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Abstract

Exposure bias refers to the train-test discrep-
ancy that seemingly arises when an autoregres-
sive generative model uses only ground-truth
contexts at training time but generated ones at
test time. We separate the contributions of the
model and the learning framework to clarify
the debate on consequences and review pro-
posed counter-measures.
In this light, we argue that generalization is
the underlying property to address and pro-
pose unconditional generation as its funda-
mental benchmark. Finally, we combine la-
tent variable modeling with a recent formu-
lation of exploration in reinforcement learn-
ing to obtain a rigorous handling of true and
generated contexts. Results on language mod-
eling and variational sentence auto-encoding
confirm the model’s generalization capability.

1 Introduction

Autoregressive models span from n-gram mod-
els to recurrent neural networks to transformers
and have formed the backbone of state-of-the-
art machine learning models over the last decade
on virtually any generative task in Natural Lan-
guage Processing. Applications include machine
translation (Bahdanau et al., 2015; Vaswani et al.,
2017), summarization (Rush et al., 2015; Khan-
delwal et al., 2019), dialogue (Serban et al., 2016)
and sentence compression (Filippova et al., 2015).

The training methodology of such models is
rooted in the language modeling task, which is to
predict a single word given a context of previous
words. It has often been criticized that this set-
ting is not suited for multi-step generation where
– at test time – we are interested in generating
words given a generated context that was poten-
tially not seen during training. The consequences
of this train-test discrepancy are summarized as
exposure bias. Measures to mitigate the prob-

lem typically rely on replacing, masking or per-
tubing ground-truth contexts (Bengio et al., 2015;
Bowman et al., 2016; Norouzi et al., 2016; Ran-
zato et al., 2016). Unfortunately, exposure bias
has never been succesfully separated from general
test-time log-likelihood assessment and minor im-
provements on the latter are used as the only signi-
fier of reduced bias. Whenever explicit effects are
investigated, no significant findings are made (He
et al., 2019).

In this work we argue that the standard training
procedure, despite all criticism, is an immediate
consequence of combining autoregressive model-
ing and maximum-likelihood training. As such,
the paramount consideration for improving test-
time performance is simply regularization for bet-
ter generalization. In fact, many proposed mea-
sures against exposure bias can be seen as exactly
that, yet with respect to an usually implicit metric
that is not maximum-likelihood.

With this in mind, we discuss regularization
for conditional and unconditional generation. We
note that in conditional tasks, such as translation,
it is usually sufficient to regularize the mapping
task – here translation – rather than the generative
process itself. For unconditional generation,
where tradeoffs between accuracy and coverage
are key, generalization becomes much more
tangible.

The debate on the right training procedure for
autoregressive models has recently been ampli-
fied by the advent of latent generative models
(Rezende et al., 2014; Kingma and Welling, 2013).
Here, the practice of decoding with true contexts
during training conflicts with the hope of obtain-
ing a latent representation that encodes significant
information about the sequence (Bowman et al.,
2016). Interestingly, the ad hoc tricks to reduce
the problem are similar to those proposed to ad-
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dress exposure bias in deterministic models.
Very recently, Tan et al. (2017) have presented

a reinforcement learning formulation of explo-
ration that allows following the intuition that an
autoregressive model should not only be trained on
ground-truth contexts. We combine their frame-
work with latent variable modeling and a reward
function that leverages modern word-embeddings.
The result is a single learning regime for uncon-
ditional generation in a deterministic setting (lan-
guage modeling) and in a latent variable setting
(variational sentence autoencoding). Empirical re-
sults show that our formulation allows for better
generalization than existing methods proposed to
address exposure bias. Even more, we find the re-
sulting regularization to also improve generaliza-
tion under log-likelihood.

We conclude that it is worthwhile explor-
ing reinforcement learning to elegantly extend
maximum-likelihood learning where our desired
notion of generalization cannot be expressed with-
out violating the underlying principles. As a re-
sult, we hope to provide a more unified view on
the training methodologies of autoregressive mod-
els and exposure bias in particular.

2 Autoregressive Modeling

Modern text generation methods are rooted in
models trained on the language modeling task. In
essence, a language model p is trained to predict a
word given its left-side context

p(wt|w1:t−1) . (1)

With a trained language model at hand, a simple
recurrent procedure allows to generate text of arbi-
trary length. Starting from an initial special sym-
bol ŵ0, we iterate t = 1 . . . and alternate between
sampling ŵt ∼ p(wt|ŵ1:t−1) and appending ŵt to
the context ŵ1:t−1. Models of this form are called
autoregressive as they condition new predictions
on old predictions.

Neural Sequence Models Although a large cor-
pus provides an abundance of word-context pairs
to train on, the cardinality of the context space
makes explicit estimates of (1) infeasible. There-
fore, traditional n-gram language models rely on
a truncated context and smoothing techniques to
generalize well to unseen contexts.

Neural language models lift the context re-
striction and instead use neural context represen-
tations. This can be a hidden state as found

in recurrent neural networks (RNNs), i.e. an
LSTM (Hochreiter and Schmidhuber, 1997) state,
or a set of attention weights, as in a transformer
architecture (Vaswani et al., 2017). While the con-
siderations in this work apply to all autoregressive
models, we focus on recurrent networks which en-
code the context in a fixed-sized continuous rep-
resentation h(w1:t−1). In contrast to transformers,
RNNs can be generalized easily to variational au-
toencoders with a single latent bottleneck (Bow-
man et al., 2016), a particularly interesting special
case of generative models .

2.1 Evaluation and Generalization

Conditional vs. Unconditional
Conditional generation tasks, such as translation
or summarization, are attractive from an appli-
cation perspective. However, for the purpose of
studying exposure bias, we argue that uncondi-
tional generation is the task of choice for the fol-
lowing reasons.

First, exposure bias addresses conditioning on
past words generated which becomes less essen-
tial when words in a source sentence are available,
in particular when attention is used.

Second, the difficulty of the underlying map-
ping task, say translation, is of no concern for
the mechanics of generation. This casts sentence
autoencoding as a less demanding, yet more eco-
nomic task.

Finally, generalization of conditional models is
only studied with respect to the underlying map-
ping and not with respect to the conditional distri-
bution itself. A test-set in translation usually does
not contain a source sentence seen during training
with a different target1. Instead, it contains un-
seen source-target pairs that evaluate the general-
ization of the mapping. Even more, at test-time
most conditional models resort to an arg-max de-
coding strategy. As a consequence, the entropy
of the generative model is zero (given the source)
and there is no generalization at all with respect to
generation. For these reasons, we address uncon-
ditional generation and sentence auto-encoding for
the rest of this work.

The big picture Let us briefly characterize out-
put we should expect from a generative model
with respect to generalization. Figure 1 shows

1Some datasets do provide several targets for a single
source. However, those are typically only used for BLEU
computation, which is the standard test metric reported.
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Figure 1: Generalization

an idealized two-dimensional dataspace of (fixed-
length) sentences w ∈ V T . We sketch the sup-
port of the unknown underlying generating distri-
bution, the train set and the test set.2 Let us look at
some hypothetical examples ŵ1, ŵ2, ŵ3, ŵ4 gen-
erated from some well trained model. Samples
like ŵ1 certify that the model did not overfit to
the training data as can be certified by test log-
likelihood. In contrast, the remaining samples
are indistinguishable under test log-likelihood in
the sense that they identically decrease the metric
(assuming equal model probability) even though
ŵ2, ŵ3 have non-zero probability under the true
data distribution. Consequently, we cannot iden-
tify ŵ4 as a malformed example. Holtzman et
al. (2019) show that neural generative models –
despite their expressiveness – put significant prob-
ability on clearly unreasonable repetitive phrases,
such as I dont know. I dont know. I dont know.3

Evaluation under smoothed data distribution
The most common approach to evaluating an un-
conditional probabilistic generative model is train-
ing and test log-likelihood. For a latent variable
model, the exact log-likelihood (2) is intractable
and a lowerbound must be used instead. How-
ever, at this point it should be noted that one can
always estimate the log-likelihood from an empir-
ical distribution across output generated. That is,
one generates a large set of sequences S and sets
p̂(w) to the normalized count of w in S . However,
the variance of this estimate is impractical for all
but the smallest datasets. Also, even a large test-
set cannot capture the flexibility and composition-
ality found in natural language.

2Here we do not discuss generalization error, the discrep-
ancy between empirical test error and expected test error. It
should also be noted that cross-validation provides another
complementary technique to more robust model estimation,
which we omit to keep the picture simple.

3They report that this also holds for non-grammatical
repetitive phrase, which is what we would expect for ŵ4.

With aforementioned shortcomings of test log-
likelihood in mind, it is worthwhile discussing
a recently proposed evaluation technique. Fe-
dus et al. (2018) propose to use n-gram statis-
tics of the underlying data to asses generated out-
put. For example, one can estimate an n-gram lan-
guage model and report perplexity of the gener-
ated data under the n-gram model. Just as BLEU
and ROUGE break the sequence reward assign-
ment problem into smaller sub-problems, n-gram
language models effectively smooth the sequence
likelihood assignment which is usually done with
respect to the empirical data distribution. Under
this metric, some sequences such as ŵ2 which are
close to sequences in the dataset at hand might re-
ceive positive probability.

This raises two questions. First, can we break
sequence-level evaluation into local statistics by
using modern word embeddings instead of n-
grams (as BLEU does)? Second, can we incor-
porate these measures already during training to
obtain better generative models. These considera-
tions will be key when defining a reward function
in Section 4.5.

3 Teacher Forcing and Exposure Bias

A concern often expressed in the context of au-
toregressive models is that the recursive sampling
procedure for generation presented in Section 1 is
never used at training time; hence the model can-
not learn to digest its own predictions. The result-
ing potential train-test discrepancy is referred to as
exposure bias and is associated with compounding
errors that arise when mistakes made early accu-
mulate (Bengio et al., 2015; Ranzato et al., 2016;
Goyal et al., 2016; Leblond et al., 2018). In this
context, teacher-forcing refers to the fact that –
seen from the test-time perspective – ground-truth
contexts are substituted for model predictions. Al-
though formally teacher forcing and exposure bias
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should be seen as cause (if any) and symptom, they
are often used exchangeably.

As is sometimes but rarely mentioned, the
presence of the ground-truth context is simply
a consequence of maximum-likelihood train-
ing and the chain rule applied to (1) as in
p(w1:T ) =

∏
p(wt|w1:t−1) (Goodfellow et al.,

2016). As such, it is out of question whether
generated contexts should be used as long as log-
likelihood is the sole criterion we care about. In
this work we will furthermore argue the following:

Proposition 1 Exposure bias describes a lack
of generalization with respect to an – usually
implicit and potentially task and domain depen-
dent – measure other than maximum-likelihood.

The fact that we are dealing with generalization is
obvious, as one can train a model – assuming suffi-
cient capacity – under the criticized methodology
to match the training distribution. Approaches that
address exposure bias do not make the above no-
tion of generalization explicit, but follow the in-
tuition that training on other contexts than (only)
ground-truth contexts should regularize the model
and result in – subjectively – better results. Of
course, these forms of regularization might still
implement some form of log-likelihood regular-
ization, hence improve log-likelihood generaliza-
tion. Indeed, all of the following methods do re-
port test log-likelihood improvements.

Proposed methods against exposure bias
Scheduled sampling (Bengio et al., 2015) pro-
posed for conditional generation randomly mixes
in predictions form the model, which violates
the underlying learning framework (Husz’ar,
2015). RAML (Norouzi et al., 2016) proposes
to effectively perturbs the ground-truth context
according to the exponentated payoff distribution
implied by a reward function. Alternatively,
adversarial approaches (Goyal et al., 2016) and
learning-to-search (Leblond et al., 2018) have
been proposed.

VAE Collapse In Section 4.1 we will take a look
at latent generative models. In that context, the
standard maximum-likelihood approach to autore-
gressive models has been criticized from a second
perspective that is worth mentioning. Bowman et
al. (2016) show empirically that autoregressive de-
coders p(w|z) do not rely on the latent code z, but

collapse to a language model as in (1).
While some work argues that the problem is

rooted in autoregressive decoders being “too pow-
erful” (Shen et al., 2018), the proposed measures
often address the autoregressive training regime
rather than the models (Bowman et al., 2016) and,
in fact, replace ground-truth contexts just as the
above methods to mitigate exposure bias.

In addition, a whole body of work has discussed
the implications of optimizing only a bound to the
log-likelihood (Alemi et al., 2017) and the impli-
cations of re-weighting the information-theoretic
quantities inside the bound (Higgins et al., 2017;
Rainforth et al., 2018).

4 Latent Generation with ERPO

We have discussed exposure bias and how it has
been handled by either implicitly or explicitly
leaving the maximum-likelihood framework. In
this section, we present our reinforcement learning
framework for unconditional sequence generation
models. The generative story is the same as in a
latent variable model:

1. Sample a latent code z ∼ Rd

2. Sample a sequence from a code-conditioned
policy pθ(w|z).

However, we will rely on reinforcement learning
to train the decoder p(w|z). Note that for a con-
stant code z = 0 we obtain a language model as
a special case. Let us now briefly review latent
sequential models.

4.1 Latent sequential models

Formally, a latent model of sequences w = w1:T

is written as a marginal over latent codes

p(w) =

∫
p(w, z)dz =

∫
p(w|z)p0(z)dz . (2)

The precise form of p(w|z) and whether z refers
to a single factor or a sequence of factors z1:T de-
pends on the model of choice.

The main motivation of enhancing p with a la-
tent factor is usually the hope to obtain a meaning-
ful structure in the space of latent codes. How such
a structure should be organized has been discussed
in the disentanglement literature in great detail, for
example in Chen et al. (2018), Hu et al. (2017) or
Tschannen et al. (2018).
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In our context, latent generative models are in-
teresting for two reasons. First, explicitly in-
troducing uncertainty inside the model is often
motivated as a regularizing technique in Bay-
seian machine learning (Murphy, 2012) and has
been applied extensively to latent sequence mod-
els (M. Ziegler and M. Rush, 2019; Schmidt and
Hofmann, 2018; Goyal et al., 2017; Bayer and Os-
endorfer, 2014). Second, as mentioned in Sec-
tion 3 (VAE collapse) conditioning on ground-
truth contexts has been identified as detrimental to
obtaining meaningful latent codes (Bowman et al.,
2016) – hence a methodology to training decoders
that relaxes this requirement might be of value.

Training via Variational Inference Variational
inference (Zhang et al., 2018) allows to optimize
a lower-bound instead of the intractable marginal
likelihood and has become the standard method-
ology to training latent variable models. Introduc-
ing an inference model q and applying Jensen’s in-
equality to (2), we obtain

log p(w) = Eq(z|w)
[
log

p0(z)

q(z|w)
+logP (w|z)

]
≥ DKL(q(z|w)||p0(z)) + Eq(z|w) [logP (w|z)] (3)

Neural inference networks (Rezende et al., 2014;
Kingma and Welling, 2013) have proven as effec-
tive amortized approximate inference models.

Let us now discuss how reinforcement learning
can help training our model.

4.2 Generation as Reinforcement Learning
Text generation can easily be formulated as a re-
inforcement learning (RL) problem if words are
taken as actions (Bahdanau et al., 2016). Formally,
pθ is a parameterized policy that factorizes autore-
gressively pθ(w) =

∏
pθ(wt|h(w1:t−1)) and h is

is a deterministic mapping from past predictions
to a continuous state, typically a recurrent neural
network (RNN). The goal is then to find policy pa-
rameters θ that maximize the expected reward

J(θ) = Epθ(w)[R(w,w
?)] (4)

where R(w,w?) is a task-specific, not necessarily
differentiable metric.

Policy gradient optimization The REIN-
FORCE (Williams, 1992) training algorithm is a
common strategy to optimize (4) using a gradient
estimate via the log-derivative

∇θJ(θ) = Epθ(w)[R(w,w
?) log pθ(w)] (5)

Since samples from the policy ŵ ∼ pθ often yield
low or zeros reward, the estimator (5) is known for
its notorious variance and much of the literature is
focused on reducing this variance via baselines or
control-derivative (Rennie et al., 2016).

4.3 Reinforcement Learning as Inference

Recently, a new family of policy gradient meth-
ods has been proposed that draws inspiration from
inference problems in probablistic models. The
underlying idea is to pull the reward in (5) into
a new implicit distribution p̃ that allows to draw
samples ŵ with much lower variance as it is in-
formed about reward.

We follow Tan et al. (2017) who optimize
an entropy-regularized version of (4), a common
strategy to foster exploration. They cast the rein-
forcement learning problem as

J(θ, p̃) = Ep̃[R(w,w?)]
+ αDKL(p̃(w)||pθ(w))
+ βH(p̃) (6)

where α, β are hyper-parameters and p̃ is the new
non-parametric, variational distribution4 across
sequences. They show that (6) can be optimized
using the following EM updates

E-step: p̃n+1∝ exp

(
αpθ

n(w) +R(w,w?)

α+ β

)
(7)

M-step: θn+1=argmax
θ

Ep̃n+1 [log pθ(w)] (8)

As Tan et al. 2018 have shown, for α → 0,
β = 1 and a specific reward, the framework re-
covers maximum-likelihood training.5 It is explic-
itly not our goal to claim text generation with end-
to-end reinforcement learning but to show that it
is beneficial to operate in an RL regime relatively
close to maximum-likelihood.

4.4 Optimization with Variational Inference

In conditional generation, a policy is conditioned
on a source sentence, which guides generation to-
wards sequences that obtain significant reward.
Often, several epochs of MLE pretraining (Rennie
et al., 2016; Bahdanau et al., 2016) are necessary
to make this guidance effective.

4In (Tan et al., 2018) p̃ is written as q, which resembles
variational distributions in approximate Bayesian inference.
However, here p̃ is not defined over variables but datapoints.

5Refer to their work for more special cases, including
MIXER (Ranzato et al., 2016)
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In our unconditional setting, where a source is
not available, we employ the latent code z to pro-
vide guidance. We cast the policy pθ as a code-
conditioned policy pθ(w|z) which is trained to
maximize a marginal version of the reward (6):

J(θ) = Ep0(z)Epθ(w|z)[R(w,w
?)]] . (9)

Similar formulations of expected reward have re-
cently been proposed as goal-conditioned poli-
cies (Ghosh et al., 2018). However, here it is our
explicit goal to also learn the representation of the
goal, our latent code. We follow Equation (3) and
optimize a lower-bound instead of the intractable
marginalization (9). Following (Bowman et al.,
2015; Fraccaro et al., 2016) we use a deep RNN
inference network for q to optimize the bound.
The reparametrization-trick (Kingma and Welling,
2013) allows us to compute gradients with respect
to q. Algorithm 1 shows the outline of the training
procedure.

Algorithm 1 Latent ERPO Training

for do w? ∈ DATASET

Sample a latent code z ∼ q(z|w?)
Sample a datapoint w̃ ∼ p̃(w|z)
Perform a gradient step ∇θ log pθ(w̃|z)

Note that exploration (sampling w̃) and the gra-
dient step are both conditioned on the latent code,
hence stochasticity due to sampling a single z is
coupled in both. Also, no gradient needs to be
propagated into p̃.

So far, we have not discussed how to efficiently
sample from the implicit distribution p̃. In the
remainder of this section we present our reward
function and discuss implications on the tractabil-
ity of sampling.

4.5 Reward
Defining a meaningful reward function is central
to the success of reinforcement learning. The
usual RL forumlations in NLP require a measure
of sentence-sentence similarity as reward. Com-
mon choices include BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Banerjee and Lavie,
2005) or SPICE (Anderson et al., 2016). These are
essentially n-gram metrics, partly augmented with
synonym resolution or re-weighting schemes.

Word-movers distance (WMD) (Kusner et al.,
2015) provides an interesting alternative based on
the optimal-transport problem. In essence, WMD

computes the minimum accumulated distance that
the word vectors of one sentence need to “travel”
to coincide with the word vectors of the other
sentence. In contrast to n-gram metrics, WMD
can leverage powerful neural word representa-
tions. Unfortunately, the complexity of computing
WMD is roughly O(T 3 log T ).

4.6 A Reward for Tractable Sampling

Tan et al. (2018) show that thanks to the factor-
ization of pθ the globally-normalized inference
distribution p̃ in (7) can be written as a locally-
normalized distribution at the word-level

p̃(wt|w1:t−1)∝

exp

(
αpθ(wt|w1:t−1)+Rt(w,w

?)

α+ β

)
(10)

when the reward is written as incremental re-
ward Rt defined via Rt(w,w?) = R(w1:t, w

?) −
R(w1:t−1, w

?). Sampling form (10) is still hard, if
Rt hides dynamic programming routines or other
complex time-dependencies. With this in mind,
we choose a particularly simple reward

R(w,w?) =
T∑
t=1

φ(wt)
>φ(w?t ) (11)

where φ is a lookup into a length-normalized pre-
trained but fixed word2vec (Mikolov et al., 2013)
embedding. This casts our reward as an effi-
cient, yet drastic approximation to WMD, which
assumes identical length and one-to-one word cor-
respondences. Putting (10) and (11) together, we
sample sequentially from

p̃(wt|w1:t−1)∝

exp

(
αpθ(wt|w1:t−1)+φ(wt)

>φ(w?t )

α+ β

)
(12)

with the complexityO(dV ) of a standard softmax.
Compared to standard VAE training, Algorithm 1
only needs one additional forward pass (with iden-
tical complexity) to sample w̃ form p̃.

Equation (12) gives a simple interpretation of
our proposed training methodology. We locally
correct predictions made by the model proportion-
ally to the distance to the ground-truth in the em-
beddings space. Hence, we consider the ground-
truth and the model prediction for exploration.
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Figure 2: Generalization performance in terms of sequence NLL across latent and deterministic methods

5 Related Work

Our discussion of exposure bias complements re-
cent work that summarizes modern generative
models, for example Caccia et al. (2018) and Lu et
al. (2018). Shortcomings of maximum-likelihood
training for sequence generation have often been
discussed (Ding and Soricut, 2017; Leblond et al.,
2018; Ranzato et al., 2016), but without pointing
to generalization as the key aspect. An overview
of recent deep reinforcement learning methods for
conditional generation can be found in (Keneshloo
et al., 2018).

Our proposed approach follows work by Ding
et al. (2017) and Tan et al. (2018) by employing
both, policy and reward for exploration. In con-
trast to them, we do not use n-gram based reward.
Compared to RAML (Norouzi et al., 2016), we do
not perturb the ground-truth context, but correct
the policy predictions. Scheduled sampling (Ben-
gio et al., 2015) and word-dropout (Bowman et al.,
2016) also apply a correction, yet one that only
affects the probability of the ground-truth. Chen
et al. (2017) propose Bridge modules that simi-
larly to Ding et al. (2017) can incorporate arbitrary
ground-truth perturbations, yet in an objective mo-
tivated by an auxiliary KL-divergence.

Merity et al. (2017) have shown that gener-
alization is crucial to language modeling, but
their focus is regularizing parameters and activa-
tions. Word-embeddings to measure deviations
from the ground-truth have also been used by Inan
et al. (2016), yet under log-likelihood. Concur-
rently to our work, Li et al. (2019) employ em-
beddings to design reward functions in abstractive
summarization.

6 Experiments

Parametrization The policies of all our mod-
els and all baselines use the same RNN. We use
a 256 dimensional GRU (Cho et al., 2014) and
100-dimensional pre-trained word2vec input em-
beddings. Optimization is preformed by Adam
(Kingma and Ba, 2014) with an initial learning
rate of 0.001 for all models. For all methods,
including scheduled sampling, we do not anneal
hyper-parameters such as the keep-probability for
the following reasons. First, in an unconditional
setting, using only the model’s prediction is not a
promissing setting, so it is unclear what value to
anneal to. Second, the continous search-space of
schedules makes it sufficiently harder to compare
different methods. For the same reason, we do
not investigate annealing the KL term or the α, β-
parametrization of the models. We use the infer-
ence network parametrization of (Bowman et al.,
2016) which employs a diagonal Gaussian for q.

We found the training regime to be very sensi-
tive to the α, β-parametrization. In particular, it is
easy to pick a set of parameters that does not truly
incorporate exploration, but reduces to maximum
likelihood training with only ground truth contexts
(see also the discussion of Figure 3 in Section 6.2).
After performing a grid-search (as done also for
RAML) we choose6 α = 0.006, β = 0.067 for
OURS, the method proposed. In addition, we re-
port for an alternative model OURS-B with α =
0.01, β = 0.07.

6The scale of α is relatively small as the log-probabilities
in (12) have significantly larger magnitude than the inner
products, which are in [0, 1] due to the normalization.
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Data For our experiments, we use a one million
sentences subset of the BooksCorpus (Kiros et al.,
2015; Zhu et al., 2015) with a 90-10 train-test split
and a 40K words vocabulary. The corpus size is
chosen to challenge the above policy with both
scenarios, overfitting and underfitting.

6.1 Baselines

As baselines we use a standard VAE and a VAE
with RAML decoding that uses identical reward
as our method (see Tan et al.(2018) for details on
RAML as a special case). Furthermore, we use
two regularizations of the standard VAE, sched-
uled sampling SS-P and word-dropout WDROP-P

as proposed by Bowman et al. (2016), both with
fixed probability p of using the ground-truth.

In addition, we report as special cases with
z = 0 results for our model (OURS-DET), RAML
(RAML-DET), scheduled sampling (SS-P-DET),
and the VAE (LM, a language model).

6.2 Results

Figure 2 shows training and test negative sequence
log-likelihood evaluated during training and Table
1 shows the best performance obtained. All figures
and tables are averaged across three runs.

Model Train NLL Test NLL
OURS 48.52 52.54
OURS-B 49.51 52.61
OURS-DET 48.06 52.87
SS-0.99 48.11 52.60
SS-0.98 48.21 52.62
SS-0.95 48.38 52.69
SS-0.90 49.02 52.89
SS-0.99-DET 48.08 52.90
RAML 48.26 52.56
RAML-DET 48.26 52.86
WDROP-0.99 48.19 52.86
LM 47.65 53.01
VAE 47.86 52.66
WDROP-0.9 50.86 54.65

Table 1: Training and test performance

We observe that all latent models outperform
their deterministic counterparts (crossed curves)
in terms of both, generalization and overall test
performance. This is not surprising as regulariza-
tion is one of the benefits of modeling uncertainty
through latent variables. Scheduled sampling does
improve generalization for p ≈ 1 with diminishing
returns at p = 0.95 and in general performed bet-
ter than word dropout. Our proposed models out-
perform all others in terms of generalization and

test performance. Note that the performance dif-
ference over RAML, the second best method, is
solely due to incorporating also model-predicted
contexts during training.

Despite some slightly improved performance,
all latent models except for OURS-B have a KL-
term relatively close to zero. OURS-B is α-β-
parametrized to incorporte slightly more model
predictions at higher temperatur and manages to
achieve a KL-term of about 1 to 1.5 bits. These
findings are similar to what (Bowman et al., 2016)
report with annealing but still significantly behind
work that addresses this specific problem (Yang
et al., 2017; Shen et al., 2018). Appendix A illus-
trates how our models can obtain larger KL-terms
– yet at degraded performance – by controlling ex-
ploration. We conclude that improved autoregres-
sive modeling inside the ERPO framework cannot
alone overcome VAE-collapse.

We have discussed many approaches that devi-
ate from training exclusively on ground-truth con-
texts. Therefore, an interesting quantity to mon-
itor across methods is the fraction of words that
correspond to the ground-truth. Figure 3 shows
these fractions during training for the configura-
tions that gave the best results. Interestingly, in the
latent setting our method relies by far the least on
ground-truth contexts whereas in the deterministic
setting the difference is small.

0.9

0.95

1

Training Time

OURS OURS-B OURS-DET RAML
SS-0.98 SS-0.99 SS-0.95 LM/VAE

Figure 3: Fraction of correct words during training.
Numbers include forced and correctly predicted words.

7 Conclusion

We have argued that exposure bias does not point
to a problem with the standard methodology of
training autoregressive sequence model. Instead,
it refers to a notion of generalization to unseen se-
quences that does not manifest in log-likelihood
training and testing, yet might be desirable in or-
der to capture the flexibility of natural language.

To rigorously incorporate the desired gener-
alization behavior, we have proposed to follow
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the reinforcement learning formulation of Tan et
al. (2018). Combined with an embedding-based
reward function, we have shown excellent gener-
alization performance compared to the unregular-
ized model and better generalization than existing
techniques on language modeling and sentence au-
toencoding.

Future work We have shown that the simple
reward function proposed here leads to a form
of regularization that fosters generalization when
evaluated inside the maximum-likelihood frame-
work. In the future, we hope to conduct a human
evaluation to assess the generalization capabili-
ties of models trained under maximum-likelihood
and reinforcement learning more rigorously. Only
such a framework-independent evaluation can re-
veal the true gains of carefully designing re-
ward functions compared to simply performing
maximum-likelihood training.
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