupf

and {0, 1}, i.e., 1 when the sentence sj is relevant
to query q. Here, rsupsiamese refers to a relevance
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L1 L2 L3 L4 L5 L6 L7 L8 Total
All data 39 38 47 21 28 27 48 18 266

Train set 31 30 37 16 22 21 38 14 209
Dev set 8 8 10 5 6 6 10 4 57

Test set (Task1) 79 108 123 144 138 139 122 146 999
Test set (Task2) 19 26 30 35 34 34 30 36 244

Table 2: Data statistics - # of PubMed abstracts belong-
ing to each RDoC construct in different data partitions.
(L1: “Acute Threat Fear”; L2: “Arousal”; L3: “Cir-
cadian Rhythms”; L4: “Frustrative Nonreward”; L5:
“Loss”; L6: “Potential Threat Anxiety”; L7: “Sleep
Wakefulness”; L8: “Sustained Threat”)

Model Feature Classification
Accuracy

Ranking
mAP

SVM BoW 0.947 0.992
Re-ranking

with
cluster label

reRank #1 - 0.992
reRank #2 - 0.992
reRank #3 - 0.992

a-supDocNADE
Random init 0.912 0.930
+ FastText 0.947 0.949
+ BioNLP 0.965 0.983

Re-ranking
with

cluster label

reRank #1 - 0.985
reRank #2 - 0.994
reRank #3 - 0.994

Table 3: RDoC Task-1 results (on development
set): Classification accuracy and mean Average Pre-
cision (mAP) of a-supDocNADE and SVM mod-
els. Each model’s classification accuracy and rank-
ing mAP (using prediction probabilities) are shown
together. Furthermore, each model’s ranked clusters
are re-ranked using different re-ranking algorithms.
Best mAP score for each model is marked in bold.
(reRank #1: “reRank(BM25-Extra)”; reRank
#2: “reRank(QAR)”; reRank #3: “reRank(BM25-
Extra) + reRank(QAR)”)

score computed between q and sj via Siamese-
LSTM (Gupta et al., 2018).

To perform sentence ranking within an abstract
for a given RDoC construct q, the relevance score
rsupf (or runsupf ) is computed for all the sentences
and a sentence with the highest score is extracted.

4 Experiments and Results

4.1 Data Statistics and Experimental Setup

Dataset Description: Dataset for RDoC Tasks
contains a total of 266 PubMed abstracts labelled
with 8 RDoC constructs in a single label fashion.
Number of abstracts for each RDoC construct is
described in Table 2, where first row describes
the statistics for all abstracts and second & third
row shows the split of those abstracts into training
and development sets maintaining a 80-20 ratio for
each RDoC construct. For Task-1, each PubMed

abstract contains its associated title, PubMed ID
(PMID) and label (RDoC construct). In addition
for Task-2, each PubMed abstract also contains a
list of most relevant sentences from that abstract.
Final evaluation test data for Task-1 & Task-2 con-
tains 999 & 244 abstracts respectively.

We use “RegexpTokenizer” from scikit-learn to
tokenize abstracts and lower-cased all tokens. Af-
ter this, we remove those tokens which occur in
less than 3 abstracts and also remove stopwords
(using nltk). For computing BM25-Extra rele-
vance score, we use unprocessed raw text of sen-
tences and titles.

Experimental Setup: As the training dataset
labelled with RDoC constructs is very small, we
use an external source of semantical knowledge
by incorporating pretrained distributional word
embeddings (Zhang et al., 2019) from FastText
model (Bojanowski et al., 2017) trained on the en-
tire corpus of PubMed and MIMIC III Clinical
notes (Johnson et al., 2016). Similarly, we also
use pretrained word embeddings (Moen and Ana-
niadou, 2013) from word2vec model (Mikolov
et al., 2013) trained on PubMed and PMC ab-
stracts. We create 3 folds∗ of train/dev splits for
cross-validation.

RDoC Task-1: For DocNADE topic model, we
use latent representation of size 50. We use pre-
trained FastText embeddings of size 300 and pre-
trained word2vec embeddings of size 200. For
SVM, we use Bag-of-words (BoW) representa-
tion of abstracts with radial basis kernel function.
PubMed abstracts are provided in eight different
clusters, one for each RDoC construct, for final
test set evaluation.

RDoC Task-2: We use pretrained FastText
embeddings to compute query-aware sentence
representation of a sentence (Φq(s

j)), title (̃t)
and query (q̃) representations. We also train
Replicated-Siamese-LSTM (Gupta et al., 2018)
model with input as sentence and query pair i.e.,
(sj , q) and label as 1 if sj is relevant otherwise 0.
We use β ∈ {0, 1}.

4.2 Results: RDoC Task-1

Table 3 shows the performance of supervised Doc-
ument Ranker models i.e, a-supDocNADE and
SVM, for Task-1. SVM achieves a classification
accuracy of 0.947 and mean average precision

∗we only report results on fold1 because of best scores
on partial test dataset
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Ranking
(with Prediction Probability)

Re-ranking
(with BM25-Extra)

PMID Pred Prob Gold Label PMID Gold Label
22906122 0.90 PTA 26005838 PTA
24286750 0.77 PTA 22906122 PTA
17598732 0.61 PTA 28828218 PTA
26005838 0.56 PTA 26773206 PTA
28316567 0.46 Loss 24286750 PTA
28828218 0.45 PTA 17598732 PTA
26773206 0.41 PTA 28316567 Loss

Table 4: RDoC Task-1 analysis: Ranking of
PubMed abstracts within “Potential Threat Anxiety
(PTA)” cluster using supervised prediction probabil-
ities (p(q|v)). It shows that an intruder/noisy ab-
stract (Gold Label: Loss) is assigned higher prob-
ability than the abstracts with same Gold Label as
the cluster. But, using re-ranking with BM25-Extra
(reRank(BM25-Extra)) relevance score assigns
lowest relevance to the intruder abstract.

(mAP) of 0.992 by ranking the abstracts in their
respective clusters using the supervised prediction
probabilities (p(q|v)). After that, we use three dif-
ferent relevance scores: (1) reRank(BM25-Extra),
(2) reRank(QAR) and (3) reRank(BM25-Extra) +
reRank(QAR), for re-ranking of the abstracts in
their respective clusters. It is to be noted that
the ranking mAP of the clusters using predic-
tion probabilities is already the best possible i.e.,
the intruder abstracts (abstracts with different la-
bel (RDoC construct) than the cluster label) are
at the bottom of the ranked clusters. Therefore,
re-ranking of these clusters would not achieve a
better score. Similarly, we train a-supDocNADE
model with three different settings: (1) random
weight initialization, (2) incorporating FastText
embeddings (he(v)) and (3) incorporating Fast-
Text and word2vec embeddings (he(v)). By
using the pretrained embeddings, the classifica-
tion accuracy increases from 0.912 to 0.965, this
shows that distributional pretrained embeddings
carry significant semantic knowledge. Further-
more, re-ranking using reRank(BM25-Extra) and
reRank(QAR) further results in the improvement
of mAP score (0.994 vs 0.983) by shifting the in-
truder documents at the bottom of each impure
cluster.

4.3 Analysis: RDoC Task-1

Table 4 shows an impure “Potential Threat Anxi-
ety” cluster of abstracts containing an intruder ab-
stract with label (RDoC construct) “Loss”. When
this cluster is ranked on the basis of predic-

Model Feature Recall F1 Macro-Average
Accuracy

Unsupervised
reRank(BM25-Extra) [#1] 0.316 0.387 0.631

version1 [#2] 0.351 0.412 0.701
version2 [#3] 0.263 0.345 0.526

Supervised
rsupf (β = 0) [#4] 0.386 0.436 0.772
rsupf (β = 1) [#5] 0.368 0.424 0.737

Ensemble

{#1, #2, #4} 0.395 0.441 0.789
{#1, #3, #4} 0.316 0.387 0.631
{#2, #4, #5} 0.395 0.441 0.789

{#1, #2, #3, #4, #5} 0.368 0.424 0.737

Table 5: RDoC Task-2 results (on development set):
Performance of unsupervised and supervised sentence
rankers (Figure 2) under different configurations. Best
scores for each model is marked in bold.

tion probabilities (p(q|v)), then “Loss” abstract
is ranked third from the bottom and it degrades
the mAP score of the retrieval system. But after
re-ranking this cluster using reRank(BM25-Extra)
relevance score, the “Loss” abstract is ranked
at the bottom, thus maximizing the mAP score.
Therefore, re-ranking with BM25-Extra on top of
ranking with p(q|v) is, evidently, a robust ab-
stract/document ranking technique.

4.4 Results: RDoC Task-2

Table 5 shows results for Task-2 using three unsu-
pervised and two supervised sentence ranker mod-
els. For unsupervised model, using reRank(BM25-
Extra) relevance score between a query (q), la-
bel (RDoC construct) of an abstract, and all the
sentences (sj) in an abstract, we get an macro-
average accuracy (MAA) of 0.631. However, us-
ing version1 and version2 models (see Fig 2),
we achieve a MAA score of 0.701 and 0.526 re-
spectively. Higher accuracy of version1 model
suggests that title (t) of an abstract also contains
the essential information regarding the most rele-
vant sentence. For supervised model, we get an
MAA score of 0.772 and 0.737 by setting β =
0 & 1 in supervised relevance score (rsupf ) equa-
tion in section 3.5.2. Hence, for supervised sen-
tence ranker model, title (t) is playing a nega-
tive influence in correctly identifying the relevance
(rsupf ) of different sentences. Furthermore, we
combine the knowledge of unsupervised and su-
pervised sentence rankers by creating multiple en-
sembles (majority voting) of the predictions from
different models. We achieve the highest MAA
score of 0.789 by combining the predictions of (1)
reRank(BM25-Extra), (2) version1, and (3) rsupf

with β = 0. Notice that all the proposed su-
pervised and unsupervised sentence ranking mod-
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Team
RDoC Task-1 (Official Results) RDoC Task-2 (Official Results)

L1 L2 L3 L4 L5 L6 L7 L8 mAP L1 L2 L3 L4 L5 L6 L7 L8 MAA

MIC-CIS 0.85 0.92 1.00 0.73 0.78 0.94 1.00 0.63 0.86 0.74 0.73 0.47 0.37 0.74 0.59 0.60 0.42 0.58
Javad Rafiei Asl 0.89 0.93 1.00 0.69 0.74 0.87 1.00 0.64 0.85 0.68 0.62 0.47 0.34 0.56 0.32 0.50 0.36 0.48
Ramya Tekumalla 0.83 0.91 1.00 0.67 0.71 0.89 1.00 0.64 0.83 0.37 0.12 0.10 0.11 0.26 0.15 0.17 0.14 0.18
Daniel Laden 0.67 0.84 1.00 0.61 0.61 0.81 0.98 0.41 0.74 - - - - - - - - -
Shyaman Jayasundara - - - - - - - - - 0.47 0.42 0.60 0.29 0.62 0.38 0.57 0.47 0.48
Fei Li - - - - - - - - - 0.58 0.46 0.70 0.43 0.26 0.41 0.33 0.47 0.46

Table 6: RDoC Tasks official results - performance on test set of different competing systems. Best score in
each column is marked in bold. (Refer to Table 2 for header notations) (mAP: “Mean Average Precision”; MAA:
Macro-Average Accuracy)

PubMed Abstract
(PMID: “23386529”; RDoC construct: “Loss”)
Most Relevant Sentence

(using reRank(BM25-Extra))
Sentence

ID
Gold
Label

Nurses are expected to care for
grieving women and families
suffering from perinatal loss.

#1 Not relevant

Most Relevant Sentence
(using Ensemble {#1, #2, #4}) - -

We found that nurses
experience a grieving process
similar to those directly suffering
from perinatal loss.

#6 Relevant

Table 7: RDoC Task-2 analysis: This table shows
that the most relevant sentence predicted using
reRank(BM25-Extra) is actually not a relevant
sentence, but Ensemble {#1, #2, #4} (Table 5)
predicts the correct sentence as the most relevant.

els (except [#3]) outperform tranditional ranking
models, e.g., reRank(BM25-Extra) in terms of
query-document relevance score.

4.5 Analysis: RDoC Task-2

Table 7 shows that the most relevant sentence
predicted by reRank(BM25-Extra) is actually a
non-relevant sentence. But an ensemble of pre-
dictions from both unsupervised and supervised
ranker models correctly predicts the relevant sen-
tence. This suggests that complementary knowl-
edge of different models is able to capture the rele-
vance of sentences on different scales and majority
voting among them is, evidently, a robust sentence
ranking technique.

4.6 Results: RDoC Task 1 & 2 on Test set

Table 6 shows the final evaluation scores of differ-
ent competing systems for both the RDoC Task-1
& Task-2 on final test set. Observe that our sub-
mission (MIC-CIS) scored a mAP score of 0.86
and MAA of 0.58 in Task-1 and Task-2, respec-
tively. Notice that we outperform the second best

system by 20.83% (0.58 vs 0.48) margin in Task2.

5 Conclusion

In conclusion, both supervised neural topic model
and SVM can effectively perform ranking of
PubMed abstracts in a given cluster based on the
prediction probabilities. However, a further re-
ranking using BM25-Extra or query-aware sen-
tence representation (QAR) has proven to max-
imize the mAP score by correctly assigning
the lowest relevance score to the intruder ab-
stracts. Also, unsupervised and supervised sen-
tence ranker models using query-title-sentence in-
teractions outperform the traditional BM25-Extra
based ranking model by a significant margin.

In future, we would like to introduce comple-
mentary feature representation via hidden vectors
of LSTM jointly with topic models and would like
to further investigate the interpretability (Gupta
et al., 2015; Gupta and Schütze, 2018) of the pro-
posed neural ranking models in the sense that one
can extract salient patterns determining relation-
ship between query and text. Another promis-
ing direction would be introduce abstract informa-
tion, such as part-of-speech and named entity tags
(Lample et al., 2016; Gupta et al., 2016) to aug-
ment information retrieval (IR).
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