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Abstract

Recently, the Transformer becomes a state-
of-the-art architecture in the filed of neural
machine translation (NMT). A key point of
its high-performance is the multi-head self-
attention which is supposed to allow the model
to independently attend to information from
different representation subspaces. However,
there is no explicit mechanism to ensure that
different attention heads indeed capture dif-
ferent features, and in practice, redundancy
has occurred in multiple heads. In this pa-
per, we argue that using the same global at-
tention in multiple heads limits multi-head
self-attention’s capacity for learning distinct
features. In order to improve the expres-
siveness of multi-head self-attention, we pro-
pose a novel Mixed Multi-Head Self-Attention
(MMA) which models not only global and lo-
cal attention but also forward and backward at-
tention in different attention heads. This en-
ables the model to learn distinct representa-
tions explicitly among multiple heads. In our
experiments on both WAT17 English-Japanese
as well as IWSLT14 German-English trans-
lation task, we show that, without increas-
ing the number of parameters, our models
yield consistent and significant improvements
(0.9 BLEU scores on average) over the strong
Transformer baseline. 1

1 Introduction

Neural machine translation (NMT) has made
promising progress in recent years with differ-
ent architectures, ranging from recurrent neu-
ral networks (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015),
convolutional networks (Gehring et al., 2017) and
most recently, self-attention networks (Trans-
former) (Vaswani et al., 2017).

1Our code is available at:
https://github.com/yokusama/transformer-mma

Among the different architectures, the Trans-
former (Vaswani et al., 2017) has recently at-
tracted most attention in neural machine transla-
tion, due to its high parallelization in computa-
tion and improvements in quality. A key point
of its high-performance is the multi-head self-
attention which allows the model to jointly attend
to information from different representation sub-
spaces at different positions. There is a huge gap
(around 1 BLEU score) between the performance
of the Transformer with only one head and eight
heads (Vaswani et al., 2017; Chen et al., 2018).

However, all encoder self-attention heads fully
take global information into account, there is
no explicit mechanism to ensure that differ-
ent attention heads indeed capture different fea-
tures (Li et al., 2018). Concerning the results pre-
sented by some latest researches, the majority
of the encoder self-attention heads, can even be
pruned away without substantially hurting model’s
performance (Voita et al., 2019; Michel et al.,
2019). Moreover, the ability of multi-head self-
attention, in which lacking capacity to capture lo-
cal information (Luong et al., 2015; Yang et al.,
2018; Wu et al., 2019) and sequential informa-
tion (Shaw et al., 2018; Dehghani et al., 2019),
has recently come into question (Tang et al.,
2018).

Motivated by above findings, we attribute the
redundancy arising in encoder self-attention heads
to the using of same global self-attention among
all attention heads. Additionally, it is because of
the redundancy, multi-head self-attention is un-
able to leverage its full capacity for learning dis-
tinct features in different heads. In response, in
this paper, we propose a novel Mixed Multi-Head
Self-Attention (MMA) which can capture distinct
features in different heads explicitly by different
attention function. Concretely, MMA is com-
posed of four attention functions: Global Atten-
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Figure 1: The architecture of Transformer with Mixed Multi-Head Self-Attention

tion which models dependency of arbitrary words
directly. Local Attention, where attention scope
is restricted for exploring local information. For-
ward and Backward Attention which attends to
words from the future and from the past respec-
tively, serving as a function to model sequence or-
der. MMA enables the model to learn distinct rep-
resentations explicitly in different heads and im-
proves the expressive capacity of multi-head self-
attention. Besides, our method is achieved simply
by adding hard masks before calculating attention
weights, the rest is the same as the original Trans-
former. Hence our method does not introduce ad-
ditional parameters and does not affect the training
efficiency.

The primary contributions of this work can be
summarized as follows:

• We propose a novel Mixed Multi-Head Self-
Attention (MMA) that extracts different as-
pects of features in different attention heads.

• Experimental results on two language pairs
demonstrate that the proposed model consis-
tently outperforms the vanilla Transformer in
BLEU scores. Qualitative analysis shows our
MMA can make better use of word order in-
formation and the improvement in translating
relatively long sentence is especially signifi-
cant.

2 Transformer Architecture

In this section, we briefly describe the Transformer
architecture (Vaswani et al., 2017) which includes

an encoder and a decoder. The Transformer aims
to model a source sentence x to a target sentence
y by minimizing the negative log likelihood of the
target words.

The encoder consists of N identical layers, each
layers has two sublayers with residual connec-
tion (He et al., 2016). The first is a multi-head
self-attention layer and the second is a position
wise fully connected feed-forward network layer:

H̃ l = LN(H l−1 +MA(Ql−1,K l−1, V l−1)) (1)

H l = LN(H̃ l + FFN(H̃ l)) (2)

where Ql−1, K l−1, V l−1 come from the output
of the previous encoder layer H l−1. LN(·) and
FFN(·) represent layer normalization (Ba et al.,
2016) and feed-forward networks.

The multi-head attention MA(·) linearly project
the queries, keys and values h times for different
representation of Q, K, V , and computes scaled
dot-product attention (Luong et al., 2015) ATT(·)
for each representation. Then these are concate-
nated and once again projected, the final atten-
tional context is calculated as follows:

headh = ATT(QWQ
h ,KWK

h , V W V
h ) (3)

MA = Concat(headh)W
O (4)

where WQ
h , WK

h and W V
h are parameter matri-

ces to transform hidden state into different repre-
sentation subspaces and WO is output projection.
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ATT(·) is computed by:

ei =
QiK

⊤
√
d

(5)

ATT(Q,K, V ) = Softmax(ei)V (6)

where ei is the i-th energy and d is the dimension
of hidden state.

The decoder is also composed of N identical
layers and it contains a third sublayer, which per-
forms attention over the output of the encoder be-
tween the self-attention sublayer and feed-forward
network sublayer.

3 Proposed Architecture

Our proposed approach is mainly motivated by
the fact that redundancy has occurred in multi-
heads (Voita et al., 2019; Michel et al., 2019),
which limits the capacity of multi-head self-
attention. As each self-attention layer has a same
global receptive field, this can not guarantee that
every head has learned useful features in different
subspaces through the same attention function.

To tackle the problem mentioned above, besides
global information, we also model local and se-
quential information for multi-head self-attention
by applying local attention, forward attention and
backward attention respectively. We refer to it
as Mixed Multi-head Self-Attention (MMA), as
shown in Figure 1. This is achieved by adding hard
mask to each attention head. In this way, Eq.(3) is
redefined as:

ATT(Q,K, V ) = Softmax(ei +Mi)V (7)

Since attention weights are calculated by the soft-
max function, for i-th word, if a mask Mi,j =
−∞ is added to the j-th position, it means that
Softmax(ei,j + Mi,j) = 0 and there is no at-
tention of Qi to Kj . On the contrary, if a mask
Mi,j = 0, it means no change in attention func-
tion and Qi attends to and captures relevant infor-
mation from Kj .

3.1 Global and Local Attention

Global attention and local attention differ in terms
of whether the attention is placed on all posi-
tions or only a few positions. Global atten-
tion is the original attention function in Trans-
former (Vaswani et al., 2017), and it has a global

receptive field which is used to connect with arbi-
trary words directly. Under our framework, we de-
fine the hard mask for global attention as follows:

MG
i,j = 0 (8)

But global attention may be less powerful and
can potentially render it impractical for longer se-
quences (Luong et al., 2015). On the other hand,
self-attention can be enhanced by local attention
which focuses more on restricted scope rather
than the entire context (Wu et al., 2019; Xu et al.,
2019). Based on the above findings, we also de-
fine a local attention which simply employs a hard
mask to restrict the attention scope by:

ML
i,j =

{
0, i− w ≤ j ≤ i+ w

−∞, otherwise
(9)

where w is the attention scope which means, for
a given i-th word, it can only attends to the set of
words within the window size [i− w, i+ w].

We aim to combine the strengths both of global
attention and local attention. Towards this goal,
we apply global attention and local attention to
two distinct attention heads.

3.2 Forward and Backward Attention
As for RNN-based NMT, bidirectional recurrent
encoder (Schuster and Paliwal, 1997) is the most
commonly used encoder (Bahdanau et al., 2015).
It consists of forward and backward recurrent en-
coding that receive information from both past and
future words. However, the Transformer foregoes
recurrence and completely relies on predefined po-
sition embedding to represent position informa-
tion. Therefore, it has considerable difficulties
in considering relative word order (Shaw et al.,
2018).

In order to enhance the ability of position-
awareness in self-attention, we present an straight-
forward way of modeling sequentiality in the self-
attention by a forward attention which only attends
to words from the future, and a backward atten-
tion which inversely only attends to words from
the past. The masks in forward and backward at-
tention can be formally defined as:

MF
i,j =

{
0, i ≤ j

−∞, otherwise
(10)

MB
i,j =

{
0, i ≥ j

−∞, otherwise
(11)
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En-Ja Ja-En
Model #Params BLEU ∆ #Params BLEU ∆

Transformer 71M 33.58 – 71M 23.24 –
Transformer MMA + 0 34.39†† + 0.81 + 0 24.16†† + 0.92

Table 1: Evaluation results on WAT17 English⇔Japanese translation task. #Params denotes the number of pa-
rameters and ∆ denotes relative improvement over the Transformer baseline. † † (p < 0.01) indicates statistical
significance different from the Transformer baseline.

Model De-En
Variational Attention (Deng et al., 2018) 33.30
Pervasive Attention (Elbayad et al., 2018) 34.18
Multi-Hop Attention (Iida et al., 2019) 35.13
Dynamic Convolution (Wu et al., 2019) 35.20
RNMT Fine-tuned (Sennrich and Zhang, 2019) 35.27
Transformer (Vaswani et al., 2017) 34.46
Transformer MMA 35.41††

Table 2: Evaluation results on IWSLT14 De-En. ∆ denotes relative improvement over the Transformer baseline.
† † (p < 0.01) indicates statistical significance different from the Transformer baseline.

With the help of forward and backward attention,
we assume that the Transformer can can make bet-
ter use of word order information.

3.3 Mixed Multi-Head Self-Attention

With different heads applied different attention
function and different receptive field, the model
is able to learn different aspects of features. To
fully utilize the different features, we concatenate
all mixed attention heads as in Eq.(4):

MA = Concat(headG, headL, headF , headB)W
O

where headG, headL, headF , headB represent
head with global attention, local attention, forward
attention and backward attention respectively.

Our method only adds hard masks before soft-
max function, the rest is the same as the original
model. Hence our method brings increase the pa-
rameters of the Transformer and does not affect
the training efficiency.

4 Experiments

4.1 Datasets

To test the proposed approach, we perform experi-
ments on WAT17 English-Japanese and IWSLT14
German-English translation task with different
amounts of training data.
WAT17 English-Japanese: We use the data from
WAT17 English-Japanese translation task which
created from ASPEC (Nakazawa et al., 2017).

Training, validation and test sets comprise 2M,
1.8K, 1.8K sentence pairs respectively. We adopt
the official 16K vocabularies preprocessed by sen-
tencepiece.2

IWSLT14 German-English: We use the TED
data from the IWSLT14 German-English shared
translation task (Cettolo et al., 2014) which con-
tains 160K training sentences and 7K validation
sentences randomly sampled from the training
data. We test on the concatenation of tst2010,
tst2011, tst2012, tst2013 and dev2010. For this
benchmark, data is lowercased and tokenized with
byte pair encoding (BPE) (Sennrich et al., 2016).

4.2 Setup

Our implementation is built upon open-source
toolkit fairseq3 (Ott et al., 2019). For WAT17
dataset and IWSLT14 dataset, we use the con-
figurations of the Transformer base and small
model respectively. Both of them consist of a
6-layer encoder and 6-layer decoder, the size of
hidden state and word embedding are set to 512.
The dimensionality of inner feed-forward layer
is 2048 for base and 1024 for small model.
The dropout probability is 0.1 and 0.3 for base
and small model. Models are optimized with
Adam (Kingma and Ba, 2014). We use the same
warmup and decay strategy for learning rate as
Vaswani et al. (2017) with 4000 warmup steps.

2https://github.com/google/sentencepiece
3https://github.com/pytorch/fairseq
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Model De-En ∆ Ja-En ∆

Transformer 34.46 – 23.24 –
- Position Embedding 16.55 – 12.83 –

Transformer MMA 35.41 + 0.95 24.16 + 0.92
- Position Embedding 34.66 + 18.11 23.80 +10.97

Table 3: Results on IWSLT14 De-En and WAT17 Ja-En for effectiveness of learning word order. ”- Position
Embedding” indicates removing positional embedding from Transformer encoder or Transformer MMA encoder.
∆ denotes relative improvement over the counterpart of the Transformer baseline.

During training, we employ label smoothing of
value 0.1 (Szegedy et al., 2016). All models are
trained on a single NVIDIA RTX2080Ti with a
batch size of around 4096 tokens. The base model
are trained for 20 epochs, the small model are
trained for 45 epochs.

The number of heads are 8 for base model and
4 for small model. We replace multi-head self-
attention in the encoder layers by our mixed multi-
head self-attention. For a fair comparison, we ap-
ply each attention function twice in base model.
By doing this, our Transformer MMA have the
same number of parameters as the original Trans-
former.

For evaluation, we use a beam size of 5 for
beam search, translation quality is reported via
BLEU (Papineni et al., 2002) and statistical signif-
icance test is conducted by paired bootstrap resam-
pling method (Koehn, 2004).

4.3 Results
In Table 1 and Table 2, we present the experi-
ment results measured by BLEU on WAT17 and
IWSLT14.

On WAT17 English⇒Japanese (En-Ja) and
Japanese⇒English (Ja-En) translation task, with-
out increasing the number of parameters, our
Transformer MMA outperforms the correspond-
ing baseline 0.81 BLEU score on En-Ja and 0.92
BLEU score on En-Ja.

On IWSLT14 German⇒English (De-En) trans-
lation task, our model achieves 35.41 in terms
of BLEU score, with 0.95 improvement over the
strong Transformer baseline. In order to compare
with existing models, we list out some latest and
related work and our model also achieves consid-
erable improvements over these results.

Overall, our evaluation results show the intro-
duction of MMA consistently improves the trans-
lation quality over the vanilla Transformer, and the
proposed approach is stable across different lan-
guages pairs.

5 Analysis

5.1 Effectiveness of MMA

Neural machine translation must consider the
correlated ordering of words, where order has
a lot of influence on the meaning of a sen-
tence (Khayrallah and Koehn, 2018). In vanilla
Transformer, the position embedding is a de-
terministic function of position and it allows
the model to be aware of the order of the se-
quence (Yang et al., 2019). As shown in Ta-
ble 3, Transformer without position embedding
fails on translation task, resulting in a decrease
of 17.91 BLEU score. With the help of proposed
MMA, the performance is only reduced by 0.75
BLEU score without position embedding, and
18.11 points higher than the Transformer baseline.
The same result holds true for a distant language
pair Japanese-English where word oder is com-
pletely different. When removing position em-
bedding, the Transformer baseline drops to 12.83
BLEU score. However, our model still achieves
23.80 in terms of BLEU score, with 10.97 points
improvement over the Transformer counterpart.

From the cognitive perspective, due to the char-
acter of local attention which only focuses on re-
stricted scope, the local attention head’s depen-
dence on word order information is reduced. In the
forward and backward head, directional informa-
tion is explicitly learned by our forward and back-
ward attention. The above experimental results
confirm our hypothesis that, other than global in-
formation, Transformer MMA takes local and se-
quential information into account when perform-
ing self-attention function, revealing its effective-
ness on utilizing word order information.

5.2 Effect on Sentence Length

Following Bahdanau et al. (2015), we group
source sentences of similar lengths to evaluate the
performance of the proposed Transformer MMA
and vanilla Transformer. We divide our test set



211

Figure 2: Translation results on test sets relative to
source sentence length for IWSLT14 De-En.

into six disjoint groups shown in Figure 2. The
numbers on the X-axis represent source sentences
that are not longer than the corresponding length,
e.g., “(0, 10]” indicates that the length of source
sentences is between 1 and 10.

In all length intervals, Transformer MMA con-
sistently outperforms the Transformer baseline.
Specifically, as the length of the source sentence
increases, so does the increase in the improvement
brought by MMA. One explanation is that when
the length of the sentence is very short, four dif-
ferent attention functions are similar to each other.
But as the length of the sentence increases, more
distinct characteristics can be learned and the per-
formance gap is becoming larger.

Moreover, encoding long sentences usually re-
quires more long-range dependency. Concern-
ing the ability to connect with distant words di-
rectly, global self-attention was speculated that it
is better suited to capture long-range dependency.
However, as noted in (Tang et al., 2018), afore-
said hypothesis is not empirically correct and self-
attention does have trouble handling long sen-
tences. In case of our Transformer MMA, with
the exist of other attention functions served as aux-
iliary feature extractors, we think that the Trans-
former has more capacity for modeling longer sen-
tences.

5.3 Ablation Study
For ablation study, the primary question is whether
the Transformer benefits from the integration of
different attention equally. To do evaluate the im-
pact of various attention functions, we keep global
self-attention head unchanged, and next we re-
place other heads with different attention function.

Model De-En ∆

Transformer 34.46 –
+ Local Attention 35.05 + 0.59
+ Forward Attention 34.83 + 0.37
+ Backward Attention 35.13 + 0.67
+ MMA 35.41 + 0.95

Table 4: Results of ablation experiments on IWSLT14
De-En. ∆ denotes relative improvement over baseline.

Model De-En ∆

Transformer 34.46 –
+ MMA (w = 1) 35.41 +0.95
+ MMA (w = 2) 35.31 + 0.85
+ MMA (w = 3) 35.35 + 0.89
+ MMA (w = 4) 35.22 + 0.76

Table 5: Results of different attention scope on
IWSLT14 De-En. ∆ denotes relative improvement
over baseline.

The results are listed in Table 4. Compared with
the Transformer baseline, all integration methods
that incorporate other attention function improve
the performance of translation, from 0.37 to 0.67
BLEU score. And we can see that Transformer
MMA performs best across all variants with the
improvement of 0.95 BLEU score.

Furthermore, we investigate the effect of atten-
tion scope in our Transformer MMA, as illustrated
in Table 5. As the number of attention scope
progressively increases, there is no absolute trend
in performance. However it is worth noting that
when the attention scope is relatively small, the
overall performance is better. Specifically, when
the size of attention scope is 1, our Transformer
MMA achieves the best result. One possible rea-
son is that, in the case where there are already
global features captured by global attention, the
smaller the attention scope, the more local features
can be learned by local attention.

5.4 Attention Visualization

To further explore the behavior of our Transformer
MMA, we observe the distribution of encoder at-
tention weights in our models and show an exam-
ple of Japanese sentence as plotted in Figure 3.

The first discovery is that we find the word over-
looks itself on the first layer in the global atten-
tion head. This contrasts with the results from
Raganato and Tiedemann (2018). They find that,
on the first layer of original Transformer, more en-
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Figure 3: Visualization of the attention weights of Japanese sentence “これらは腰椎装具装用または運動制
限により全症例軽快した。” (meaning “These persons were improved in all cases by wearing lumbar braces
or limiting exercises”). The deeper blue color refers to larger attention weights.

coder self-attention heads focus on the word it-
self. This change is in line with our assumption
that, due to the existence of other attention heads,
global attention head can focus more on capturing
global information.

The second discovery is that, on the upper lay-
ers, forward and backward attention heads move
the attention more on distant words. This suggests
forward and backward attention is able to serve
as a complement to capturing long-range depen-
dency.

6 Related Work

In the field of neural machine translation, the
two most used attention mechanisms are addi-
tive attention (Bahdanau et al., 2015) and dot at-
tention (Luong et al., 2015). Based on the latter,
Vaswani et al. (2017) proposed a multi-head self-
attention, that is not only highly parallelizable but
also with better performance.

However, self-attention, which employs nei-
ther recurrence nor convolution, has great
difficulty in incorporating position informa-
tion (Vaswani et al., 2017). To tackle this prob-
lem, Shaw et al. (2018) presented an extension
that can be used to incorporate relative position
information for sequence. And Shen et al. (2018)
tried to encode the temporal order and introduced
a directional self-attention which only composes
of directional order. On the other hand, although

with a global receptive field, the ability of self-
attention recently came into question (Tang et al.,
2018). And modeling localness, either restricting
context sizes (Yang et al., 2018; Wu et al., 2019;
Child et al., 2019) or balancing the contribution of
local and global information (Xu et al., 2019), has
been shown to be able to improve the expressive-
ness of self-attention. In contrast to these studies,
we aim to improve the self-attention in a system-
atic and multifaceted perspective, rather than just
paying attention to one specific characteristic.

Compared to a conventional NMT model with
only a single head, multi-head is assumed to have a
stronger ability to extract different features in dif-
ferent subspaces. However, there are no explicit
mechanism that make them distinct (Voita et al.,
2019; Michel et al., 2019). Li et al. (2018) had
shown that using a disagreement regularization to
encourage different attention heads to have dif-
ferent behaviors can improve the performance of
multi-head attention. Iida et al. (2019) proposed a
multi-hop attention where the second-hop serves
as a head gate function to normalize the atten-
tional context of each head. Not only limited in the
field of neural machine translation, Strubell et al.
(2018) combined multi-head self-attention with
multi-task learning, this led to a promising result
for semantic role labeling. Similar to the above
studies, we also attempt to model diversity for
multi-head attention. In this work, we apply dif-
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ferent attention function to capture different as-
pects of features in multiple heads directly, which
is more intuitive and explicit.

7 Conclusion

In this work, we improve the self-attention net-
works by modeling multi-head attention to learn
different aspects of feature through different at-
tention function. Experimental results on WAT17
English-Japanese and IWSLT14 German-English
translation tasks demonstrate that our proposed
model outperforms the Transformer baseline as
well as some latest and related models. Our analy-
sis further shows our Transformer MMA can make
better use of word order information and the im-
provement in translating longer sentences is espe-
cially significant. Moreover, we perform ablation
study to compare different architectures. To ex-
plore the behavior of our proposed model, we vi-
sualize the attention distribution and confirm the
diversity among multiple heads in MMA.

In the future, we plan to apply our method on
other sequence to sequence learning tasks, such as
text summarization.
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