
Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 289–296
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

289

Selecting, Planning, and Rewriting: A Modular Approach for
Data-to-Document Generation and Translation

Lesly Miculicich∗† Marc Marone ∗‡
Hany Hassan‡

† Idiap Research Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
lmiculicich@idiap.ch

‡Microsoft, 1 Microsoft Way, Redmond, WA 98121, USA
{v-mamaro,hanyh}microsoft.com

Abstract
In this paper, we report our system submis-
sions to all 6 tracks of the WNGT 2019
shared task on Document-Level Generation
and Translation. The objective is to generate a
textual document from either structured data:
generation task, or a document in a different
language: translation task. For the translation
task, we focused on adapting a large scale sys-
tem trained on WMT data by fine tuning it on
the RotoWire data. For the generation task, we
participated with two systems based on a se-
lection and planning model followed by (a) a
simple language model generation, and (b) a
GPT-2 pre-trained language model approach.
The selection and planning module chooses a
subset of table records in order, and the lan-
guage models produce text given such a sub-
set.

1 Introduction

Data-to-text generation focuses on generating nat-
ural text from structured inputs such as table
records. Traditional data-to-text systems used a
pipelined approach for data selection followed by
planning and text generation. Recently, End-to-
End neural generation systems have been pro-
posed such as (Wiseman et al., 2017). While such
systems generate more fluent output, they are not
faithful to the facts in the structured data.

One of the difficulties of the generation task is
that the models have to learn two different aspects:
“what to say” (i.e. selecting relevant information)
and “how to say it” (i.e. generating the actual text
based on these facts). We believe that available
data-sets are too small for allowing current neu-
ral network models, based on encoder-decoder ar-
chitectures, to capture the complexity of the prob-
lem. Recently, (Puduppully et al., 2019) proposed
an end-to-end system that explicitly models a con-
tent selection and planning module separated from

∗Equal contribution. Work done while interning at Mi-
crosoft

the text generation, showing improvements with
respect to previous end-to-end systems (Wiseman
et al., 2017). We adopt this approach and divide
our model into two parts noted as: content selec-
tion and planning, and text generation. This di-
vision helps the system to produce more coher-
ent document structure. One drawback of this
approach is the limitation of the language model
generation coverage. We tackle this limitation
by adopting pre-trained language models such as
OpenAI’s GPT-2 (Radford et al., 2019). Following
the shared task guidelines (Hayashi et al., 2019),
we evaluate our models using an information ex-
traction (IE) system.

2 Translation Tasks

We submitted translation results for both di-
rections: English-to-German and German-to-
English. Our models are based on the trans-
former architecture trained with multi-agent dual
learning (MADL) (Xia et al., 2019). This system
uses the transformer big configuration (modelsize
1024, filter size 4096, 6 blocks for each encoder
and decoder) from (Vaswani et al., 2017), using
dropout of 0.2. It is trained with 3 primary trans-
lations models and 3 dual translation models (for
details refer to (Xia et al., 2019)). The base mod-
els were trained with 20M filtered sentence-pairs
from WMT 2019 shared translation task (Bojar
et al., 2019), plus 120M English, and 120M Ger-
man monolingual sentences from Newscrawl (Bo-
jar et al., 2019). The vocabulary is shared and
composed of word segments obtained by applying
the BPE algorithm with 35K merge operations.

We fine-tuned the base models with 3K
sentence-pairs of the Rotowire English-German
parallel data. We use batches of 4096 tokens and
optimize with different learning rates. The best re-
sult was obtained with learning rate of 10−5 for
both directions. Additionally, for the German-
to-English translation task, we back-translate the



290

monolingual Rotowire English corpus. For this
purpose, the documents were split into sentences1

to obtain 45K English sentences in total, then we
use the MADL model which was fine-tuned with
parallel Rotowire data to obtain their respective
German translations. Finally, we fine-tune the
MADL system again using the concatenation of
original parallel sentences and the back-translated
corpus. Since we do not have an in-domain mono-
lingual German corpus, we ensemble 3 replicas
of the fine-tuned MADL models trained with 10,
20, and 30% dropout for the English-German task.
Additionally, we back-translate 1M monolingual
sentences from Newscrawl which were selected
based on their similarity to Rotowire data follow-
ing (Moore and Lewis, 2010). However, this did
not lead to any further improvements in the sys-
tems.

All translation systems used text summaries
only. We did not use the additional data tables in
the submitted results for the MT + NLG track. In
our experiments, we find that adding the structured
data did not lead to improvements over the base-
line systems.

2.1 Results

Table 1 shows the results of our systems for both
directions measured with sacre-BLEU. Fine tun-
ing with Rotowire parallel data brings an improve-
ment of 7.9 BLEU points for English-to-German
and 9.3 for German-to-English in the test set.
Further improvement of 1.9 BLEU points is ob-
tained with back-translation of monolingual Ro-
towire data for the latter direction. The dropout
ensemble adds a very small gain of 0.2 BLEU. We
found that selected data from Newscrawl does not
add any significant improvement.

We also evaluate our German-to-English system
with the content oriented metrics provided by the
organizers of the shared-task. Table 2 shows the
values for development and test sets. We show
the results measured with the ground-truth trans-
lation for comparison. The content generation
(RG) of the best system reaches two percentage
points higher than the ground-truth. The transla-
tion model produces fewer referring expressions,
and morphological variations than the ground-
truth to refer to entities, which makes it easier
for the information extraction tools to recognize
them. The Content selection (CS) reaches high

1https://github.com/neulab/DGT

EN → DE DE → EN
MADL 39.99 48.71
+ RW parallel 47.90 57.99
+ RW monolingual ? – 59.94
+ Ensemble ? 48.09 –

Table 1: Machine translation results measured with
sacre-BLEU and task-specific tokenization1. ? denotes
a late entry, not in the official evaluation.

precision (92%) and recall (93%), and the content
order (CO) score is 89. Further manual analysis
indicates that the main issues are the translation of
textual numbers, and the morphological variation
of entities.

3 Generation Task

One of the difficulties of the data-to-document
generation task, as formulated by (Wiseman et al.,
2017), is that the models have to learn to select a
relatively small portion of table records and their
order for generating text. We argue that the size
of available data-sets for training (i.e. Rotowire
with 3.4K samples) is too small for allowing the
network to capture the complexity of the task. In
consequence, following (Puduppully et al., 2019;
Moryossef et al., 2019), we divide the work in
two parts : (a) content selection and planning, and
(b) text generation. The idea is to introduce a di-
rect signal to the system i.e. adding a loss function
that guides an orderly selection of records, allevi-
ating the work of the text generator.

Our system is based on (Puduppully et al.,
2019) with two main differences. First, we use
a transformer network for encoding each record in
relation to other records, instead of a more com-
plex gated approach as previous work. Second, we
share the vocabularies of record values and sum-
mary text, thus the final estimated distribution for
prediction over the whole vocabulary is summed
instead of concatenated. Figure 1 shows the archi-
tecture of the model. In the following, we describe
each component in detail:

3.1 Content selection and Planning

Given a set of records r = r1, r2, ..., rM , the ob-
jective is to select a subset of them in the correct
order r̃ ∈ r. We use an encoder-decoder architec-
ture to model this problem. Similar to (Wiseman
et al., 2017), we create embeddings of each fea-
ture record (e.g. value, key, etc.) and concatenate



291

Dev Test
RG (P%/#) CS (P%/R%) CO RG (P%/#) CS (P%/R%) CO

Ground truth 92.0 (23.1) 100 / 100 100 92.3 (22.6) 100 / 100 100
MADL 90.4 (19.2) 90.6 / 78.8 74.4 91.7 (19.3) 89.6 / 77.1 75.1
+ RW parallel + RW mono. 94.4 (24.2) 93.6 / 93.8 89.9 94.1 (23.3) 92.6 / 93.1 89.1

Table 2: Content evaluation of the German-to-English translation models on test and dev-sets from parallel Ro-
towire using the IE models of (Puduppully et al., 2019). RG:Content generation, CS: Content selection, CO:
Content order.

Figure 1: Content selection and generation

them. Then, we encode them using a transformer
network. The transformer self-attention allows
the network to capture the relationships among
records and estimate their relative salience. How-
ever, we do not use positional embeddings as the
records do not have a sequential nature. The de-
coder is a recurrent pointer network which predicts
one record r̃t at each time-step based on previous
predictions as follows:

r̃t = softmax(ĥ1, ..., ĥM ) (1)

ĥi = f(hi, st) (2)

st = g(st−1, r̃t−1) (3)

where f is a non-linear function, g is an auto-
regressive network (i.e. LSTM, transformer) and
hi is the encoded state of the record ri using the
transformer. When using LSTM, the initial state is
the average of the encoder output h. We optimize
this sub-network with a cross-entropy loss Lselect,
and the ground truth targets are extracted follow-
ing (Puduppully et al., 2019).

3.2 Text Generation
The text generator is also an encoder-decoder net-
work. The encoder is a bi-directional LSTM or

transformer that receives a set of record as input.
During training the input are the ground truth tar-
gets r̃gold, and during decoding the predictions of
the content selection and planning r̃.

The decoder has two parts: a text decoder and
a copy module that uses a copy mechanism to di-
rectly predict encoded records. We share the vo-
cabulary of the copy-decoder and the record fea-
ture value of the encoder so the probability distri-
butions of generating and copying are summed for
each shared word, similar to (See et al., 2017). The
embeddings of all record features are shared for
both content selection, and text generation. The
optimization is performed with a cross-entropy
loss Lgen for the generation, and a binary cross-
entropy loss Lcopy for the copy module.

3.3 Joint regularized training (End-to-end)

We train the content selector and text generator
in a joint manner by adding their losses L =
Lselect + Lgen + Lcopy. This can be seen as a
regularization process where the loss of one net-
work regularizes the other. We observe that the
performance of the separately trained networks are
worse than the jointly trained ones. The input



292

P R F1 DL
Single Baseline 41 68 51 0.76
Single CSP 43 67 52 0.75
Joint Baseline + TG 45 62 52 0.75
Joint CSP + TG 46 71 56 0.70

Table 3: Evaluation of Content Selection and Plan-
ning (CSP) module, with and without joint training
with the Text Generator (TG). Baseline: (Puduppully
et al., 2019). P: precision, R: recall, DL: Damerau-
Levenshtein distance.

Figure 2: Augmenting data by swapping the target val-
ues of each document at different percentage rates. In
each case, we doubled the training set.

for the text generator is ground truth during train-
ing. At decoding time, we perform 2 consecutive
beam search of 5 beams, the first one for the con-
tent selection, and the second for generating text.
We tuned the architecture using the development
set. We evaluated different configurations of trans-
formers and LSTMs, from 1 to 2 layers, with di-
mensions of 252 and 512, and dropout from 0.1
to 0.3. The best results are obtained using LSTMs
decoders with 512 size dimension for all hidden
layers and embeddings, each encoder and decoder
has 2 layers, and we use dropout of 0.3. We also
used data augmentations by swapping values in of
the target at a range of 10, 20, and 30 percent of
the values in each sample. Finally, we train the
network with batches of 5 document samples, and
updated the parameters each 20 batches. We use
Adam optimizer at an initial learning rate of 10−3.

3.4 Results
We test the content selection and planning mod-
ule by comparing the output subset of records with
the ground-truth records (i.e. the records extracted
from the summary text with the IE tools). We
use F1 and Damerau-Levenshtein (DL), the later
to evaluate the correct order of records. The work-
shop metrics are not used here because the inde-
pendently trained models do not output text. Re-

sults in Table 3 show that our model outperforms
the baseline (Puduppully et al., 2019), and the joint
training helps to further improve over the single
models. Figure 2 shows the F1 scores while aug-
menting data by varying the percentage of swaps
in the target training set. Adding samples with 5%
of random swaps in each sample document helps
both single and jointly trained models. Finally, Ta-
ble 4 shows the evaluation results of the final joint
system with the workshop metrics.

During a qualitative evaluation, we noticed that
the content selection and planning module learns
to output the most common sequence of records
in the training data. In general, the sequence of
records depends on the style of the commentator
(e.g. describing first match results and then im-
portant player’s scores). Our system mismatches
less common styles, which affects the scoring of
testing and development that contain different dis-
tribution of record sequences.

4 Generation with Pretrained LM

We experiment with using pretrained language
models to enhance coverage and fluency of the text
generation, since the amount of training data avail-
able for the generation the task is relatively small.
In particular, we use a pretrained PyTorch imple-
mentation2 of the GPT-2 (Radford et al., 2019)
language model. The original GPT-2 description
showed that this large scale language model ad-
ditionally learned to complete other tasks such as
summarization and translation. For example, the
language model can be used for summarization,
by providing an input document concatenated with
the string TL;DR: and the output is the gener-
ated summary. Inspired by these results, we pro-
pose our summary rewrite model. Our model is a
two phases approach: the first is the content selec-
tion model proposed in 3.1, the second is a GPT2-
based generation module. Based on the output of
the content selection module, our model provides
a rough summary as input to GPT-2 model which
generates the desired summary.

The baseline results in (Wiseman et al.,
2017) show that simple templates are very ef-
fective at conveying information from the data
tables. We use similar templates to gener-
ate a rough summary that is used as input in
our rewrite model. The model takes input

2https://github.com/huggingface/
pytorch-transformers

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


293

Data to EN Data to DE
BLEU RG CS (P/R) CO BLEU RG CS (P/R) CO

End-to-end 15.03 93.38 32.34 / 58.04 18.52 11.66 80.30 27.89 / 48.96 16.43
GPT-50 15.17 94.35 33.84 / 53.82 19.26 11.84 82.79 34.23 / 42.32 16.93
GPT-90 13.03 88.70 32.81 / 50.64 17.34 10.43 75.05 30.97 / 41.48 16.27

Table 4: Generation results of our submitted systems as reported by the shared task organizers (Hayashi et al.,
2019). RG: Relation Generation precision, CS: Content Selection (precision/recall), CO: Content Ordering.

of the form template summary <R> gold
summary, which is used to fine-tune the pre-
trained GPT-2 model. The templates consist of
simple sentences involving a single record from
the dataset, such as the number of points scored
by a player. At training time we generate tem-
plates from the ground truth records following
(Puduppully et al., 2019). At test time, we use
the content selection module to select appropriate
records. This effectively replaces the original gen-
erator network with the GPT-2 model, using text
as an intermediate encoding. See Appendix sec-
tions A.1 and A.2 for a full example.

4.1 Decoding
Recently, (Holtzman et al., 2019) suggested that
top-k token sampling (as used in the original GPT-
2 results) is not ideal for generating realistic text
from likelihood trained language models. They
instead propose Nucleus Sampling or top-p sam-
pling, which samples tokens from the top p portion
of the output distribution. We experiment with
several values of p and find that this provides an
effective way to control generation quality. Our
submitted models (GPT-50 and GPT-90) sample
from the top 50% and 90% of the output distribu-
tion when decoding.

4.2 Results
We find that the template rewriting approach is
competitive with the end-to-end trained models in
terms of content metrics (Table 4), and subjec-
tively appears to create natural sounding genera-
tions.

For lower values of p in top-p sampling, we find
that the model remains more true to the templates,
tending to create short summaries that do not de-
viate much from the input facts. For larger values
of p, where decoding is allowed to sample from
more of the distribution, the output tends be longer
but may deviate from the facts. We also note that
when regenerating summaries for high values of
p (with a different random seed), there are signif-

icant changes to the text but not to the facts re-
flected in the summary. See Appendix sections
A.4 and A.5 for examples of generations at var-
ious p values. For both settings we observe oc-
casional mistakes such as repetitions, suggesting
that our values for p should have been tuned more
carefully.

For the German generation track, we apply our
model described in 2 to the English generations,
since we did not have a GPT-2 scale language
model for German.

5 Discussion and Conclusion

For the translation task we experimented with a
simple fine tuning approach for a large scale sys-
tem trained on general domain data. It proved very
effective to fine tune a pre-trained system using
RotoWire data. Our analysis indicates that the re-
maining problems are more related to number for-
matting which is a more generic issue for NMT
systems and not a domain specific problem.

The generation task proved to be more chal-
lenging. Mainly generating faithful, accurate and
fluent summaries can be a quite challenging task
given the discrepancies between the provided data
and the desired summaries. Our analysis indicates
that there is a mismatch between the gold selec-
tion plan and the system output. The system out-
puts the most common sequence of facts whereas
the gold presents more variety of fact sequences
due to different writing styles. This issue should
be further studied in future.

Utilizing large scale pre-trained LMs (such as
GPT-2) is a very promising direction, since it de-
couples the dependency of selection and genera-
tion resources. Our current approach of feeding
the template-based input to GPT2 is quite simple
and efficient. We would like to investigate more
principled methods of doing this in the future.



294

6 Acknowledgment

We would like to thank Tao Qin and his team at
MSRA for providing the MADL translation base-
line systems.

References
Ondřej Bojar, Rajen Chatterjee, Christian Feder-

mann, Mark Fishel, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Matt Post,
Marco Turchi, and Karin Verspoor. 2019. Proceed-
ings of the fourth conference on machine translation
(volume 2: Shared task papers, day 1). Florence,
Italy. Association for Computational Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. arXiv preprint arXiv:1904.09751.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden. Association for
Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Di He, Weicong
Chen, Yang Fan, Linyuan Gong, Yichong Leng,
Renqian Luo, Yiren Wang, Lijun Wu, Jinhua Zhu,
Tao Qin, and Tie-Yan Liu. 2019. Microsoft research
asia’s systems for WMT19. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), Florence, Italy. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/P10-2041
https://www.aclweb.org/anthology/P10-2041
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/D17-1239


295

A Rewrite Model

Below are example generations from our models,
with some highlighted comparisons. “...” indi-
cates text omitted for brevity.

Each configuration correctly introduces the
teams. However, note that the stadium differs.
The End-to-end model claims that the game took
place at the United Center. The GPT models
claim that the game took place at the Air Canada
Cent(er|re), the correct stadium for the home team
(the Toronto Raptors). In fact, the GPT model uses
what may be a more correct spelling (centre).

All models report player statistics (some ex-
ample sentences are bolded) and game statistics.
There are some occasional mistakes. . Some are
logical (the Raptors won), and others seems to be
related to decoding.

A.1 Gold Template Input

The Raptors are from Toronto. The

Raptors were HOME. The Raptors scored

122 points. The 76ers are from

Philadelphia. The 76ers were AWAY.

The 76ers scored 95 points. ... Robert

Covington scored 20 points. Robert

Covington had 5 rebounds. Robert

Covington had 2 assists. Robert

Covington had 2 steals. Robert

Covington made 7 shots. Robert

Covington had 11 attempts. Jahlil

Okafor scored 15 points. ...

A.2 Gold Summary

The host Toronto Raptors defeated

the Philadelphia 76ers, 122 - 95, at

Air Canada Center on Monday. ... The

Raptors were lights - out shooting, as

they went 55 percent from the field and

68 percent from three - point range.

They also held the Sixers to just 42

percent from the field and dominated

the defensive rebounding, 34 - 26.

Fastbreak points was a huge difference

as well, with Toronto winning that

battle, 21 - 6. ... Robert Covington

had one of his best games of the season

though, tallying 20 points, five

rebounds, two assists and two steals

on 7 - of - 11 shooting. Jahlil Okafor

got the start for Embiid and finished

with 15 points and five rebounds. ...

A.3 End-to-End Summary

The Toronto Raptors defeated the

visiting Philadelphia 76ers 122 - 95

, at United Center on Saturday evening.

The Raptors (11 - 6) came in to Friday’s

contest having lost four of their last

six games, and have now lost five of

their last seven games. They were led

by Terrence Ross, who scored a game -

high 22 points on 8 - of - 11 shooting

from the field and 3 - of - 5 from three

- point range. Kyle Lowry followed

up with 24 points, eight assists and

four rebounds, in 32 minutes. Jonas

Valanciunas recorded a double - double

with 12 points and 11 rebounds, in 22

minutes off the bench. The Raptors

shot 55 percent from the field and

68 percent from long range , while the

76ers shot 55 percent from the field

and 68 percent from behind the arc .

Robert Covington was the high - point

man for the 76ers, with 20 points ,

including 6 - of - 9 from three - point

range. ... The Sixers will look to

bounce back when they visit the New York

Knicks on Monday.

A.4 Top-0.5 Sampling (GPT-50)

The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, at

Air Canada Centre on Saturday. The

Raptors (11 - 6) were able to prevail

despite being outshot, out rebounded

and out - rebounded by the Sixers (7

- 15) in the contest. ... The Raptors

were led by Terrence Ross, who posted

a game - high 22 points on 8 - of - 11

shooting, including 3 - of - 5 from long

range. Kyle Lowry followed up with 24

points, eight assists and four rebounds,

in 32 minutes. Jonas Valanciunas

chipped in 12 points and 11 rebounds, in

22 minutes off the bench. The Raptors

shot a respectable 55 percent from the

field and 68 percent from long range,

but were out - rebounded by the Sixers

by a 52 - 40 margin. Philadelphia

had five players in double figures,

led by Robert Covington, who scored

20 points on 6 - of - 9 shooting from



296

behind the arc. The Sixers will look

to bounce back, as they travel to Boston

to take on the Celtics on Monday. ...

The Raptors will look to extend their

winning streak to four on Monday against

the Orlando Magic.

A.5 Top-0.9 Sampling (GPT-90)
We show summaries from two different seeds for
the least restrictive sampling setting, p = 0.9.
Some details change but most of the content

supported by the data remains the same. Aggre-
gated across the entire set, the information metrics
remain nearly identical. This less restricted model
more frequently outputs hallucinations and sur-
rounding details not supported by the tabular data.

Sample One:
The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, at Air

Canada Centre on Saturday. ... Lowry

added 24 points, eight assists

and four rebounds in 32 minutes.

Jonas Valanciunas scored 12 points

and grabbed 11 rebounds in 22 minutes

as a starter. ...

Sample Two:
The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, in

overtime at Air Canada Centre on

Tuesday . ... After a rather lopsided

first quarter, the Raptors came

out flat for the first 40 - plus

minutes of this game. Philadelphia

ended up hanging around for the

final four minutes of regulation , as

Toronto took the lead for good with

16 seconds remaining in regulation.

... In overtime, the Raptors took a

13 - point lead into the locker room

thanks to a clutch 30 - foot field goal

from Terrence Ross with eight seconds

remaining in regulation. ... Kyle

Lowry added 24 points, eight assists

and four rebounds in 32 minutes , while

Jonas Valanciunas added a 12 - point,

11 - rebound double - double in just

22 minutes. ...


