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Abstract

This document describes the findings of the
Third Workshop on Neural Generation and
Translation, held in concert with the annual
conference of the Empirical Methods in Nat-
ural Language Processing (EMNLP 2019).
First, we summarize the research trends of pa-
pers presented in the proceedings. Second,
we describe the results of the two shared tasks
1) efficient neural machine translation (NMT)
where participants were tasked with creating
NMT systems that are both accurate and effi-
cient, and 2) document generation and trans-
lation (DGT) where participants were tasked
with developing systems that generate sum-
maries from structured data, potentially with
assistance from text in another language.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are now a workhorse be-
hind a wide variety of different natural language
processing tasks such as machine translation, gen-
eration, summarization and simplification. The
3rd Workshop on Neural Machine Translation
and Generation (WNGT 2019) provided a forum
for research in applications of neural models to
machine translation and other language genera-
tion tasks (including summarization (Rush et al.,
2015), NLG from structured data (Wen et al.,
2015), dialog response generation (Vinyals and
Le, 2015), among others). Overall, the workshop
was held with two goals.

First, it aimed to synthesize the current state
of knowledge in neural machine translation and
generation: this year we continued to encourage
submissions that not only advance the state of the
art through algorithmic advances, but also analyze
and understand the current state of the art, point-
ing to future research directions. Towards this

goal, we received a number of high-quality re-
search contributions on both workshop topics, as
summarized in Section 2.

Second, the workshop aimed to expand the re-
search horizons in NMT: we continued to organize
the Efficient NMT task which encouraged partic-
ipants to develop not only accurate but computa-
tionally efficient systems. In addition, we orga-
nized a new shared task on “Document-level Gen-
eration and Translation”, which aims to push for-
ward document-level generation technology and
contrast the methods for different types of inputs.
The results of the shared task are summarized in
Sections 3 and 4.

2 Summary of Research Contributions

We published a call for long papers, ex-
tended abstracts for preliminary work, and cross-
submissions of papers submitted to other venues.
The goal was to encourage discussion and interac-
tion with researchers from related areas.

We received a total of 68 submissions, from
which we accepted 36. There were three cross-
submissions, seven long abstracts and 26 full pa-
pers. There were also seven system submission
papers. All research papers were reviewed twice
through a double blind review process, and avoid-
ing conflicts of interest.

There were 22 papers with an application to
generation of some kind, and 14 for translation
which is a switch from previous workshops where
the focus was on machine translation. The caliber
of the publications was very high and the number
has more than doubled from last year (16 accepted
papers from 25 submissions).
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3 Shared Task: Document-level
Generation and Translation

The first shared task at the workshop focused on
document-level generation and translation. Many
recent attempts at NLG have focused on sentence-
level generation (Lebret et al., 2016; Gardent et al.,
2017). However, real world language generation
applications tend to involve generation of much
larger amount of text such as dialogues or multi-
sentence summaries. The inputs to NLG sys-
tems also vary from structured data such as ta-
bles (Lebret et al., 2016) or graphs (Wang et al.,
2018), to textual data (Nallapati et al., 2016). Be-
cause of such difference in data and domain, com-
parison between different methods has been non-
trivial. This task aims to (1) push forward such
document-level generation technology by provid-
ing a testbed, and (2) examine the differences be-
tween generation based on different types of in-
puts including both structured data and transla-
tions in another language.

In particular, we provided the following 6 tracks
which focus on different input/output require-
ments:

• NLG (Data → En, Data → De): Gener-
ate document summaries in a target language
given only structured data.

• MT (De↔ En): Translate documents in the
source language to the target language.

• MT+NLG (Data+En → De, Data+De →
En): Generate document summaries given
the structured data and the summaries in an-
other language.

3.1 Evaluation Measures

We employ standard evaluation metrics for data-
to-text NLG and MT along two axes:

Textual Accuracy Measures: We used BLEU
(Papineni et al., 2002) and ROUGE (Lin,
2004) as measures for texutal accuracy com-
pared to reference summaries.

Content Accuracy Measures: We evaluate the
fidelity of the generated content to the input
data using relation generation (RG), content
selection (CS), and content ordering (CO)
metrics (Wiseman et al., 2017).

Train Valid Test

# documents 242 240 241
Avg. # tokens (En) 323 328 329
Avg. # tokens (De) 320 324 325
Vocabulary size (En) 4163 - -
Vocabulary size (De) 5425 - -

Table 1: Data statistics of RotoWire English-German
Dataset.

The content accuracy measures were calculated
using information extraction models trained on re-
spective target languages. We followed (Wiseman
et al., 2017) and ensembled 6 information extrac-
tion models (3 CNN-based, 3 LSTM-based) with
different random seeds for each language.

3.2 Data

Due to the lack of a document-level parallel corpus
which provides structured data for each instance,
we took an approach of translating an existing
NLG dataset. Specifically, we used a subset of
the RotoWire dataset (Wiseman et al., 2017) and
obtained professional German translations, which
are sentence-aligned to the original English arti-
cles. The obtained parallel dataset is called the
RotoWire English-German dataset, and consists of
box score tables, an English article, and its Ger-
man translation for each instance. Table 1 shows
the statistics of the obtained dataset. We used the
test split from this dataset to calculate the evalua-
tion measures for all the tracks.

We further allowed the following additional re-
sources for each track:

• NLG: RotoWire, Monolingual

• MT: WMT19, Monolingual

• MT+NLG: RotoWire, WMT19, Monolingual

RotoWire refers to the RotoWire dataset (Wise-
man et al., 2017) (train/valid), WMT19 refers
to the set of parallel corpora allowable by the
WMT 2019 English-German task, and Monolin-
gual refers to monolingual data allowable by the
same WMT 2019 task, pre-trained embeddings
(e.g., GloVe (Pennington et al., 2014)), pre-trained
contextualized embeddings (e.g., BERT (Devlin
et al., 2019)), pre-trained language models (e.g.,
GPT-2 (Radford et al., 2019)).
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Systems which follow these resource con-
straints are marked constrained, otherwise uncon-
strained. Results are indicated by the initials
(C/U).

3.3 Baseline Systems
Considering the difference in inputs for MT and
NLG tracks, we prepared two baselines for respec-
tive tracks.

FairSeq-19 FairSeq (Ng et al., 2019) was used
for MT and MT+NLG tracks for both direc-
tions of translations. We used the published
WMT’19 single model and did not tune on
in-domain data.

NCP+CC: A two-stage model from (Puduppully
et al., 2019) was used for NLG tracks. We
utilized the pretrained English model trained
on RotoWire dataset for English article gen-
eration, while the German model was trained
on RotoWire English-German dataset.

3.4 Submitted Systems
Four teams, Team EdiNLG, Team FIT-Monash,
Team Microsoft, Team Naver Labs Europe, and
Team SYSTRAN-AI participated in the shared
task. We note the common trends across many
teams and discuss the systems of individual teams
below. On MT tracks, all the teams have adopted
a variant of Transformer (Vaswani et al., 2017)
as a sequence transduction model and trained on
corpora with different data-augmentation meth-
ods. Trained systems were then fine-tuned on
in-domain data including our RotoWire English-
German dataset. The focus of data augmentation
was two-fold: 1) acquiring in-domain data and 2)
utilizing document boundaries from existing cor-
pora. Most teams applied back-translation on vari-
ous sources including NewsCrawl and the original
RotoWire dataset for this purpose.

NLG tracks exhibited a similar trend for the se-
quence model selection, except for Team EdiNLG
who employed LSTM.

3.4.1 Team EdiNLG
Team EdiNLG built their NLG system upon
(Puduppully et al., 2019) by extending it to fur-
ther allow copying from the table in addition to
generating from vocabulary and the content plan.
Additionally, they included features indicating the
win/loss team records and team rank in terms of
points for each player. They trained the NLG

model for both languages together, using a shared
BPE vocabulary obtained from target game sum-
maries and by prefixing the target text with the tar-
get language indicator.

For MT and MT+NLG tracks, they mined the
in-domain data by extracting basketball-related
texts from Newscrawl when one of the follow-
ing conditions are met: 1) player names from the
RotoWire English-German training set appear, 2)
two NBA team names appear in the same docu-
ment, or 3) “NBA” appears in titles. This resulted
in 4.3 and 1.1 million monolingual sentences for
English and German, respectively. The obtained
sentences were then back-translated and added to
the training corpora. They submitted their system
EdiNLG in all six tracks.

3.4.2 Team FIT-Monash
Team FIT-Monash built a document-level NMT
system (Maruf et al., 2019) and participated in
MT tracks. The document-level model was initial-
ized with a pre-trained sentence-level NMT model
on news domain parallel corpora. Two strategies
for composing document-level context were pro-
posed: flat and hierarchical attention. Flat atten-
tion was applied on all the sentences, while hier-
archical attention was computed at sentence and
word-level in a hierarchical manner. Sparse atten-
tion was applied at sentence-level in order to iden-
tify key sentences that are important for translating
the current sentence.

To train a document-level model, the team fo-
cused on corpora that have document boundaries,
including News Commentary, Rapid, and the Ro-
toWire dataset. Notably, greedy decoding was em-
ployed due to computational cost. The submitted
system is an ensemble of three runs indicated as
FIT-Monash.

3.4.3 Team Microsoft
Team Microsoft (MS) developed a Transformer-
based NLG system which consists of two
sequence-to-sequence models. The two step
method was inspired by the approach from
(Puduppully et al., 2019), where the first model
is a recurrent pointer network that selects encoded
records, and the second model takes the selected
content representation as input and generates sum-
maries. The proposed model (MS-End-to-End)
learned both models at the same time with a com-
bined loss function. Additionally, they have in-
vestigated the use of pre-trained language models
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for NLG track. Specifically, they fine-tuned GPT-
2 (Radford et al., 2019) on concatenated pairs
of (template, target) summaries, while construct-
ing templates following (Wiseman et al., 2017).
The two sequences are concatenated around a spe-
cial token which indicates “rewrite”. At decod-
ing time, they adopted nucleus sampling (Holtz-
man et al., 2019) to enhance the generation quality.
Different thresholds for nucleus sampling were in-
vestigated, and two systems with different thresh-
olds were submitted: MS-GPT-50 and MS-GPT-
90, where the numbers refer to Top-p thresholds.

The generated summaries in English using the
following systems were then translated with the
MT systems which is described below. Hence,
this marks Team Microsoft’s German NLG (Data
→ De) submission unconstrained, due to the us-
age of parallel data beyond the RotoWire English-
German dataset.

As for the MT model, a pre-trained system
from (Xia et al., 2019) was fine-tuned on the Ro-
toWire English-German dataset, as well as back-
translated sentences from the original RotoWire
dataset for the English-to-German track. Back-
translation of sentences obtained from Newscrawl
according to the similarity to RotoWire data
(Moore and Lewis, 2010) was attempted but did
not lead to improvement. The resulting system is
shown as MS on MT track reports.

3.4.4 Team Naver Labs Europe
Team Naver Labs Europe (NLE) took the ap-
proach of transferring the model from MT to
NLG. They first trained a sentence-level MT
model by iteratively extend the training set from
the WMT19 parallel data and RotoWire English-
German dataset to back-translated Newscrawl
data. The best sentence-level model was then
fine-tuned at document-level, followed by fine-
tuning on the RotoWire English-German dataset
(constrained NLE) and additionally on the back-
translated original RotoWire dataset (uncon-
strained NLE).

To fully leverage the MT model, input record
values prefixed with special tokens for record
types were sequentially fed in a specific order.
Combined with the target summary, the pair of
record representations and the target summaries
formed data for a sequence-to-sequence model.
They fine-tuned their document-level MT model
on these NLG data which included the original
RotoWire and RotoWire English-German dataset.

The team tackled MT+NLG tracks by concate-
nating source language documents and the se-
quence of records as inputs. To encourage the
model to use record information more, they ran-
domly masked certain portion of tokens in the
source language documents.

3.4.5 Team SYSTRAN-AI
Team SYSTRAN-AI developed their NLG system
based on the Transformer (Vaswani et al., 2017).
The model takes as input each record from the box
score featurized into embeddings and decode the
summary. In addition, they introduced a content
selection objective where the model learns to pre-
dict whether or not each record is used in the sum-
mary, comprising a sequence of binary classfica-
tion decision.

Furthermore, they performed data augmenta-
tion by synthesizing records whose numeric val-
ues were randomly changed in a way that does not
change the win / loss relation and remains within a
sane range. The synthesized records were used to
generate a summary to obtain new (record, sum-
mary) pairs and were included added the train-
ing data. To bias the model toward generating
more records, they further fine-tuned their model
on a subset of training examples which contain
N(= 16) records in the summary. The submit-
ted systems are SYSTRAN-AI and SYSTRAN-
AI-Detok, which differ in tokenization.

3.5 Results

We show the results for each track in Table 2
through 7. In the NLG and MT+NLG tasks, we re-
port BLEU, ROUGE (F1) for textual accuracy, RG
(P), CS(P, R), and CO (DLD) for content accuracy.
While for MT tasks, we only report BLEU. We
summarize the shared task results for each track
below.

In NLG (En) track, all the participants en-
couragingly submitted systems outperforming a
strong baseline by (Puduppully et al., 2019).
We observed an apparent difference between the
constrained and unconstrained settings. Team
NLE’s approach showed that pre-training of the
document-level generation model on news cor-
pora is effective even if the source input differs
(German text vs linearized records). Among con-
strained systems, it is worth noting that all the sys-
tems but Team EdiNLG used the Transformer, but
the result did not show noticeable improvements
compared to EdiNLG. It was also shown that the
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generation using pre-trained language models is
sensitive to how the sampling is performed; the
results of MS-GPT-90 and MS-GPT-50 differ only
in the nucleus sampling hyperparameter, which
led to significant differences in every evaluation
measure.

The NLG (De) track imposed a greater chal-
lenge compared to its English counterpart due to
the lack of training data. The scores has generally
dropped compared to NLG (En) results. To alle-
viate the lack of German data, most teams devel-
oped systems under unconstrained setting by uti-
lizing MT resources and models. Notably, Team
NLE’s has achieved similar performance to the
constrained system results on NLG (En). How-
ever, Team EdiNLG achieved similar performance
under the constrained setting by fully leveraging
the original RotoWire using the sharing of vocab-
ulary.

In MT tracks, we see the same trend that the
system under unconstrained setting (NLE) out-
performed all the systems under the constrained
setting. The improvement observed in the un-
constrained setting came from fine-tuning on the
back-translated original RotoWire dataset, which
offers purely in-domain parallel documents.

While the results are not directly comparable
due to different hyperparameters used in systems,
fine-tuning on in-domain parallel sentences was
shown effective (FairSeq-19 vs others). When
incorporating document-level data, it was shown
that document-level models (NLE, FIT-Monash,
MS) perform better than sentence-level models
(EdiNLG, FairSeq-19), even if a sentence-level
model is trained on document-aware corpora.

For MT+NLG tracks, interestingly, no teams
found the input structured data useful, thus apply-
ing MT models for MT+NLG tracks. Compared
to the baseline (FairSeq-19), fine-tuning on in-
domain data resulted in better performance over-
all as seen in the results of Team MS and NLE.
The key difference between Team MS and NLE is
the existence of document-level fine-tuning, where
Team NLE outperformed in terms of textual accu-
racy (BLEU and ROUGE) overall, in both target
languages.

4 Shared Task: Efficient NMT

The second shared task at the workshop focused
on efficient neural machine translation. Many
MT shared tasks, such as the ones run by the

Conference on Machine Translation (Bojar et al.,
2017), aim to improve the state of the art for MT
with respect to accuracy: finding the most accu-
rate MT system regardless of computational cost.
However, in production settings, the efficiency of
the implementation is also extremely important.
The efficiency shared task for WNGT (inspired by
the “small NMT” task at the Workshop on Asian
Translation (Nakazawa et al., 2017)) was focused
on creating systems for NMT that are not only ac-
curate, but also efficient. Efficiency can include a
number of concepts, including memory efficiency
and computational efficiency. This task concerns
itself with both, and we cover the detail of the eval-
uation below.

4.1 Evaluation Measures

We used metrics to measure several different as-
pects connected to how good the system is. These
were measured for systems that were run on CPU,
and also systems that were run on GPU.

Accuracy Measures: As a measure of translation
accuracy, we used BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) scores.

Computational Efficiency Measures: We mea-
sured the amount of time it takes to translate
the entirety of the test set on CPU or GPU.
Time for loading models was measured by
having the model translate an empty file, then
subtracting this from the total time to trans-
late the test set file.

Memory Efficiency Measures: We measured:
(1) the size on disk of the model, (2) the
number of parameters in the model, and (3)
the peak consumption of the host memory
and GPU memory.

These metrics were measured by having par-
ticipants submit a container for the virtualization
environment Docker1, then measuring from out-
side the container the usage of computation time
and memory. All evaluations were performed on
dedicated instances on Amazon Web Services2,
specifically of type m5.large for CPU evalu-
ation, and p3.2xlarge (with a NVIDIA Tesla
V100 GPU).

1https://www.docker.com/
2https://aws.amazon.com/

https://www.docker.com/
https://aws.amazon.com/
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System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 17.01 44.87 18.53 25.38 91.41 30.91 64.13 21.72 C
MS-GPT-90 13.03 45.25 15.17 21.34 88.70 32.84 50.58 17.36 C
MS-GPT-50 15.17 45.34 16.64 22.93 94.35 33.91 53.82 19.30 C
MS-End-to-End 15.03 43.84 17.49 23.86 93.38 32.40 58.02 18.54 C
NLE 20.52 49.38 22.36 27.29 94.08 41.13 54.20 25.64 U
SYSTRAN-AI 17.59 47.76 20.18 25.60 83.22 31.74 44.90 20.73 C
SYSTRAN-AI-Detok 18.32 47.80 20.19 25.61 84.16 34.88 43.29 22.72 C

NCP+CC 15.80 44.83 17.07 23.46 88.59 30.47 55.38 18.31 C

Table 2: Results on the NLG: (Data→ En) track of DGT task.

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 10.95 34.10 12.81 19.70 70.23 23.40 41.83 16.06 C
MS-GPT-90 10.43 41.35 12.59 18.43 75.05 31.23 41.32 16.32 U
MS-GPT-50 11.84 41.51 13.65 19.68 82.79 34.81 42.51 17.12 U
MS-End-to-End 11.66 40.02 14.36 20.67 80.30 28.33 49.13 16.54 U
NLE 16.13 44.27 17.50 23.09 79.47 29.40 54.31 20.62 U

NCP+CC 7.29 29.56 7.98 16.06 49.69 21.61 26.14 11.84 C

Table 3: Results on the NLG: (Data→ De) track of DGT task.

System BLEU Type

FIT-Monash 47.39 C
EdiNLG 41.15 C
MS 57.99 C
NLE 62.16 U
NLE 58.22 C

FairSeq-19 42.91 C

Table 4: DGT results on the MT track (De→ En).

System BLEU Type

FIT-Monash 41.46 C
EdiNLG 36.85 C
MS 47.90 C
NLE 48.02 C

FairSeq-19 36.26 C

Table 5: DGT results on the MT track (En→ De)

4.2 Data
The data used was from the WMT 2014 English-
German task (Bojar et al., 2014), using the pre-
processed corpus provided by the Stanford NLP
Group3. Use of other data was prohibited.

4.3 Baseline Systems
Two baseline systems were prepared:

Echo: Just send the input back to the output.

Base: A baseline system using attentional LSTM-
based encoder-decoders with attention (Bah-
danau et al., 2015).

4.4 Submitted Systems
Two teams, Team Marian and Team Notre Dame
submitted to the shared task, and we will summa-
rize each below.

4.4.1 Team Marian
Team Marian’s submission (Kim et al., 2019) was
based on their submission to the shared task the
previous year, consisting of Transformer mod-
els optimized in a number of ways (Junczys-
Dowmunt et al., 2018). This year, they made

3https://nlp.stanford.edu/projects/
nmt/

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
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System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 36.85 69.66 41.47 57.25 81.01 77.32 78.49 62.21 C
MS 47.90 75.95 51.75 65.61 80.98 76.88 84.57 67.84 C
NLE 48.24 75.89 51.80 65.90 80.65 75.10 88.72 69.17 C

FairSeq-19 36.26 68.22 40.31 56.38 81.64 77.67 75.82 60.83 C

Table 6: Results on the MT+NLG: (Data+En→ De) track of DGT task.

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 41.15 76.57 50.97 66.62 91.40 78.99 63.04 51.73 C
MS 57.99 83.03 63.03 75.44 95.77 92.49 91.62 84.70 C
NLE 62.24 84.38 66.11 77.17 95.63 91.71 92.69 85.05 C

FairSeq-19 42.91 77.57 52.66 68.66 93.53 83.33 84.22 70.47 C

Table 7: Results on the MT+NLG: (Data+De→ En) track of DGT task.
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Figure 1: Time and memory vs. accuracy measured by BLEU on the newstest2015 set, calculated on both CPU and
GPU. White diamonds (�) represent the results in the previous campaign. Orange areas show regions dominated
by some Pareto frontier systems.
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a number of improvements. Improvements were
made to teacher-student training by (1) creating
more data for teacher-student training using back-
ward, then forward translation, (2) using multiple
teachers to generate better distilled data for train-
ing student models. In addition, there were mod-
eling improvements made by (1) replacing sim-
ple averaging in the attention layer with an effi-
ciently calculable “simple recurrent unit,” (2) pa-
rameter tying between decoder layers, which re-
duces memory usage and improves cache locality
on the CPU. Finally, a number of CPU-specific op-
timizations were performed, most notably includ-
ing 8-bit matrix multiplication along with a flexi-
ble quantization scheme.

4.4.2 Team Notre Dame
Team Notre Dame’s submission (Murray et al.,
2019) focused mainly on memory efficiency. They
did so by performing “Auto-sizing” of the trans-
former network, applying block-sparse regulariza-
tion to remove columns and rows from the param-
eter matrices.

4.5 Results

A brief summary of the results of the shared task
(for newstest2015) can be found in Figure 1, while
full results tables for all of the systems can be
found in Appendix A. From this figure we can
glean a number of observations.

For the CPU systems, all submissions from the
Marian team clearly push the Pareto frontier in
terms of both time and memory. In addition, the
Marian systems also demonstrated a good trade-
off between time/memory and accuracy.

For the GPU systems, all systems from the Mar-
ian team also outperformed other systems in terms
of the speed-accuracy trade-off. However, the
Marian systems had larger memory consumption
than both Notre Dame systems, which specifically
optimized for memory efficiency, and all previous
systems. Interestingly, each GPU system by the
Marian team shares almost the same amount of
GPU memory as shown in Table 12 and Figure
2(b). This may indicate that the internal frame-
work of the Marian system tries to reserve enough
amount of the GPU memory first, then use the ac-
quired memory as needed by the translation pro-
cesses.

On the other hand, we can see that the Notre
Dame systems occupy only a minimal amount of
GPU memory, as the systems use much smaller
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amounts on the empty set (Figure 2(a)). These
different approaches to constant or variable size
memory consumption may be based on different
underlying perspectives of “memory efficiency,”
and it may be difficult to determine which policy
is better without knowing the actual environment
in which a system will be used.

5 Conclusion

This paper summarized the results of the Third
Workshop on Neural Generation and Translation,
where we saw a number of research advances.
Particularly, this year introduced a new document
generation and translation task, that tested the ef-
ficacy of systems for both the purposes of transla-
tion and generation in a single testbed.
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Table 8: Image file sizes of submitted systems.

Team System Size [MiB]
Marian cpu base2 135.10

cpu medium1 230.22
cpu small2 93.00
cpu tiny11 91.61
gpu base4bit 322.68
gpu base 452.59
gpu big 773.27

Notre Dame all-l21-01-small 2816.63
baseline-small 2845.04
encoder-l21-01-small 2813.67
encoder-l21-1-small 2779.60
fc-l21-01-small 2798.94
fc-l21-1-small 2755.80
fc-l21-10-small 2755.76
fc-linf1-100-small 2759.10

Table 9: Time consumption and MT evaluation metrics (CPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
Total Diff

Empty Marian cpu base2 4.97 — — —
cpu medium1 6.03 — — —
cpu small2 4.67 — — —
cpu tiny11 4.71 — — —

newstest2014 Marian cpu base2 57.52 52.55 28.04 7.458
cpu medium1 181.81 175.78 28.58 7.539
cpu small2 28.32 23.64 26.97 7.288
cpu tiny11 22.26 17.56 26.38 7.178

newstest2015 Marian cpu base2 45.01 40.04 30.74 7.607
cpu medium1 139.06 133.03 31.32 7.678
cpu small2 22.64 17.97 29.57 7.437
cpu tiny11 18.08 13.37 28.92 7.320
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Table 10: Time consumption and MT evaluation metrics (GPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
Total Diff

Empty Marian gpu base4bit 9.77 — — —
gpu base 2.69 — — —
gpu big 5.22 — — —

Notre Dame all-l21-01-small 7.92 — — —
baseline-small 8.13 — — —
encoder-l21-01-small 7.96 — — —
encoder-l21-1-small 7.89 — — —
fc-l21-01-small 7.85 — — —
fc-l21-1-small 7.56 — — —
fc-l21-10-small 7.57 — — —
fc-linf1-100-small 7.61 — — —

newstest2014 Marian gpu base4bit 12.42 2.66 27.50 7.347
gpu base 4.22 1.53 28.00 7.449
gpu big 7.09 1.88 28.61 7.534

Notre Dame all-l21-01-small 36.80 28.89 21.60 6.482
baseline-small 36.07 27.95 25.28 7.015
encoder-l21-01-small 35.82 27.86 23.20 6.725
encoder-l21-1-small 35.41 27.52 22.06 6.548
fc-l21-01-small 35.76 27.91 24.07 6.869
fc-l21-1-small 34.46 26.90 23.97 6.859
fc-l21-10-small 34.00 26.43 23.87 6.852
fc-linf1-100-small 34.46 26.84 23.80 6.791

newstest2015 Marian gpu base4bit 11.97 2.20 29.99 7.504
gpu base 3.98 1.29 30.79 7.595
gpu big 6.80 1.58 31.15 7.664

Notre Dame all-l21-01-small 30.21 22.29 24.13 6.670
baseline-small 30.47 22.35 27.85 7.224
encoder-l21-01-small 29.67 21.71 25.45 6.869
encoder-l21-1-small 29.93 22.04 24.47 6.734
fc-l21-01-small 29.80 21.95 26.39 7.053
fc-l21-1-small 28.42 20.87 26.77 7.093
fc-l21-10-small 28.63 21.06 26.54 7.051
fc-linf1-100-small 28.91 21.29 26.04 6.971
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Table 11: Peak memory consumption (CPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian cpu base2 336.30 — 336.30

cpu medium1 850.76 — 850.76
cpu small2 229.53 — 229.53
cpu tiny11 227.73 — 227.73

newstest2014 Marian cpu base2 523.93 — 523.93
cpu medium1 850.98 — 850.98
cpu small2 276.30 — 276.30
cpu tiny11 260.86 — 260.86

newstest2015 Marian cpu base2 523.12 — 523.12
cpu medium1 850.95 — 850.95
cpu small2 275.76 — 275.76
cpu tiny11 260.09 — 260.09
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Table 12: Peak memory consumption (GPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian gpu base4bit 788.67 14489 15277.67

gpu base 791.82 14489 15280.82
gpu big 2077.75 14489 16566.75

Notre Dame all-l21-01-small 3198.89 991 4189.89
baseline-small 3261.73 973 4234.73
encoder-l21-01-small 3192.87 1003 4195.87
encoder-l21-1-small 3164.45 1003 4167.45
fc-l21-01-small 3160.32 999 4159.32
fc-l21-1-small 3069.05 1049 4118.05
fc-l21-10-small 3092.01 1057 4149.01
fc-linf1-100-small 3116.35 1037 4153.35

newstest2014 Marian gpu base4bit 781.83 14641 15422.83
gpu base 793.07 14641 15434.07
gpu big 2078.78 14961 17039.78

Notre Dame all-l21-01-small 3199.95 9181 12380.95
baseline-small 3285.20 9239 12524.20
encoder-l21-01-small 3194.96 9169 12363.96
encoder-l21-1-small 3164.86 9119 12283.86
fc-l21-01-small 3160.80 9155 12315.80
fc-l21-1-small 3070.67 9087 12157.67
fc-l21-10-small 3068.12 9087 12155.12
fc-linf1-100-small 3119.96 9087 12206.96

newstest2015 Marian gpu base4bit 783.05 14641 15424.05
gpu base 789.34 14641 15430.34
gpu big 2077.42 14961 17038.42

Notre Dame all-l21-01-small 3198.86 6171 9369.86
baseline-small 3266.11 6359 9625.11
encoder-l21-01-small 3193.13 6103 9296.13
encoder-l21-1-small 3166.56 6135 9301.56
fc-l21-01-small 3160.88 6159 9319.88
fc-l21-1-small 3079.92 6017 9096.92
fc-l21-10-small 3069.32 6015 9084.32
fc-linf1-100-small 3130.95 6015 9145.95


