
EMNLP-IJCNLP 2019

Neural Generation and Translation

Proceedings of the Third Workshop

November 4, 2019
Hong Kong, China

c©2019 The Association for Computational Linguistics

Apple and the Apple logo are trademarks of Apple Inc., registered in
the U.S. and other countries.

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 78-1-950737-83-3

ii

Introduction

Welcome to the Third Workshop on Neural Generation and Translation. This workshop aims to cultivate
research on the leading edge in neural machine translation and other aspects of machine translation,
generation, and multilinguality that utilize neural models. In this year’s workshop we are extremely
pleased to be able to host four invited talks from leading lights in the field, namely: Michael Auli, Mohit
Bansal, Mirella Lapata and Jason Weston. In addition this year’s workshop will feature a session devoted
to a new shared task on efficient machine translation. We received a total of 68 submissions, from which
we accepted 36. There were three crosssubmissions, seven long abstracts and 26 full papers. There were
also seven system submission papers. All research papers were reviewed twice through a double blind
review process, and avoiding conflicts of interest. The workshop had an acceptance rate of 53%. Due
to the large number of invited talks, and to encourage discussion, only the two papers selected for best
paper awards will be presented orally, and the remainder will be presented in a single poster session.
We would like to thank all authors for their submissions, and the program committee members for their
valuable efforts in reviewing the papers for the workshop. We would also like to thank Google and Apple
for their generous sponsorship.

iii

Organizers:

Alexandra Birch, (Edinburgh)
Andrew Finch, (Apple)
Hiroaki Hayashi (CMU)
Ioannis Konstas (Heriot Watt University)
Thang Luong, (Google)
Graham Neubig, (CMU)
Yusuke Oda, (Google)
Katsuhito Sudoh (NAIST)

Program Committee:

Roee Aharoni Shumpei Kubosawa
Antonio Valerio Miceli Barone Sneha Kudugunta
Joost Bastings Lemao Liu
Marine Carpuat Shujie Liu
Daniel Cer Hongyin Luo
Boxing Chen Benjamin Marie
Eunah Cho Sebastian J. Mielke
Li Dong Hideya Mino
Nan Du Makoto Morishita
Kevin Duh Preslav Nakov
Ondřej Dušek Vivek Natarajan
Markus Freitag Laura Perez-Beltrachini
Claire Gardent Vinay Rao
Ulrich Germann Alexander Rush
Isao Goto Chinnadhurai Sankar
Edward Grefenstette Rico Sennrich
Roman Grundkiewicz Raphael Shu
Jiatao Gu Akihiro Tamura
Barry Haddow Rui Wang
Vu Cong Duy Hoang Xiaolin Wang
Daphne Ippolito Taro Watanabe
Sébastien Jean Sam Wiseman
Hidetaka Kamigaito Biao Zhang

v

Invited Speakers:

Michael Auli (Facebook AI Research)
Mohit Bansal (University of North Carolina)
Nanyun Peng (University of Southern California)
Jason Weston (Facebook AI Research)

vi

Table of Contents

Findings of the Third Workshop on Neural Generation and Translation
Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Konstas, Andrew Finch, Minh-Thang

Luong, Graham Neubig and Katsuhito Sudoh. .1

Hello, It’s GPT-2 - How Can I Help You? Towards the Use of Pretrained Language Models for Task-
Oriented Dialogue Systems

Paweł Budzianowski and Ivan Vulić . 15

Recycling a Pre-trained BERT Encoder for Neural Machine Translation
Kenji Imamura and Eiichiro Sumita . 23

Generating a Common Question from Multiple Documents using Multi-source Encoder-Decoder Models
Woon Sang Cho, Yizhe Zhang, Sudha Rao, Chris Brockett and Sungjin Lee 32

Generating Diverse Story Continuations with Controllable Semantics
Lifu Tu, Xiaoan Ding, Dong Yu and Kevin Gimpel . 44

Domain Differential Adaptation for Neural Machine Translation
Zi-Yi Dou, Xinyi Wang, Junjie Hu and Graham Neubig . 59

Transformer-based Model for Single Documents Neural Summarization
Elozino Egonmwan and Yllias Chali . 70

Making Asynchronous Stochastic Gradient Descent Work for Transformers
Alham Fikri Aji and Kenneth Heafield . 80

Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents
Nikolaos Malandrakis, Minmin Shen, Anuj Goyal, Shuyang Gao, Abhishek Sethi and Angeliki

Metallinou . 90

Zero-Resource Neural Machine Translation with Monolingual Pivot Data
Anna Currey and Kenneth Heafield . 99

On the use of BERT for Neural Machine Translation
Stephane Clinchant, Kweon Woo Jung and Vassilina Nikoulina. .108

On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Gen-
eration

Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mohammad Taher Pilehvar and Nigel Collier 118

Decomposing Textual Information For Style Transfer
Ivan P. Yamshchikov, Viacheslav Shibaev, Aleksander Nagaev, Jürgen Jost and Alexey Tikhonov

128

Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual Transfer
Richard Yuanzhe Pang and Kevin Gimpel . 138

Enhanced Transformer Model for Data-to-Text Generation
Li GONG, Josep Crego and Jean Senellart . 148

Generalization in Generation: A closer look at Exposure Bias
Florian Schmidt . 157

vii

Machine Translation of Restaurant Reviews: New Corpus for Domain Adaptation and Robustness
Alexandre Berard, Ioan Calapodescu, Marc Dymetman, Claude Roux, Jean-Luc Meunier and Vas-

silina Nikoulina . 168

Adaptively Scheduled Multitask Learning: The Case of Low-Resource Neural Machine Translation
Poorya Zaremoodi and Gholamreza Haffari . 177

On the Importance of Word Boundaries in Character-level Neural Machine Translation
Duygu Ataman, Orhan Firat, Mattia A. Di Gangi, Marcello Federico and Alexandra Birch 187

Big Bidirectional Insertion Representations for Documents
Lala Li and William Chan . 194

A Margin-based Loss with Synthetic Negative Samples for Continuous-output Machine Translation
Gayatri Bhat, Sachin Kumar and Yulia Tsvetkov . 199

Mixed Multi-Head Self-Attention for Neural Machine Translation
Hongyi Cui, Shohei Iida, Po-Hsuan Hung, Takehito Utsuro and Masaaki Nagata 206

Paraphrasing with Large Language Models
Sam Witteveen and Martin Andrews . 215

Interrogating the Explanatory Power of Attention in Neural Machine Translation
Pooya Moradi, Nishant Kambhatla and Anoop Sarkar . 221

Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource
Machine Translation

Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen, Walter Scheirer and David Chiang 231

Learning to Generate Word- and Phrase-Embeddings for Efficient Phrase-Based Neural Machine Trans-
lation

Chan Young Park and Yulia Tsvetkov . 241

Transformer and seq2seq model for Paraphrase Generation
Elozino Egonmwan and Yllias Chali .249

Monash University’s Submissions to the WNGT 2019 Document Translation Task
Sameen Maruf and Gholamreza Haffari . 256

SYSTRAN @ WNGT 2019: DGT Task
Li GONG, Josep Crego and Jean Senellart . 262

University of Edinburgh’s submission to the Document-level Generation and Translation Shared Task
Ratish Puduppully, Jonathan Mallinson and Mirella Lapata . 268

Naver Labs Europe’s Systems for the Document-Level Generation and Translation Task at WNGT 2019
Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu and Laurent Besacier 273

From Research to Production and Back: Ludicrously Fast Neural Machine Translation
Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth Heafield,

Roman Grundkiewicz and Nikolay Bogoychev . 280

Selecting, Planning, and Rewriting: A Modular Approach for Data-to-Document Generation and Trans-
lation

Lesly Miculicich, Marc Marone and Hany Hassan . 289

viii

Efficiency through Auto-Sizing:Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task
Kenton Murray, Brian DuSell and David Chiang . 297

ix

Workshop Program

09:00-09:10 Welcome and Opening Remarks
Findings of the Third Workshop on Neural Generation and Translation

09:10-10:00 Keynote 1
Michael Auli, Facebook AI Research

10:00-10:30 Shared Task Overview

10:30-10:40 Shared Task Oral Presentation

10:40-11:40 Poster Session (see list below)

11:40-12:30 Keynote 2
Jason Weston, Facebook AI Research

12:30-13:30 Lunch Break

13:30-14:20 Keynote 3
Nanyun Peng, USC

14:20-15:10 Best Paper Session

15:10-15:40 Coffee Break

15:20-16:30 Keynote 4
Mohit Bansal, University of North Carolina

16:30-17:00 Closing Remarks

xi

Poster Session

Hello, It’s GPT-2 - How Can I Help You? Towards the Use of Pretrained Language
Models for Task-Oriented Dialogue Systems
Paweł Budzianowski and Ivan Vulić

Automated Generation of Search Advertisements
Jia Ying Jen, Divish Dayal, Corinne Choo, Ashish Awasthi, Audrey Kuah and Zi-
heng Lin

Recycling a Pre-trained BERT Encoder for Neural Machine Translation
Kenji Imamura and Eiichiro Sumita

Generating a Common Question from Multiple Documents using Multi-source
Encoder-Decoder Models
Woon Sang Cho, Yizhe Zhang, Sudha Rao, Chris Brockett and Sungjin Lee

Positional Encoding to Control Output Sequence Length
Sho Takase and Naoaki Okazaki

Attending to Future Tokens for Bidirectional Sequence Generation
Carolin Lawrence, Bhushan Kotnis and Mathias Niepert

Generating Diverse Story Continuations with Controllable Semantics
Lifu Tu, Xiaoan Ding, Dong Yu and Kevin Gimpel

Domain Differential Adaptation for Neural Machine Translation
Zi-Yi Dou, Xinyi Wang, Junjie Hu and Graham Neubig

Transformer-based Model for Single Documents Neural Summarization
Elozino Egonmwan and Yllias Chali

Making Asynchronous Stochastic Gradient Descent Work for Transformers
Alham Fikri Aji and Kenneth Heafield

Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents
Nikolaos Malandrakis, Minmin Shen, Anuj Goyal, Shuyang Gao, Abhishek Sethi
and Angeliki Metallinou

Zero-Resource Neural Machine Translation with Monolingual Pivot Data
Anna Currey and Kenneth Heafield

xii

November 4, 2019 (continued)

Two Birds, One Stone: A Simple, Unified Model for Text Generation from Structured
and Unstructured Data
Hamidreza Shahidi, Ming Li and Jimmy Lin

On the use of BERT for Neural Machine Translation
Stephane Clinchant, Kweon Woo Jung and Vassilina Nikoulina

On the Importance of the Kullback-Leibler Divergence Term in Variational Autoen-
coders for Text Generation
Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mohammad Taher Pilehvar and
Nigel Collier

Decomposing Textual Information For Style Transfer
Ivan P. Yamshchikov, Viacheslav Shibaev, Aleksander Nagaev, Jürgen Jost and
Alexey Tikhonov

Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual
Transfer
Richard Yuanzhe Pang and Kevin Gimpel

Enhanced Transformer Model for Data-to-Text Generation
Li GONG, Josep Crego and Jean Senellart

Generalization in Generation: A closer look at Exposure Bias
Florian Schmidt

Machine Translation of Restaurant Reviews: New Corpus for Domain Adaptation
and Robustness
Alexandre Berard, Ioan Calapodescu, Marc Dymetman, Claude Roux, Jean-Luc
Meunier and Vassilina Nikoulina

Improved Variational Neural Machine Translation via Promoting Mutual Informa-
tion
Xian Li, Jiatao Gu, Ning Dong and Arya D. McCarthy

Adaptively Scheduled Multitask Learning: The Case of Low-Resource Neural Ma-
chine Translation
Poorya Zaremoodi and Gholamreza Haffari

Latent Relation Language Models
Hiroaki Hayashi, Zecong Hu, Chenyan Xiong and Graham Neubig

On the Importance of Word Boundaries in Character-level Neural Machine Trans-
lation
Duygu Ataman, Orhan Firat, Mattia A. Di Gangi, Marcello Federico and Alexandra
Birch

xiii

November 4, 2019 (continued)

Big Bidirectional Insertion Representations for Documents
Lala Li and William Chan

The Daunting Task of Actual (Not Operational) Textual Style Transfer Auto-
Evaluation
Richard Yuanzhe Pang

A Margin-based Loss with Synthetic Negative Samples for Continuous-output Ma-
chine Translation
Gayatri Bhat, Sachin Kumar and Yulia Tsvetkov

Context-Aware Learning for Neural Machine Translation
Sébastien Jean and Kyunghyun Cho

Mixed Multi-Head Self-Attention for Neural Machine Translation
Hongyi Cui, Shohei Iida, Po-Hsuan Hung, Takehito Utsuro and Masaaki Nagata

Paraphrasing with Large Language Models
Sam Witteveen and Martin Andrews

Interrogating the Explanatory Power of Attention in Neural Machine Translation
Pooya Moradi, Nishant Kambhatla and Anoop Sarkar

Insertion-Deletion Transformer
Laura Ruis, Mitchell Stern, Julia Proskurnia and William Chan

Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Perfor-
mance for Low-Resource Machine Translation
Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen, Walter Scheirer and David Chi-
ang

Learning to Generate Word- and Phrase-Embeddings for Efficient Phrase-Based
Neural Machine Translation
Chan Young Park and Yulia Tsvetkov

Transformer and seq2seq model for Paraphrase Generation
Elozino Egonmwan and Yllias Chali

Multilingual KERMIT: It’s Not Easy Being Generative
Harris Chan, Jamie Kiros and William Chan

xiv

November 4, 2019 (continued)

Monash University’s Submissions to the WNGT 2019 Document Translation Task
Sameen Maruf and Gholamreza Haffari

SYSTRAN @ WNGT 2019: DGT Task
Li GONG, Josep Crego and Jean Senellart

University of Edinburgh’s submission to the Document-level Generation and Trans-
lation Shared Task
Ratish Puduppully, Jonathan Mallinson and Mirella Lapata

Naver Labs Europe’s Systems for the Document-Level Generation and Translation
Task at WNGT 2019
Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu and Laurent Besacier

From Research to Production and Back: Ludicrously Fast Neural Machine Transla-
tion
Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth
Heafield, Roman Grundkiewicz and Nikolay Bogoychev

Selecting, Planning, and Rewriting: A Modular Approach for Data-to-Document
Generation and Translation
Lesly Miculicich, Marc Marone and Hany Hassan

Auto-Sizing the Transformer Network: Shrinking Parameters for the WNGT 2019
Efficiency Task
Kenton Murray, Brian DuSell and David Chiang

xv

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 1–14
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Findings of the Third Workshop on
Neural Generation and Translation

Hiroaki Hayashi♦, Yusuke Oda♣, Alexandra Birch♠, Ioannis Konstas4,
Andrew Finch♥, Minh-Thang Luong♣, Graham Neubig♦, Katsuhito Sudoh?

♦Carnegie Mellon University, ♣Google Brain, ♠University of Edinburgh
4Heriot-Watt University, ♥Apple, ?Nara Institute of Science and Technology

Abstract

This document describes the findings of the
Third Workshop on Neural Generation and
Translation, held in concert with the annual
conference of the Empirical Methods in Nat-
ural Language Processing (EMNLP 2019).
First, we summarize the research trends of pa-
pers presented in the proceedings. Second,
we describe the results of the two shared tasks
1) efficient neural machine translation (NMT)
where participants were tasked with creating
NMT systems that are both accurate and effi-
cient, and 2) document generation and trans-
lation (DGT) where participants were tasked
with developing systems that generate sum-
maries from structured data, potentially with
assistance from text in another language.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are now a workhorse be-
hind a wide variety of different natural language
processing tasks such as machine translation, gen-
eration, summarization and simplification. The
3rd Workshop on Neural Machine Translation
and Generation (WNGT 2019) provided a forum
for research in applications of neural models to
machine translation and other language genera-
tion tasks (including summarization (Rush et al.,
2015), NLG from structured data (Wen et al.,
2015), dialog response generation (Vinyals and
Le, 2015), among others). Overall, the workshop
was held with two goals.

First, it aimed to synthesize the current state
of knowledge in neural machine translation and
generation: this year we continued to encourage
submissions that not only advance the state of the
art through algorithmic advances, but also analyze
and understand the current state of the art, point-
ing to future research directions. Towards this

goal, we received a number of high-quality re-
search contributions on both workshop topics, as
summarized in Section 2.

Second, the workshop aimed to expand the re-
search horizons in NMT: we continued to organize
the Efficient NMT task which encouraged partic-
ipants to develop not only accurate but computa-
tionally efficient systems. In addition, we orga-
nized a new shared task on “Document-level Gen-
eration and Translation”, which aims to push for-
ward document-level generation technology and
contrast the methods for different types of inputs.
The results of the shared task are summarized in
Sections 3 and 4.

2 Summary of Research Contributions

We published a call for long papers, ex-
tended abstracts for preliminary work, and cross-
submissions of papers submitted to other venues.
The goal was to encourage discussion and interac-
tion with researchers from related areas.

We received a total of 68 submissions, from
which we accepted 36. There were three cross-
submissions, seven long abstracts and 26 full pa-
pers. There were also seven system submission
papers. All research papers were reviewed twice
through a double blind review process, and avoid-
ing conflicts of interest.

There were 22 papers with an application to
generation of some kind, and 14 for translation
which is a switch from previous workshops where
the focus was on machine translation. The caliber
of the publications was very high and the number
has more than doubled from last year (16 accepted
papers from 25 submissions).

1

https://www.aclweb.org/anthology/D19-56%2d

3 Shared Task: Document-level
Generation and Translation

The first shared task at the workshop focused on
document-level generation and translation. Many
recent attempts at NLG have focused on sentence-
level generation (Lebret et al., 2016; Gardent et al.,
2017). However, real world language generation
applications tend to involve generation of much
larger amount of text such as dialogues or multi-
sentence summaries. The inputs to NLG sys-
tems also vary from structured data such as ta-
bles (Lebret et al., 2016) or graphs (Wang et al.,
2018), to textual data (Nallapati et al., 2016). Be-
cause of such difference in data and domain, com-
parison between different methods has been non-
trivial. This task aims to (1) push forward such
document-level generation technology by provid-
ing a testbed, and (2) examine the differences be-
tween generation based on different types of in-
puts including both structured data and transla-
tions in another language.

In particular, we provided the following 6 tracks
which focus on different input/output require-
ments:

• NLG (Data → En, Data → De): Gener-
ate document summaries in a target language
given only structured data.

• MT (De↔ En): Translate documents in the
source language to the target language.

• MT+NLG (Data+En → De, Data+De →
En): Generate document summaries given
the structured data and the summaries in an-
other language.

3.1 Evaluation Measures

We employ standard evaluation metrics for data-
to-text NLG and MT along two axes:

Textual Accuracy Measures: We used BLEU
(Papineni et al., 2002) and ROUGE (Lin,
2004) as measures for texutal accuracy com-
pared to reference summaries.

Content Accuracy Measures: We evaluate the
fidelity of the generated content to the input
data using relation generation (RG), content
selection (CS), and content ordering (CO)
metrics (Wiseman et al., 2017).

Train Valid Test

documents 242 240 241
Avg. # tokens (En) 323 328 329
Avg. # tokens (De) 320 324 325
Vocabulary size (En) 4163 - -
Vocabulary size (De) 5425 - -

Table 1: Data statistics of RotoWire English-German
Dataset.

The content accuracy measures were calculated
using information extraction models trained on re-
spective target languages. We followed (Wiseman
et al., 2017) and ensembled 6 information extrac-
tion models (3 CNN-based, 3 LSTM-based) with
different random seeds for each language.

3.2 Data

Due to the lack of a document-level parallel corpus
which provides structured data for each instance,
we took an approach of translating an existing
NLG dataset. Specifically, we used a subset of
the RotoWire dataset (Wiseman et al., 2017) and
obtained professional German translations, which
are sentence-aligned to the original English arti-
cles. The obtained parallel dataset is called the
RotoWire English-German dataset, and consists of
box score tables, an English article, and its Ger-
man translation for each instance. Table 1 shows
the statistics of the obtained dataset. We used the
test split from this dataset to calculate the evalua-
tion measures for all the tracks.

We further allowed the following additional re-
sources for each track:

• NLG: RotoWire, Monolingual

• MT: WMT19, Monolingual

• MT+NLG: RotoWire, WMT19, Monolingual

RotoWire refers to the RotoWire dataset (Wise-
man et al., 2017) (train/valid), WMT19 refers
to the set of parallel corpora allowable by the
WMT 2019 English-German task, and Monolin-
gual refers to monolingual data allowable by the
same WMT 2019 task, pre-trained embeddings
(e.g., GloVe (Pennington et al., 2014)), pre-trained
contextualized embeddings (e.g., BERT (Devlin
et al., 2019)), pre-trained language models (e.g.,
GPT-2 (Radford et al., 2019)).

2

Systems which follow these resource con-
straints are marked constrained, otherwise uncon-
strained. Results are indicated by the initials
(C/U).

3.3 Baseline Systems
Considering the difference in inputs for MT and
NLG tracks, we prepared two baselines for respec-
tive tracks.

FairSeq-19 FairSeq (Ng et al., 2019) was used
for MT and MT+NLG tracks for both direc-
tions of translations. We used the published
WMT’19 single model and did not tune on
in-domain data.

NCP+CC: A two-stage model from (Puduppully
et al., 2019) was used for NLG tracks. We
utilized the pretrained English model trained
on RotoWire dataset for English article gen-
eration, while the German model was trained
on RotoWire English-German dataset.

3.4 Submitted Systems
Four teams, Team EdiNLG, Team FIT-Monash,
Team Microsoft, Team Naver Labs Europe, and
Team SYSTRAN-AI participated in the shared
task. We note the common trends across many
teams and discuss the systems of individual teams
below. On MT tracks, all the teams have adopted
a variant of Transformer (Vaswani et al., 2017)
as a sequence transduction model and trained on
corpora with different data-augmentation meth-
ods. Trained systems were then fine-tuned on
in-domain data including our RotoWire English-
German dataset. The focus of data augmentation
was two-fold: 1) acquiring in-domain data and 2)
utilizing document boundaries from existing cor-
pora. Most teams applied back-translation on vari-
ous sources including NewsCrawl and the original
RotoWire dataset for this purpose.

NLG tracks exhibited a similar trend for the se-
quence model selection, except for Team EdiNLG
who employed LSTM.

3.4.1 Team EdiNLG
Team EdiNLG built their NLG system upon
(Puduppully et al., 2019) by extending it to fur-
ther allow copying from the table in addition to
generating from vocabulary and the content plan.
Additionally, they included features indicating the
win/loss team records and team rank in terms of
points for each player. They trained the NLG

model for both languages together, using a shared
BPE vocabulary obtained from target game sum-
maries and by prefixing the target text with the tar-
get language indicator.

For MT and MT+NLG tracks, they mined the
in-domain data by extracting basketball-related
texts from Newscrawl when one of the follow-
ing conditions are met: 1) player names from the
RotoWire English-German training set appear, 2)
two NBA team names appear in the same docu-
ment, or 3) “NBA” appears in titles. This resulted
in 4.3 and 1.1 million monolingual sentences for
English and German, respectively. The obtained
sentences were then back-translated and added to
the training corpora. They submitted their system
EdiNLG in all six tracks.

3.4.2 Team FIT-Monash
Team FIT-Monash built a document-level NMT
system (Maruf et al., 2019) and participated in
MT tracks. The document-level model was initial-
ized with a pre-trained sentence-level NMT model
on news domain parallel corpora. Two strategies
for composing document-level context were pro-
posed: flat and hierarchical attention. Flat atten-
tion was applied on all the sentences, while hier-
archical attention was computed at sentence and
word-level in a hierarchical manner. Sparse atten-
tion was applied at sentence-level in order to iden-
tify key sentences that are important for translating
the current sentence.

To train a document-level model, the team fo-
cused on corpora that have document boundaries,
including News Commentary, Rapid, and the Ro-
toWire dataset. Notably, greedy decoding was em-
ployed due to computational cost. The submitted
system is an ensemble of three runs indicated as
FIT-Monash.

3.4.3 Team Microsoft
Team Microsoft (MS) developed a Transformer-
based NLG system which consists of two
sequence-to-sequence models. The two step
method was inspired by the approach from
(Puduppully et al., 2019), where the first model
is a recurrent pointer network that selects encoded
records, and the second model takes the selected
content representation as input and generates sum-
maries. The proposed model (MS-End-to-End)
learned both models at the same time with a com-
bined loss function. Additionally, they have in-
vestigated the use of pre-trained language models

3

for NLG track. Specifically, they fine-tuned GPT-
2 (Radford et al., 2019) on concatenated pairs
of (template, target) summaries, while construct-
ing templates following (Wiseman et al., 2017).
The two sequences are concatenated around a spe-
cial token which indicates “rewrite”. At decod-
ing time, they adopted nucleus sampling (Holtz-
man et al., 2019) to enhance the generation quality.
Different thresholds for nucleus sampling were in-
vestigated, and two systems with different thresh-
olds were submitted: MS-GPT-50 and MS-GPT-
90, where the numbers refer to Top-p thresholds.

The generated summaries in English using the
following systems were then translated with the
MT systems which is described below. Hence,
this marks Team Microsoft’s German NLG (Data
→ De) submission unconstrained, due to the us-
age of parallel data beyond the RotoWire English-
German dataset.

As for the MT model, a pre-trained system
from (Xia et al., 2019) was fine-tuned on the Ro-
toWire English-German dataset, as well as back-
translated sentences from the original RotoWire
dataset for the English-to-German track. Back-
translation of sentences obtained from Newscrawl
according to the similarity to RotoWire data
(Moore and Lewis, 2010) was attempted but did
not lead to improvement. The resulting system is
shown as MS on MT track reports.

3.4.4 Team Naver Labs Europe
Team Naver Labs Europe (NLE) took the ap-
proach of transferring the model from MT to
NLG. They first trained a sentence-level MT
model by iteratively extend the training set from
the WMT19 parallel data and RotoWire English-
German dataset to back-translated Newscrawl
data. The best sentence-level model was then
fine-tuned at document-level, followed by fine-
tuning on the RotoWire English-German dataset
(constrained NLE) and additionally on the back-
translated original RotoWire dataset (uncon-
strained NLE).

To fully leverage the MT model, input record
values prefixed with special tokens for record
types were sequentially fed in a specific order.
Combined with the target summary, the pair of
record representations and the target summaries
formed data for a sequence-to-sequence model.
They fine-tuned their document-level MT model
on these NLG data which included the original
RotoWire and RotoWire English-German dataset.

The team tackled MT+NLG tracks by concate-
nating source language documents and the se-
quence of records as inputs. To encourage the
model to use record information more, they ran-
domly masked certain portion of tokens in the
source language documents.

3.4.5 Team SYSTRAN-AI
Team SYSTRAN-AI developed their NLG system
based on the Transformer (Vaswani et al., 2017).
The model takes as input each record from the box
score featurized into embeddings and decode the
summary. In addition, they introduced a content
selection objective where the model learns to pre-
dict whether or not each record is used in the sum-
mary, comprising a sequence of binary classfica-
tion decision.

Furthermore, they performed data augmenta-
tion by synthesizing records whose numeric val-
ues were randomly changed in a way that does not
change the win / loss relation and remains within a
sane range. The synthesized records were used to
generate a summary to obtain new (record, sum-
mary) pairs and were included added the train-
ing data. To bias the model toward generating
more records, they further fine-tuned their model
on a subset of training examples which contain
N(= 16) records in the summary. The submit-
ted systems are SYSTRAN-AI and SYSTRAN-
AI-Detok, which differ in tokenization.

3.5 Results

We show the results for each track in Table 2
through 7. In the NLG and MT+NLG tasks, we re-
port BLEU, ROUGE (F1) for textual accuracy, RG
(P), CS(P, R), and CO (DLD) for content accuracy.
While for MT tasks, we only report BLEU. We
summarize the shared task results for each track
below.

In NLG (En) track, all the participants en-
couragingly submitted systems outperforming a
strong baseline by (Puduppully et al., 2019).
We observed an apparent difference between the
constrained and unconstrained settings. Team
NLE’s approach showed that pre-training of the
document-level generation model on news cor-
pora is effective even if the source input differs
(German text vs linearized records). Among con-
strained systems, it is worth noting that all the sys-
tems but Team EdiNLG used the Transformer, but
the result did not show noticeable improvements
compared to EdiNLG. It was also shown that the

4

generation using pre-trained language models is
sensitive to how the sampling is performed; the
results of MS-GPT-90 and MS-GPT-50 differ only
in the nucleus sampling hyperparameter, which
led to significant differences in every evaluation
measure.

The NLG (De) track imposed a greater chal-
lenge compared to its English counterpart due to
the lack of training data. The scores has generally
dropped compared to NLG (En) results. To alle-
viate the lack of German data, most teams devel-
oped systems under unconstrained setting by uti-
lizing MT resources and models. Notably, Team
NLE’s has achieved similar performance to the
constrained system results on NLG (En). How-
ever, Team EdiNLG achieved similar performance
under the constrained setting by fully leveraging
the original RotoWire using the sharing of vocab-
ulary.

In MT tracks, we see the same trend that the
system under unconstrained setting (NLE) out-
performed all the systems under the constrained
setting. The improvement observed in the un-
constrained setting came from fine-tuning on the
back-translated original RotoWire dataset, which
offers purely in-domain parallel documents.

While the results are not directly comparable
due to different hyperparameters used in systems,
fine-tuning on in-domain parallel sentences was
shown effective (FairSeq-19 vs others). When
incorporating document-level data, it was shown
that document-level models (NLE, FIT-Monash,
MS) perform better than sentence-level models
(EdiNLG, FairSeq-19), even if a sentence-level
model is trained on document-aware corpora.

For MT+NLG tracks, interestingly, no teams
found the input structured data useful, thus apply-
ing MT models for MT+NLG tracks. Compared
to the baseline (FairSeq-19), fine-tuning on in-
domain data resulted in better performance over-
all as seen in the results of Team MS and NLE.
The key difference between Team MS and NLE is
the existence of document-level fine-tuning, where
Team NLE outperformed in terms of textual accu-
racy (BLEU and ROUGE) overall, in both target
languages.

4 Shared Task: Efficient NMT

The second shared task at the workshop focused
on efficient neural machine translation. Many
MT shared tasks, such as the ones run by the

Conference on Machine Translation (Bojar et al.,
2017), aim to improve the state of the art for MT
with respect to accuracy: finding the most accu-
rate MT system regardless of computational cost.
However, in production settings, the efficiency of
the implementation is also extremely important.
The efficiency shared task for WNGT (inspired by
the “small NMT” task at the Workshop on Asian
Translation (Nakazawa et al., 2017)) was focused
on creating systems for NMT that are not only ac-
curate, but also efficient. Efficiency can include a
number of concepts, including memory efficiency
and computational efficiency. This task concerns
itself with both, and we cover the detail of the eval-
uation below.

4.1 Evaluation Measures

We used metrics to measure several different as-
pects connected to how good the system is. These
were measured for systems that were run on CPU,
and also systems that were run on GPU.

Accuracy Measures: As a measure of translation
accuracy, we used BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) scores.

Computational Efficiency Measures: We mea-
sured the amount of time it takes to translate
the entirety of the test set on CPU or GPU.
Time for loading models was measured by
having the model translate an empty file, then
subtracting this from the total time to trans-
late the test set file.

Memory Efficiency Measures: We measured:
(1) the size on disk of the model, (2) the
number of parameters in the model, and (3)
the peak consumption of the host memory
and GPU memory.

These metrics were measured by having par-
ticipants submit a container for the virtualization
environment Docker1, then measuring from out-
side the container the usage of computation time
and memory. All evaluations were performed on
dedicated instances on Amazon Web Services2,
specifically of type m5.large for CPU evalu-
ation, and p3.2xlarge (with a NVIDIA Tesla
V100 GPU).

1https://www.docker.com/
2https://aws.amazon.com/

5

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 17.01 44.87 18.53 25.38 91.41 30.91 64.13 21.72 C
MS-GPT-90 13.03 45.25 15.17 21.34 88.70 32.84 50.58 17.36 C
MS-GPT-50 15.17 45.34 16.64 22.93 94.35 33.91 53.82 19.30 C
MS-End-to-End 15.03 43.84 17.49 23.86 93.38 32.40 58.02 18.54 C
NLE 20.52 49.38 22.36 27.29 94.08 41.13 54.20 25.64 U
SYSTRAN-AI 17.59 47.76 20.18 25.60 83.22 31.74 44.90 20.73 C
SYSTRAN-AI-Detok 18.32 47.80 20.19 25.61 84.16 34.88 43.29 22.72 C

NCP+CC 15.80 44.83 17.07 23.46 88.59 30.47 55.38 18.31 C

Table 2: Results on the NLG: (Data→ En) track of DGT task.

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 10.95 34.10 12.81 19.70 70.23 23.40 41.83 16.06 C
MS-GPT-90 10.43 41.35 12.59 18.43 75.05 31.23 41.32 16.32 U
MS-GPT-50 11.84 41.51 13.65 19.68 82.79 34.81 42.51 17.12 U
MS-End-to-End 11.66 40.02 14.36 20.67 80.30 28.33 49.13 16.54 U
NLE 16.13 44.27 17.50 23.09 79.47 29.40 54.31 20.62 U

NCP+CC 7.29 29.56 7.98 16.06 49.69 21.61 26.14 11.84 C

Table 3: Results on the NLG: (Data→ De) track of DGT task.

System BLEU Type

FIT-Monash 47.39 C
EdiNLG 41.15 C
MS 57.99 C
NLE 62.16 U
NLE 58.22 C

FairSeq-19 42.91 C

Table 4: DGT results on the MT track (De→ En).

System BLEU Type

FIT-Monash 41.46 C
EdiNLG 36.85 C
MS 47.90 C
NLE 48.02 C

FairSeq-19 36.26 C

Table 5: DGT results on the MT track (En→ De)

4.2 Data
The data used was from the WMT 2014 English-
German task (Bojar et al., 2014), using the pre-
processed corpus provided by the Stanford NLP
Group3. Use of other data was prohibited.

4.3 Baseline Systems
Two baseline systems were prepared:

Echo: Just send the input back to the output.

Base: A baseline system using attentional LSTM-
based encoder-decoders with attention (Bah-
danau et al., 2015).

4.4 Submitted Systems
Two teams, Team Marian and Team Notre Dame
submitted to the shared task, and we will summa-
rize each below.

4.4.1 Team Marian
Team Marian’s submission (Kim et al., 2019) was
based on their submission to the shared task the
previous year, consisting of Transformer mod-
els optimized in a number of ways (Junczys-
Dowmunt et al., 2018). This year, they made

3https://nlp.stanford.edu/projects/
nmt/

6

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 36.85 69.66 41.47 57.25 81.01 77.32 78.49 62.21 C
MS 47.90 75.95 51.75 65.61 80.98 76.88 84.57 67.84 C
NLE 48.24 75.89 51.80 65.90 80.65 75.10 88.72 69.17 C

FairSeq-19 36.26 68.22 40.31 56.38 81.64 77.67 75.82 60.83 C

Table 6: Results on the MT+NLG: (Data+En→ De) track of DGT task.

System BLEU R-1 R-2 R-L RG CS (P/R) CO Type

EdiNLG 41.15 76.57 50.97 66.62 91.40 78.99 63.04 51.73 C
MS 57.99 83.03 63.03 75.44 95.77 92.49 91.62 84.70 C
NLE 62.24 84.38 66.11 77.17 95.63 91.71 92.69 85.05 C

FairSeq-19 42.91 77.57 52.66 68.66 93.53 83.33 84.22 70.47 C

Table 7: Results on the MT+NLG: (Data+De→ En) track of DGT task.

101 102 103

Time [s]

24

25

26

27

28

29

30

31

32

BL
EU

 %

Marian.cpu_base2
Marian.cpu_medium1

Marian.cpu_small2

Marian.cpu_tiny11

(a) CPU Time vs. Accuracy

100 101 102
Time [s]

18

20

22

24

26

28

30

32

BL
EU

 %

Marian.gpu_base4bit
Marian.gpu_baseMarian.gpu_big

ndnlp.all-l21-01-small

ndnlp.baseline-small

ndnlp.encoder-l21-01-small
ndnlp.encoder-l21-1-small

ndnlp.fc-l21-01-smallndnlp.fc-l21-1-smallndnlp.fc-l21-10-small
ndnlp.fc-linf1-100-small

(b) GPU Time vs. Accuracy

102 103

Memory [MiB]

24

25

26

27

28

29

30

31

32

BL
EU

 %

Marian.cpu_base2
Marian.cpu_medium1

Marian.cpu_small2

Marian.cpu_tiny11

(c) CPU Memory vs. Accuracy

103 104

Memory [MiB]

18

20

22

24

26

28

30

32

BL
EU

 %

Marian.gpu_base4bit
Marian.gpu_baseMarian.gpu_big

ndnlp.all-l21-01-small

ndnlp.baseline-small

ndnlp.encoder-l21-01-small
ndnlp.encoder-l21-1-small

ndnlp.fc-l21-01-smallndnlp.fc-l21-1-smallndnlp.fc-l21-10-small
ndnlp.fc-linf1-100-small

(d) GPU Memory vs. Accuracy

Figure 1: Time and memory vs. accuracy measured by BLEU on the newstest2015 set, calculated on both CPU and
GPU. White diamonds (�) represent the results in the previous campaign. Orange areas show regions dominated
by some Pareto frontier systems.

7

a number of improvements. Improvements were
made to teacher-student training by (1) creating
more data for teacher-student training using back-
ward, then forward translation, (2) using multiple
teachers to generate better distilled data for train-
ing student models. In addition, there were mod-
eling improvements made by (1) replacing sim-
ple averaging in the attention layer with an effi-
ciently calculable “simple recurrent unit,” (2) pa-
rameter tying between decoder layers, which re-
duces memory usage and improves cache locality
on the CPU. Finally, a number of CPU-specific op-
timizations were performed, most notably includ-
ing 8-bit matrix multiplication along with a flexi-
ble quantization scheme.

4.4.2 Team Notre Dame
Team Notre Dame’s submission (Murray et al.,
2019) focused mainly on memory efficiency. They
did so by performing “Auto-sizing” of the trans-
former network, applying block-sparse regulariza-
tion to remove columns and rows from the param-
eter matrices.

4.5 Results

A brief summary of the results of the shared task
(for newstest2015) can be found in Figure 1, while
full results tables for all of the systems can be
found in Appendix A. From this figure we can
glean a number of observations.

For the CPU systems, all submissions from the
Marian team clearly push the Pareto frontier in
terms of both time and memory. In addition, the
Marian systems also demonstrated a good trade-
off between time/memory and accuracy.

For the GPU systems, all systems from the Mar-
ian team also outperformed other systems in terms
of the speed-accuracy trade-off. However, the
Marian systems had larger memory consumption
than both Notre Dame systems, which specifically
optimized for memory efficiency, and all previous
systems. Interestingly, each GPU system by the
Marian team shares almost the same amount of
GPU memory as shown in Table 12 and Figure
2(b). This may indicate that the internal frame-
work of the Marian system tries to reserve enough
amount of the GPU memory first, then use the ac-
quired memory as needed by the translation pro-
cesses.

On the other hand, we can see that the Notre
Dame systems occupy only a minimal amount of
GPU memory, as the systems use much smaller

Ma
ria
n.g

pu
_ba

se4
bit

Ma
ria
n.g

pu
_ba

se

Ma
ria
n.g

pu
_bi
g

nd
nlp

.al
l-l2

1-0
1-s

ma
ll

nd
nlp

.ba
sel
ine

-sm
all

nd
nlp

.en
cod

er-
l21

-01
-sm

all

nd
nlp

.en
cod

er-
l21

-1-
sm

all

nd
nlp

.fc
-l2
1-0

1-s
ma

ll

nd
nlp

.fc
-l2
1-1

-sm
all

nd
nlp

.fc
-l2
1-1

0-s
ma

ll

nd
nlp

.fc
-lin

f1-
10
0-s

ma
ll

0

2500

5000

7500

10000

12500

15000

17500

20000

M
em

or
y
[M

iB
]

CPU
GPU

(a) empty

Ma
ria
n.g

pu
_ba

se4
bit

Ma
ria
n.g

pu
_ba

se

Ma
ria
n.g

pu
_bi
g

nd
nlp

.al
l-l2

1-0
1-s

ma
ll

nd
nlp

.ba
sel
ine

-sm
all

nd
nlp

.en
cod

er-
l21

-01
-sm

all

nd
nlp

.en
cod

er-
l21

-1-
sm

all

nd
nlp

.fc
-l2
1-0

1-s
ma

ll

nd
nlp

.fc
-l2
1-1

-sm
all

nd
nlp

.fc
-l2
1-1

0-s
ma

ll

nd
nlp

.fc
-lin

f1-
10
0-s

ma
ll

0

2500

5000

7500

10000

12500

15000

17500

20000

M
em

or
y
[M

iB
]

CPU
GPU

(b) newstest2015

Figure 2: Memory consumption for each GPU system.

8

amounts on the empty set (Figure 2(a)). These
different approaches to constant or variable size
memory consumption may be based on different
underlying perspectives of “memory efficiency,”
and it may be difficult to determine which policy
is better without knowing the actual environment
in which a system will be used.

5 Conclusion

This paper summarized the results of the Third
Workshop on Neural Generation and Translation,
where we saw a number of research advances.
Particularly, this year introduced a new document
generation and translation task, that tested the ef-
ficacy of systems for both the purposes of transla-
tion and generation in a single testbed.

Acknowledgments

We thank Apple and Google for their monetary
support of student travel awards for the workshop,
and AWS for its gift of AWS credits (to Graham
Neubig) that helped support the evaluation.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, et al. 2017. Findings of the 2017 con-
ference on machine translation (wmt17). In Proc.
WMT, pages 169–214.

Ondrej Bojar et al. 2014. Findings of the 2014 work-
shop on statistical machine translation. In Proc.
WMT, pages 12–58.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proc. HLT, pages 138–145.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
Challenge: Generating Text from RDF Data. In
Proceedings of the 10th International Conference on

Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Com-
putational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The Curious Case of Neural Text De-
generation. arXiv:1904.09751 [cs].

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in C++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135, Melbourne, Australia.
Association for Computational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proc. EMNLP,
pages 1700–1709.

Young Jin Kim, Marcin Junczys-Dowmunt, and Hany
Hassan. 2019. From research to production and
back: Fast and accurate neural machine translation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural Text Generation from Structured Data with
Application to the Biography Domain. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1203–1213,
Austin, Texas. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Sameen Maruf, André F. T. Martins, and Gholam-
reza Haffari. 2019. Selective Attention for Context-
aware Neural Machine Translation. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3092–3102, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Proc.
ACL, pages 220–224.

Kenton Murray, Brian DuSell, and David Chiang.
2019. Auto-sizing the transformer network: Shrink-
ing parameters for the wngt 2019 efficiency task. In
Proceedings of the 3rd Workshop on Neural Gener-
ation and Translation.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Hideto Kazawa,
Yusuke Oda, Graham Neubig, and Sadao Kurohashi.
2017. Overview of the 4th workshop on asian trans-
lation. In Proc. WAT, pages 1–54, Taipei, Taiwan.
Asian Federation of Natural Language Processing.

9

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gul̇çehre, and Bing Xiang. 2016. Ab-
stractive Text Summarization using Sequence-to-
sequence RNNs and Beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290, Berlin, Ger-
many. Association for Computational Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314–319, Florence, Italy. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. EMNLP, pages 379–
389.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. NIPS, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NIPS.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Qingyun Wang, Xiaoman Pan, Lifu Huang, Boliang
Zhang, Zhiying Jiang, Heng Ji, and Kevin Knight.
2018. Describing a Knowledge Base. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 10–21, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.

Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proc. EMNLP, pages 1711–1721.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in Data-to-Document Generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263.

Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Di He, We-
icong Chen, Yang Fan, Linyuan Gong, Yichong
Leng, Renqian Luo, Yiren Wang, Lijun Wu, Jinhua
Zhu, Tao Qin, and Tie-Yan Liu. 2019. Microsoft
Research Asia’s Systems for WMT19. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
424–433, Florence, Italy. Association for Computa-
tional Linguistics. WMT.

A Full Shared Task Results

For completeness, in this section we add tables of
the full shared task results. These include the full
size of the image file for the translation system
(Table 8), the comparison between compute time
and evaluation scores on CPU (Table 9) and GPU
(Table 10), and the comparison between memory
and evaluation scores on CPU (Table 11) and GPU
(Table 12).

10

Table 8: Image file sizes of submitted systems.

Team System Size [MiB]
Marian cpu base2 135.10

cpu medium1 230.22
cpu small2 93.00
cpu tiny11 91.61
gpu base4bit 322.68
gpu base 452.59
gpu big 773.27

Notre Dame all-l21-01-small 2816.63
baseline-small 2845.04
encoder-l21-01-small 2813.67
encoder-l21-1-small 2779.60
fc-l21-01-small 2798.94
fc-l21-1-small 2755.80
fc-l21-10-small 2755.76
fc-linf1-100-small 2759.10

Table 9: Time consumption and MT evaluation metrics (CPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
Total Diff

Empty Marian cpu base2 4.97 — — —
cpu medium1 6.03 — — —
cpu small2 4.67 — — —
cpu tiny11 4.71 — — —

newstest2014 Marian cpu base2 57.52 52.55 28.04 7.458
cpu medium1 181.81 175.78 28.58 7.539
cpu small2 28.32 23.64 26.97 7.288
cpu tiny11 22.26 17.56 26.38 7.178

newstest2015 Marian cpu base2 45.01 40.04 30.74 7.607
cpu medium1 139.06 133.03 31.32 7.678
cpu small2 22.64 17.97 29.57 7.437
cpu tiny11 18.08 13.37 28.92 7.320

11

Table 10: Time consumption and MT evaluation metrics (GPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
Total Diff

Empty Marian gpu base4bit 9.77 — — —
gpu base 2.69 — — —
gpu big 5.22 — — —

Notre Dame all-l21-01-small 7.92 — — —
baseline-small 8.13 — — —
encoder-l21-01-small 7.96 — — —
encoder-l21-1-small 7.89 — — —
fc-l21-01-small 7.85 — — —
fc-l21-1-small 7.56 — — —
fc-l21-10-small 7.57 — — —
fc-linf1-100-small 7.61 — — —

newstest2014 Marian gpu base4bit 12.42 2.66 27.50 7.347
gpu base 4.22 1.53 28.00 7.449
gpu big 7.09 1.88 28.61 7.534

Notre Dame all-l21-01-small 36.80 28.89 21.60 6.482
baseline-small 36.07 27.95 25.28 7.015
encoder-l21-01-small 35.82 27.86 23.20 6.725
encoder-l21-1-small 35.41 27.52 22.06 6.548
fc-l21-01-small 35.76 27.91 24.07 6.869
fc-l21-1-small 34.46 26.90 23.97 6.859
fc-l21-10-small 34.00 26.43 23.87 6.852
fc-linf1-100-small 34.46 26.84 23.80 6.791

newstest2015 Marian gpu base4bit 11.97 2.20 29.99 7.504
gpu base 3.98 1.29 30.79 7.595
gpu big 6.80 1.58 31.15 7.664

Notre Dame all-l21-01-small 30.21 22.29 24.13 6.670
baseline-small 30.47 22.35 27.85 7.224
encoder-l21-01-small 29.67 21.71 25.45 6.869
encoder-l21-1-small 29.93 22.04 24.47 6.734
fc-l21-01-small 29.80 21.95 26.39 7.053
fc-l21-1-small 28.42 20.87 26.77 7.093
fc-l21-10-small 28.63 21.06 26.54 7.051
fc-linf1-100-small 28.91 21.29 26.04 6.971

12

Table 11: Peak memory consumption (CPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian cpu base2 336.30 — 336.30

cpu medium1 850.76 — 850.76
cpu small2 229.53 — 229.53
cpu tiny11 227.73 — 227.73

newstest2014 Marian cpu base2 523.93 — 523.93
cpu medium1 850.98 — 850.98
cpu small2 276.30 — 276.30
cpu tiny11 260.86 — 260.86

newstest2015 Marian cpu base2 523.12 — 523.12
cpu medium1 850.95 — 850.95
cpu small2 275.76 — 275.76
cpu tiny11 260.09 — 260.09

13

Table 12: Peak memory consumption (GPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian gpu base4bit 788.67 14489 15277.67

gpu base 791.82 14489 15280.82
gpu big 2077.75 14489 16566.75

Notre Dame all-l21-01-small 3198.89 991 4189.89
baseline-small 3261.73 973 4234.73
encoder-l21-01-small 3192.87 1003 4195.87
encoder-l21-1-small 3164.45 1003 4167.45
fc-l21-01-small 3160.32 999 4159.32
fc-l21-1-small 3069.05 1049 4118.05
fc-l21-10-small 3092.01 1057 4149.01
fc-linf1-100-small 3116.35 1037 4153.35

newstest2014 Marian gpu base4bit 781.83 14641 15422.83
gpu base 793.07 14641 15434.07
gpu big 2078.78 14961 17039.78

Notre Dame all-l21-01-small 3199.95 9181 12380.95
baseline-small 3285.20 9239 12524.20
encoder-l21-01-small 3194.96 9169 12363.96
encoder-l21-1-small 3164.86 9119 12283.86
fc-l21-01-small 3160.80 9155 12315.80
fc-l21-1-small 3070.67 9087 12157.67
fc-l21-10-small 3068.12 9087 12155.12
fc-linf1-100-small 3119.96 9087 12206.96

newstest2015 Marian gpu base4bit 783.05 14641 15424.05
gpu base 789.34 14641 15430.34
gpu big 2077.42 14961 17038.42

Notre Dame all-l21-01-small 3198.86 6171 9369.86
baseline-small 3266.11 6359 9625.11
encoder-l21-01-small 3193.13 6103 9296.13
encoder-l21-1-small 3166.56 6135 9301.56
fc-l21-01-small 3160.88 6159 9319.88
fc-l21-1-small 3079.92 6017 9096.92
fc-l21-10-small 3069.32 6015 9084.32
fc-linf1-100-small 3130.95 6015 9145.95

14

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 15–22
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Hello, It’s GPT-2 - How Can I Help You?
Towards the Use of Pretrained Language Models

for Task-Oriented Dialogue Systems

Paweł Budzianowski1,2,3 and Ivan Vulić2,3

1Engineering Department, Cambridge University, UK
2Language Technology Lab, Cambridge University, UK

3PolyAI Limited, London, UK
pfb30@cam.ac.uk, iv250@cam.ac.uk

Abstract

Data scarcity is a long-standing and crucial
challenge that hinders quick development of
task-oriented dialogue systems across multiple
domains: task-oriented dialogue models are
expected to learn grammar, syntax, dialogue
reasoning, decision making, and language gen-
eration from absurdly small amounts of task-
specific data. In this paper, we demonstrate
that recent progress in language modeling pre-
training and transfer learning shows promise
to overcome this problem. We propose a task-
oriented dialogue model that operates solely
on text input: it effectively bypasses ex-
plicit policy and language generation modules.
Building on top of the TransferTransfo frame-
work (Wolf et al., 2019) and generative model
pre-training (Radford et al., 2019), we vali-
date the approach on complex multi-domain
task-oriented dialogues from the MultiWOZ
dataset. Our automatic and human evaluations
show that the proposed model is on par with
a strong task-specific neural baseline. In the
long run, our approach holds promise to miti-
gate the data scarcity problem, and to support
the construction of more engaging and more
eloquent task-oriented conversational agents.

1 Introduction

Statistical conversational systems can be roughly
clustered into two main categories: 1) task-
oriented modular systems and 2) open-domain
chit-chat neural models. The former typically con-
sist of independently trained constituent modules
such as language understanding, dialogue manage-
ment, and response generation. The main goal of
such systems is to provide meaningful system re-
sponses which are invaluable in building conversa-
tional agents of practical value for restricted do-
mains and tasks. However, data collection and
annotation for such systems is complex, time-
intensive, expensive, and not easily transferable

(Young et al., 2013). On the other hand, open-
domain conversational bots (Li et al., 2017; Serban
et al., 2017) can leverage large amounts of freely
available unannotated data (Ritter et al., 2010;
Henderson et al., 2019a). Large corpora allow
for training end-to-end neural models, which typ-
ically rely on sequence-to-sequence architectures
(Sutskever et al., 2014). Although highly data-
driven, such systems are prone to producing unre-
liable and meaningless responses, which impedes
their deployment in the actual conversational ap-
plications (Li et al., 2017).

Due to the unresolved issues with the end-to-
end architectures, the focus has been extended to
retrieval-based models. Here, the massive datasets
can be leveraged to aid task-specific applications
(Kannan et al., 2016; Henderson et al., 2017,
2019b). The retrieval systems allow for the full
control over system responses, but the behaviour
of the system is often highly predictable. It also
depends on the pre-existing set of responses, and
the coverage is typically insufficient for a mul-
titude of domains and tasks. However, recent
progress in training high-capacity language mod-
els (e.g., GPT, GPT-2) (Radford et al., 2018, 2019)
on large datasets reopens the question of whether
such generative models can support task-oriented
dialogue applications. Recently, Wolf et al. (2019)
and Golovanov et al. (2019) showed that the GPT
model, once fine-tuned, can be useful in the do-
main of personal conversations. In short, their
approach led to substantial improvements on the
Persona-Chat dataset (Zhang et al., 2018), show-
casing the potential of exploiting large pretrained
generative models in the conversational domain.1

In this paper, we demonstrate that large gener-
ative models pretrained on large general-domain

1E.g., TransferTransfo (Wolf et al., 2019) yields gains in
all crucial dialogue evaluation measures such as fluency, con-
sistency and engagingness on the Persona-Chat dataset.

15

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: Dialogue-context-to-text task.

corpora can support task-oriented dialogue appli-
cations. We first discuss how to combine a set
of diverse components such as word tokenization,
multi-task learning, and probabilistic sampling to
support task-oriented applications. We then show
how to adapt the task-oriented dialogue framework
to operate entirely on text input, effectively by-
passing an explicit dialogue management module
and a domain-specific natural language generation
module. The proposed model operates entirely
in the sequence-to-sequence fashion, consuming
only simple text as input. The entire dialogue con-
text, which includes the belief state, the database
state and previous turns, is provided to the decoder
as raw text. The proposed model follows the re-
cently proposed TransferTransfo framework (Wolf
et al., 2019), and relies on pretrained models from
the GPT family (Radford et al., 2018, 2019).

Our results in the standard Dialogue-Context-to-
Text task (see Figure 1) on the multi-domain Multi-
WOZ dataset (Budzianowski et al., 2018b) suggest
that our GPT-based task-oriented dialogue model
learns to generate and understand domain-specific
tokens, which in turn leads to a seamless adapta-
tion to particular focused domains. While auto-
matic evaluation indicates that our framework still
falls slightly short of a strong task-specific neural
baseline, it also hints at the main advantage of our
framework: it is widely portable and easily adapt-
able to a large number of domains, bypassing the
intricate modular design only at a small cost in per-
formance. Furthermore, user-centered evaluations
suggest that there is no significant difference be-
tween the two models.

2 From Unsupervised Pretraining to
Dialogue Modeling

Task-oriented dialogue modeling requires substan-
tial amounts of domain-specific manually labeled

data. A natural question to ask is: Can we leverage
transfer learning through generative pretraining on
large unlabelled corpora to enable task-oriented di-
alogue modeling. In this work, we rely on the stan-
dard language modeling (LM) pretraining, where
the task is to predict the next word given the pre-
ceding word sequence (Bengio et al., 2003). The
objective maximizes the likelihood over the word
sequence S = {w1, ..., w|S|}:

L1(S) =

|S|∑

i=1

log P (wi|w0, w1, ..., wi−1). (1)

Transfer learning based on such LM pretraining
combined with the Transformer decoder model
(Vaswani et al., 2017) resulted in significant
progress across many downstream tasks (Rei,
2017; Howard and Ruder, 2018; Radford et al.,
2018, 2019).

2.1 TransferTransfo Framework
Golovanov et al. (2019) and Wolf et al. (2019)
achieved a first successful transfer of a genera-
tive pretrained GPT model to an open-domain di-
alogue task. The pretrained GPT model is fine-
tuned in a multi-task learning fashion following
the original work (Radford et al., 2018). The LM
objective from Eq. (1) is combined with the next
utterance classification task:

p(c, a) = softmax(hl ∗ Wh). (2)

c and a represent the context of the conversation
(c) and a proposed answer (a), hl is the last hidden
state of the transformer decoder, and Wh is learnt
during the fine-tuning phase. The model signifi-
cantly improves upon previous baselines over all
automatic dialogue evaluation metrics as well as
in evaluation with human subjects when evaluated
on the Persona-Chat dataset (Zhang et al., 2018).

The GPT input consists of token embeddings
and positional embeddings. In order to move from
a single-speaker setting to a setting with two inter-
locutors, Wolf et al. (2019) introduced dialogue-
state embeddings. These embeddings inform the
model whether the current token comes from an
utterance of the first speaker or an utterance of the
second speaker. The dialogue-state embeddings
are learned during the fine-tuning phase.

3 Domain Transfer for (Task-Oriented)
Dialogue Modeling

We now briefly discuss several advances in model-
ing of natural language that facilitate applicability

16

Figure 2: The framework for modeling task-oriented conversations based on a pretrained GPT model which uses
only unstructured simple text as input. The context, belief state, and database state are joined together without
explicit standalone dialogue policy and generation modules. The token-level (i.e., dialogue-state) embeddings are
learned following Wolf et al. (2019).

of pretrained generative models in task-oriented di-
alogue modeling. To the best of our knowledge,
this work is first to combine these existing compo-
nents to enable task-oriented dialogue modeling.

3.1 Domain Adaptation and Delexicalization
Dealing with out-of-vocabulary (OOV) words has
been a long-standing challenge in dialogue mod-
eling, e.g., it is crucial for task-oriented genera-
tion where the generated output is often delexical-
ized (Wen et al., 2015). Delexicalization replaces
slot values by their corresponding (generic) slot
tokens and it allows learning value-independent
parameters. Recently, owing to subword-level to-
kenisation (Sennrich et al., 2016), language mod-
els are now able to deal with OOVs and domain-
specific vocabularies more effectively (Radford
et al., 2018).

3.2 Simple Text-Only Input
There have been some empirical validations re-
cently which suggest that posing NLP tasks in the
form of simple text can yield improvements with
unsupervised architectures (Wolf et al., 2019; Rad-
ford et al., 2019). For instance, in task-oriented
dialogue modeling the Sequicity model (Lei et al.,
2018) sees the classification over the belief state
as a generation problem. That way, the entire dia-
logue model pipeline is based on the sequence-to-
sequence architecture: the output from one model
is the input to the subsequent recurrent model. We
follow this approach by providing both the belief
state and the knowledge base state in a simple text
format to the generator. This significantly simpli-
fies the paradigm of building task-oriented mod-
els: any new source of information can be simply

added to as another part of the text-only input pro-
vided in “natural language”.

3.3 Transferring Language Generation
Capabilities

Transformer architecture shows ability to learn
new (i.e., domain-specific) token embeddings in
the fine-tuning phase (Radford et al., 2018; Wolf
et al., 2019). This means that the GPT models can
adapt through special tokens to particular tasks.
By providing the input representation as text with
domain-specific tokens, we can use off-the-shelf
architectures and adapt to the domain-specific in-
put without the need of training new dialogue sub-
modules. As mentioned in §2.1, the token level
layer (Figure 2) informs the transformer decoder
what part of the input comes from the system side
or from the user side. In our framework, we create
two task-oriented specific tokens (System and
User tokens) that are learned during fine-tuning.

3.4 Generation Quality

Finally, the long-standing problem of dull and
repetitive response generation (Li et al., 2017) has
been in the focus of recent work (Kulikov et al.,
2018; Holtzman et al., 2019). Owing to new sam-
pling strategies, generative models are now able to
create longer and more coherent sequence outputs.
This has been validated also for open-domain di-
alogue modeling (Wolf et al., 2019; Golovanov
et al., 2019). We experiment with standard de-
coding strategies as well as with the recently
proposed nucleus sampling procedure (Holtzman
et al., 2019). A standard greedy sampling strategy

17

chooses the most probable word as :

arg max
wi

= log P (wi|w0, w1, ..., wi−1).

On the other hand, nucleus sampling is restricted
only to words from the p-th percentile of the dis-
tribution during generation. The probabilities of
words for which the cumulative sum exceeds the
percentile are rescaled and the sequence is sam-
pled from this subset. We probe the ability of such
large pretrained models to generate more varied
and semantically richer responses relying on nu-
cleus sampling in lieu of greedy sampling without
hurting the actual performance.

4 Fine-Tuning GPT on MultiWOZ

To evaluate the ability of transferring the GPT gen-
eration capability to constrained/focused dialogue
tasks and domains, we rely on the multi-domain
MultiWOZ dataset (Budzianowski et al., 2018b).
MultiWOZ consists of 7 domains and 10, 438 di-
alogues and it is substantially larger than previ-
ous available datasets (Wen et al., 2017; El Asri
et al., 2017). The conversations are natural as
they were gathered through human-human inter-
actions. However, the dialogues are based on
domain-specific vocabulary such as booking IDs
or telephone numbers that need to be delexicalized
as they are entirely database-dependent.

Natural Language as (the Only) Input. GPT
operates solely on the text input. This is in oppo-
sition to the standard task-oriented dialogue archi-
tectures (Wen et al., 2017; Zhao et al., 2017) where
the belief state and the database state are encoded
in a numerical form. For example, the database
state is typically defined as n-bin encodings repre-
senting a number of available entities at the current
state of the conversation (Wen et al., 2017). There-
fore, we transform the belief state and the knowl-
edge base representation to a simple text represen-
tation. The belief state takes the following form:

Domain1 Slot1 Value1 Slot2 Value2
Domain2 Slot1 ...

and the database representation is provided as:

Domain1 # of entities
Domain2 # of entities ...

This is also similar in spirit to the Sequicity archi-
tecture (Lei et al., 2018) where the second recur-
rent model takes as input the belief state in the nat-
ural language (i.e., simple text-only) form. In this

work, we also transform the knowledge base state
to a similar natural language format. These two
pieces of information are then concatenated with
the history of the conversation forming the full di-
alogue context, see Figure 2. Following Wolf et al.
(2019), we add new token embeddings for two par-
ties involved in the conversation to inform the at-
tention layers what part of the context comes from
the user, and what part is related to the system. Fig-
ure 2 presents the final architecture.

Training Details. We use the open-source im-
plementation of the GPT architecture that provides
both GPT and GPT-2 fine-tunable checkpoints.2

Following previous work (Radford et al., 2018;
Wolf et al., 2019), we set the weight on the lan-
guage model loss to be two times higher than the
one for the response prediction. The parameters
for the batch size (24), learning rate (1e-5) and the
number of candidates per sequence (2) were cho-
sen based on the grid search. 3

5 Results and Analysis

Following prior work (Budzianowski et al., 2018b;
Zhao et al., 2019; Chen et al., 2019), our evalu-
ation task is the dialogue-context-to-text genera-
tion task (see Figure 1). Given a dialogue history,
the oracle belief state and the database state, the
model needs to output the adequate response. By
relying on the oracle belief state, prior work has
bypassed the possible errors originating from nat-
ural language understanding (Budzianowski et al.,
2018b).

The main evaluation is based on the comparison
between the following two models: 1) the base-
line is a neural response generation model with an
oracle belief state obtained from the wizard anno-
tations as in (Budzianowski et al., 2018a); 2) the
model proposed in §4 and shown in Figure 2 that
works entirely with text-only format as input (see
§4). We test all three available pretrained GPT
models - the original GPT model (Radford et al.,
2018). and two GPT-2 models referred to as small
(GPT2) and medium (GPT2-M) (Radford et al.,
2019).

2https://github.com/huggingface/
transfer-learning-conv-ai

3We searched over the following values: learning rates ∈
{1-e4, 1-e5, 5-e6, 1-e6}, batch sizes ∈ {8, 12, 16, 20, 24} and
candidate set sizes ∈ {1, 2, 4, 6}.

18

Baseline GPT GPT2-S GPT2-M

Inform (%) 76.7 71.53 66.43 70.96
Success (%) 64.63 55.36 55.16 61.36
BLEU (%) 18.05 17.80 18.02 19.05

Table 1: Evaluation on MultiWOZ with the greedy
sampling procedure.

Baseline GPT GPT2-S GPT2-M

Inform (%) 72.57 70.43 69.3 73.96
Success (%) 57.63 51.0 54.93 61.20
BLEU (%) 15.75 15.65 15.64 16.55

Table 2: Evaluation on MultiWOZ with the nucleus
sampling procedure.

5.1 Evaluation with Automatic Measures

We report scores with three standard automatic
evaluation measures. Two of them relate to the
dialogue task completion: whether the system has
provided an appropriate entity (Inform) and then
answered all requested attributes (Success rate).
Finally, fluency is measured by the BLEU score
(Papineni et al., 2002).

First, three versions of GPT were fine-tuned on
MultiWOZ and evaluated with greedy sampling.
The results are summarized in Table 1). They
show that the baseline obtains the highest score on
task-related metrics while the highest BLUE score
was achieved by GPT2-M. Although the results
are lower for the GPT-based methods, we note the
design simplicity of the GPT-based task-oriented
dialogue models. Further, the gap in performance
might be partially attributed to the chosen greedy
sampling procedure which puts too much focus
on the properties of the original pretraining phase
(Holtzman et al., 2019).

Therefore, we also report the results with the
nucleus sampling method in Table 2. The scores
confirm the importance of choosing the correct
sampling method. The GPT2 models improve
the score on Inform and Success metrics. It is
worth noting the consistent drop in BLUE scores
across all models. This comes from the fact that
nucleus sampling allows for increased variability:
this might reduce the probability of generating
domain-specific tokens.

We have also qualitatively analyzed a sample
of successful dialogues. Only around 50% of di-
alogues are successful both with the baseline and
with the GPT-based models. Moreover, there are
no clearly observed distinct patterns between suc-
cessful dialogues for the two model types. This

Model 1 vs Model 2

GPT 59 % 41% Baseline
GPT 46 % 54 % Target
GPT2 46 % 54 % Target
GPT2 45 % 55 % Baseline
Baseline 43 % 57 % Target
GPT2 51 % 49 % GPT

Table 3: Human ranking of responses between all pairs
of four analyzed models and the original responses.

suggests that they might be effectively ensembled
using a ranking model to evaluate the score of each
response (Henderson et al., 2019b). We will inves-
tigate the complementarity of the two approaches
along with ensemble methods in future work.

5.2 Human Evaluation

In another, now user-centered experiment, the goal
was to analyze the generation quality. Turkers, na-
tive speakers of English, were asked to rate their
binary preference when presented with one-turn
responses from the baseline, GPT, GPT2-M and
the original dialogues (Target). The turkers were
required to choose what response they prefer when
presented with two responses from two different
models, resulting in more than 300 scores per each
model pair.

The results are summarized in Table 3, while
some example dialogues with responses are pro-
vided in Figure 3. As expected, the original re-
sponses are ranked higher than all neural models
with the largest difference observed between the
oracle and the baseline model. Although the gen-
erated output from the GPT is strongly preferred
against the neural baseline, interestingly the oppo-
site is observed with the GPT2 model. These in-
conclusive results call for further analyses in fu-
ture work, and also show that there are no sub-
stantial differences in the quality of generated re-
sponses when comparing the strong neural base-
line and the GPT-based models.

6 Conclusion

In this paper, we have made a first step towards
leveraging large pretrained generative models for
modeling task-oriented dialogue in multiple do-
mains. The simplicity of the fine-tuning proce-
dure where all necessary information can be en-
coded as simple text enables a quick adaptation
to constrained domains and domain-specific vo-

19

cabularies. We hope that this framework will in-
form and guide future research in hope of simulta-
neously improving and simplifying the design of
task-oriented conversational systems.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Paweł Budzianowski, Iñigo Casanueva, Bo-Hsiang
Tseng, and Milica Gašić. 2018a. Towards end-
to-end multi-domain dialogue modelling. Tech.
Rep. CUED/F-INFENG/TR.706, University of Cam-
bridge, Engineering Department.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018b. MultiWOZ-A
Large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. In Proceedings of
EMNLP, pages 5016–5026.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng
Yan, and William Yang Wang. 2019. Semantically
conditioned dialog response generation via hierar-
chical disentangled self-attention. arXiv preprint
arXiv:1905.12866.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. In Proceedings of SIGDIAL, pages 207–
219.

Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko,
Kyryl Truskovskyi, Alexander Tselousov, and
Thomas Wolf. 2019. Large-scale transfer learning
for natural language generation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6053–6058, Florence,
Italy. Association for Computational Linguistics.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Matthew Henderson, Paweł Budzianowski, Iñigo
Casanueva, Sam Coope, Daniela Gerz, Girish Ku-
mar, Nikola Mrkšić, Georgios Spithourakis, Pei-
Hao Su, Ivan Vulić, and Tsung-Hsien Wen. 2019a.
A repository of conversational datasets. In Pro-
ceedings of the Workshop on NLP for Conversa-
tional AI. Data available at github.com/PolyAI-
LDN/conversational-datasets.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo
Casanueva, Paweł Budzianowski, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola

Mrksi’c, and Pei-Hao Su. 2019b. Training neural re-
sponse selection for task-oriented dialogue systems.
In Proceedings of ACL.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degener-
ation. arXiv preprint arXiv:1904.09751.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, et al. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 955–
964. ACM.

Ilya Kulikov, Alexander H Miller, Kyunghyun Cho,
and Jason Weston. 2018. Importance of a search
strategy in neural dialogue modelling. arXiv
preprint arXiv:1811.00907.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of ACL, pages 1437–1447.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversarial
learning for neural dialogue generation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2157–2169.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of ACL, pages 311–318.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2121–2130.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of twitter conversations. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 172–
180.

20

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1715–1725.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of AAAI, pages 3295–3301.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NeurIPS, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically conditioned lstm-based natural language
generation for spoken dialogue systems. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL, pages 438–449.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D. Williams. 2013. POMDP-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160–1179.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2204–
2213.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.
2019. Rethinking action spaces for reinforcement
learning in end-to-end dialog agents with latent vari-
able models. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1208–1218.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of ACL, pages 654–664.

21

Figure 3: The comparison of generated responses from the baseline model and GPT2-M.

22

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 23–31
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Recycling a Pre-trained BERT Encoder for Neural Machine Translation

Kenji Imamura and Eiichiro Sumita
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan
{kenji.imamura,eiichiro.sumita}@nict.go.jp

Abstract

In this paper, a pre-trained Bidirectional
Encoder Representations from Transformers
(BERT) model is applied to Transformer-
based neural machine translation (NMT).

In contrast to monolingual tasks, the number
of unlearned model parameters in an NMT
decoder is as huge as the number of learned
parameters in the BERT model. To train
all the models appropriately, we employ two-
stage optimization, which first trains only the
unlearned parameters by freezing the BERT
model, and then fine-tunes all the sub-models.

In our experiments, stable two-stage optimiza-
tion was achieved, in contrast the BLEU scores
of direct fine-tuning were extremely low. Con-
sequently, the BLEU scores of the proposed
method were better than those of the Trans-
former base model and the same model with-
out pre-training. Additionally, we confirmed
that NMT with the BERT encoder is more ef-
fective in low-resource settings.

1 Introduction

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) is a
language representation model trained in advance
on a very large monolingual dataset. We adapt
this model to our own tasks after fine-tuning
(Freitag and Al-Onaizan, 2016; Servan et al.,
2016) using task-specific data. Systems using
BERT have achieved high accuracy in various
tasks, such as the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2019) and the reading comprehension benchmark
using the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2018). However,
most tasks using BERT are monolingual because
it was originally developed for natural language
understanding.

Recently, models in which the ideas of BERT
are extended to multiple languages have been pro-
posed (Lample and Conneau, 2019). These mod-
els, which are pre-trained using multilingual data,
are called cross-lingual language models (XLMs).
We can construct a machine translation system us-
ing two XLM models as the encoder and decoder.

In this paper, we apply a pre-trained BERT en-
coder to neural machine translation (NMT) based
on the Transformer (Vaswani et al., 2017). Specif-
ically, the encoder of the Transformer NMT is re-
placed with the BERT encoder. Generally, sys-
tems using BERT, including machine translation
systems based on an XLM, are fine-tuned using
task-specific data. However, stable training is dif-
ficult using simple fine-tuning because the num-
ber of unlearned parameters is huge in our system.
Therefore, we employ two-stage training, which
first trains only unlearned parameters and then ap-
plies fine-tuning.

Our experimental results demonstrated that
two-stage optimization stabilized training,
whereas direct fine-tuning made the BLEU scores
quite low. As a result, the BLEU scores improved
in comparison with the scores of the Transformer
base model and models with the same structure
but without pre-training. Our results indicate
that we can reuse neural networks trained for one
purpose (natural language understanding, in this
case) for another purpose (machine translation, in
this case) if we use two-stage optimization. From
this viewpoint, this paper presents an example of
network recycling.

The remainder of this paper is organized as fol-
lows. In Section 2, an overview of the BERT re-
lated models is provided. In Section 3, our pro-
posal, that is, NMT using the BERT model and
its training method, is described. In Section 4,
the proposed method is evaluated through exper-
iments. In Section 5, we discuss back-translation

23

https://www.aclweb.org/anthology/D19-56%2d

and model recycling, including related work. Fi-
nally, we conclude the paper in Section 6.

2 Pre-trained Language Models

2.1 BERT

The form of the BERT model (Devlin et al., 2019)
is the same as that of a Transformer encoder, in
which the input is a word sequence and the output
consists of representations that correspond to the
input words. The input contexts are encoded by
multi-head self-attention mechanisms.

BERT models are distributed with pre-training.
The distributed models have a depth of 12 or 24
layers, which is deeper than the Transformer base
model (six layers). Users (or system develop-
ers) construct various systems by adding a small
network to adapt BERT to their own tasks and
fine-tune the system using task-specific data. For
example, when the BERT model is used for a
document classification task, a classifier is con-
structed by adding a generation layer for classi-
fication (which consists of linear and softmax sub-
layers) to the BERT model. Similarly, when a
named entity recognizer is constructed, generation
layers that convert word representations to named
entity tags are added, and the entire model is fine-
tuned. The numbers of additional parameters in
these models are much smaller than the number of
parameters in the BERT model.

The BERT model is pre-trained to perform
two tasks: masked language modeling and next-
sentence prediction. Both tasks train the model to
improve its language prediction performance.

The masked language model is trained to restore
the original word sequence from noisy input. In
this task, some words are replaced with special to-
kens, [MASK], or other words. For instance, if
the original sentence is “my dog is hairy”
and “my dog is [MASK]” is given as the in-
put word sequence, then the system predicts that
the original word for [MASK] was hairy. Dur-
ing prediction, both forward and backward con-
texts in a sentence are used.

In the next-sentence prediction task, the system
learns whether two given sentences are consecu-
tive. To implement binary classification using the
Transformer, a special token [CLS] is placed at
the head of an input sentence, and classification is
performed from the representation of [CLS]. Ad-
ditionally, [SEP] is used as a sentence separator.

BERT has achieved high accuracy on various

tasks, such as the GLUE benchmark (Wang et al.,
2019) and the reading comprehension benchmark
using SQuAD (Rajpurkar et al., 2018). However,
the above tasks are monolingual.

2.2 XLMs

XLMs, in which the ideas of BERT are extended to
multiple languages (Lample and Conneau, 2019)
have been proposed. Although the form of the
XLM model is also Transformer, it is trained from
multilingual corpora. It also learns bilingual cor-
respondences in a Transformer model by inputting
a connected bilingual sentence.

Machine translation can be realized using
XLMs by regarding two pre-trained models as an
encoder and decoder. NMT using BERT described
in this paper is fundamentally the same as XLM-
based NMT. However, our aim is to connect differ-
ent systems, and we regard our approach as model
recycling (Ramachandran et al., 2016) using the
BERT encoder and Transformer decoder.

Most pre-trained systems, including XLM-
based machine translation, are trained only using
fine-tuning (Devlin et al., 2019; Lample and Con-
neau, 2019). However, if the number of unlearned
parameters is huge compared with the number of
pre-trained parameters, then the pre-trained pa-
rameter values will be destroyed due to a phe-
nomenon called catastrophic forgetting (Goodfel-
low et al., 2013), and consequently, training will
diverge. We must suppress this problem to stably
train the model.

3 NMT with BERT

In this section, we describe our proposal: NMT
using the BERT encoder.

3.1 Model

The NMT system in this paper is an encoder-
decoder based on the Transformer. The structure
is shown in Figure 1. Because the BERT model
is also the Transformer encoder, we adopt it as the
encoder for NMT without modification. The out-
puts from the BERT encoder, which are represen-
tations of source words, are input to the context
attention mechanism in the Transformer decoder
to generate a translation. Note that we call the en-
coder of the conventional NMT the Transformer
encoder to distinguish it from the BERT encoder.
The number of layers in the Transformer decoder
is fixed to six throughout the paper.

24

Sub-words &
Special Tokens

Shifted
Output Tokens

Output Tokens

Input Sentence

[CLS] �� ... [SEP]��

BERT Tokenizer

Embeddings

Self-Attention

Feed Forward

Nx

BERT Encoder

ℎ��� ℎ� ... ℎ��	ℎ�

<bos>
� ...
�

Embeddings

Self-Attention

Feed Forward

Context-Attention

6x

Transformer Decoder

Generator

<eos>
� ...
�

Figure 1: Structure of NMT using a BERT encoder.

Because the BERT encoder is pre-trained using
a specific tokenizer, we must use the BERT tok-
enizer when we apply it to machine translation.
The BERT tokenizer includes sub-word segmenta-
tion based on WordPiece (Wu et al., 2016). Addi-
tionally, the input to the encoder contains [CLS]
and [SEP] tokens at the head and tail, respec-
tively.

Although the Transformer decoder is used here,
we assume that a recurrent neural network decoder
(Sutskever et al., 2014; Bahdanau et al., 2014) can
also be applied,.

3.2 Training
When we construct a system using pre-trained
BERT models, we generally add a task-specific
network and fine-tune the system using task-
specific data. Because the additional network is
small (i.e., the number of additional parameters is
small), the models can be learned by fine-tuning.

In this paper, the additional network is the de-
coder, whose number of parameters is huge. In-
deed, the number of model parameters of the
BERT encoder (pre-trained) and Transformer de-
coder (unlearned) used in Section 4 were 110M
and 80M, respectively. We cannot train such a
large number of unlearned parameters only by
fine-tuning. Thus, we employ two-stage optimiza-
tion in this paper, that is decoder training and fine-
tuning.

3.2.1 Decoder Training
In this stage, only the decoder parameters are up-
dated while the encoder parameters are frozen.

Specifically, the model is trained using parallel
corpora, as in conventional NMTs. During train-
ing, however, backpropagation is only applied to
the decoder and is dropped before the encoder.
This means that we do not need to compute the
gradients and maintain the input/output values in
the BERT encoder, and we can train the model
using GPUs with a relatively small memory even
though the model size is huge. Dropout is only ap-
plied to the Transformer decoder, that is, it is not
applied to the BERT encoder.

Note that decoder training continues until the
loss of the development set is minimized. We dis-
cuss the efficient number of epochs for the decoder
training in Section 4.3 when we combine it with
fine-tuning.

3.2.2 Fine-Tuning

In the fine-tuning stage, model parameters in the
BERT encoder are also updated to optimize the en-
tire model.

Although the model has already been trained
until the loss of the development set is minimized
during decoder training, both the encoder and de-
coder are further optimized in an end-to-end man-
ner by updating the encoder parameters. Dropout
is applied to both the BERT encoder and Trans-
former decoder. In the fine-tuning stage, back-
propagation is applied to all layers, and a large
amount of memory is consumed.

25

Task Set # Sentences # Tokens
(En)

WMT-2014 train 4,468,840 116M
En-De newstest2013 3,000 66K

newstest2014 2,737 63K
newstest2015 2,169 68K

IWSLT-2015 train 133,317 2.7M
En-Vi tst2012 1,553 34K

tst2013 1,268 34K

Table 1: Sizes of the experimental datasets.

4 Experiments

4.1 Experimental Settings
Data: In this paper, we used data for shared
tasks that were pre-processed by the Stanford NLP
Group.1 The sizes of the datasets are shown in Ta-
ble 1.

The first task is the news translation task
of English-to-German (En-De) from the Work-
shop on Statistical Machine Translation (WMT-
2014) (Bojar et al., 2014). Four sets in total
have been published. In this paper, we used
newstest2013 as the development set, and the
other two sets (newstest2014 and 2015) were
used as test sets.

Moreover, to contrast the results with those of
a low-resource setting, we also used the English-
to-Vietnamese (En-Vi) corpus used in the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT-2015) (Cettolo et al., 2015). We used
tst2012 as the development set and tst2013
as the test set.

The target sentences of the above data were fur-
ther segmented into 16K sub-words using byte-
pair encoding (Sennrich et al., 2016b). For the
source sentences, we segmented 30K sub-words
using the BERT tokenizer if the encoder model
was BERT. If the encoder was the conventional
Transformer, we segmented the source sentences
into 16K sub-words using our byte-pair encoder.

BERT Model: We used a pre-trained model
published in the BERT GitHub repository2 called
the BERT base model, whose features are uncased
inputs, 12 layers, 768 hidden units, and 12 heads.3

The number of parameters is about 110M. This
1https://nlp.stanford.edu/projects/

nmt/
2https://github.com/google-research/

bert
3https://storage.googleapis.com/bert_

models/2018_10_18/uncased_L-12_H-768_
A-12.zip

Type Option Value
Decoder Batch size Approx. 500 sents.
training Optimizer Adam

β1 = 0.9, β2 = 0.99
Learning rate 4.0 × 10−4

Warm-up 5 epochs
Cool-down Inverse square root
Label smoothing 0.1
Dropout 0.15
Loss function Label-smoothed cross

entropy
Initializer Xavier uniform

Fine-tuning Identical to decoder training except for
the learning rate and warm-up

Test Beam size 10
Length penalty 1.0 (fixed)

Table 2: Hyperparameter settings.

model was trained using BookCorpus (Zhu et al.,
2015) and English Wikipedia (3.3G words in to-
tal).

Note that we converted the published model into
a model that is compatible with the PyTorch li-
brary using a tool4 because it was trained for the
TensorFlow library.

Translation System: We used fairseq5 as the
basic translator. It is an NMT system constructed
on the PyTorch library and includes Transformer
models. We replaced its encoder with the BERT
model and used the fairseq decoder without modi-
fication.

The decoder used here was six-layer Trans-
former. We set the numbers of hidden units and
heads to be the same as those of the encoder (i.e.,
768 units and 12 heads) to incorporate encoder
outputs into the decoder using the context atten-
tion mechanism.

Hyperparameters: Table 2 summarizes the hy-
perparameter settings. The hyperparameters for
fine-tuning were almost the same as those of de-
coder training, except for the learning rate (LR)
and warm-up.

Evaluation: We used BLEU (Papineni et al.,
2002) as the evaluation metric. The MultEval
tool (Clark et al., 2011)6 was used for statisti-
cal testing, which is based on the bootstrap re-
sampling method. The significance level was 5%
(p < 0.05).

4https://github.com/huggingface/
pytorch-pretrained-BERT

5https://github.com/pytorch/fairseq
6https://github.com/jhclark/multeval

26

BLEU ↑
System LR Dev. PPL ↓ 2013 2014 2015 Remark

Baselines Transformer base 4.0 × 10−4 4.23 26.29 27.22 29.48 Stat. test baseline
Transformer BERT size 4.0 × 10−4 4.04 26.15 27.09 29.32

NMT Direct fine-tuning 8 × 10−5 4.28 0.13 (-) 0.10 (-) 0.12 (-) # Epochs = 33
with BERT 4.0 × 10−4 4.09 0.48 (-) 0.42 (-) 0.54 (-) # Epochs = 29

Proposed:
Decoder training only 4.0 × 10−4 4.76 24.13 (-) 23.62 (-) 25.74 (-) # Epochs = 65

+ Fine-tuning 4 × 10−5 3.93 27.14 (+) 28.27 (+) 30.68 (+) # Epochs = 21
8 × 10−5 3.92 27.05 (+) 28.90 (+) 30.89 (+) # Epochs = 9

1.2 × 10−4 3.93 27.03 (+) 28.50 (+) 30.51 (+) # Epochs = 11
1.6 × 10−4 3.94 26.64 28.59 (+) 30.51 (+) # Epochs = 11
2.0 × 10−4 3.95 26.89 (+) 28.67 (+) 30.24 (+) # Epochs = 12
4.0 × 10−4 N/A because training did not converge

Table 3: Results of the system comparison.
The bold values indicate the best results. The (+) and (-) symbols indicate that the results significantly
improved or degraded (p < 0.05) with respect to the Transformer base model, respectively.

4.2 System Comparison

In this section, we compare systems using WMT-
2014 data.

We compare the proposed methods with
Vaswani et al. (2017)’s Transformer base model
(6 layers, 512 hidden units, and 8 heads) as the
baseline. For reference, we also use another Trans-
former NMT called Transformer BERT size, in
which the model structure of the encoder agrees
with that of the BERT encoder (i.e., 12 layers, 768
hidden units, and 12 heads). This system is com-
pared to determine whether the model capacity in-
fluences translation quality.

The decoders of the proposed systems were first
trained until the loss of the development set was
minimized (newstest2013), and then the sys-
tems were fine-tuned. The learning rates during
fine-tuning were changed from 1/10 to 1 times
those of the decoder training. The warm-up pe-
riods were also changed to be proportional to the
learning rates. The results are shown in Table 3. In
the table, Dev. PPL indicates the perplexity of the
development set, and the years of the BLEU scores
denote the results of newstest2013, 2014,
and 2015, respectively.

First, we compare the baselines. Transformer
BERT size yielded a better model than that
of Transformer base because its perplexity was
lower. However, the BLEU scores were slightly
degraded (but not significantly). Increasing the
number of parameters did not lead to better trans-
lation quality.

Next, we compare the NMT system with BERT
and the Transformer base. When the entire model

was directly fine-tuned, training converged but the
BLEU scores dramatically decreased even if we
used different learning rates. This implies that the
models were broken.7 Unlike monolingual tasks
using the BERT model, it was difficult to directly
apply fine-tuning for NMT using the pre-trained
BERT encoder.

By contrast, in the decoder training-only model,
namely the model immediately after decoder train-
ing, training was successfully finished. However,
the development perplexity was higher and the
BLEU scores were lower than those of the base-
line. The entire model was not learned completely
because of the data mismatch, which was that the
pre-training and our training data were different.

After fine-tuning, by contrast, the perplexity de-
creased and the BLEU score increased. Compared
with those of Transformer base, the BLEU scores
significantly improved in almost all cases. Be-
cause the development perplexity decreased with
respect to Transformer BERT size, we can say that
these improvements resulted from learning perfor-
mance rather than the number of model parame-
ters.

We changed the learning rates from 4×10−5 to
4.0×10−4 in the fine-tuning. When the learning
rate was 4.0× 10−4 (the decoder training learn-
ing rate), we could not tune the model because
there was no convergence. For the other learn-
ing rates, there were no large differences in per-

7Indeed, very long translations were generated due to fre-
quent repetition in the case of the low learning rate (8 ×
10−5). We suppose that the decoder was not learned suffi-
ciently. In the case of the high learning rate (4.0 × 10−4),
long and completely wrong translations were generated. We
suppose that the encoder was broken.

27

Decoder training Fine-tuning BLEU ↑
Epochs Dev. PPL ↓ # Epochs Dev. PPL ↓ 2013 2014 2105 Remark

0 — 33 4.28 0.13 (-) 0.10 (-) 0.12 (-) Direct fine-tuning
1 33.05 34 4.23 26.67 28.77 30.16 (-)
2 11.47 20 4.20 26.80 28.58 30.82
3 8.12 18 4.10 27.41 28.93 30.78
5 6.69 18 4.02 27.20 28.43 (-) 30.80

10 5.50 15 3.96 27.33 28.59 30.42
20 5.08 18 3.91 27.00 28.87 30.92
30 4.89 10 3.92 27.18 28.39 (-) 30.70
40 4.86 12 3.91 27.01 29.04 30.70
50 4.81 11 3.91 27.02 28.65 30.77
65 4.76 9 3.92 27.05 28.90 30.89 Decoder training converged

Baseline for statistical testing

Table 4: Changes in the perplexity of the development set (Dev. PPL) and BLEU scores with respect to the number
of decoder training epochs.

plexity or BLEU scores. However, we confirmed
that there were some differences in convergence
time (# Epochs), and fine-tuning converged in nine
epochs when the learning rate was 8×10−5. There-
fore, we fixed the learning rate for fine-tuning to
8×10−5 in our subsequent experiments.

4.3 Number of Epochs for Decoder Training
The proposed method first performs decoder train-
ing until convergence, and then applies fine-
tuning. However, this approach may not be opti-
mal because decoder training is slow. For instance,
it took 65 epochs for decoder training in the exper-
iment in the previous section. In this section, we
investigate whether decoder training can be made
more efficient by stopping it before convergence.

Table 4 shows the results after fine-tuning when
decoder training was stopped after various num-
bers of epochs. Fine-tuning was conducted un-
til convergence in all cases. The table shows the
changes in development perplexity and the BLEU
scores, whose baselines are shown on the bottom
line. Note that zero epochs of decoder training
(the top line) mean that fine-tuning was directly
applied without decoder training (the same as in
Table 3).

As the number of epochs of decoder training de-
creased, fine-tuning required more epochs and the
final perplexity increased. However, the BLEU
scores were almost stable. Indeed, only three
scores significantly decreased with respect to the
baseline.

Because we assume that the optimal settings of
decoder training depend on the data and hyperpa-
rameters, we cannot provide explicit criteria val-
ues in this paper. At the very least, our experimen-
tal results show the following conclusions.

• To shorten the total training time, it is best
to perform decoder training for three epochs
(3 + 18 = 21 epochs in total).

• To obtain the best model (i.e., the model
with the minimum development perplexity),
20 epochs are sufficient for decoder training
(which yields a Dev. PPL of 3.91).

4.4 Experiment on a Low-resource Language
Pair

In this section, the effect of the BERT encoder on
a low-resource setting is explored using IWSLT-
2015 En-Vi data (133K sentences). All experi-
mental settings, except for the corpus, were the
same as those in Section 4.1. The results are
shown in Table 5.

In the low-resource setting, the development
perplexity decreased in comparison with the base-
line when applying the BERT encoder and per-
forming decoder training only. However, the
BLEU score degraded, as in the large data setting
(Section 4.2).

By contrast, when fine-tuning was applied, both
the perplexity and BLEU scores largely improved
with respect to the baseline. The BLEU score of
tst2013 improved by +3.45. Considering the
score of newstest2015 in the experiment in
Table 3 was +1.41 for the same settings, these re-
sults show that the BERT encoder is more effective
for improving translation quality in a low-resource
setting.

5 Discussion and Related Work

5.1 Contrast with Back-Translation
Back-translation (Sennrich et al., 2016a) is a tech-
nique to improve translation quality using mono-

28

BLEU ↑
System LR Dev. PPL ↓ 2012 2013

Baseline Transformer base 4.0 × 10−4 11.54 24.03 26.12
NMT with BERT Proposed: Decoder training only 4.0 × 10−4 11.45 21.77 (-) 23.23 (-)

+ Fine-tuning 8 × 10−5 8.98 26.77 (+) 29.57 (+)

Table 5: Results of the IWSLT-2015 data.

lingual corpora. It translates monolingual cor-
pora of the target language into the source lan-
guage, generates pseudo-parallel sentences, and
trains the source-to-target translator from a mix-
ture of pseudo- and manually created parallel cor-
pora. Because BERT encoders are trained us-
ing source monolingual corpora, they complement
each other.

However, there are differences between BERT
encoders and back-translation from the viewpoint
of parallel corpus sizes. BERT encoders them-
selves do not need parallel corpora for training.
They can be applied to low-resource language
pairs for which large parallel corpora are difficult
to obtain. However, huge monolingual corpora are
necessary to train BERT encoders. Therefore, they
are suitable for translation from resource-rich lan-
guages (e.g., English) to low-resource languages.

By contrast, back-translation requires a certain
size of parallel corpora to translate back from the
target to the source languages. This is because
back-translated results are not confident if the
parallel corpora are small (Edunov et al., 2018).
Therefore, back-translation is suitable for translat-
ing middle-resource language pairs.

Note that unsupervised machine translation can
be realized using the XLM described in Section
2.2 by connecting two autoencoders as an encoder-
decoder. Those autoencoders are trained to encode
source-target-source and target-source-target us-
ing monolingual corpora. Therefore, this approach
can be regarded as including back-translation. Be-
cause back-translation was originally developed to
enhance decoders, it is reasonable to incorporate it
into pre-training.

5.2 NMT Using Source Monolingual Corpora

There are other methods that improve translation
quality using source monolingual corpora.

Zhang and Zong (2016) proposed a multi-task
learning method that learns a sentence reorder-
ing model from source language corpora and a
translation model from parallel corpora. Cheng
et al. (2016) proposed semi-supervised NMT that

simultaneously trains a translation model and
two autoencoders using parallel and source/target
monolingual corpora. Both methods must use par-
allel and monolingual corpora during training.

Our method explicitly distinguishes training
stages: 1) pre-training of a BERT encoder using
monolingual corpora, 2) training of a decoder us-
ing parallel corpora, and 3) fine-tuning the entire
model. This means that monolingual corpora are
only necessary in the pre-training stage, and we
can focus on this stage to obtain the advantages of
large corpora.

5.3 Pre-Training versus Recycling
The BERT model used in this paper was designed
and trained for natural language understanding,
and machine translation is an unintended purpose.
Therefore, we use the word “recycle.”

We assume that pre-training and recycling are
distinguished by the number of unlearned param-
eters. The numbers of model parameters in this
paper were 110M for the BERT encoder and 80M
for the Transformer decoder. We could not opti-
mize them using fine-tuning alone. In this case,
it is appropriate to call the model recycling, and
two-stage optimization becomes effective. We be-
lieve that our study can be regarded as an example
of model recycling.

6 Conclusions

In this paper, an NMT system that incorporates a
BERT encoder was presented. We applied two-
stage optimization, that is, decoder training and
fine-tuning, because the number of unlearned pa-
rameters was as large as the number of pre-trained
model parameters. Consequently, we constructed
a higher quality NMT than that trained from given
parallel data. Moreover, it was particularly ef-
fective in a low-resource setting. We also inves-
tigated the appropriate number of epochs for de-
coder training and confirmed that several to tens
of epochs were sufficient.

There are some future directions for this study.
First, various pre-trained models have been dis-

29

tributed, such as the BERT large model, multilin-
gual BERT, and XLMs. Exploring the relation-
ship between these models and translation quality
is our future work. Applying the pre-trained mod-
els to various language pairs, from low- to high-
resource language pairs, is also a curious direction.
Regarding model recycling, we plan to combine
heterogeneous models in future work.

Acknowledgments

This work was supported by the “Research and
Development of Enhanced Multilingual and Mul-
tipurpose Speech Translation Systems” a program
of the Ministry of Internal Affairs and Communi-
cations, Japan.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Mauro Cettolo, Kam Moejies amd Sebastian Stüker,
Luisa Bentivogli, Roldano Cattoni, and Marcello
Federico. 2015. The IWSLT 2015 evaluation cam-
paign. In Proceedings of the International Work-
shop on Spoken Language Translation, Da Nang,
Vietnam.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1965–1974, Berlin, Germany.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for op-
timizer instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
176–181, Portland, Oregon, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 489–500, Brussels, Belgium.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
CoRR, abs/1612.06897.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An empirical
investigation of catastrophic forgetting in gradient-
based neural networks. arXiv preprint.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318,
Philadelphia, Pennsylvania, USA.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. CoRR, abs/1806.03822.

Prajit Ramachandran, Peter J. Liu, and Quoc V. Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. CoRR, abs/1611.02683.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-2016, Volume 1: Long Pa-
pers), pages 86–96, Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany.

Christophe Servan, Josep Maria Crego, and Jean Senel-
lart. 2016. Domain specialization: a post-training
domain adaptation for neural machine translation.
CoRR, abs/1612.06141.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of Advances in Neural Infor-
mation Processing Systems 27 (NIPS 2014), pages
3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

30

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP-2016), pages 1535–1545, Austin,
Texas.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 19–27.

31

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 32–43
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Generating a Common Question from Multiple Documents using
Multi-source Encoder-Decoder Models

Woon Sang Cho3 Yizhe Zhang† Sudha Rao† Chris Brockett† Sungjin Lee§∗
3Princeton University
†Microsoft Research AI
§Amazon Alexa AI

3{woonsang}@princeton.edu, §{sungjinl}@amazon.com
†{yizzhang,sudhra,chrisbkt}@microsoft.com

Abstract

Ambiguous user queries in search engines re-
sult in the retrieval of documents that often
span multiple topics. One potential solution is
for the search engine to generate multiple re-
fined queries, each of which relates to a subset
of the documents spanning the same topic. A
preliminary step towards this goal is to gener-
ate a question that captures common concepts
of multiple documents. We propose a new task
of generating common question from multiple
documents and present simple variant of an
existing multi-source encoder-decoder frame-
work, called the Multi-Source Question Gen-
erator (MSQG). We first train an RNN-based
single encoder-decoder generator from (sin-
gle document, question) pairs. At test time,
given multiple documents, the Distribute step
of our MSQG model predicts target word dis-
tributions for each document using the trained
model. The Aggregate step aggregates these
distributions to generate a common question.
This simple yet effective strategy significantly
outperforms several existing baseline models
applied to the new task when evaluated using
automated metrics and human judgments on
the MS-MARCO-QA dataset.

1 Introduction

Search engines return a list of results in response
to a user query. In the case of ambiguous queries,
retrieved results often span multiple topics and
might benefit from further clarification from the
user. One approach to disambiguate such queries
is to first partition the retrieved results by topic and
then ask the user to choose from queries refined for
each partition.

For example, a query ‘how good is apple?’
could retrieve documents some of which relate to
apple the fruit, and some of which relate to Apple

∗ Work was done when affiliated with Microsoft Re-
search AI

the company. In such a scenario, if the search en-
gine generates two refinement queries ‘how good
is apple the fruit?’ and ‘how good is the company
apple?’, the user could then choose one of it as a
way to clarify her initial query.

In this work, we take a step towards this aim
by proposing a model that generates a common
question that is relevant to a set of documents.
At training time, we train a standard sequence-
to-sequence model (Sutskever et al., 2014) with
a large number of (single document, question)
pairs to generate a relevant question given a sin-
gle document. At test time, given multiple (N)
input documents, we use our model, called the
Multi-Source Question Generator (MSQG), to al-
low document-specific decoders to collaboratively
generate a common question. We first encode the
N input documents separately using the trained
encoder. Then, we perform an iterative procedure
to i) (Distribute step) compute predictive word dis-
tributions from each document-specific decoder
based on previous context and generation ii) (Ag-
gregate step) aggregate predictive word distribu-
tions by voting and generate a single shared word
for all decoders. These two steps are repeated
until an end-of-sentence token is generated. We
train and test our model on the MS-MARCO-QA
dataset and evaluate it by assessing whether the
original passages can be retrieved from the gen-
erated question, as well as human judgments for
fluency, relevancy, and answerability. Our model
significantly outperforms multiple baselines. Our
main contributions are:

i) a new task of generating a common question
from multiple documents, where a common
question target is does not exist, unlike multi-
lingual sources to common language transla-
tion tasks.

ii) an extensive evaluation of an existing multi-
source encoder-decoder models including

32

https://www.aclweb.org/anthology/D19-56%2d

our simple variant model for generating a
common question.

iii) an empirical evaluation framework based
on automated metrics and human judgments
on answerability, relevancy, and fluency to
extensively evaluate our proposed MSQG
model against the baselines.

2 Related Work

The use of neural networks to generate natural
language questions has mostly focused on ques-
tion answering (Labutov et al., 2015; Serban et al.,
2016; Rothe et al., 2016; Song et al., 2017; Duan
et al., 2017; Du et al., 2017; Buck et al., 2017;
Song et al., 2018; Harrison and Walker, 2018; Sun
et al., 2018). A number of works process multiple
passages by concatenating, adding, or attention-
weight-summing among passage features into a
single feature, and use it for downstream tasks
(Zoph and Knight, 2016; Garmash and Monz,
2016; Libovický and Helcl, 2017; Wang et al.,
2018; Yan et al., 2018; Lebanoff et al., 2018; Ce-
likyilmaz et al., 2018; Nishimura et al., 2018; Li-
bovický et al., 2018; Li et al., 2018b; Nishida et al.,
2019). Our processing mechanisms are similar to
Garmash and Monz (2016), Firat et al. (2016), and
Dong and Smith (2018). The information retrieval
literature is primarily concerned with reformulat-
ing queries, by either selecting expansion terms
from candidates as in pseudo-relevance feedback
(Salton, 1971; Zhai and Lafferty, 2001; Xu and
Croft, 1996; Metzler and Croft, 2007; Cao et al.,
2008; Bernhard, 2010; Nogueira and Cho, 2017;
Li et al., 2018a). Our task differs because there
is no supervision unlike multi-lingual translation
tasks where a single target translation is available
given sources from multiple languages.

3 Method

3.1 Multi-Source Question Generator
Our Multi-Source Question Generator (MSQG)
model introduces a mechanism to generate a com-
mon question given multiple documents. At
training time, it employs a standard sequence-to-
sequence (S2S) model using a large number of
(single document, question) pairs. At test time, it
generates a common question given multiple doc-
uments, similar to Garmash and Monz (2016) and
Firat et al. (2016). Specifically, our MSQG model
iterates over two interleaved steps, until an end-of-
sentence (EOS) token is generated:

Distribute Step During the Distribute step, we
take an instance of the trained S2S model, and per-
form inference with N different input documents.
Each document is then encoded using one copy of
the model to generate a unique target vocabulary
distribution Pdec

i,t (for document i, at time t) for
the next word. Note that source information comes
from not only encoded latent representation from
a source document, but also the cross-attention be-
tween source and generation.

Aggregate Step During the Aggregate step, we
aggregate the N different target distributions into
one distribution by averaging them as below:

P̃dec
t =

1

N
(β1Pdec

1,t + β2Pdec
2,t + · · ·+ βNPdec

N,t)

where P̃dec
t is the final decoding distribution at

time t, and ΣN
i βi = N . In our experiments,

we weight all the decoding distributions equally
(βi = 1) to smooth out features that are distinct in
each document i, where i ∈ {1, . . . , N}.

Note that the average Aggregate can be per-
ceived as a majority voting scheme, in that each
document-specific decoder will vote over the vo-
cabulary and the final decision is made in a collab-
orative manner. We also experimented with dif-
ferent Aggregate functions: (i) MSQGmult mul-
tiplies the distributions, which is analogous to a
unanimous voting scheme. However, it led to
sub-optimal results since one unfavorable distri-
bution can discourage decoding of certain com-
mon words. (ii) MSQGmax takes the maximum
probability of each word across N distributions
and normalizes them into a single distribution, but
it could not generate sensible questions so we ex-
cluded from our pool of baselines.

3.2 Model Variants
Avoiding repetitive generation We observed
that naively averaging the target distributions at
every decoding time continually emphasized the
common topic, thereby decoding repetitive topic
words. To increase the diversity of generated to-
kens, we mask those tokens that have already been
decoded in subsequent decoding steps. This strat-
egy is reasonable for our task since questions gen-
erally tend to be short and rarely have repeated
words. This mechanism can be viewed as a hard
counterpart of the coverage models developed in
Tu et al. (2016) and See et al. (2017). We denote
this feature by rmrep in subscript.

33

Figure 1: Multi-Source Question Generator (MSQG)
model at test time. The simple architecture signifi-
cantly outperforms the baselines for generating com-
mon questions, based on a number of metrics.

Shared encoder feature To initialize multiple
decoders with the common meaning of the doc-
uments in a partition, we broadcast the mean of
encoded latent representation to each decoder and
denote this variant by the subscript sharedh. Note
that the source document can affect the generated
target vocabulary distribution Pdec

i,t at Distribute
step through source-generation cross-attention.

4 Results

4.1 Experimental setup
Our training method uses the standard LSTM-
based (Hochreiter and Schmidhuber, 1997) S2S
with bi-linear attention (Luong et al., 2015). An
input to our encoder is a concatenation of 100-dim
GloVe (Pennington et al., 2014) vector, 100-dim
predicate location vector, and 1024-dim ELMo
(Peters et al., 2018) vector. Targets are embedded
into 100-dim vectors. The S2S is bi-directional
with a 256-dim bi-linear attention in each direction
with ReLU (Nair and Hinton, 2010). Our encoder
has two layers and we use an Adam (Kingma and
Ba, 2014) with a learning rate of 2× 10−5.

4.2 Baselines
S2S We compare our model with a standard S2S
baseline where we concatenate the N documents
into a single document to generate a question. We
provide detailed discussions about the effect of
document order in supplementary material (SM).
Two variants are considered (S2S and S2Srmrep).
Beam size is set to 5.

MESD We also compare our model with the
multi-encoder single-decoder (MESD) baseline
where documents are encoded individually into
{vi}Ni=1. The single decoder’s initial hidden state
is initialized by the mean of {vi}Ni=1, following
(Dong and Smith, 2018).

4.3 Dataset

We use the Microsoft MAchine Reading COm-
prehension Question-Answering Dataset (MS-
MARCO-QA) (Nguyen et al., 2016), where a
single data instance consists of an anonymized
Bing search query q and top-10 retrieved passages.
Among the 10 passages, a passage is labelled is-
selected:True if annotators used it, if any, to con-
struct answers, and most instances contain one or
two selected passages. For training S2S, we use a
single selected passage p∗ ∈ {p1, p2, . . . , p10} as
input, and the query q as target output.

4.4 Constructing Evaluation Sets

For automatic evaluation, we follow the standard
evaluation method from the MS-MARCO Re-
Ranking task. For each generated question q̃, we
construct an evaluation set that contains 100 pas-
sages in total.1

First, using the 10-passage sets from the MS-
MARCO-QA development dataset as inputs, we
generate common questions with the baselines
and our MSQG models, decoded for a maximum
length of 25 words. A sample generation is pro-
vided in the SM. Secondly, we evaluate the gener-
ations by using the pre-trained BERT-based MS-
MARCO passage re-ranker R, which is publicly
available and state-of-the-art as of April 1, 2019
(Nogueira and Cho, 2019). We assess whether
the 10-passage set used to generate the question
ranks higher than 90 other passages drawn from
a pool of ∼8.8 million MS-MARCO passages us-
ing the generated question. These 90 passages are
retrieved via a different criterion: BM25 (Robert-
son and Zaragoza, 2009) using Lucene2. Note that
there are multiple 10-passage sets that generate the
same question q̃. For each of these 10-passage
sets, we construct a 100-passage evaluation set us-
ing the same 90 passages retrieved via the BM25
criterion.

1A small number of evaluation sets had less than 100 pas-
sages because of duplicates between the source 10-passage
set and the 90 passages retrieved via BM25.

2https://lucene.apache.org/

34

Fluency Relevancy Answerability
MSQG S2S Human MSQG S2S Human MSQG S2S Human

Completely grammatical 81.37% 71.28% 82.48% Completely relevant 84.00% 71.00% 86.40% Completely answered 71.89% 48.45% 72.79%
Comprehensible 16.58% 21.81% 16.35% Somewhat relevant 7.06% 7.56% 6.69% Somewhat answered 7.28% 5.83% 6.83%

Not comprehensible 2.05% 6.91% 1.17% Not relevant 8.94% 21.44% 6.91% Not answered 20.83% 45.72% 20.38%

Human judges preferred: Human judges preferred: Human judges preferred:
Our Method Neutral Comparison Our Method Neutral Comparison Our Method Neutral Comparison

MSQG 75.77% 9.74% 14.49% S2S MSQG 79.22% 8.06% 12.72% S2S MSQG 78.50% 9.09% 12.40% S2S
MSQG 42.11% 10.66% 47.24% Human MSQG 40.81% 9.67% 49.52% Human MSQG 40.66% 10.26% 49.08% Human

Table 1: Human evaluation of fluency, relevancy, and answerability. We used the top-ranked 30% of judges
provided by a crowdsourcing service. Three judges performed each hit. Spammers were blocked at runtime.
Agreement with most common was 81% overall. MSQG refers to MSQGsharedh,rmrep. The upper table shows
evaluations of individual models and the lower shows pairwise comparisons: (Human ↔ MSQGsharedh,rmrep)
and (MSQGsharedh,rmrep ↔ S2S). Comparison results are significant at p < 0.00001.

Retrieval Statistics
Model MRR nDCG MRR@10

Unique q̃
% dev.

S2S 0.0520 0.2147 0.0266 70.6
S2Srmrep 0.0540 0.2152 0.0284 80.4
MESD 0.0509 0.2141 0.0248 68.6
MEMDmult 0.0513 0.2142 0.0256 61.4
MEMD 0.0560 0.2209 0.0287 66.9
MSQGsharedh 0.0569 0.2220 0.0298 67.0
MSQGsharedh,rmrep 0.0704 0.2337 0.0441 70.3

Table 2: Our proposed model MSQGsharedh,rmrep sig-
nificantly outperforms baselines, based on the auto-
mated retrieval statistics. Discussion of the proportion
of unique questions is dealt in supplementary material.

4.5 Evaluation Metrics

MRR, MRR@10, nDCG An input to the re-
rankerR is a concatenation of the generated ques-
tion and one passage i.e. [q̃, p]. For each pair, it
returns a score ∈ (0, 1) where 1 denotes that the
input passage is the most suitable for q̃. We score
all 100 pairs in an evaluation set. For the source
10-passage set, we average the 10 scores into
one score as one combined document and obtain
the retrieval statistics MRR, MRR@10 (Voorhees,
2001; Radev et al., 2002), and nDCG (Järvelin and
Kekäläinen, 2002) (see the SM for details).

Human Judgments We also conduct human
evaluation where we compare questions generated
by MSQGsharedh,rmrep and the S2S baseline, and
the reference question using three criteria: flu-
ency, relevancy, and answerability to the original
10 passages. We randomly select 200 (10-passage,
reference question) sets from which we generate
questions, yielding 2,000 (passage, question) eval-
uation pairs for our model, baseline, and reference,
respectively (see the SM for details).

4.6 Results

Table 3 shows the mean retrieval statistics and
their proportion of unique generated questions

from 55,065 10-passage instances. Notice that
our proposed MSQG models are more effective
in terms of retrieving the source 10-passage sets.
Particularly, MSQGsharedh,rmrep outperforms the
baselines in all metrics, indicating that broadcast-
ing the mean of the document vectors to initial-
ize the decoders (sharedh), and increasing the cov-
erage of vocabulary (rmrep) are effective mecha-
nisms for generating common questions.

Overall, the retrieval statistics are relatively low.
Most 100 passages in the evaluation sets have high
pair-wise cosine similarities. We computed simi-
larities of passage pairs for a significant portion
of the dataset until convergence. A random set
of 10 passages has an average pair-wise similar-
ity of 0.80, whereas the top-10 re-ranked passages
have an average of 0.85 based on BERT (Devlin
et al., 2018) embeddings. Given the small similar-
ity margin, the retrieval task is challenging. De-
spite of low statistics, we obtained statistical sig-
nificance based on MRR with p < 0.00001 be-
tween all model pairs (see the SM for details).

Human evaluation results are shown in Table
1. In the comparison tasks, our proposed model
significantly outperforms the strong baseline by a
large margin. Nevertheless, judges preferred the
reference over our model on all three aspects. The
individual tasks corroborate our observations.

5 Conclusion

We present a new task of generating common
questions based on shared concepts among doc-
uments, and extensively evaluated multi-source
encoder-decoder framework models, including
our variant model MSQG applied to this new
task. We also provide an empirical evaluation
framework based on automated metrics and hu-
man judgments to evaluated multi-source genera-
tion framework for generating common questions.

35

References
Mohammad Aliannejadi, Hamed Zamani, Fabio

Crestani, and Bruce Croft. 2019. Asking clarifying
questions in open-domain information-seeking con-
versations. In SIGIR ’19.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Delphine Bernhard. 2010. Query expansion based
on pseudo relevance feedback from definition clus-
ters. In Coling 2010: Posters, pages 54–62, Beijing,
China. Coling 2010 Organizing Committee.

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Wojciech Gajewski, Andrea Gesmundo, Neil
Houlsby, and Wei Wang. 2017. Ask the right ques-
tions: Active question reformulation with reinforce-
ment learning.

Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and
Stephen Robertson. 2008. Selecting good expansion
terms for pseudo-relevance feedback. In Proceed-
ings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’08, pages 243–250, New
York, NY, USA. ACM.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1662–1675, New Orleans, Louisiana.
Association for Computational Linguistics.

Eric Chu and Peter J. Liu. 2018. Unsupervised neural
multi-document abstractive summarization. CoRR,
abs/1810.05739.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Rui Dong and David Smith. 2018. Multi-input atten-
tion for unsupervised OCR correction. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2363–2372, Melbourne, Australia. As-
sociation for Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1342–
1352, Vancouver, Canada. Association for Compu-
tational Linguistics.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.

In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866–874, Copenhagen, Denmark. Association for
Computational Linguistics.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T. Yarman-Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. CoRR, abs/1606.04164.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational AI. arXiv
preprint arXiv:1809.08267.

Ekaterina Garmash and Christof Monz. 2016. Ensem-
ble learning for multi-source neural machine transla-
tion. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 1409–1418, Osaka,
Japan. The COLING 2016 Organizing Committee.

Vrindavan Harrison and Marilyn Walker. 2018. Neural
generation of diverse questions using answer focus,
contextual and linguistic features.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Igor Labutov, Sumit Basu, and Lucy Vanderwende.
2015. Deep questions without deep understanding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
889–898, Beijing, China. Association for Computa-
tional Linguistics.

Logan Lebanoff, Kaiqiang Song, and Fei Liu. 2018.
Adapting the neural encoder-decoder framework
from single to multi-document summarization. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
4131–4141, Brussels, Belgium. Association for
Computational Linguistics.

Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, An-
drew Yates, Le Sun, and Jungang Xu. 2018a. NPRF:
A neural pseudo relevance feedback framework for
ad-hoc information retrieval. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4482–4491, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

36

Ruizhi Li, Xiaofei Wang, Sri Harish Reddy Mallidi,
Takaaki Hori, Shinji Watanabe, and Hynek Herman-
sky. 2018b. Multi-encoder multi-resolution frame-
work for end-to-end speech recognition. CoRR,
abs/1811.04897.

Jindřich Libovický and Jindřich Helcl. 2017. Attention
strategies for multi-source sequence-to-sequence
learning. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 196–202, Van-
couver, Canada. Association for Computational Lin-
guistics.

Jindřich Libovický, Jindřich Helcl, and David
Mareček. 2018. Input combination strategies for
multi-source transformer decoder. In Proceedings
of the Third Conference on Machine Translation:
Research Papers, pages 253–260, Belgium, Brus-
sels. Association for Computational Linguistics.

Yi Luan, Yangfeng Ji, Hannaneh Hajishirzi, and
Boyang Li. 2016. Multiplicative representations for
unsupervised semantic role induction. In ACL.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Donald Metzler and W. Bruce Croft. 2007. Latent con-
cept expansion using markov random fields. In Pro-
ceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, SIGIR ’07, pages 311–318,
New York, NY, USA. ACM.

Nasrin Mostafazadeh, Chris Brockett, Bill Dolan,
Michel Galley, Jianfeng Gao, Georgios Sp-
ithourakis, and Lucy Vanderwende. 2017. Image-
grounded conversations: Multimodal context for
natural question and response generation. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 462–472, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
ICML’10, pages 807–814, USA. Omnipress.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings
of the Workshop on Cognitive Computation: Inte-
grating neural and symbolic approaches 2016 co-
located with the 30th Annual Conference on Neu-
ral Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016.

Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazu-
toshi Shinoda, Atsushi Otsuka, Hisako Asano, and
Junji Tomita. 2019. Multi-style generative reading
comprehension. CoRR, abs/1901.02262.

Yuta Nishimura, Katsuhito Sudoh, Graham Neubig,
and Satoshi Nakamura. 2018. Multi-source neural
machine translation with missing data. In Proceed-
ings of the 2nd Workshop on Neural Machine Trans-
lation and Generation, pages 92–99, Melbourne,
Australia. Association for Computational Linguis-
tics.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
oriented query reformulation with reinforcement
learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 574–583, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with BERT. CoRR, abs/1901.04085.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo
Fan. 2002. Evaluating web-based question answer-
ing systems. In Proceedings of the Third Interna-
tional Conference on Language Resources and Eval-
uation (LREC’02), Las Palmas, Canary Islands -
Spain. European Language Resources Association
(ELRA).

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

A Rothe, Brenden Lake, and Todd Gureckis. 2016.
Asking and evaluating natural language questions.
In Proceedings of the 38th Annual Conference of the
Cognitive Science Society.

G. Salton. 1971. The SMART Retrieval System—
Experiments in Automatic Document Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating

37

factoid questions with recurrent neural networks:
The 30M factoid question-answer corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598, Berlin, Germany. Associa-
tion for Computational Linguistics.

Linfeng Song, Zhiguo Wang, and Wael Hamza. 2017.
A unified query-based generative model for question
generation and question answering.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context in-
formation for natural question generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 569–574, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yan-
jun Ma, and Shi Wang. 2018. Answer-focused and
position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930–
3939, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–
85, Berlin, Germany. Association for Computational
Linguistics.

Ellen M. Voorhees. 2001. The trec question answering
track. Nat. Lang. Eng., 7(4):361–378.

Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu,
Hua Wu, Sujian Li, and Haifeng Wang. 2018. Multi-
passage machine reading comprehension with cross-
passage answer verification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1918–1927, Melbourne, Australia. Association for
Computational Linguistics.

Jinxi Xu and W. Bruce Croft. 1996. Query expansion
using local and global document analysis. In Pro-
ceedings of the 19th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, SIGIR ’96, pages 4–11, New
York, NY, USA. ACM.

Ming Yan, Jiangnan Xia, Chen Wu, Bin Bi, Zhongzhou
Zhao, Ji Zhang, Luo Si, Rui Wang, Wei Wang,
and Haiqing Chen. 2018. A deep cascade model
for multi-document reading comprehension. CoRR,
abs/1811.11374.

Chengxiang Zhai and John Lafferty. 2001. Model-
based feedback in the language modeling approach
to information retrieval. In Proceedings of the
Tenth International Conference on Information and
Knowledge Management, CIKM ’01, pages 403–
410, New York, NY, USA. ACM.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 30–34, San Diego, Cali-
fornia. Association for Computational Linguistics.

38

Retrieval Statistics
Model MRR nDCG MRR@10

Unique q̃
% dev.

S2S-M256 0.0368 0.1943 0.0147 66.3
S2S-M512 0.0393 0.1980 0.0165 71.1
S2S 0.0520 0.2147 0.0266 70.6
S2Srmrep 0.0540 0.2152 0.0284 80.4
MESD-M512 0.0367 0.1941 0.0147 72.6
MESD 0.0509 0.2141 0.0248 68.6
MSQG-M512 0.0450 0.2056 0.0210 72.0
MSQGmult 0.0513 0.2142 0.0256 61.4
MSQG 0.0560 0.2209 0.0287 66.9
MSQGsharedh 0.0569 0.2220 0.0298 67.0
MSQGsharedh,rmrep 0.0704 0.2337 0.0441 70.3

Table 3: Full results, comparing models constructed
with M256, M512, and Mattn

256 . M512 has the most
number of parameters among the three considered.

Supplementary Material

A Full Experiment Results

Table 3 shows the retrieval results on a larger set
of baselines and MSQG models. Mattn

256 is an
attention-based encoder-decoder with hidden size
256 for both encoder and decoder. M256 and
M512 are non-attention encoder-decoders with
hidden sizes 256 and 512. S2S denotes Mattn

256 ,
as in the main paper. It shows that models con-
structed using Mattn

256 are more effective as op-
posed to models usingM512 which has more pa-
rameters. Furthermore, we see that the averag-
ing scheme in the Reduction step, broadcasting the
same encoder mean, and increasing coverage of
vocabulary tokens are important features to gener-
ating common questions using MSQG models.

B Effect of Document Order on S2S

To examine if the order of multiple input docu-
ments are critical for S2S, we obtain the attention
weights at each decoding time, gathered across the
development dataset. Next, we perform a simple
ordinary least squares regression, where the pre-
dictors are indexed word positions in a concate-
nated input, and responses are assumed noisy at-
tention weights over the development dataset for
each word position.

The slope coefficient fell within the 95%
confidence interval that includes the null:[
−2.75× 10−5, 3.03× 10−5

]
and a statistically

significant intercept value of 0.0021. The result
also validates that an average 10-passage string is
approximately 476 (≈ 1

0.0021) words long. Thus,
we conclude that the attention weights are evenly
distributed across multiple document at test time,
and the document ordering is not critical to the

Figure 2: Agglomerative Clustering of 55,065 source
10-passage sets. Each set is represented by the mean of
10 BERT embeddings. Both max and average linkages
yield the same inflection point at 0.0326, corresponding
to 35,928 and 32,871 clusters. This method implies that
the target proportion of unique generations should be
at least 65% or 60%, which all models but MSQGmult

achieve.

performance of S2S.

C Clustering Duplicate 10-passage Sets

In the MS-MARCO-QA dataset, there are many
highly similar 10-passage sets retrieved from se-
mantically close MS-MARCO queries. Exam-
ples of semantically close MS-MARCO queries
include [“symptoms blood sugar is low”, “low
blood sugar symptoms”, “symptoms of low blood
sugar levels” ,“signs and symptoms of low blood
sugar”, “what symptoms from low blood sugar”,
...], from which we expect duplicate generated
questions, thus in sum, less than 55,065 different
questions.

Therefore, to estimate the target proportion of
unique generations, we examine the number of
semantically similar 10-passage sets through ag-
glomerative clustering. Figure 2 shows cluster re-
sults with varying degrees of affinity thresholds,
and observe that the effective models should gen-
erate at least 65% unique questions from the de-
velopment dataset. This, together with the low re-
trieval statistics of MSQGmult, implies that mul-
tiplying the distributions is not an appropriate Re-
duction step.

On the other hand, generating the most num-
ber of unique questions does not imply that the
model better generates common questions. In par-
ticular, S2Srmrep generates the most diverse ques-
tions, however, its retrieval statistics are signifi-
cantly lower than its MSQG counterparts.

39

D Statistical Significance Tests

Retrieval evaluation on ∼55K evaluation sets us-
ing the re-ranker R is compute-intensive. Thus,
for each model, we randomly sample and obtain
retrieval statistics for 15K evaluation sets which
are enough to mimic the true evaluation set distri-
bution.

Then, to assess statistical significance, we use
a non-parametric two-sample test, such as Mann-
Whitney (MW) or Kolmogorov-Smirnov statistic,
and test whether any pair of 15K retrieval sets be-
tween two models come from the same distribu-
tion. In our task, both tests reached the same con-
clusion. MW two-sample tests on MRR results
showed statistical significance at p < 0.00001 for
all model pairs dealt in the main paper, in spite of
the relatively low retrieval statistics.

E Human Evaluation Templates

UHRS comparison and individual task instruc-
tions and shown in the next pages.

F Generated Questions Sample

Passage 1: cucumbers and zucchini look similar
but have nutritional differences . photo credit
martin poole / digital vision / getty images .
do n’t let the similarities between cucumbers
and zucchini confuse you . even though both
cylindrical vegetables are dark green with white
flesh , they are distinctively different species . both
cucumbers and zucchini belong to the curcurbit
family , which also counts gourds , melons , pump-
kins and squash among its members . cucumbers
and zucchini differ both in how people commonly
eat them and in their nutritional values . people
almost always eat cukes raw , while zucchini is
more often cooked .

Passage 2: cucumber and squash seedlings
both have elongated foliage for the first set of
leaves after they emerge from the soil . the second
set of leaves on a seedling varies . cucumber
leaves are in the shape of a triangle and are flat
in the center and rough to the touch . squash
plants vary in shape as to the particular variety
, but have three to five lobes and are larger than
cucumber leaves . zucchini squash has elongated
serrated leaves .

Passage 3: zucchini vs cucumber . zucchini

and cucumber are two vegetables that look
mightily similar and hard to distinguish from each
other . but in close inspection , they are actually
very different . so read on . zucchini . zucchini is
defined to be the kind of vegetable that is long ,
green colored and has many seeds .

Passage 4: as a general rule , we prefer cu-
cumbers raw and zucchini cooked . while you
ca n’t replace one with the other , zucchinis and
cucumbers do complement one another . slice two
cucumbers , two zucchinis and one sweet onion ,
and soak them all in rice vinegar for at least an
hour in the refrigerator .

Passage 5: cucumber and zucchini are pop-
ular vegetables that are similar in appearance
and botanical classification . but they differ signif-
icantly in taste , texture and culinary application
. zucchini and cucumber are both members of the
botanical family cucurbitaceae , which includes
melons , squashes and gourds .

Passage 6: melon vs. squash . the cucum-
ber is not particularly sweet , but it shares a genus
with the cantaloupe and is botanically classified
as a melon . the zucchini is a variety of summer
squash and is of the same species as crookneck
squash .

Passage 7: cucumber vs. zucchini . side by
side , they might fool you : cucumbers and
zucchinis share the same dark green skin , pale
seedy flesh , and long cylindrical shape . to the
touch , however , these near - twins are not the
same : cucumbers are cold and waxy , while
zucchinis are rough and dry . the two vegetables
also perform very differently when cooked .

Passage 8: the second set of squash leaves
grow much quicker and larger than cucumber
leaves in the same time . squash leaves may be
up to four times as large as a cucumber leaf when
they are the same age .

Passage 9: in reality , zucchini is really de-
fined as a vegetable so when it comes to the
preparation of it , it has different temperament .
cucumber . cucumber is both classified as a fruit
and a vegetable . it is long and is green in color ,
too . it is part of what they call the gourd family .

40

Passage 10: zucchini ’s flowers are edible ;
cucumber ’s flowers are not . zucchini is generally
considered as a vegetable ; cucumber is classified
as both a fruit and a vegetable . yes , they can fool
the eye because of their similar look but as you go
deeper , they are very different in so many ways .

Question generated by MSQGsharedh,rmrep:
what are the difference between cucumber and
zucchini

Question generated by S2S:
different types of zucchini

Reference question:
difference between cucumber and zucchini

41

42

43

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 44–58
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Generating Diverse Story Continuations with Controllable Semantics

Lifu Tu1 Xiaoan Ding2 Dong Yu3 Kevin Gimpel1

1Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
2University of Chicago, Chicago, IL, 60637, USA

3Tencent AI Lab, Bellevue, WA, 98004, USA

{lifu, kgimpel}@ttic.edu, xiaoanding@uchicago.edu, dyu@tencent.com

Abstract

We propose a simple and effective modeling
framework for controlled generation of mul-
tiple, diverse outputs. We focus on the set-
ting of generating the next sentence of a story
given its context. As controllable dimensions,
we consider several sentence attributes, in-
cluding sentiment, length, predicates, frames,
and automatically-induced clusters. Our em-
pirical results demonstrate: (1) our framework
is accurate in terms of generating outputs that
match the target control values; (2) our model
yields increased maximum metric scores com-
pared to standard n-best list generation via
beam search; (3) controlling generation with
semantic frames leads to a stronger combina-
tion of diversity and quality than other control
variables as measured by automatic metrics.
We also conduct a human evaluation to assess
the utility of providing multiple suggestions
for creative writing, demonstrating promising
results for the potential of controllable, diverse
generation in a collaborative writing system.

1 Introduction

We consider the problem of automatic story con-
tinuation generation, i.e., how to generate story
continuations conditioned on the story context. In-
spired by recent work in controllable generation
(Hu et al., 2017; Ficler and Goldberg, 2017), we
propose a simple and effective modeling frame-
work for controlled generation of multiple, di-
verse outputs based on interpretable control vari-
ables. Each control variable corresponds to an
attribute of a sentence. Compared to previous
work that only seeks to control the values of sen-
timent (Hu et al., 2017) and length (Kikuchi et al.,
2016), we further explore neural text generation
with particular verbal predicates, semantic frames,
and automatically-induced clusters.

We compare the diversity of story continuations
controlled by different sentence attributes and find

Context:
sandra needed a new phone . her old one had broken .
she walked into the store and bought a new one . she
was very excited .
Control Attributes and Generated Continuations:
Sentiment:
positive sandra was happy to have a new phone .
Predicates:
loved sandra loved the new one .
gave sandra ’s mom gave sandra a refund .
Frames:
Calendric unit it was the perfect day of her life .
Cardinal numbers it was a perfect one .
Activity ongoing she kept it on the couch .

Table 1: Story continuations conditioned on various
control attributes generated from our framework.

that using frames yields a stronger combination of
diversity and quality than other control variables
as measured by automatic metrics. Unlike certain
other attributes, frames have hundreds of possible
values. Some frame values can help to get a nat-
ural continuation, while others are not applicable
when considering the story context.

We quantitatively evaluate both controllability
and diversity. Our empirical results show that:
(1) our framework is accurate in terms of gener-
ating outputs that match the target attribute val-
ues; (2) our framework increases maximum met-
rics scores compared to n-best list generation
with beam search; (3) controlling generation with
frames leads to a stronger combination of diversity
and quality than other control variables as mea-
sured by automatic metrics.

We also explore methods to rerank continua-
tions to choose attribute values automatically and
obtain a small number of high-quality outputs. We
consider two frame ranking methods: one reranks
the generated continuations using a reverse scor-
ing model (Li et al., 2016) and returns the k-best
generations; the second first predicts the k most
likely frames based on the context, and uses these

44

https://www.aclweb.org/anthology/D19-56%2d

frames to generate continuations. One potential
use case of controllable, diverse story generation
is collaborative writing applications (Clark et al.,
2018b). We conduct a human evaluation to assess
the utility of providing multiple suggestions from
our models in this setting, demonstrating promis-
ing results for the potential of controllable genera-
tion for collaborative writing.

2 Task Description and Definitions

Given a story context and a control attribute value,
our goal is to generate a story continuation that:
(1) conforms to the given attribute value, (2) is rel-
evant to the story context, and (3) is complemen-
tary to continuations with other control attribute
values, thereby providing a diverse set of continu-
ations when used with multiple attribute values.

We use x = 〈x1, x2, ..., x|x|〉 to denote a story
context and y = 〈y1, y2, ..., y|y|〉 to denote a story
continuation. The last token y|y| is assumed to be
〈eos〉. We develop a framework to model tuples
(x, l, y), where l is a control attribute. The control
attribute represents a characteristic of the continu-
ation, such as its length, sentiment, automatically-
induced cluster, verbal predicate, or set of seman-
tic frames. Table 1 shows several examples of con-
trol attributes and generated continuations corre-
sponding to them from our model.

3 Model

Our controllable generation framework is a vari-
ation of a sequence-to-sequence (seq2seq) model
with attention (Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015). To represent
the control attribute values, we define an attribute
embedding function R that maps a given attribute
value l to a vector z: z = R(l). Here l can
be a single discrete number or a set of discrete
numbers, depending on what attributes are being
used. The control variable z contains two parts:
z = [zenc; zdec] where semicolon (;) denotes verti-
cal concatenation and zenc and zdec are additional
inputs for the encoder and decoder respectively.

Encoder. For our encoder, we use a standard
bidirectional recurrent neural network (RNN):

−→si = fe1([vi; zenc],
−−→si−1)

←−si = fe2([vi; zenc],
←−−si+1)

si = [−→si ;←−si]

where vi is the vector representation of word xi,
si ∈ Rd is the hidden state at time i, and fe1 and
fe2 are the forward and backward RNN functions.

Decoder. Our decoder uses an RNN with the
general global attention scheme from Luong et al.
(2015). An additional input zdec is fed to the de-
coder at each time step to reflect the characteristics
of the control variable:

hj = fd([yj−1; zdec], hj−1)

where hj is the decoder RNN hidden vector at time
step j and fd is the decoder RNN function. Then,
the conditional probability with controllable gen-
eration can be decomposed as follows:

log pΘ(y | x, l) =

|y|∑

j=1

log pΘ(yj | y<j , s, l)

Here s represents the hidden states of the source
sequence and Θ are the parameters of the seq2seq
attention model.

Training. Our training objective is:

min
Θ,R

∑

〈x,l,y〉∈D
− log pΘ(y | x, l) (1)

where D is the training data, i.e., we assume at-
tribute values l are provided during training. In
practice, these will be predicted automatically us-
ing a linguistic analyzer. With certain attributes,
we do not update the attribute value embeddings
R, i.e., we fix zenc and zdec to one-hot vectors.

Inference. We can specify the value of the con-
trol variable and generate specific outputs. By
changing the variable values, we obtain multiple
continuations for the same context. Beam search
is used for decoding.

4 Control Attributes

In this section, we describe the control attributes
we explored using our framework. Table 2 shows
examples of generated continuations for a single
story context with several values for the control at-
tributes described below. Given our simple model-
ing framework, it would be natural to experiment
with combining control attributes via summation
or averaging of the attribute representations, but
we leave an investigation of this to future work,
focusing here on using one attribute at a time.

45

Context: i bought a pair of earbuds at target . i spent ten
dollars . someone told me they were cheaper at the dollar
store . they were only a dollar .
Gold Continuation: i wish i had known that before .
Sentiment
negative i was disappointed .
neutral i decided to keep them .
positive i was able to get a new pair .
Length
4 i was shocked .
5 i was rather disappointed .
6 i bought a new pair .
7 i was able to buy them .
8 i was glad i bought them .
9 i was able to buy a new pair .
10 i was able to buy a new pair .
11 i was able to buy a new pair of shoes .
12 i was able to buy a new pair of new ones .
13 i was able to buy a new pair of rubber flavored items .
14 i was able to buy a new pair and i was very happy .
Verbal Predicates
wish, known i wish i will always recognize them .
got i got a new one .
decided i never decided on the new restaurants .
went i went home with a new friend .
is it is a great price .
get now i have to get a new one .
felt i felt very disappointed .
go i will go to the grocery store .
took i took them to the store .
left i left the store with a new tip .
realized after many years , i realized that .
loved i loved them .
ran i ran back to the store .
Frame Semantics
gold frame set* i wanted to be a professional pho-

tographer .
Arriving i got the earbuds .
Quantity it was a lot of fun .
Becoming it ended up being a target .
Cardinal numbers i paid for $ 50 dollars .
Being obligated i guess i had a similar card .
Kinship my parents were proud .
Statement i told them i would not be a target .
Causation they sent me to the seller ’s desk .
Opinion i think i was a millionaire .
Perception experience it was a hit .
Clusters
0 i ended up buying a new one .
1 i bought a new pair of shoes .
2 i was a good price .
3 i bought a new pair of shoes for free .
4 i decided to buy a new pair of headphones .
Oracle BOW
- i then wish that i had no time .

Table 2: Generated continuations from our framework
with different control attribute values. Boldface indi-
cates attribute values of the human-written continua-
tion. * = the frame set in the human-written continu-
ation contains the following frames: Desiring, Experi-
encer, Event, Being named, and Entity.

Sentiment. Stories may express sentiment re-
garding their characters or circumstances. We ac-
quire sentiment labels by running the pretrained

analyzer from Socher et al. (2013) on the continu-
ations in the training data. The analyzer produces
three labels: “negative”, “neutral”, or “positive”.
During training, zenc and zdec are fixed one-hot
vectors for each value.

Length. Some prior work has generated sum-
maries with a desired length (Kikuchi et al., 2016;
Fan et al., 2018a). We similarly use length of the
continuation as a control attribute. Instead of using
an embedding for each integer length value, we
group the lengths into a small number of bins (de-
tails are provided below). zenc and zdec are fixed
one-hot vectors for each bin.

Verbal Predicates. Semantic role labeling
(SRL) is a form of shallow semantic parsing
that annotates predicates and their arguments
in sentences. We consider predicates from a
semantic role labeling as control attributes. We
use the SRL system from AllenNLP (Gardner
et al., 2018) to automatically obtain predicates
for the continuations in our training set. Then, a
predicate vector is obtained by first summing up
100-dimensional GloVe embeddings (Pennington
et al., 2014) of the predicted predicates (if there is
more than one), then reducing the dimension to 64
using principal component analysis.1 We wish to
clarify that we do not use the argument structure
from the SRL system. We restrict our focus to
simply the set of verbal predicates in the SRL
structure; this would presumably be simpler to use
in interactive settings where users would specify
attribute values for generating continuations.

Frame Semantics. A story is composed of a
sequence of meaningful events (Chatman, 1980),
often following particular patterns described in
various terms such as scripts (Schank and Abel-
son, 1977) and frames. FrameNet (Baker et al.,
1998) is an inventory of semantic frames, which
are semantic abstractions describing universal cat-
egories of events, concepts, and relationships.

We consider frame semantics as another control
attribute in our framework. In order to get a frame
semantic representation for a continuation, we use
SEMAFOR (Das et al., 2014). SEMAFOR auto-
matically produces a frame-semantic parse for a
sentence, which consists of spans that evoke par-
ticular frames in FrameNet as well as annotations

1The reason we use PCA here is to make all attribute em-
beddings have comparable embedding size, though we did
not systematically evaluate the effect of this choice.

46

of textual spans that correspond to frame-specific
arguments. For our purposes, we drop the argu-
ments and only use the set containing all frames
that are evoked in the sentence. A sentence may
contain multiple frames. For example, in the sen-
tence “Roa’s advice made Emma a lot happier in
her life!”, “a lot” evokes the Quantity frame while
“Emma a lot happier” evokes the Effect frame.

The frame set variable z is computed by sum-
ming embeddings for the frames in the set:

z = R(l) =
∑

j∈l
Rj (2)

where l is the frame set and Rj is the representa-
tion of frame j. The frame embeddings are learned
during training.2 For modeling purposes, we re-
strict our attention to the 100 most frequent frames
in the training data. The rest of the frames are
pooled together to form a single additional “catch-
all” frame.

Automatically-Induced Clusters. We also ex-
periment with running k-means clustering on the
bag-of-words sentence representations of the con-
tinuations in the training set. We treat these
automatically-induced cluster labels as control at-
tribute values. Below we describe experiments
with different cluster labels and analyze the char-
acteristics of the generated outputs.

Oracle Bag-of-Words Sentence Representa-
tions. We also consider the use of a bag-of-
words (BOW) sentence representation as a control
attribute. Naturally, the sentence representation
of the continuation is not available before gener-
ating the continuation in practice. However, we
can use this attribute to verify the capability of our
model to reconstruct the continuation from its bag-
of-words representation.

5 Experimental Setup

5.1 Datasets

We experiment with the publicly available ROC
story corpus developed by Mostafazadeh et al.
(2016). It consists of approximately 100K five-
sentence stories of everyday events. We sample
2000 stories as a development set and 2000 as our
test set. The remaining stories form our training
set. Our goal is to generate the fifth sentence (the

2The dimension of the frame vector is 64 in our experi-
ments.

“continuation”) given the previous four sentences.
We use the 10k most frequent words in the train-
ing set as our vocabulary. A special token 〈unk〉
is introduced for unknown words.

5.2 Evaluation

Previous work evaluates generation tasks with
automatic metrics, such as perplexity (PPL),
BLEU (Papineni et al., 2002),3 and ROUGE (Lin,
2004). We adopt these in our evaluation and
add three more metrics using the pretrained story
scorer from Sagarkar et al. (2018). The scorer
rates a generated continuation given its context
along three dimensions: relevance (R), interest-
ingness (I), and overall quality (O). The story
scorer does not use a gold standard continuation.

In addition, to evaluate the diversity of the gen-
eration, we use Max-BLEU4 and Max-ROUGE.
First, we compute BLEU and ROUGE scores over
a set of outputs (y1, y2, ..., yn) with different at-
tribute values given the same story context, then
we compute the max scores:

Max-BLEU = max
i

BLEU(yi, r)

Max-ROUGE = max
i

ROUGE(yi, r)

where r is the gold standard continuation.
We also use Self-BLEU (Zhu et al., 2018) to

evaluate the diversity of a set of outputs. It is cal-
culated by averaging the BLEU scores computed
between all pairs of generated continuations for a
given context, then averaging this quantity over all
contexts. The smaller the Self-BLEU score is, the
more diverse are the generated outputs.

5.3 Training Details

Our seq2seq model has a 2-layer biL-
STM (Hochreiter and Schmidhuber, 1997)
encoder and a 1-layer LSTM decoder. The hidden
dimension of all layers is 512. The word embed-
ding dimension is also 512. For optimization, we
use Adam (Kingma and Ba, 2014) with learning
rate 0.001. We use early stopping based on
perplexity on the development set.

3In this paper, all BLEU scores are BLEU-2 scores (i.e.,
using unigrams and bigrams).

4While max metric scores are not solely measuring diver-
sity, they do provide a sense of the potential of the list. If all
entries on the list are the same, the max metric scores would
equal the average metric scores. The difference between the
max and average metric scores therefore can be viewed as
providing a bound on the diversity.

47

Generated Continuations
Target Sentiment negative neutral positive
negative 68.5 19.6 12.0
neutral 7.0 73.9 19.2
positive 0.8 3.1 96.2

Table 3: Sentiment match percentages of generated
continuations and target sentiment values.

dif = 0 dif ≤ 1 dif ≤ 2 dif ≤ 3
3 bins 95.8 100 - -

30 bins 70.35 94.8 99.25 99.9

Table 4: Frequency (%) of the generated continuations
in the range of dif = |l− lp| where l is the continuation
length and lp is the desired length.

6 Results

We now present our experimental results. Sec-
tion 6.1 includes results related to how well our
generated output matches the desired attribute val-
ues. Section 6.2 presents results when generating
continuations with oracle attribute values. In Sec-
tion 6.3 we use our set-level metrics to evaluate
sets of outputs with various attribute values. In
Section 6.4 we report results when attempting to
automatically infer attribute values to generate a
small set of high-quality outputs.

6.1 Controllability Evaluation

In this section, we evaluate the controllability ac-
curacy of our framework by automatically mea-
suring the match between the attribute values of
the generated continuations and the desired val-
ues. For certain control variables, like sentiment
and frames, this automatic evaluation is prone to
errors in the associated analyzers. That is, the met-
rics that rely on automatic analyzers could become
artificially high if our generation models learn to
produce outputs that match the biases of the ana-
lyzers. We could instead consider manual evalua-
tion of control accuracy. However, we were more
interested in devoting our manual evaluation to the
question of whether users would find the system
outputs useful for a particular goal.

Sentiment. We generate three continuations for
each story in the development set, one for each
sentiment label. Using the same sentiment ana-
lyzer from Socher et al. (2013) as above, we ob-
tain predicted sentiment labels for the continua-
tions. Table 3 shows the sentiment distribution
for each label. We see that the vast majority of
the time, the continuations match the desired val-

Predicate M% Predicate M%
was 100 got 100
had 100 decided 94.4
went 99.9 is 100
made 99.25 were 100
found 100 get 99.95
felt 99.55 go 100
took 99.2 ended 98.25
be 99.95 told 99.9
gave 99.95 left 99.85
said 100 bought 100

Table 5: Match percentages (M%) showing fraction of
stories for which generated continuations contain the
desired predicate. The 20 most frequent predicates are
shown; additional results are in the Appendix.

ues. Matching positive sentiment is easiest for our
model, followed by neutral.

Length. We quantize the generation lengths into
bins, each representing a size range. Below are the
two settings we consider:

• 3 bins: We use three bins with the following
length ranges: [1,7], [8,13], and [14,∞).

• 30 bins: We use a bin for each length. No
sentence is longer than 30.

During training, we do not update the representa-
tions of the length control variable. After training,
we treat the length of the continuation in the devel-
opment set as the target control variable and gen-
erate continuations for each length. The results are
shown in Table 4 and demonstrate that our model
can generate continuations with the desired length
with only small differences.

Verbal Predicates. We select the top 100 most
frequent verbal predicates in the training data.
Then for all the stories in the development set, we
generate a continuation for each of the 100 predi-
cates. We check whether the predicate appears in
the generated continuations. As the results in Ta-
ble 5 show, the framework can nearly always gen-
erate outputs with the desired predicates.

Frame Semantics. In order to check how fre-
quently the generated output matches the desired
frames, we generate continuations for the top 100
frames (one frame for each continuation) for all
stories in the development set. We check whether
the frame appears in the specific continuation us-
ing SEMAFOR. The results are shown in Ta-
ble 6. Most frames have very high match ac-
curacies, but there are a few frames with much

48

Frame M% Frame M%
Calendric unit 99.5 Locative relation 87.4
Arriving 98.9 Quantity 92.5
Temporal collocation 99.9 Becoming 99.6
Cardinal numbers 89.1 Being obligated 97.7
Kinship 94.4 Intentionally act 99.7
Statement 98.0 Causation 98.6
Emotion directed 98.7 Buildings 93.0
Personal relationship 92.7 Food 79.2
Self motion 86.4 Capability 99.9
Desirability 98.1 Observable body parts 74.2

Table 6: Match percentages (M%) showing fraction of
stories for which generated continuations contain the
desired frame. Additional results are in the Appendix.

Generated Continuations
Target Value 0 1 2 3 4

0 79.9 2.8 3.1 0.9 13.4
1 5.1 63.1 26.4 1.4 4.2
2 2.6 2.0 90.6 0.3 4.7
3 20.9 20.1 24.6 31.0 3.5
4 0.9 0.3 0.5 0.1 98.3

Table 7: Cluster match percentages (%) for each value
of the cluster control variable.

lower accuracy, such as “Food” and “Observ-
able body parts”. These are more concrete frames
that may be difficult to reasonably incorporate in
certain story contexts.

Automatically-Induced Clusters. Given the
cluster, the model generates a continuation. Then,
we represent the continuation as a bag-of-words
sentence embedding (using the same method as
when performing the initial clustering) and find
the cluster that has the nearest cluster embedding.
Then we check whether the two clusters match.

In analyzing the clusters, we observed that clus-
ter 0 corresponds to simple but reasonable con-
tinuations. Cluster 2 corresponds to continuations
with positive sentiment. Cluster 4 contains contin-
uations with more actions. Some of the generated
outputs are shown in Table 2. From the results in
Table 7, we still see controllability for most clus-
ters; however, for target cluster 3, which is rather
generic based on our observations, the generated
output seems flat.

6.2 Evaluation with Oracle Attributes

Table 8 shows automatic metric scores with oracle
attribute values, i.e., using the attribute values of
the gold standard continuations. Unsurprisingly,
compared with the seq2seq baseline, the perplex-
ity decreases and the ROUGE and BLEU scores
increase with oracle attributes.We also find that

the scores from the story scorer, which does not
use the gold standard while scoring, also show im-
provements over the baseline. We note that frame
semantics form one of the most useful control at-
tributes, aside from those that use words directly.

The oracle BOW representation of the gold
standard continuation yields the lowest perplexity
and highest ROUGE and BLEU scores. It is not
surprising that using this attribute would be useful
according to metrics that favor matching the gold
standard. However, these results do show that our
simple modeling framework can make use of the
information in the control variable with a high de-
gree of effectiveness. In addition, while the scores
from the story scorer are generally higher than for
other control attributes, they are roughly on par
with those when using predicates and frames.

6.3 Evaluating Sets of Continuations

We now evaluate sets of continuations using our
set-level metrics. Standard methods to gener-
ate sets of outputs include beam search (BS) and
temperature-based sampling (TS), which we use
as baselines. TS with temperature τ corresponds
to transforming probabilities pi as follows: p̂i ∝
p

1
τ
i . A high temperature τ leads to high variety

in generated samples, but also more noise, while
lower temperatures lead to samples with less noise
but also less diversity.

For each attribute, we generate continuations
for each of its values, and compare to BS and TS
systems with the same number of outputs. For ex-
ample, for sentiment, we generate continuations
for each of the 3 sentiment values and compare to
BS and TS with 3 continuations.

Results are shown in Table 9. BS shows the
least diversity (as evidenced by its high self-BLEU
scores). However, it generally yields high aver-
age ROUGE and BLEU scores. TS does very well
in terms of diversity, and this diversity enables it
to produce higher max scores than BS, but it has
lower averages when using small numbers of con-
tinuations (3 or 5).

Our sentiment- and cluster-controlled systems
outperform TS in max metric scores and BS in di-
versity (self-BLEU). They also have the highest
average BLEU scores, though the differences are
small. With 30 continuations, TS with τ = 0.5
performs best across all metrics; this number of
continuations appears to be well-suited for tem-
perature 0.5. As we move to 100 continuations, we

49

PPL (↓) ROUGE BLEU (↑) Story Scorer
ROUGE-1 (↑) ROUGE-L (↑) O (↑) R (↑) I (↑)

seq2seq 25.8 27.0 23.5 17.7 5.5 5.5 4.8
sentiment 25.0 26.7 23.5 17.7 5.5 5.6 4.8
length 23.1 27.3 24.6 20.3 5.7 5.8 5.0
predicates 17.1 42.9 35.1 26.4 6.0 6.2 5.2
frames 15.0 41.1 35.0 27.2 5.9 6.1 5.2
clusters 24.3 28.6 25.0 18.4 5.5 6.1 5.1
BOW 5.7 64.5 54.5 45.4 6.2 6.2 5.2
gold standard - - - - 6.5 6.7 5.7

Table 8: Automatic metrics for baseline system and when using oracle values for control attributes. For the gold
standard continuation, we report only the story scorer results because they do not require a gold standard (unlike
the other metrics).

ROUGE BLEU (↑)ROUGE-1 (↑) ROUGE-L (↑) Self-BLEU (↓)
Max (Avg) Max (Avg) Max (Avg)

BS, beam = 3 31.8 (26.7) 27.3 (22.6) 19.7 (17.0) 50.5
TS, τ = 0.5 32.5 (25.5) 27.8 (21.6) 20.3 (16.3) 27.0

3 continuations: TS, τ = 0.6 30.5 (22.2) 25.9 (18.8) 19.0 (14.8) 23.8
sentiment 32.8 (25.6) 28.9 (22.5) 21.1 (17.1) 30.7
predicted frames 30.8 (22.5) 27.0 (19.9) 19.7 (15.7) 30.3
frames + reranking 30.7 (21.9) 26.3 (18.9) 18.8 (14.7) 25.8
BS, beam = 5 33.9 (26.3) 29.4 (22.3) 21.3 (16.2) 68.1

5 continuations: TS, τ = 0.5 35.0 (25.3) 30.0 (21.5) 21.7 (16.2) 40.8
clusters 36.1 (24.5) 31.7 (21.4) 22.9 (16.4) 43.8
BS, beam = 30 40.0 (25.4) 34.3 (20.8) 25.6 (16.0) 92.5

30 continuations: TS, τ = 0.5 43.0 (25.4) 37.5 (21.6) 28.1 (16.3) 74.0
length 42.1 (24.7) 35.9 (20.0) 26.2 (14.8) 82.2
BS, beam = 100 44.4 (25.0) 38.6 (20.6) 29.2 (15.9) 96.2

100 continuations: TS, τ= 0.5 47.8 (25.4) 42.3 (21.6) 32.1 (16.3) 85.6
frames (individual) 47.0 (24.0) 41.2 (20.8) 29.8 (15.5) 72.1
frames (sets) 48.3 (23.1) 42.7 (20.1) 31.2 (15.1) 75.5

Table 9: Metric scores to evaluate the potential of a list of continuations. We report the maximum and average
metric scores over the continuations in each list to evaluate the quality of the lists, and self-BLEU to evaluate
diversity. Best results for each metric and each number of outputs are in bold.

find that using our frame control variable leads to
better diversity than TS, suggesting that the move
to 100 samples has introduced some amount of
repetition. By contrast, the 100 distinct frames and
frame sets yield better diversity.

6.4 Automatically Choosing Attribute Values

Using our framework, we can generate continua-
tions with any attribute values. However, if we are
interested in generating a single continuation, we
do not know the ideal attribute values to use. So,
we propose two methods to automatically select a
small set of values for the frame attribute.

Frames + Reranking: Following Li et al.
(2016), we rerank the outputs from the 100 most
frequent frame sets by linearly combining the for-
ward score p(y | x) and the “reverse score” λp(x |
y), where the latter comes from a separately-
trained seq2seq model. The forward score p(y | x)
is adjusted by dividing by the length of y in order

to not favor shorter outputs.

Predicted Frames: We also build a model to
automatically predict the frames in the continua-
tion. Given the frames in a sentence x, we com-
pute a binary frame vector fx where entry j is 1
if frame j appears in x. We train a model that
predicts the frame vector of the continuation given
the frame vectors of the previous 4 sentences. The
model is an LSTM followed by averaging of hid-
den states. Mean squared error is minimized dur-
ing training. After training, the k continuations
are selected based on the k frames with the highest
predicted score under this frame prediction model.

We use these two methods to produce 3 contin-
uations for each story and report results in Table 9.
They both achieve a similar balance of quality and
diversity as TS with τ = 0.6, with reranking lead-
ing to greater diversity than frame prediction and
the latter showing higher ROUGE/BLEU scores.

50

7 Human Evaluation

Our previous results demonstrate that our frame
control system has strong controllability and di-
versity in generation. In this section, we conduct
a human evaluation to assess the utility of provid-
ing multiple suggestions from our models in a cre-
ative writing setting. We consider four different
systems: BS with beam size 3; TS with 3 continu-
ations using τ = 0.6, which we found to produce
outputs with more diversity than 0.5; reranking
the 100 most frequent frame sets and using the
top 3; and using continuations from the top-3 pre-
dicted frames under our frame prediction model.5

To assess which set of generations from these
four systems are most helpful in a collaborative
writing setting, we collect annotations using Ama-
zon Mechanical Turk. We randomly select 100
stories. For each story, we generate three outputs
as a set of suggestions for each system, so there are
600 comparision pairs in total. We show workers
two sets of outputs from different systems and ask
them to select which suggestion is more helpful
for writing the next line in the story. We also pro-
vide a choice of “neither one is helpful at all”. We
ask them explicitly to imagine they are writing the
next line of the given story (see the appendix for
more details).

Table 10 shows the results.6 We observe that
workers prefer the BS baseline over TS, although
TS yields higher diversity. This could be because
the continuations from BS are shorter, simpler, and
more fluent. In addition, we observe that work-
ers prefer the outputs from the reranking system
over BS more often than not. Although the pre-
dicted frame system yields more diverse outputs,
workers still prefer BS, likely due to the difficulty
in predicting frames. The reranking and predicted
frame systems are both preferred to TS, though the
gap is smaller with the predicted system. We also
see that generating helpful suggestions is a diffi-
cult task: in many cases workers thought neither
system was helpful, especially when given the out-
puts from BS/TS or TS/predicted.

One may ask why workers do not show a
stronger preference for the more diverse sets of

5The BS and TS baselines do not use control variables.
6We remove results from 10-question sets where more

than half of the questions were answered with the “neither”
option, as we were concerned that these annotators did not
fully understand the task or did not spend enough time study-
ing the continuations. This occurred in roughly one third of
question sets.

Human Preference
system 1 system 2 1 2 neither

BS TS 43 16 29
BS reranking 18 30 15
BS predicted 38 29 19
TS reranking 18 38 16
TS predicted 18 27 34

reranking predicted 27 24 21

Table 10: Human preferences when given three contin-
uations from each pair of systems.

outputs. From our own preliminary annotations,
we believe this is because diverse outputs tend to
be longer and harder to understand, and also be-
cause greater diversity increases the chance of pro-
ducing disfluent or nonsensical outputs. The BS
outputs, by comparison, are sensical and mostly
on-topic. Even if the suggestions are not creative,
they may still help a worker to think about a new
direction for the story to take. Nonsensical or dis-
fluent suggestions, however, are rarely helpful.

8 Related Work

Automatic story generation has a long history,
with early work based primarily on hand-written
rules (Klein et al., 1973; Meehan, 1977; Dehn,
1981; Turner, 1993). Subsequent methods were
based on planning from artificial intelligence
(Theune et al., 2003; Oinonen et al., 2006; Riedl
and Young, 2010) and, more recently, data-driven
methods have been developed (McIntyre and Lap-
ata, 2010; Elson, 2012; Daza et al., 2016; Roem-
mele and Gordon, 2015; Clark et al., 2018a; Mar-
tin et al., 2018; Fan et al., 2018b; Yao et al., 2019;
Fan et al., 2019). In concurrent work, Gupta et al.
(2019) also propose methods to generate more di-
verse and interesting story endings, albeit without
control variables.

In stronger relevance to our work, Clark et al.
(2018b) explore a creative writing setting with a
machine in the loop, albeit with mixed results in
terms of the quality of system suggestions. Pre-
dicting and controlling with frame values sug-
gests a new way of interacting with collabora-
tive writing systems, as long as frames can be
communicated to users in ways they can easily
understand. Recently, Clark et al. (2018a) pro-
posed a neural text generation method that ex-
plicitly represents and tracks entities. In addi-
tion, event sequences (Chaturvedi et al., 2017;
Liu et al., 2018) are important elements in narra-
tive texts but under-explored for story generation.

51

These and related characteristics of creative writ-
ing could be incorporated into our framework as
control attributes in future work.

The broader neural text generation community
has also recently been interested in controllable
text generation, i.e., generating text with speci-
fied characteristics reflected by control variables.
In some previous work, the variables to be con-
trolled are embedded into vectors which are then
fed into models to reflect the characteristics of the
variables. Kikuchi et al. (2016) and Fan et al.
(2018a) developed methods for controllable sum-
marization, for example permitting users to con-
trol the length of the generated summary. Related
work has controlled style, topic, and sentiment po-
larity (Hu et al., 2017; Wang et al., 2017; Shen
et al., 2017; Yang et al., 2018).

Despite the widespread usage of beam search
for neural text generation, it has long been ob-
served that its outputs are lacking in diversity. Sev-
eral efforts have been made to provide diverse out-
puts for generation tasks, such as dialogue (Li
et al., 2016) and machine translation (Devlin and
Matsoukas, 2012; Gimpel et al., 2013; Li and Ju-
rafsky, 2016). Diverse beam search (Vijayaku-
mar et al., 2018) produces a list of outputs with
a diversity-augmented objective. Ippolito et al.
(2019) compare several methods for producing a
set of diverse outputs from conditional language
models. We leave a careful comparison to such
algorithms to future work.

9 Conclusion and Future Work

We proposed a controllable framework that gener-
ates the next sentence of a story given its context.
We experimented with a broad range of control at-
tributes and demonstrated that our framework can
accurately generate outputs that match the target
values. Sets of outputs from our method show
high diversity and high oracle metric scores. The
human evaluation shows that the multiple sugges-
tions from our model show promise for integra-
tion in a collaborative writing system. Future work
could explore other control attributes as well as a
compositional framework to control multiple at-
tributes jointly.

Acknowledgments

We would like to thank TTIC SL@TTIC re-
searchers who participated in a preliminary anno-
tation study.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
International Conference on Learning Representa-
tions.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In COLING-
ACL ’98: Proceedings of the Conference, pages 86–
90, Montreal, Canada.

Seymour Benjamin Chatman. 1980. Story and dis-
course: Narrative structure in fiction and film. Cor-
nell University Press.

Snigdha Chaturvedi, Haoruo Peng, and Dan Roth.
2017. Story comprehension for predicting what hap-
pens next. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1603–1614. Association for Compu-
tational Linguistics.

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith.
2018a. Neural text generation in stories using en-
tity representations as context. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2250–2260. Association for Computa-
tional Linguistics.

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A. Smith. 2018b. Creative
writing with a machine in the loop: Case studies on
slogans and stories. In IUI, pages 329–340. ACM.

Dipanjan Das, Desai Chen, Andr F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguis-
tics, 40:1:9–56.

Angel Daza, Hiram Calvo, and Jesús Figueroa-Nazuno.
2016. Automatic text generation by learning from
literary structures. In Proceedings of the Fifth Work-
shop on Computational Linguistics for Literature,
pages 9–19.

Natalie Dehn. 1981. Story generation after TALE-
SPIN. In IJCAI, pages 16–18.

Jacob Devlin and Spyros Matsoukas. 2012. Trait-based
hypothesis selection for machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
528–532. Association for Computational Linguis-
tics.

David K. Elson. 2012. Modeling Narrative Discourse.
Ph.D. thesis, Columbia University.

Angela Fan, David Grangier, and Michael Auli. 2018a.
Controllable abstractive summarization. In Pro-
ceedings of the 2nd Workshop on Neural Machine

52

Translation and Generation, pages 45–54. Associa-
tion for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018b.
Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 889–898, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660, Florence, Italy. Association for Computa-
tional Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylis-
tic Variation, pages 94–104, Copenhagen, Denmark.
Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6.
Association for Computational Linguistics.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1100–1111, Seattle,
Washington, USA. Association for Computational
Linguistics.

Prakhar Gupta, Vinayshekhar Bannihatti Kumar,
Mukul Bhutani, and Alan W Black. 2019. Writer-
Forcing: Generating more interesting story endings.
In Proceedings of the Second Workshop on Story-
telling, Florence, Italy. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proc. of ICML.

Daphne Ippolito, Reno Kriz, Joao Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752–3762, Florence, Italy.
Association for Computational Linguistics.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hi-
roya Takamura, and Manabu Okumura. 2016. Con-
trolling output length in neural encoder-decoders.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages

1328–1338, Austin, Texas. Association for Compu-
tational Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Sheldon Klein, John F. Aeschlimann, David F. Bal-
siger, Steven L. Converse, Claudine Court, Mark
Foster, Robin Lao, John D. Oakley, and Joel Smith.
1973. Automatic novel writing: A status report.
Technical Report 186, University of Wisconsin-
Madison.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Jiwei Li and Daniel Jurafsky. 2016. Mutual informa-
tion and diverse decoding improve neural machine
translation. CoRR, abs/1601.00372.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain. Association
for Computational Linguistics.

Fei Liu, Trevor Cohn, and Timothy Baldwin. 2018.
Narrative modeling with memory chains and seman-
tic supervision. CoRR, abs/1805.06122.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O Riedl. 2018. Event representations for au-
tomated story generation with deep neural nets. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Neil McIntyre and Mirella Lapata. 2010. Plot induc-
tion and evolutionary search for story generation. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1562–
1572.

James R. Meehan. 1977. TALE-SPIN, an interactive
program that writes stories. In Proceedings of the
5th International Joint Conference on Artificial In-
telligence (IJCAI), pages 91–98.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,

53

Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

K.M. Oinonen, Mariet Theune, Antinus Nijholt, and
J.R.R. Uijlings. 2006. Designing a story database
for use in automatic story generation, Lecture Notes
in Computer Science, pages 298–301. Springer Ver-
lag.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Mark O. Riedl and Robert Michael Young. 2010. Nar-
rative planning: Balancing plot and character. Jour-
nal of Artificial Intelligence Research, 39:217–268.

Melissa Roemmele and Andrew S. Gordon. 2015. Cre-
ative help: a story writing assistant. In Inter-
national Conference on Interactive Digital Story-
telling, pages 81–92. Springer.

Manasvi Sagarkar, John Wieting, Lifu Tu, and Kevin
Gimpel. 2018. Quality signals in generated stories.
In Proceedings of the Seventh Joint Conference on
Lexical and Computational Semantics (*SEM 2018),
New Orleans, Louisiana.

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
Plans, Goals and Understanding: an Inquiry into
Human Knowledge Structures. L. Erlbaum, Hills-
dale, NJ.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems 30, pages 6833–6844. Cur-
ran Associates, Inc.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Mariët Theune, Sander Faas, Anton Nijholt, and Dirk
Heylen. 2003. The virtual storyteller: story creation
by intelligent agents. In Proceedings of the 1st Inter-
national Conference on Technologies for Interactive
Digital Storytelling and Entertainment, pages 204–
215. Springer.

Scott R. Turner. 1993. Minstrel: a computer model of
creativity and storytelling. Ph.D. thesis, University
of California at Los Angeles.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee,
David J. Crandall, and Dhruv Batra. 2018. Diverse
beam search: Decoding diverse solutions from neu-
ral sequence models. In Proc. of AAAI.

Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Ny-
berg. 2017. Steering output style and topic in neu-
ral response generation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2140–2150, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing,
and Taylor Berg-Kirkpatrick. 2018. Unsupervised
text style transfer using language models as discrim-
inators. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 7287–7298. Curran Associates,
Inc.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Thirty-Third AAAI Conference on Artificial Intelli-
gence.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018.
Texygen: A benchmarking platform for text genera-
tion models. SIGIR.

A Appendix

Model. Figure 1 shows our modeling frame-
work.

Additional Experimental Results. Figure 2
shows the length distribution of the continuations
in the training data. Figure 3, Table 11, and Table
12 show the frequency (%) of matching the target
control variable for length, predicates, and frames,
respectively.

54

Figure 1: Our modeling framework for controllable generation.

0 5 10 15 20 25

0

2

4

6

8

10

12

14

Figure 2: The length distribution of the continuations in the training data. The horizontal axis shows continuation
lengths and the vertical axis shows the frequency (%) of the length.

Human Evaluation Setup. The form used on
Amazon Mechanical Turk is shown in Figure 4.

55

Length

0 5 10 15 20

F
re

q
u

e
n

c
y
(%

)

0

10

20

30

40

50

60

70

80

90

100

==

<=1

<=2

Figure 3: Frequency (%) of the generated continuations for different ranges of dif = |l − lp|. The horizontal axis
is the desired length. The vertical axis is the percentage of generated outputs with the given values of dif . Here l
is the story continuation length and lp is generated sentence length as the target control variable. ”==” refers to
l = lp, ”<= i” refers to |l − lp| <= i.

predicate acc predicate acc predicate acc predicate acc predicate acc
was 100 got 100 had 100 decided 94.4 went 99.9

is 100 made 99.25 were 100 found 100 get 99.95
felt 99.55 go 100 took 99.2 ended 98.25 be 99.95
told 99.9 gave 99.95 left 99.85 said 100 bought 100

came 98.7 realized 79.75 loved 99.8 have 99.1 won 100
became 99.75 put 83.6 ran 100 see 99.9 saw 98.75
started 99.85 buy 100 make 97.3 knew 99.6 looked 98.65

lost 99.05 enjoyed 99.95 called 98.5 learned 99.8 ate 95.35
turned 93.05 do 100 wait 99.85 take 99.8 fell 99.35

wanted 90.25 find 100 thought 80.05 stopped 98.65 play 100
has 98.15 eat 100 let 100 walked 99.9 did 96.55

being 99.05 done 94.05 returned 99.6 laughed 86.6 tried 99.6
’s 99.25 asked 99.9 began 93.75 helped 97.65 caught 99.6

broke 99.9 getting 99.95 keep 97.15 paid 97.1 been 97
finished 99.9 threw 99.4 spent 99.85 passed 99.95 help 98.85

are 99.65 drove 99.25 work 81.25 going 35.9 leave 99.85
brought 98.4 feel 99.75 picked 73.65 agreed 98.35 needed 24.2
worded 100 used 98.75 pay 100 kept 98.8 liked 98.65
arrived 99.2 played 99.95 come 98.7 thanked 98.3 relieved 97.35

stop 99.15 playing 98.75 cried 100 died 97.75 know 89.05

Table 11: Frequency (%) of the generated continuations containing the desired predicate.

56

frame acc frame acc frame acc frame acc
Calendric unit 99.5 Locative relation 87.4 Arriving 98.85 Quantity 92.5
Temporal collocation 99.9 Becoming 99.6 Cardinal numbers 89.05 Being obligated 97.65
Kinship 94.35 Intentionally act 99.65 Statement 98 Causation 98.55
Emotion directed 98.65 Buildings 93 Personal relationship 92.7 Food 79.2
Self motion 86.4 Capability 99.95 Desirability 98.1 Observable body parts 74.15
Experiencer focus 91.75 Time vector 99 Request 99.35 Deciding 99.6
Relational quantity 95.7 Measure duration 96.7 Frequency 99.75 People 90.8
Ingestion 86.25 Vehicle 86.45 Age 98.55 Increment 98.6
Leadership 80.6 Desiring 90.7 Stimulus focus 93.4 Activity start 95.95
Education teaching 96.5 Degree 100 Grasp 92.7 Commerce buy 98.7
Scrutiny 93.5 Locale by use 65.15 Conquering 95.3 Giving 99.3
Clothing 49.05 Attempt 98.95 Becoming aware 90.25 Building subparts 73.7
Motion 96.55 Placing 73.15 Natural features 26.7 Getting 85.05
Locating 76.55 Sufficiency 97.75 Feeling 98.7 Awareness 95.7
Experiencer obj 87.4 Working on 67.65 Aggregate 70.3 Performers and roles 87.95
Change position on a scale 72.45 Roadways 71.9 Containers 44.1 Coming to believe 92.4
Assistance 99.4 Ordinal numbers 96.5 Relative time 92.6 Choosing 96.55
Existence 88.15 Dimension 69.65 Cause harm 89.75 Perception active 87.1
Text 63.6 Cause motion 81.2 Possession 76.85 Type 78.2
Body movement 66 Opinion 87.7 Removing 74 Money 97.5
Have as requirement 25.4 Using 93.1 Storing 71.4 People by age 57.25
Contacting 73.35 Make noise 97.9 Substance 50.4 Required event 91.7
Political locales 85.3 Difficulty 89.8 Activity ongoing 94 Direction 98.6
Perception experience 35 Impact 95.6 Locale 87.25 Waiting 96.65
Concessive 95.15 Partitive 63.65 Operate vehicle 61.55 Size 98.3

Table 12: Frequency (%) of the generated continuations containing the desired frame.

57

Figure 4: The form for human evaluation of the generation systems for their potential in a collaborative writing
setting.

58

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 59–69
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Domain Differential Adaptation for Neural Machine Translation

Zi-Yi Dou, Xinyi Wang, Junjie Hu, Graham Neubig
Language Technologies Institute, Carnegie Mellon University
{zdou, xinyiw1, junjieh, gneubig}@cs.cmu.edu

Abstract

Neural networks are known to be data hungry
and domain sensitive, but it is nearly impos-
sible to obtain large quantities of labeled data
for every domain we are interested in. This ne-
cessitates the use of domain adaptation strate-
gies. One common strategy encourages gen-
eralization by aligning the global distribution
statistics between source and target domains,
but one drawback is that the statistics of differ-
ent domains or tasks are inherently divergent,
and smoothing over these differences can lead
to sub-optimal performance. In this paper, we
propose the framework of Domain Differential
Adaptation (DDA), where instead of smooth-
ing over these differences we embrace them,
directly modeling the difference between do-
mains using models in a related task. We then
use these learned domain differentials to adapt
models for the target task accordingly. Experi-
mental results on domain adaptation for neural
machine translation demonstrate the effective-
ness of this strategy, achieving consistent im-
provements over other alternative adaptation
strategies in multiple experimental settings.1

1 Introduction

Most recent success of deep neural networks rely
on the availability of high quality and labeled
training data (He et al., 2017; Vaswani et al., 2017;
Povey et al., 2018; Devlin et al., 2019). In par-
ticular, neural machine translation (NMT) models
tend to perform poorly if they are not trained with
enough parallel data from the test domain (Koehn
and Knowles, 2017). However, it is not realistic
to collect large amounts of parallel data in all pos-
sible domains due to the high cost of data collec-
tion. Moreover, certain domains by nature have far
less data than others. For example, there is much
more news produced and publicly available than

1Code is available at https://github.com/
zdou0830/DDA.

LAW MEDICAL
NMT Models

0

5

10

15

20

25

-L
og

 P
ro

ba
bi

lit
y

LAW MEDICAL
Language Models

0

5

10

15

20

25

-L
og

 P
ro

ba
bi

lit
y

Figure 1: Mean log probabilities of NMT models
and LMs trained on law and medical domains for
the words (”needle”, ”hepatic”, ”complete”, ”justify”,
”suspend”). LM and NMT probabilities are correlated
for each domain. (More examples in Section 5.1.)

more sensitive medical records. Therefore, it is
essential to explore effective methods for utilizing
out-of-domain data to train models that generalize
well to in-domain data.

There is a rich literature in domain adaptation
for neural networks (Luong and Manning, 2015;
Tan et al., 2017; Chu et al., 2017; Ying et al.,
2018). In particular, we focus on two lines of
work that are conducive to unsupervised adap-
tation, where there is no training data available
in the target domain. The first line of work fo-
cuses on aligning representations of data from dif-
ferent domains with the goal of improving data
sharing across the two domains using techniques
such as mean maximum discrepancy (Long et al.,
2015) or adversarial training (Ganin et al., 2016;
Sankaranarayanan and Balaji, 2017). However,
these methods attempt to smooth over the differ-
ences in the domains by learning domain-invariant

59

https://www.aclweb.org/anthology/D19-56%2d

features, and in the case when these differences
are actually necessary for correctly predicting the
output, this can lead to sub-optimal performance
(Xie et al., 2017). Another line of research tries to
directly integrate in-domain models of other tasks
to adapt models in the target task. For example,
Gulcehre et al. (2015) use pre-trained in-domain
LMs with out-of-domain NMT models by directly
using a weighted sum of probability distributions
from both models, or fusing the hidden states of
both models and fine-tuning. These LMs can po-
tentially capture features of the in-domain data,
but models of different tasks are inherently differ-
ent and thus coming up with an optimal method
for combining them is non-trivial.

The main intuition behind our method is that
models with different data requirements, namely
LMs and NMT models, exhibit similar behavior
when trained on the same domain, but there is little
correlation between models trained on data from
different domains (as demonstrated empirically in
Figure 1). Because of this, directly adapting an
out-of-domain NMT model by integrating an in-
domain LM (i.e. with methods in Gulcehre et al.
(2015)) may be sub-optimal, as the in-domain
and out-of-domain NMT may not be highly cor-
related. However, the difference between LMs
from two different domains will likely be similar
to the difference between the NMT models. Based
on these observations, we propose a new unsuper-
vised adaptation framework, Domain Differential
Adaptation (DDA), that utilizes models of a re-
lated task to capture domain differences. Specifi-
cally, we use LMs trained with in-domain and out-
of-domain data, which gives us hints about how
to compensate for domain differences and adapt
an NMT model trained on out-of-domain paral-
lel data. Although we mainly examine NMT in
this paper, the general idea can be applied to other
tasks as well.

We evaluate DDA in two different unsupervised
domain adaptation settings on four language pairs.
DDA demonstrates consistent improvements of up
to 4 BLEU points over an unadapted NMT base-
line, and up to 2 BLEU over an NMT baseline
adapted using existing methods. An analysis re-
veals that DDA significantly improves the NMT
model’s ability to generate words more frequently
seen in in-domain data, indicating that DDA is a
promising approach to domain adaptation of NMT
and neural models in general.

2 Background

2.1 Neural Language Models
Given a sequence of tokens y = (y1, y2, · · · , yN),
LMs compute a probability of the sequence p(y)
by decomposing it into the probability of each to-
ken yt given the history (y1, y2, · · · , yt−1). For-
mally, the probability of the sequence y is calcu-
lated as:

p(y) =
N∏

t=1

p(yt|y1, y2, · · · , yt−1).

LMs are comonly modeled using some vari-
ety of recurrent neural networks (RNN; (Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014)),
where at each timestep t, the network first outputs
a context-dependent representation sLMt , which is
then used to compute the conditional distribution
p(yt|y<t) using a softmax layer. During train-
ing, gradient descent is used to maximize the log-
likelihood of the monolingual corpus Y :

max
θLM

∑

yi∈Y
log p(yi; θLM).

2.2 Neural Machine Translation Models
Current neural machine translation models are
generally implemented in the encoder-decoder
framework (Sutskever et al., 2014; Cho et al.,
2014), where the encoder generates a context vec-
tor for each source sentence x and the decoder
then outputs the translation y, one target word at a
time.

Similarly to LMs, NMT models would also gen-
erate hidden representation sNMT

t at each timestep
t, and then compute the conditional distribution
p(yt|y<t,x) using a softmax layer. Both en-
coder and decoder are jointly trained to maximize
the log-likelihood of the parallel training corpus
(X,Y):

max
θNMT

∑

(xi,yi)∈(X,Y)

log p(yi|xi; θNMT).

During decoding, NMT models generate words
one by one. Specifically, at each time step t,
the NMT model calculates the probability of next
word pNMT(yt|y<t,x) for each of all previous hy-
potheses {y(i)≤t−1}. After appending the new word
to the previous hypothesis, new scores would be
calculated and top K ones are selected as new hy-
potheses {y(i)≤t}.

60

3 Domain Differential Adaptation

In this section, we propose two approaches under
the overall umbrella of the DDA framework: Shal-
low Adaptation (DDA-Shallow) and Deep Adap-
tation (DDA-Deep). At a high level, both methods
capture the domain difference by two LMs, trained
on in-domain (LM-in) and out-of-domain (LM-
out) monolingual data respectively. Without ac-
cess to in-domain parallel data, we want to adapt
the NMT model trained on out-of-domain parallel
data (NMT-out) to approximate the NMT model
trained on in-domain parallel data (NMT-in).

In the following sections, we assume that LM-
in, LM-out as well as the NMT-out model have
been pretrained separately before being integrated.

3.1 Shallow Adaptation

Given LM-in, LM-out, and NMT-out, our first
method, i.e. shallow adaptation (DDA-Shallow),
combines the three models only at decoding time.
As we have stated above, at each time step t,
NMT-out would generate the probability of the
next word pNMT-out(yt|y<t,x) for each of all previ-
ous hypotheses {y(i)<t}. Similarly, language models
LM-in and LM-out would output probabilities of
the next word pLM-in(yt|y<t) and pLM-out(yt|y<t),
respectively.

For DDA-Shallow, the candidates proposed by
NMT-out are rescored considering scores given by
LM-in and LM-out. Specifically, at each decoding
timestep t, the probability of the next generated
word yt, is obtained by an interpolation of log-
probabilities from LM-in, LM-out into NMT-out.

Formally, the log probability of yt is

log (p(yt)) ∝ log (pNMT-out(yt|y<t,x))
+ β [log (pLM-in(yt|y<t))− log (pLM-out(yt|y<t))] ,

(1)
where β is a hyper-parameter.2

Intuitively, Equation 1 encourages the model to
generate more words in the target domain as well
as reduce the probability of generating words in
the source domain.

3.2 Deep Adaptation

DDA-Shallow only functions during decoding
time so there is almost no learning involved. In
addition, hyper-parameter β is the same for all

2Note that this quantity is simply proportional to the log
probability, so it is important to re-normalize the probability
after interpolation to ensure

∑
k p(yt = k) = 1.

words, which limits the model’s flexibility. Our
second more expressive deep adaptation (DDA-
Deep) method enables the model to learn how to
make predictions based on the hidden states of
LM-in, LM-out, and NMT-out. We freeze the pa-
rameters of the LMs and only fine-tune the fusion
strategy and NMT parameters.

Formally, at each time step t, we have three hid-
den states s

(t)
LM-out, s

(t)
LM-in, and s

(t)
NMT-out. We then

concatenate them and use a gating strategy to com-
bine the three hidden states:

s
(t)
concat =

[
s
(t)
LM-out; s

(t)
LM-in; s

(t)
NMT-out

]
, (2.1)

g
(t)
LM-out, g

(t)
LM-in, g

(t)
NMT-out = F

(
s
(t)
concat

)
, (2.2)

s
(t)
DA = g

(t)
LM-out � s

(t)
LM-out + g

(t)
LM-in � s

(t)
LM-in

+ g
(t)
NMT-out � s

(t)
NMT-out.

(2.3)

Here F is a linear transformation and � stands for
elementwise multiplication. As the three gating
values g, we use matrices of the same dimension
as the hidden states. This design gives the model
more flexibility in combining the states.

One potential problem of training with only
out-of-domain parallel corpora is that our method
cannot learn a reasonable strategy to predict in-
domain words, since it would never come across
them during training or fine-tuning. In order
to solve this problem, we copy some in-domain
monolingual data from target side to source side as
in Currey et al. (2017) to form pseudo in-domain
parallel corpora. The pseudo in-domain data is
concatenated with the original dataset when train-
ing the models.

4 Experiments

4.1 Setup
Datasets. We test both DDA-Shallow and DDA-
Deep in two different data settings. In the
first setting we use the dataset of Koehn and
Knowles (2017), training on the law, medical and
IT datasets of the German-English OPUS cor-
pus3 (Tiedemann, 2012). The standard splits con-
tain 2K development and test sentences in each
domain, and about 715K, 1M and 337K training
sentences respectively. In the second setting, we
train our models on the WMT-14 datasets4 (Bojar

3http://opus.nlpl.eu
4https://www.statmt.org/wmt14/translation-task.html

61

Method
De-En Cs-En De-En

LAW MED IT WMT
MED IT LAW IT LAW MED TED TED

w/o copying monolingual data
Koehn and Knowles (2017) 12.1 3.5 3.9 2.0 1.9 6.5 - -
Baseline 13.60 4.34 4.57 3.29 4.30 8.56 24.25 24.00
LM-Shallow 13.74 4.41 4.54 3.41 4.29 8.15 24.29 24.03
DDA-Shallow 16.39* 5.49* 5.89* 4.51* 5.87* 10.29* 26.52* 25.53*
w/ copying monolingual data
Baseline 17.14 6.14 5.09 4.59 5.09 10.65 25.60 24.54
LM-Deep 17.74 6.01 5.16 4.87 5.01 11.88 25.98 25.12
DDA-Deep 18.02† 6.51* 5.85* 5.39* 5.52† 12.48* 26.44* 25.46†

w/ back-translated data
Baseline 22.89 13.36 9.96 8.03 8.68 13.71 30.12 28.88
LM-Deep 23.58 14.04 10.02 9.05 8.48 15.08 30.34 28.72
DDA-Deep 23.74 13.96 10.74* 8.85 9.28* 16.40* 30.69 28.85

Table 1: Translation accuracy (BLEU; Papineni et al. (2002)) under different settings. The first three rows list the
language pair, the source domain, and the target domain. “LAW”, “MED” and “IT” represent law, medical and IT
domains, respectively. We use compare-mt (Neubig et al., 2019) to perform significance tests (Koehn, 2004) and
statistical significance compared with the best baseline is indicated with ∗ (p < 0.005) and † (p < 0.05).

et al., 2014) which contain data from several do-
mains and test on the multilingual TED test sets of
Duh (2018).5 We consider two language pairs for
this setting, namely Czech and German to English.
The Czech-English and German-English datasets
consist of about 1M and 4.5M sentences respec-
tively and the development and test sets contain
about 2K sentences. Byte-pair encoding (Sennrich
et al., 2016b) is employed to process training data
into subwords with a vocabulary size of 50K for
both settings.

Models. NMT-out is a 500 dimensional 2-layer
attentional LSTM encoder-decoder model (Bah-
danau et al., 2015) implemented on top of Open-
NMT (Klein et al., 2017). LM-in and LM-out
are also 2-layer LSTMs with hidden sizes of 500.
Here we mainly test on RNN-based models, but
there is nothing architecture-specific in our meth-
ods preventing them from being easily adapted
to other architectures such as the Transformer
model (Vaswani et al., 2017).

Baselines. We compare our methods with three
baseline models: 1) Shallow fusion and deep fu-
sion (Gulcehre et al., 2015): they directly combine
LM-in with NMT-out6. Shallow fusion combines
LM-in and NMT-out during decoding while deep

5http://www.cs.jhu.edu/ kevinduh/a/multitarget-tedtalks
6To ensure the fairness of comparison, we use our gating

formula (Equation (2.2)) and fine-tune all parts of NMT-out
for deep fusion.

fusion learns to combine hidden states of LM-
in and NMT-out. We denote shallow fusion and
deep fusion as “LM-Shallow” and “LM-Deep”.
2) The copied monolingual data model (Currey
et al., 2017) which copies target in-domain mono-
lingual data to the source side to form synthetic in-
domain data. 3) Back-translation (Sennrich et al.,
2016a) which enriches the training data by gener-
ating synthetic in-domain parallel data via a target-
to-source NMT model which is trained on a out-
of-domain corpus.

4.2 Main Results
4.2.1 Adapting Between Domains
The first 6 result columns of Table 1 show the ex-
perimental results on the OPUS dataset. We can
see the LM-Shallow model can only marginally
improve and sometimes even harms the perfor-
mance of baseline models. On the other hand, our
proposed DDA-Shallow model can outperform the
baseline significantly by over 2 BLEU points. This
reinforces the merit of our main idea of explicitly
modeling the difference between domains, instead
of simply modeling the target domain itself.

Under the setting where additional copied in-
domain data is added into the training set, both
LM-Deep and DDA-Deep perform better than
the baseline model, with DDA-Deep consistently
outperforming the LM-Deep method, indicating
the presence of an out-of-domain LM is help-
ful. We also compare with back-translation, a

62

strong baseline for domain adaptation. We obtain
back-translated data via a target-to-source NMT
model and concatenate the back-translated data
with the original training data to train models.
Again, DDA generally brings improvements over
the baseline and LM-Deep with back-translated
data.

4.2.2 Adapting from a General Domain to a
Specific Domain

The last two result columns of Table 1 show the
experimental results in the WMT-TED setting. As
we can see, in this data setting our baseline perfor-
mance is much stronger than the first setting. Sim-
ilarly to the previous setting, DDA-Shallow can
significantly improve the baseline model by over
2 BLEU points. However, the DDA-Deep model
cannot outperform baselines by a large margin,
probably because the baseline models are strong
when adapting from a general domain to a specific
domain and thus additional adaptation strategies
can only lead to incremental improvements.

5 Analysis

5.1 Domain Differences between NMT
Models and LMs

−4 −2 0 2 4 6 8 10

log pLM−LAW − log pLM−MED

−4

−2

0

2

4

6

8

10

lo
g
p N

M
T
−
L
A
W
−

lo
g
p N

M
T
−
M
E
D

Figure 2: Correlation between log pNMT-LAW −
log pNMT-MED and log pLM-LAW − log pLM-MED. We de-
code each model on the medical set by feeding in the
gold labels and calculate the mean of total log proba-
bilities. We plot 100 words that appear frequently in
both domains.

In this section, we visualize the correlation be-
tween log pNMT-in − log pNMT-out and log pLM-in −
log pLM-out. We treat the law domain as the
target domain and the medical domain as the

source domain. Specifically, we train four models
NMT-LAW, NMT-MED, LM-LAW, LM-MED
with law and medical data and decode each model
on the medical set by feeding in the gold labels and
calculate the mean of total log probabilities, then
plot the correlation of 100 words that appear most
frequently in both domains. Figure 2 shows that
the difference between NMT models and LMs are
roughly correlated, which supports the main moti-
vation of the DDA framework.

5.2 Fusing Different Parts of the Models

In this section, we try to fuse different parts of
LMs and NMT models. Prior works have tried dif-
ferent strategies such as fusing the hidden states of
LMs with NMT models (Gulcehre et al., 2015) or
combining multiple layers of a deep network (Pe-
ters et al., 2018). Therefore, it would be interesting
to find out which combination of hidden vectors
in our DDA-Deep method would be more helpful.
Specifically, we try to fuse word embeddings, hid-
den states and output probabilities.

Components LAW-MED MED-LAW
Word-Embed 17.43 5.26
Hidden States 18.02 5.85

Word-Embed &
Hidden States 18.00 5.79

Table 2: Performance of DDA-Deep when fusing dif-
ferent parts of models on the law and medical datasets.

We conduct experiments on the law and med-
ical datasets in OPUS, and experimental results
are shown in Table 2. We find that generally fus-
ing hidden states is better than fusing word em-
beddings, and fusing hidden states together with
word embeddings does not show any improve-
ments over simply fusing hidden states alone.
These results indicate that combining the higher-
level information captured by the encoder states is
more advantageous for domain adaptation. Also,
we found that directly using DDA-Deep to fuse
output probabilities was unstable even after try-
ing several normalization techniques, possibly be-
cause of the sensitivity of output probabilities.

5.3 Analysis of the Adaptation Effect

In this section, we quantitatively and qualitatively
analyze the effect of our proposed DDA frame-
work on adapting the NMT model to in-domain

63

LAW-MED LAW-IT MED-LAW MED-IT IT-LAW IT-MED
0

50

100

150

200

250

D
om

ai
n-

S
pe

ci
fic

 W
or

ds

0 0 0 0 0 00 0 0 0 0 2

80

22

63

35

157
143

103

34

82

37

189

242

Baseline DDA-Shallow Copy DDA-Deep

LAW-MED LAW-IT MED-LAW MED-IT IT-LAW IT-MED
0

20

40

60

80

A
da

pt
at

io
n

E
xt

en
t

27.3

4.9
11.4

2.4
11.4

5.3

52.5

17.7 18.3
8.8

87.8

17.8

45.7

25.8

11.3
17.4

10.6 13.2

58.1

34.2

13.0

29.6

18.7 17.1

LAW-MED LAW-IT MED-LAW MED-IT IT-LAW IT-MED
0

0.4

0.8

1.2

1.6

A
da

pt
at

io
n

A
cc

ur
ac

y

0.34

0.14
0.06 0.03 0.09 0.14

0.54

0.20
0.10 0.09

0.24 0.25

1.32

0.76

0.16

0.45

0.19

0.57

1.53

0.85

0.19

0.68

0.27

0.61

Figure 3: Number of generated domain-specific sub-
words, scores of adaptation extent and adaptation accu-
racy for each method. Top: count of words only exist in
in-domain data produced by different models; Middle:
adaptation extent of different models; Bottom: adapta-
tion accuracy of different models.

data. We conduct analysis on the level of the sub-
words that were used in the MT system, and study
whether our methods can generate in-domain sub-
words that have never appeared or appeared less
frequently in the out-of-domain dataset as well
as whether our methods can generate these in-
domain subwords accurately.

First, we focus on domain-specific subwords,
i.e. subwords that appear exclusively in the in-
domain data. The counts of these subwords are
shown in Figure 3. In general, both the base-
line and DDA-Shallow struggle at generating sub-
words that never appear in the out-of-domain par-
allel data. On the other hand, copying monolin-
gual data performs better in this facet, because it
exposes the model to subwords that appear only
in the in-domain data. DDA-Deep generates the
largest number of in-domain subwords among the
four models, indicating the effectiveness of our
method.

Second, we propose two subword-level evalu-
ation metrics that study whether the models can
generate in-domain subwords and if the generated
in-domain subwords are correct. We first define

Source warum wurde Ab- ili- fy zugelassen ?

Reference why has Ab- ili- fy been approved ?

Baseline
reasons was received why a reminder
was accepted ?

DDA-Shallow why has been approved?

Copy why ,

DDA-Deep why was Ab- ili- fy authorised ?

Table 3: Translation examples under the law to medi-
cal adaptation setting.

metric “Adaptation Extent” (AE) as follows:

AE =
1

|V |
∑

w∈V

freq in(w)
freq out(w)

count(w), (3)

where V is the whole vocabulary, freq in(w) and
freq out(w) represent the frequency of subword w
in both in-domain and out-of-domain corpora, and
count(w) measures how many times subword w
appears in the translation result.

We define “Adaptation Accuracy” (AA) in a
similar way:

AA =
1

|V |
∑

w∈V

freq in(w)
freq out(w)

F1(w), (4)

where F1 denotes the F1-score of subword w. In
order to avoid dividing by zero, we use add-one
smoothing when calculating freq out(w). While
AE measures the quantity of in-domain subwords
the models can generate, AA tells us the quality
of these subwords, namely whether the in-domain
subwords form meaningful translations.

We plot the AE and AA scores of our methods
as well as the baselines in Figure 3. The AE scores
demonstrate that both DDA-Shallow and DDA-
Deep adapt the model to a larger extent compared
to other baselines even though DDA-Shallow fails
to generate domain-specific subwords. In addi-
tion, the AA scores reveal that DDA-Deep outper-
forms other methods in terms of adaptation accu-
racy while DDA-Shallow is relatively weak in this
respect. However, it should be noted that there
is still large gap between deep adaptation method
and the upper bound where the gold reference is
used as a “translation”; the upper bound is about
10 for each setting.

We also we sample some translation results and
show them in Table 3 to qualitatively demonstrate
the differences between the methods. We could

64

Strategy LAW-MED MED-LAW
LM-in + LM-out 18.02 6.51

two LMs-in 17.60 6.06
two LMs-out 17.42 6.03

two LMs-general 17.64 6.22

Table 4: Performance of ensembling different LMs on
the law and medical datasets. LMs-general are trained
with both in-domain and out-of-domain datasets.

see that by modifying the output probabilities,
the DDA-Shallow strategy has the ability to ad-
just tokens translated by the baseline model to
some extent, but it is not capable of generating the
domain-specific subwords “Ab- i li- fy”. However,
the DDA-Deep strategy can encourage the model
to generate domain-specific tokens and make the
translation more correct.

All of the above quantitative and qualitative re-
sults indicate that our strategies indeed help the
model adapt from the source to target domains.

5.4 Necessity of Integrating both LMs

In this section, we further examine the necessity
of integrating both in-domain and out-of-domain
LMs. Although previous experimental results par-
tially support the statement, we perform more de-
tailed analysis to ensure the gain in BLEU points
is because of the joint contribution of LM-in and
LM-out.

Ensembling LMs. Ensembling multiple models
is a common and broadly effective technique for
machine learning, and one possible explanation
for our success is that we are simply adding more
models into the mix. To this end, we compare
DDA-Deep with three models: the first one in-
tegrates NMT-out with two LMs-in trained with
different random seeds and the second one inte-
grates NMT-out with two LMs-out; we also inte-
grate two general-domain LMs which are trained
on both the in-domain and out-of-domain data and
compare the performance. The experimental re-
sults are shown in Table 4.

We can see that DDA-Deep achieves the best
performance compared with the three other mod-
els, demonstrating the gain in BLEU is not simply
because of using more models.

Continued Training. In this section, we attempt
to gain more insights about the contribution of

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Iterations

20

40

60

80

100

120

140

P
er

pl
ex

ity
 o

n
D

ev
 S

et

no LMs
LM-in
LM-out
LM-in + LM-out

Figure 4: Perplexity on the development set for each
method under the continued training setting. “no
LMS”, “LM-in”, “LM-out” and “LM-in + LM-out” de-
note the baseline model, LM-Deep with LM-in, LM-
Deep with LM-out and DDA-Deep respectively.

LM-in and LM-out by investigating how DDA-
Deep behaves under a continued training setting,
where a small number of in-domain parallel sen-
tences are available. We first train the NMT-
out model until convergence on the out-of-domain
corpus, and then fine-tune it with DDA-Deep on
the in-domain corpus. Here we use the medi-
cal and IT datasets as our out-of-domain and in-
domain corpora respectively, mainly because the
baseline model performs poorly under this setting.
We randomly select 10, 000 parallel sentences in
the in-domain dataset for continued training.

We freeze LM-in and LM-out as before and
fine-tune the NMT-out model. The results are
shown in Figure 4. We find that the perplexity
of deep adaptation method on the development
set drops more dramatically compared to baseline
models. Figure 4 shows that integrating only LM-
in or LM-out with the NMT model does not help,
and sometimes even hurts the performance. This
finding indicates that there indeed exists some
correlation between LMs trained on different do-
mains. Using both LM-in and LM-out together is
essential for the NMT model to utilize the domain
difference to adapt more effectively.

However, if we look at the BLEU points on the
development set, DDA-deep with continued train-
ing performs much worse than the baseline model
(13.36 vs. 15.61), as shown in Table 5 (β = 0).
This sheds light on some limitations of our pro-
posed method, which we will discuss in the next
section.

65

Coverage penalty β 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Baseline (no LMs) 15.61 16.28 17.26 17.59 17.21 16.39 15.96
LM-Deep (LM-out) 13.56 14.61 15.52 15.92 15.98 15.76 15.24
LM-Deep (LM-in) 12.00 13.36 14.56 15.10 15.62 15.98 15.57
DDA-Deep (LM-in + LM-out) 13.36 15.18 17.52 18.46 18.62 18.03 17.17

Table 5: BLEU points of models after continued training on the IT development dataset with different values of
coverage penalty β.

5.5 Limitations of Current DDA Methods

Although our two proposed methods under the
DDA framework achieve impressive results on un-
supervised domain adaptation for NMT, the trans-
lation results still fall behind the gold reference by
a large margin and the DDA-Deep performs much
worse than the baseline model under a continued
training setting as demonstrated in previous sec-
tions. In this section, we specify some limitations
with our proposed methods and list a few future
directions.

The objectives of LMs and NMT models are
inherently different: LMs care more about the
fluency whereas NMT models also need to con-
sider translation adequacy, that is, the translations
should faithfully reflect the source sentence (Tu
et al., 2016). Therefore, directly integrating LMs
with NMT models might have a negative impact
on adequacy.

To verify this hypothesis, under the continued
training setting we adopt a decoding-time cover-
age penalty (Wu et al., 2016), which is a simple yet
effective strategy to reduce the number of dropped
tokens. As shown in Table 5, the coverage penalty
can improve the deep adaptation method by more
than 5 BLEU points while the baseline model can
only be improved by 2 BLEU points. The best
DDA-Deep method outperforms the baseline by
1.03 BLEU points.

These results suggest some promising fu-
ture directions for designing models under the
DDA framework. Although current DDA meth-
ods can extract domain differences from two LMs,
they cannot fully reduce the negative effect of LM
objective on the NMT model. Therefore, it may
be useful to add domain related priors that en-
courage the in-domain annd out-of-domain LMs
to be more distinct, so that they can capture more
domain-specific information. Another possible
option is to add extra objectives to LM pretrain-
ing so that it can be fused with the NMT model
more seamlessly.

6 Related Work

Finally, we overview related works in the general
field of unsupervised domain adaptation, and then
list some specific domain adaptation strategies for
neural machine translation.

6.1 Unsupervised Domain Adaptation
Prior unsupervised domain adaptation methods
for neural models mainly address the problem
by aligning source domain and target domain by
minimizing certain distribution statistics. For in-
stance, Long et al. (2015) propose deep adaptation
networks that minimize a multiple kernel max-
imum mean discrepancy (MK-MMD) between
source and target domains. Sankaranarayanan
and Balaji (2017) on the other hand utilize ad-
versarial training to match different domains. Re-
searchers have also tried to use language models
for unsupervised domain adaptation. For exam-
ple, Siddhant et al. (2019) propose to apply Em-
beddings from Language Models (ELMo) (Peters
et al., 2018) and its variants in unsupervised trans-
fer learning.

6.2 Domain Adaptation for NMT
Domain adaptation is an active research topic in
NMT (Chu and Wang, 2018). Many previous
works focus on the setting where a small amount
of in-domain data is available. For instance, con-
tinued training (Luong and Manning, 2015; Fre-
itag and Al-Onaizan, 2016) is one of the most pop-
ular methods, whose basic idea is to first train an
NMT model on out-of-domain data and then fine-
tune it on the in-domain data. Also, Wang et al.
(2017) propose instance weighting methods for
NMT domain adaptation problem, the main goal
of which is to assign higher weights to in-domain
data than out-of-domain data.

Using LMs or monolingual data to address do-
main adaptation has been investigated by several
researchers (Sennrich et al., 2016a; Currey et al.,
2017; Hu et al., 2019). Moore and Lewis (2010);

66

Axelrod et al. (2011) use LMs to score the out-of-
domain data and then select data that are similar
to in-domain text based on the resulting scores, a
paradigm adapted by Duh et al. (2013) to neural
models. Gulcehre et al. (2015) propose two fu-
sion techniques, namely shallow fusion and deep
fusion, to integrate LM and NMT model. Shal-
low fusion mainly combines LM and NMT model
during decoding while deep fusion integrates the
two models during training. Researchers have also
proposed to perform adaptation for NMT by re-
trieving sentences or n-grams in the training data
similar to the test set (Farajian et al., 2017; Bapna
and Firat, 2019). However, it can be difficult to
find similar parallel sentences in domain adapta-
tion settings.

7 Conclusion

We propose a novel framework of domain differ-
ential adaptation (DDA) that models the differ-
ences between domains with the help of models
in a related task, based on which we adapt mod-
els for the target task. Two simple strategies un-
der the proposed framework for neural machine
translation are presented and are demonstrated to
achieve good performance. Moreover, we intro-
duce two subword-level evaluation metrics for do-
main adaptation in machine translation and analy-
ses reveal that our methods can adapt models to a
larger extent and with a higher accuracy compared
with several alternative adaptation strategies.

However, as shown in our analysis, there are
certain limitations for our current methods. Future
directions include adding more prior knowledge
into our methods as well as considering more so-
phisticated combining strategies. We will also val-
idate our framework on other pairs of tasks, such
as text summarization and language modeling.

Acknowledgements

We are grateful to anonymous reviewers for their
helpful suggestions and insightful comments. We
also thank Junxian He, Austin Matthews, Paul
Michel for proofreading the paper.

This material is based upon work generously
supported partly by the National Science Foun-
dation under grant 1761548 and the Defense Ad-
vanced Research Projects Agency Information In-
novation Office (I2O) Low Resource Languages
for Emergent Incidents (LORELEI) program un-
der Contract No. HR0011-15-C0114. The views

and conclusions contained in this document are
those of the authors and should not be inter-
preted as representing the official policies, either
expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Ankur Bapna and Orhan Firat. 2019. Non-parametric
adaptation for neural machine translation. In Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In
Workshop on Machine Translation (WMT).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Chenhui Chu and Rui Wang. 2018. A survey of domain
adaptation for neural machine translation. In Inter-
national Conference on Computational Linguistics
(COLING).

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
Conference on Machine Translation (WMT).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

67

Kevin Duh. 2018. The multitarget ted talks task.
http://www.cs.jhu.edu/˜kevinduh/a/
multitarget-tedtalks/.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Ha-
jime Tsukada. 2013. Adaptation data selection us-
ing neural language models: Experiments in ma-
chine translation. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

M Amin Farajian, Marco Turchi, Matteo Negri, and
Marcello Federico. 2017. Multi-domain neural ma-
chine translation through unsupervised adaptation.
In Conference on Machine Translation (WMT).

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
arXiv preprint arXiv:1612.06897.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research,
17(1):2096–2030.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In International Con-
ference on Computer Vision (ICCV).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Junjie Hu, Mengzhou Xia, Graham Neubig, and Jaime
Carbonell. 2019. Domain adaptation of neural ma-
chine translation by lexicon induction. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Workshop
on Neural Machine Translation (WMT).

Mingsheng Long, Yue Cao, Jianmin Wang, and
Michael I Jordan. 2015. Learning transferable fea-
tures with deep adaptation networks. In Interna-
tional Conference on Machine Learning (ICML).

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In International Workshop
on Spoken Language Translation (IWSLT).

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL) Demo Track.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li,
Hainan Xu, Mahsa Yarmohamadi, and Sanjeev Khu-
danpur. 2018. Semi-orthogonal low-rank matrix
factorization for deep neural networks. In Annual
Conference of the International Speech Communi-
cation Association (INTERSPEECH).

Swami Sankaranarayanan and Yogesh Balaji. 2017.
Generate to adapt: Aligning domains using gener-
ative adversarial networks. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Annual Meeting of the
Association for Computational Linguistics (ACL).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Aditya Siddhant, Anuj Goyal, and Angeliki Metalli-
nou. 2019. Unsupervised transfer learning for spo-
ken language understanding in intelligent agents. In
AAAI Conference on Artificial Intelligence (AAAI).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems (NeurIPS).

Ben Tan, Yu Zhang, Sinno Jialin Pan, and Qiang Yang.
2017. Distant domain transfer learning. In AAAI
Conference on Artificial Intelligence (AAAI).

68

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In International Conference on Lan-
guage Resources and Evaluation (LREC).

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy,
and Graham Neubig. 2017. Controllable invariance
through adversarial feature learning. In Advances in
Neural Information Processing Systems (NeurIPS).

Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang.
2018. Transfer learning via learning to transfer.
In International Conference on Machine Learning
(ICML).

69

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 70–79
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Transformer-based Model for Single Documents Neural Summarization

Elozino Egonmwan and Yllias Chali
University of Lethbridge
Lethbridge, AB, Canada

{elozino.egonmwan, yllias.chali}@uleth.ca

Abstract

We propose a system that improves perfor-
mance on single document summarization
task using the CNN/DailyMail and News-
room datasets. It follows the popular encoder-
decoder paradigm, but with an extra focus on
the encoder. The intuition is that the probabil-
ity of correctly decoding an information sig-
nificantly lies in the pattern and correctness of
the encoder. Hence we introduce, encode –
encode – decode. A framework that encodes
the source text first with a transformer, then a
sequence-to-sequence (seq2seq) model. We
find that the transformer and seq2seq model
complement themselves adequately, making
for a richer encoded vector representation. We
also find that paying more attention to the vo-
cabulary of target words during abstraction im-
proves performance. We experiment our hy-
pothesis and framework on the task of ex-
tractive and abstractive single document sum-
marization and evaluate using the standard
CNN/DailyMail dataset and the recently re-
leased Newsroom dataset.

1 Introduction

Document summarization has been an active area
of research, especially on the CNN/DailyMail
dataset. Even with recent progress (Gehrmann
et al., 2018; Chen and Bansal, 2018), there is
still some work to be done in the field. Al-
though extractive summarization seem
to be less challenging because new words are not
generated, identifying salient parts of the docu-
ment without any guide in the form of a query, is
a substantial problem to tackle.

Earlier approaches for extractive summariza-
tion use manual-feature engineering implemented
with graphs (Parveen and Strube, 2015; Erkan and
Radev, 2004), integer linear programming (ILP)
(Boudin et al., 2015; Nayeem and Chali, 2017).

More recent approaches are data-driven and im-
plement a variety of neural networks (Jadhav and
Rajan, 2018; Narayan et al., 2017) majorly with an
encoder-decoder framework (Narayan et al., 2018;
Cheng and Lapata, 2016).

Similar to the work of Nallapati et al. (2017), we
consider the extractive summarization task as a se-
quence classification problem. A major challenge
with this approach, is the fact that the training data
is not sequentially labelled. Hence creating one
from the abstractive ground-truth summary, is cru-
cial. We improve on Nallapati et al. (2017)’s ap-
proach to generate this labelled data, and evalua-
tion shows that our extractive labels are more ac-
curate. Another hurdle in this task, is the imbal-
ance in the created data, that is, most of the doc-
ument’s sentences are labelled 0 (excluded from
the summary) than 1, because just a few sentences
actually make up a summary. Hence the neural ex-
tractor tends to be biased and suffer from a lot of
false-negative labels. We also present a simple ap-
proach to reduce this bias. Most importantly, our
neural extractor uses the recent bidirectional trans-
former encoder (Vaswani et al., 2017) with details
provided in Section 3.1.

More interesting than extractive summaries,
abstractive summaries correlate better with
summaries that a human would present.
Abstractive summarization does not
simply reproduce salient parts of the document
verbatim, but rewrites them in a concise form,
usually introducing novel words along the way
by utilizing some key abstraction techniques such
as paraphrasing (Gupta et al., 2018), compres-
sion (Filippova et al., 2015) or sentence fusion
(Barzilay and McKeown, 2005). However, it is
met with major challenges like grammatical cor-
rectness and repetition of words especially when
generating long-worded sentences. Nonetheless
remarkable progress have been achieved with the

70

https://www.aclweb.org/anthology/D19-56%2d

use of seq2seq models (Gehrmann et al., 2018;
See et al., 2017; Chopra et al., 2016; Rush et al.,
2015) and a reward instead of loss function via
deep-reinforcement learning (Chen and Bansal,
2018; Paulus et al., 2017; Ranzato et al., 2015).

We see abstractive summarization in same light
as several other authors (Chen and Bansal, 2018;
Hsu et al., 2018; Liu et al., 2018) – extract salient
sentences and then abstract; thus sharing similar
advantages as the popular divide-and-conquer al-
gorithm. More-so, it mitigates the problem of in-
formation redundancy, since the mini-source, ie
extracted document, contains distinct salient sen-
tences. Our abstractive model is a blend of the
transformer and seq2seq model. We notice im-
provements using this framework in the abstrac-
tive setting. This is because, to generate coher-
ent and grammatically correct sentences, we need
to be able to learn long-term dependency rela-
tions. The transformer complements the seq2seq
model in this regard with its multi-head self at-
tention. Also the individual attention heads in the
transformer model mimics behavior related to the
syntactic and semantic structure of the sentence
(Vaswani et al., 2017, 2018). Hence, the trans-
former produces a richer meaningful vector repre-
sentation of the input, from which we can encode
a fixed state vector for decoding.

The main contributions of this work are:

• We present a simple algorithm for building a
sentence-labelled corpus for extractive sum-
marization training that produces more accu-
rate results.

• We propose a novel framework for the task
of extractive single document summarization
that improves the current state-of-the-art on
two specific datasets.

• We introduce the encode - encode - decode
paradigm using two complementary models,
transformer and seq2seq for generating ab-
stractive summaries that improves current top
performance on two specific datasets.

2 Task Definition

Given a document D = (S1, ..., Sn) with n
sentences comprising of a set of words DW =
{d1, ..., dw}, the task is to produce an extractive
(SE) or abstractive (SA) summary that contains
salient information in D, where SE ⊆ DW and
SA = {w1, ..., ws} | ∃wi 6∈ DW .

Figure 1: Extractive Model Architecture

3 Method

We describe our summarization model in two
modules – Extraction and Abstraction. The ab-
straction module simply learns to paraphrase and
compress the output of the extracted document
sentences.

3.1 Extraction

As illustrated in Figure 1, our model classifies
each sentence in a document as being summary-
worthy or not. However, in order to enhance this
sequence classification process, we encode the in-
put document with a TRANSFORMER. A logistic
classifier then learns to label each sentence in the
transformed document.

3.1.1 TRANSFORMER Encoder
The input to the Transformer is the document rep-
resentation, which is a concatenation of the vec-
tor representation of its sentences. Each sentence
representation is obtained by averaging the vector
representation of its constituent words.

Si = 1/m
m∑

i=1

wi (1)

Dj = S1‖S2‖. . . ‖Sn (2)

71

The transformer encoder is composed of 6
stacked identical layers. Each layer contains
2 sub-layers with multi-head self attention and
position-wise fully connected feed-forward net-
work respectively. Full details with implementa-
tion are provided in (Vaswani et al., 2017, 2018).
The bidirectional Transformer often referred to as
the Transformer encoder learns a rich representa-
tion of the document that captures long-range syn-
tactic and semantic dependency between the sen-
tences.

3.1.2 Sentence Extraction
The final layer of our extraction model is a soft-
max layer which performs the classification. We
learn the probability of including a sentence in the
summary,

yip = softmax(WS‘
i + b) (3)

where W and b are trainable parameters and S‘
i is

the transformed representation of the ith sentence
in document Dj , by minimizing the cross-entropy
loss

(4)L = −(ytlog(yp) + (1− yt)log(1− yp))

between the predicted probabilities, yp and true
sentence-labels, yt during training.

3.1.3 Extractive Training
Filtering Currently, no extractive summariza-
tion dataset exists. Hence it is customary to create
one from the abstractive ground-truth summaries
(Chen and Bansal, 2018; Nallapati et al., 2017).
We observe however, that some summaries are
more abstractive than others. Since the extractive
labels are usually gotten by doing some n-gram
overlap matching, the greater the abstractiveness
of the ground-truth the more inaccurate the tuned
extractive labels are. We filter out such samples 1

as illustrated in Table 1. In our work, we consider
a reference summary Rj as overly abstractive if
it has zero bigram overlap with the corresponding
document Dj , excluding stop words.

#bigram(Dj , Rj) == 0 (5)

See et al. (2017) and Paulus et al. (2017) trun-
cate source documents to 400 tokens and target

1Filtering is used only for the training set, to ensure that
evaluation comparisons on the test set with existing models
are fair

summaries to 100 tokens. We totally exclude doc-
uments with more than 30 sentences and trun-
cate or pad as necessary to 20 sentences per doc-
ument. From the over 280,000 and 1.3M train-
ing pairs in the CNN/DM and Newsroom training
dataset respectively, our filtering yields approxi-
mately 150,000 and 250,000 abstractive summa-
rization sub-dataset. We report evaluation scores
using the training sets as-is versus our filtered
training sets, to show that filtering the training
samples does improve results.

Document: world-renowned chef, author
and emmy winning television personality an-
thony bourdain visits quebec in the next
episode of “ anthony bourdain : parts un-
known, ” airing sunday, may 5, at 9 p.m. et.
follow the show on twitter and facebook.
Summary: 11 things to know about quebec.
o canada! our home and delicious land.’

Table 1: Example of an overly abstractive summary
with zero bigram overlap with the document from a
CNN/DM training sample.

Tuning We use a very simple approach to cre-
ate extractive labels for our neural extractor. We
hypothesize that each reference summary sen-
tence originates from at least one document sen-
tence. The goal is to identify the most-likely doc-
ument sentence. Different from Nallapati et al.
(2017)’s approach to greedily add sentences to
the summary that maximizes the ROUGE score,
our approach is more similar to Chen and Bansal
(2018)’s model that calculates the individual refer-
ence sentence-level score as per its similarity with
each sentence in the corresponding document.
However, our sentence-level similarity score is
based on its bigram overlap:

(6)score(Rt
j) = amaxi(bigram(Di

j , R
t
j))

for each tth sentence in the reference summary,
Rj , per ith sentence in document Dj , in contrast
to Chen and Bansal (2018)’s that uses ROUGE-
Lrecall score. Additionally, for every time both
words in the set of bigrams-overlap are stopwords,
we decrement the similarity score by 1, for exam-
ple, (on, the) is an invalid bigram-overlap while
(the, President) is valid. We do this, to capture
more important similarities instead of trivial ones.

For statistical purposes, we evaluate our extrac-
tive trainer for tuning the document’s sentences to

72

0’s and 1’s against (Nallapati et al., 2017)’s which
is our foundation.

Extractive Trainer R-1 R-2 R-L
Ours 49.5 27.8 45.8

Ours + filter 51.4 31.7 50.3
(Nallapati et al., 2017) 48.4 27.5 44.4

Table 2: ROUGE-F1 (%) scores of manually crafted
extractive trainers for producing sentence-level extrac-
tive labels for CNN/DM.

We apply our tuned dataset to the neural extrac-
tive summarizer explained in Sections 3.1.1 and
3.1.2 and report results in Tables 3 and 4.

Imbalanced Extractive Labels Because a sum-
mary is a snippet of the document, the major-
ity of the labels are rightly 0 (excluded from the
summary). Hence a high classification accuracy
does not necessarily translate to a highly salient
summary. Therefore, we consider the F1 score,
which is a weighted average of the precision and
recall, and apply an early stopping criteria when
minimizing the loss, if the F1 score does not in-
crease after a set number of training epochs. Addi-
tionally during training, we synthetically balance
the labels, by forcing some random sentences to
be labelled as 1 and subsequently masking their
weights.

Number of sentences to extract The number of
extracted sentences is not trivial, as this signifi-
cantly affects the summary length and hence eval-
uation scores. Chen and Bansal (2018) introduced
a stop criterion in their reinforcement learning pro-
cess. We implemented a basic subjective approach
based on the dataset. Since the gold summaries are
typically 3 or 4 sentences long, we extract the top
3 sentences by default, but proceed to additionally
extract a 4th sentence if the confidence score from
the softmax function is greater than 0.55.

3.2 Abstraction
The input to our abstraction module is a subset of
the document’s sentences which comprises of the
output of the extraction phase from Section 3.1.2.
For each document Dj , initially comprising of n
sentences, we abstract its extracted sentences,

SE
j = {S1

j , S
2
j , ..., S

m
j } (7)

where m < n and SE
j ⊆ Dj , by learning to

jointly paraphrase (Gupta et al., 2018) and com-
press (Filippova et al., 2015). We add one more

encoding layer to the standard encoder-aligner-
decoder (Bahdanau et al., 2014; Luong et al.,
2015), ie, encode-encode-align-decode. The in-
tuition is to seemingly improve the performance
of the decoder by providing an interpretable and
richly encoded sequence. For this, we interleave
two efficient models – transformer (Vaswani et al.,
2017) and sequence-to-sequence (Sutskever et al.,
2014), specifically GRU-RNN (Chung et al., 2014;
Cho et al., 2014). Details are presented in subse-
quent subsections.

3.2.1 Encoder – TRANSFORMER

The transformer encoder has same implementation
from Vaswani et al. (2017) as explained in Section
3.1.1, except the inputs are sentence-level vector
representations not document. Also, the sentence
representations in this module are not averaged
constituent word representations as in the extrac-
tion module but concatenated. That is, for each ith

sentence in equation 7, its vector representation, is
the concatenation of its constituent word embed-
dings

Si
j = w1‖w2‖. . . ‖wn (8)

The output of equation 8 serves as the input vec-
tor representation to the transformer encoder. We
use the transformer-encoder during abstraction as
sort of a pre-training module of the input sentence.

3.2.2 Encoder – GRU-RNN

We use a single layer uni-directional GRU-RNN

whose input is the output of the transformer. The
GRU-RNN encoder (Chung et al., 2014; Cho et al.,
2014) produces fixed-state vector representation
of the transformed input sequence using the fol-
lowing equations:

z = σ(stU
z + xt−1W z) (9)

r = σ(stU
r + xt−1W r) (10)

h = tanh(stU
h + (xt−1 � r)W h) (11)

xt = (1− z)� h+ z � xt−1 (12)

where r and z are the reset and update gates re-
spectively,W and U are the network’s parameters,
xt is the hidden state vector at timestep t, st is the
input vector and � represents the Hadamard prod-
uct.

73

Extractive Model R-1 R-2 R-L
LEAD (See et al., 2017) 40.3 17.7 36.5

LEAD (Narayan et al., 2018) 39.6 17.7 36.2
LEAD (ours) 40.1 17.6 36.0

(Nallapati et al., 2017) 39.6 16.2 35.3
REFRESH (Narayan et al., 2018) 40.0 18.2 36.6
FAST (Chen and Bansal, 2018) 41.4 18.7 37.7
NEUSUM (Zhou et al., 2018) 41.6 19.0 37.0

Content Selector (Gehrmann et al., 2018) 42.0 15.9 37.3
TRANS-ext 41.0 18.4 36.9

TRANS-ext + filter 42.8 21.1 38.4

Table 3: ROUGE-F1 (%) scores (with 95% confidence interval) of various extractive models on the CNN/DM
test set. The first section shows LEAD-3 model scores. The second section shows scores for baseline models. The
third section shows our model’s scores

Extractive Model R-1 R-2 R-L
LEAD* (Grusky et al., 2018) 30.49 21.27 28.42

TextRank* (Barrios et al., 2016) 22.77 9.79 18.98
TRANS-ext 37.21 25.17 32.41

TRANS-ext + filter 41.52 30.62 36.96

Table 4: ROUGE-F1 (%) scores (with 95% confidence interval) of various extractive models on the Newsroom
released test set. * marks results taken from Grusky et al. (2018)

3.3 Decoder – GRU-RNN

The fixed-state vector representation produced by
the GRU-RNN encoder is used as initial state for
the decoder. At each time step, the decoder re-
ceives the previously generated word, yt−1 and
hidden state st−1 at time step t−1. The output
word, yt at each time step, is a softmax probability
of the vector in equation 11 over the set of vocab-
ulary words, V .

4 Experiments

We used pre-trained 300-dimensional gloV e2

word-embeddings (Pennington et al., 2014).
The transformer encoder was setup with the
transformer base hyperparameter setting from
the tensor2tensor library (Vaswani et al., 2018)3,
but the hidden size and dropout were reset to 300
and 0.0 respectively. We also use 300 hidden
units for the GRU-RNN encoder. The tensor2tensor
library comes with pre-processed/tokenized ver-
sions of the dataset, we however perform these op-
erations independently. For abstraction, our tar-
get vocabulary is a set of approximately 50,000
and 80,000 words for CNN/DM and Newsroom

2https://nlp.stanford.edu/projects/
glove/

3https://github.com/tensorflow/
tensor2tensor

corpus respectively. It contains words in our
target training and test sets that occur at least
twice. Experiments showed that using this sub-
set of vocabulary words as opposed to over
320,000 vocabulary words contained in gloV e
improves both training time and performance of
the model. During the abstractive training, we
match summary sentence with its corresponding
extracted document sentence using equation 6 and
learn to minimize the seq2seq loss implemented
in tensorflow API4 with AdamOptimizer
(Kingma and Ba, 2014). We employ early stop-
ping when the validation loss does not decrease
after 5 epochs. We apply gradient clipping at 5.0
(Pascanu et al., 2013). We use greedy-decoding
during training and validation and set the maxi-
mum number of iterations to 5 times the target sen-
tence length. Beam-search decoding is used dur-
ing inference.

4.1 Datasets
We evaluate our models on the non-anonymized
version of the CNN-DM corpus (Hermann et al.,
2015; Nallapati et al., 2016) and the recent News-
room dataset (Grusky et al., 2018) released by
Connected Experiences Lab5. The Newsroom

4https://www.tensorflow.org/api_docs/
python/tf/contrib/seq2seq/sequence_loss

5https://summari.es

74

Abstractive Model R-1 R-2 R-L
RL+Intra-Att (Paulus et al., 2017) 41.16 15.75 39.08

KIGN+Pred (Li et al., 2018) 38.95 17.12 35.68
FAST (Chen and Bansal, 2018) 40.88 17.80 38.54

Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34
TRANS-ext + abs 41.05 17.87 36.73

TRANS-ext + filter +abs 41.89 18.90 38.92

Table 5: ROUGE-F1 (%) scores (with 95% confidence interval) of various abstractive models on the CNN/DM
test set.

Abstractive Model R-1 R-2 R-L
Abs-N* (Rush et al., 2015) 5.88 0.39 5.32
Pointer* (See et al., 2017) 26.02 13.25 22.43

TRANS-ext + abs 33.81 15.37 28.92
TRANS-ext + filter + abs 35.74 16.52 30.17

Table 6: ROUGE-F1 (%) scores (with 95% confidence interval) of various abstractive models on the Newsroom
released test set. * marks results taken from Grusky et al. (2018)

corpus contains over 1.3M news articles together
with various metadata information such as the ti-
tle, summary, coverage and compression ratio.
CNN/DM summaries are twice as long as News-
room summaries with average word lengths of 66
and 26 respectively.

4.2 Evaluation
Following previous works (See et al., 2017; Nal-
lapati et al., 2017; Chen and Bansal, 2018), we
evaluate both datasets on standard ROUGE-1,
ROUGE-2 and ROUGE-L (Lin, 2004). It cal-
culates the appropriate n-gram word-overlap be-
tween the reference and system summaries.

4.3 Results Analysis
We used the official pyrouge script6 with op-
tion7. Table 3 and 5 presents extractive and ab-
stractive results on the CNN/DM dataset respec-
tively, while Tables 4 and 6 for the Newsroom
dataset. For clarity, we present results separately
for each model and dataset.

Our baseline non-filtered extractive (TRANS-
ext) model is highly competitive with top mod-
els. Our TRANS-ext + filter produces an average
of about +1 and +9 points across reported ROUGE
variants on the CNN/DM and Newsroom datasets
respectively, showing that our model does a bet-
ter job at identifying the most salient parts of the
document than existing state-of-the-art extractive

6https://github.com/andersjo/pyrouge/
tree/master/tools/ROUGE-1.5.5

7-n 2 -w 1.2 -m -a -c 95

models. We observe the large margin in the News-
room dataset results, as existing baselines are just
the LEAD-3 and TEXTRANK of (Barrios et al.,
2016). The Newsroom dataset was recently re-
leased and is yet to be thoroughly explored, how-
ever it is a larger dataset and contains more diverse
summaries as analyzed by Grusky et al. (2018).

We also experimented with the empirical out-
come of using imbalanced extractive labels which
usually leads to bias towards the majority class.
Interestingly, our extractive model has +20%
F Score increase when trained with balanced la-
bels. Switching the transformer encoder with a
seq2seq encoder, resulted in a drop of about 2
ROUGE points, showing that the transformer en-
coder does learn features that adds meaning to the
vector representation of our input sequence.

Our baseline non-filtered abstractive (TRANS-
ext + abs) model is also highly competitive with
top models, with a drop of -0.81 ROUGE-2 points
against Gehrmann et al. (2018)’s model which is
the current state-of-the art. Our TRANS-ext + fil-
ter + abs produces an average of about +0.5 and
+7 points across reported ROUGE variants on the
CNN/DM and Newsroom datasets respectively,
showing empirically that our model is an improve-
ment of existing abstractive summarization mod-
els.

On the abstractiveness of our summaries, af-
ter aligning with the ground-truth as explained
in Section 3.2 about 60% of our extracted docu-
ment sentences were paraphrased and compressed.

75

O: the two clubs, who occupy the top two spots
in spain’s top flight, are set to face each other at
the nou camp on sunday.
G: real madrid face barcelona in the nou camp
R: real madrid will travel to the nou camp to face
barcelona on sunday.
O: dangelo conner, from new york, filmed him-
self messing around with the powerful weapon in
a friend’s apartment, first waving it around, then
sending volts coursing through a coke can .
G: dangelo conner from new york was fooling
around with his gun
R: dangelo conner, from new york ,was fooling
around with stun gun.
O: jamie peacock broke his try drought with a
double for leeds in their win over salford on sun-
day.
G: jamie adam scored to win over salford for
leeds
R: jamie peacock scored two tries for leeds in
their win over salford.
O: britain’s lewis hamilton made the perfect start
to his world title defense by winning the opening
race of the f1 season in australia sunday to lead a
mercedes one-two in melbourne .
G: lewis hamilton wins first race of season in
australia
R: lewis hamilton wins opening race of 2015 f1
season in australia .

Table 7: Examples of some of our generated para-
phrases from the CNN/DM dataset, where O, G, R
represents Originating document sentence, our model’s
Generated paraphrase and Reference sentences from
the ground-truth summary respectively.

We highlight examples of some of the generated
paraphrases in Table 7. Table 7 show that our
paraphrases are well formed, abstractive (e.g pow-
erful weapon – gun, messing around – fooling
around), capable of performing syntactic manip-
ulations (e.g for leeds in their win over sadford
– win over salford for leeds) and compression as
seen in all the examples.

5 Related Work

Summarization has remained an interesting and
important NLP task for years due to its diverse
applications - news headline generation, weather
forecasting, emails filtering, medical cases, rec-
ommendation systems, machine reading compre-

hension MRC and so forth (Khargharia et al.,
2018).

Early summarization models were mostly ex-
tractive and manual-feature engineered (Knight
and Marcu, 2000; Jing and McKeown, 2000; Dorr
et al., 2003; Berg-Kirkpatrick et al., 2011). With
the introduction of neural networks (Sutskever
et al., 2014) and availability of large training data,
deep learning became a viable approach (Rush
et al., 2015; Chopra et al., 2016).

Extraction has been handled on different lev-
els of granularity – word (Cheng and Lapata,
2016), phrases (Bui et al., 2016; Gehrmann et al.,
2018), sentence (Cheng and Lapata, 2016; Nalla-
pati et al., 2016, 2017) each with its challenges.
Word and phrase level extraction although more
concise usually suffers from grammatical incor-
rectness, while sentence-level extraction are too
lengthy and sometimes contain redundant infor-
mation. Hence Berg-Kirkpatrick et al. (2011); Fil-
ippova et al. (2015); Durrett et al. (2016) learn to
extract and compress at sentence-level.

Identifying the likely most salient part of the
text as summary-worthy is very crucial. Some
authors have employed integer linear program-
ming (Martins and Smith, 2009; Gillick and Favre,
2009; Boudin et al., 2015), graph concepts (Erkan
and Radev, 2004; Parveen et al., 2015; Parveen
and Strube, 2015), ranking with reinforcement
learning (Narayan et al., 2018) and mostly related
to our work – binary classification (Shen et al.,
2007; Nallapati et al., 2017; Chen and Bansal,
2018)

Our binary classification architecture differs
significantly from existing models because it uses
a transformer as the building block instead of a
bidirectional GRU-RNN (Nallapati et al., 2017),
or bidirectional LSTM-RNN (Chen and Bansal,
2018). To the best of our knowledge, our utiliza-
tion of the transformer encoder model as a build-
ing block for binary classification is novel, al-
though the transformer has been successfully used
for language understanding (Devlin et al., 2018),
machine translation (MT) (Vaswani et al., 2017)
and paraphrase generation (Zhao et al., 2018).

For generation of abstractive summaries, before
the ubiquitous use of neural nets, manually crafted
rules and graph techniques were utilized with con-
siderable success. Barzilay and McKeown (2005);
Cheung and Penn (2014) fused two sentences into
one using their dependency parsed trees. Re-

76

cently, sequence-to-sequence models (Sutskever
et al., 2014) with attention (Bahdanau et al., 2014;
Chopra et al., 2016), copy mechanism (Vinyals
et al., 2015; Gu et al., 2016), pointer-generator
(See et al., 2017), graph-based attention (Tan et al.,
2017) have been explored. Since the system gener-
ated summaries are usually evaluated on ROUGE,
its been beneficial to directly optimize this met-
ric during training via a suitable policy using rein-
forcement learning (Paulus et al., 2017; Celikyil-
maz et al., 2018).

Similar to Rush et al. (2015); Chen and Bansal
(2018) we abstract by simplifying our extracted
sentences. We jointly learn to paraphrase and
compress, but different from existing models
purely based on RNN, we implement a blend of
two proven efficient models – transformer encoder
and GRU-RNN. Zhao et al. (2018) paraphrased
with a transformer-decoder, we find that using the
GRU-RNN decoder but with a two-level stack of
hybrid encoders (transformer and GRU-RNN) gives
better performance. To the best of our knowledge,
this architectural blend is novel.

6 Conclusion

We proposed two frameworks for extractive and
abstractive summarization and demonstrated that
they each improve results over existing state-of-
the art. Our models are simple to train, and
the intuition/hypothesis behind the formulation are
straightforward and logical. The scientific correct-
ness is provable, as parts of our model architecture
have been used in other NLG-related tasks such as
MT with state-of-the art results.

Acknowledgments

We would like to thank the anonymous review-
ers for their useful comments. The research re-
ported in this paper was conducted at the Univer-
sity of Lethbridge and supported by Alberta Inno-
vates and Alberta Education.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Federico Barrios, Federico López, Luis Argerich, and
Rosa Wachenchauzer. 2016. Variations of the simi-
larity function of textrank for automated summariza-
tion. CoRR.

Regina Barzilay and Kathleen R McKeown. 2005.
Sentence fusion for multidocument news summa-
rization. Computational Linguistics, 31(3):297–
328.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 481–490. As-
sociation for Computational Linguistics.

Florian Boudin, Hugo Mougard, and Benoit Favre.
2015. Concept-based summarization using integer
linear programming: From concept pruning to mul-
tiple optimal solutions. In Conference on Empirical
Methods in Natural Language Processing (EMNLP)
2015.

Duy Duc An Bui, Guilherme Del Fiol, John F Hurdle,
and Siddhartha Jonnalagadda. 2016. Extractive text
summarization system to aid data extraction from
full text in systematic review development. Journal
of biomedical informatics, 64:265–272.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1662–1675.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 675–686.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 484–494.

Jackie Chi Kit Cheung and Gerald Penn. 2014. Unsu-
pervised sentence enhancement for automatic sum-
marization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 775–786.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98.

77

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bonnie Dorr, David Zajic, and Richard Schwartz.
2003. Hedge trimmer: A parse-and-trim approach
to headline generation. In Proceedings of the HLT-
NAACL 03 on Text summarization workshop-Volume
5, pages 1–8. Association for Computational Lin-
guistics.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 1998–2008.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
360–368.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098–4109.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Natu-
ral Langauge Processing, pages 10–18. Association
for Computational Linguistics.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 708–719.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1631–1640.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in
neural information processing systems, pages 1693–
1701.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
132–141.

Aishwarya Jadhav and Vaibhav Rajan. 2018. Extrac-
tive summarization with swap-net: Sentences and
words from alternating pointer networks. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 142–151.

Hongyan Jing and Kathleen R McKeown. 2000. Cut
and paste based text summarization. In Proceed-
ings of the 1st North American chapter of the As-
sociation for Computational Linguistics conference,
pages 178–185. Association for Computational Lin-
guistics.

Debabrata Khargharia, Nabajit Newar, and Nomi
Baruah. 2018. Applications of text summariza-
tion. International Journal of Advanced Research
in Computer Science, 9(3).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization-step one: Sentence compres-
sion. AAAI/IAAI, 2000:703–710.

Chenliang Li, Weiran Xu, Si Li, and Sheng Gao. 2018.
Guiding generation for abstractive text summariza-
tion based on key information guide network. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 55–60.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. 2018. Generating wikipedia by
summarizing long sequences. arXiv preprint
arXiv:1801.10198.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

78

André FT Martins and Noah A Smith. 2009. Summa-
rization with a joint model for sentence extraction
and compression. In Proceedings of the Workshop
on Integer Linear Programming for Natural Lan-
gauge Processing, pages 1–9. Association for Com-
putational Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In AAAI, pages 3075–3081.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Ça glar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. CoNLL 2016, page 280.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), volume 1, pages 1747–1759.

Shashi Narayan, Nikos Papasarantopoulos, Shay B
Cohen, and Mirella Lapata. 2017. Neural extrac-
tive summarization with side information. arXiv
preprint arXiv:1704.04530.

Mir Tafseer Nayeem and Yllias Chali. 2017. Extract
with order for coherent multi-document summariza-
tion. In Proceedings of TextGraphs-11: the Work-
shop on Graph-based Methods for Natural Lan-
guage Processing, pages 51–56.

Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. 2015. Topical coherence for graph-based ex-
tractive summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1949–1954.

Daraksha Parveen and Michael Strube. 2015. Inte-
grating importance, non-redundancy and coherence
in graph-based extractive summarization. In IJCAI,
pages 1298–1304.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and
Zheng Chen. 2007. Document summarization us-
ing conditional random fields. In IJCAI, volume 7,
pages 2862–2867.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1171–1181.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, et al. 2018. Tensor2tensor for neural machine
translation. In Proceedings of the 13th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Papers), volume 1,
pages 193–199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems-Volume 2, pages 2692–
2700. MIT Press.

Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018. Integrating trans-
former and paraphrase rules for sentence simplifi-
cation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3164–3173, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 654–663.

79

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 80–89
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Making Asynchronous Stochastic Gradient Descent Work for
Transformers

Alham Fikri Aji and Kenneth Heafield
School of Informatics, University of Edinburgh

10 Crichton Street
Edinburgh EH8 9AB

Scotland, European Union
a.fikri@ed.ac.uk, kheafiel@inf.ed.ac.uk

Abstract

Asynchronous stochastic gradient descent
(SGD) converges poorly for Transformer mod-
els, so synchronous SGD has become the norm
for Transformer training. This is unfortu-
nate because asynchronous SGD is faster at
raw training speed since it avoids waiting for
synchronization. Moreover, the Transformer
model is the basis for state-of-the-art models
for several tasks, including machine transla-
tion, so training speed matters. To understand
why asynchronous SGD under-performs, we
blur the lines between asynchronous and syn-
chronous methods. We find that summing sev-
eral asynchronous updates, rather than apply-
ing them immediately, restores convergence
behavior. With this method, the Transformer
attains the same BLEU score 1.36 times as
fast.

1 Introduction

Models based on Transformers (Vaswani et al.,
2017) achieve state-of-the-art results on various
machine translation tasks (Bojar et al., 2018). Dis-
tributed training is crucial to training these mod-
els in a reasonable amount of time, with the
dominant paradigms being asynchronous or syn-
chronous stochastic gradient descent (SGD). Prior
work (Chen et al., 2016, 2018; Ott et al., 2018)
commented that asynchronous SGD yields low
quality models without elaborating further; we
confirm this experimentally in Section 2.1. Rather
than abandon asynchronous SGD, we aim to repair
convergence.

Asynchronous SGD and synchronous SGD
have two key differences: batch size and stale-
ness. Synchronous SGD increases the batch size
in proportion to the number of processors because
gradients are summed before applying one update.
Asynchronous SGD updates with each gradient as

it arises, so the batch size is the same as on a sin-
gle processor. Asynchronous SGD also has stale
gradients because parameters may update several
times while a gradient is being computed.

To tease apart the impact of batch size and stale
gradients, we perform a series of experiments on
both recurrent neural networks (RNNs) and Trans-
formers manipulating batch size and injecting stal-
eness. Out experiments show that small batch
sizes slightly degrade quality while stale gradients
substantially degrade quality.

To restore convergence, we propose a hybrid
method that computes gradients asynchronously,
sums gradients as they arise, and updates less of-
ten. Gradient summing has been applied to in-
crease batch size or reduce communication (Dean
et al., 2012; Lian et al., 2015; Ott et al., 2018; Bo-
goychev et al., 2018); we find it also reduces harm-
ful staleness. In a sense, updating less often in-
creases staleness because gradients are computed
with respect to parameters that could have been
updated. However, if staleness is measured by the
number of intervening updates to the model, then
staleness is reduced because updates happen less
often. Empirically, our hybrid method converges
comparably to synchronous SGD, preserves final
model quality, and runs faster because processors
are not idle.

2 Exploring Asynchronous SGD

2.1 Baseline: The Problem

To motivate this paper and set baselines, we first
measure how poorly Transformers perform when
trained with baseline asynchronous SGD (Chen
et al., 2016, 2018; Ott et al., 2018). We train a
Transformer model under both synchronous and
asynchronous SGD, contrasting the results with an
RNN model. Moreover, we sweep learning rates
to verify this effect is not an artifact of choosing

80

https://www.aclweb.org/anthology/D19-56%2d

Trans. BLEU RNN BLEU
Learn Rate Sync. Async. Sync. Async.
0.0002 35.08 13.27 34.11 33.77
0.0003 35.66 30.72 33.79 33.95
0.00045 35.59 5.21 33.68 33.68
0.0006 35.42 0.00 34.30 33.76
0.0009 34.79 0.00 34.28 33.47
0.0012 33.96 0.00 34.37 33.23
0.0024 29.35 0.00 33.98 32.83
0.00375 25.25 0.00 33.80 31.89

Table 1: Performance of the Transformer and RNN
model trained synchronously and asynchronously,
across different learning rates.

hyperparameters that favor one scenario. Further
experimental setup appears in Section 4.1.

Results in Table 1 confirm that asynchronous
SGD generally yields lower-quality systems than
synchronous SGD. For Transformers, the asyn-
chronous results are catastrophic, often yielding
0 BLEU. We can also see that Transformers and
asynchronous SGD are more sensitive to learning
rates compared to RNNs and synchronous SGD.

To understand why asynchronous SGD under-
performs, we run series of ablation experiments
based on the differences between synchronous and
asynchronous SGD. We focus on two main as-
pects: batch size and stale gradient updates.

2.2 Batch Size
In asynchronous SGD, each update uses a gradi-
ent from one processor. Synchronous SGD sums
gradients from all processors, which is mathemati-
cally equivalent running a larger batch on one pro-
cessor (though it might not fit in RAM). Therefore,
the effective batch size inN -workers synchronous
training is N times larger compared to its asyn-
chronous counterparts.

Using a larger batch size reduces noise in es-
timating the overall gradient (Wang et al., 2013),
and has been shown to slightly improve perfor-
mance (Smith et al., 2017; Popel and Bojar, 2018).
To investigate whether small batch sizes are the
main issue with asynchronous Transformer train-
ing, we sweep batch sizes and compare with syn-
chronous training.

2.3 Gradient Staleness
In asynchronous training, a computed gradient up-
date is applied immediately to the model, without
having to wait for other processors to finish. This

approach may cause a stale gradient, where pa-
rameters have updated while a processor was com-
puting its gradient. Staleness can be defined as the
number of updates that occurred between the pro-
cessor pulling parameters and pushing its gradient.
Under the ideal case where every processor spends
equal time to process a batch, asynchronous SGD
with N processors produces gradients with stale-
nessN−1. Empirically, we can also expect an av-
erage staleness of N −1 with normally distributed
computation time (Zhang et al., 2016).

An alternative way to interpret staleness is the
distance between the parameters with which the
gradient was computed and the parameters being
updated by the gradient. Therefore, higher learn-
ing rate contributes to the staleness, as the param-
eters move faster.

Prior work has shown that neural models can
still be trained on stale gradients, albeit with po-
tentially slower convergence or a lower quality.
Furthermore, Zhang et al. (2016); Srinivasan et al.
(2018) report that model performance degrades in
proportion to the gradient staleness. We introduce
artificial staleness to confirm the significance of
gradient staleness towards the Transformer perfor-
mance.

3 Incremental Updates in Adam

Investigating the effect of batch size and staleness
further, we analyze why it makes a difference that
gradients computed from the same parameters are
applied one at a time (incurring staleness) instead
of summed then applied once (as in synchronous
SGD). As seen in Section 4.3, our artificial stal-
eness was damaging to convergence even though
gradients were synchronously computed with re-
spect to the same parameters. In standard stochas-
tic gradient descent there is no difference: gradi-
ents are multiplied by the learning rate then sub-
stracted from the parameters in either case. The
Adam optimizer handles incremental updates and
sums differently.

Adam is scale invariant. For example, suppose
that two processors generate gradients 0.5 and 0.5
with respect to the same parameter in the first iter-
ation. Incrementally updating with 0.5 and 0.5 is
the same as updating with 1 and 1 due to scale in-
variance. Updating with the summed gradient, 1,
will only move parameters half as far. This is the
theory underlying the rule of thumb that learning
rate should scale with batch size (Ott et al., 2018).

81

Time (t) 0 1 2 3 4 5 6

Constant gt 1 1 1 1 1 1
mt 0 0.1 0.19 0.271 0.344 0.41 0.469
vt 0 0.02 0.04 0.059 0.078 0.096 0.114
m̂t 0 1 1 1 1 1 1
v̂t 0 1 1 1 1 1 1
θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.006

Scaled gt 0.5 1.5 0.5 1.5 0.5 1.5
mt 0 0.05 0.195 0.226 0.353 0.368 0.481
vt 0 0.005 0.05 0.054 0.098 0.101 0.144
m̂t 0 0.5 1.026 0.832 1.026 0.898 1.026
v̂t 0 0.25 1.26 0.917 1.26 1.05 1.26
θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.005

Different sign gt −1 2 −1 2 −1 2
mt 0 −0.1 0.11 −0.001 0.199 0.079 0.271
vt 0 0.02 0.1 0.118 0.195 0.211 0.287
m̂t 0 −1 0.579 −0.004 0.579 0.193 0.579
v̂t 0 1 2.515 2 2.515 2.2 2.515
θ 0 0.001 0.001 0.001 0.000 0.000 −0.000

Table 2: The Adam optimizer slows down when gradients have larger variance even if they have the same average,
in this case 1. When alternating between −1 and 2, Adam takes 6 steps before the parameter has the correct sign.
Updates can even slow down if gradients point in the same direction but have different scales. The learning rate is
α = 0.001.

In practice, gradients reported by different pro-
cessors are usually not the same: they are noisy
estimates of the true gradient. In Table 2, we
show examples where noise causes Adam to slow
down. Summing gradients smooths out some of
the noise. Next, we examine the formal basis for
this effect.

Formally, Adam estimates the full gradient with
an exponentially decaying averagemt of gradients
gt.

mt ← β1mt−1 + (1− β1)gt
where β1 is a decay hyperparameter. It also com-
putes a decaying average vt of second moments

vt ← β2vt−1 + (1− β2)g2t
where β2 is a separate decay hyperparameter. The
squaring g2t is taken element-wise. These esti-
mates are biased because the decaying averages
were initialized to zero. Adam corrects for the bias
to obtain unbiased estimates m̂t and v̂t.

m̂t ← mt/(1− βt1)
v̂t ← vt/(1− βt2)

These estimates are used to update parameters θ

θt ← θt−1 − α
m̂t√
v̂t + ε

where α is the learning rate hyperparameter and ε
prevents element-wise division by zero.

Replacing estimators in the update rule with
statistics they estimate and ignoring the usually-
minor ε

m̂t√
v̂t + ε

≈ Egt√
E(g2t)

which expands following the variance identity

Egt√
E(g2t)

=
Egt√

V ar(gt) + (Egt)2

Dividing both the numerator and denominator by
|Egt|, we obtain

=
sign(Egt)√

V ar(gt)/(Egt)2 + 1

The term V ar(gt)/(Egt)
2 is statistical efficiency,

the square of coefficient of variation. In other
words, Adam gives higher weight to gradients if
historical samples have a lower coefficient of vari-
ation. The coefficient of variation of a sum of N
independent1 samples decreases as 1/

√
N . Hence

sums (despite having less frequent updates) may
1Batch selection takes compute time into account, so tech-

nically noise is not independent.

82

actually cause Adam to move faster because they
have smaller coefficient of variation. An example
appears in Table 2: updating with 1 moves faster
than individually applying -1 and 2.

4 Ablation Study

We conduct ablation experiments to investigate the
poor performance in asynchronous Transformer
training for the neural machine translation task.

4.1 Experiment Setup

Our experiments use systems for the WMT 2017
English to German news translation task. The
Transformer is standard with six encoder and
six decoder layers. The RNN model (Barone
et al., 2017) is based on the winning WMT17
submission (Sennrich et al., 2017) with 8 layers.
Both models use back-translated monolingual cor-
pora (Sennrich et al., 2016a) and byte-pair encod-
ing (Sennrich et al., 2016b).

We follow the rest of the hyperparameter set-
tings on both Transformer and RNN models as
suggested in the papers (Vaswani et al., 2017; Sen-
nrich et al., 2017). Both models were trained
on four GPUs with a dynamic batch size of 10
GB per GPU using the Marian toolkit (Junczys-
Dowmunt et al., 2018). Both models are trained
for 8 epochs or until reaching five continuous vali-
dations without loss improvement. Quality is mea-
sured on newstest2016 using sacreBLEU (Post,
2018), preserving newstest2017 as test for later
experiments. The Transformer’s learning rate is
linearly warmed up for 16k updates. We apply
an inverse square root learning rate decay follow-
ing Vaswani et al. (2017) for both models. All of
these experiments use the Adam optimizer, which
has shown to perform well on a variety of tasks
(Kingma and Ba, 2014) and was used in the origi-
nal Transformer paper (Vaswani et al., 2017).

For subsequent experiments, we will use a
learning rate of 0.0003 for Transformers and
0.0006 for RNNs. These were near the top in both
asynchronous and synchronous settings (Table 1).

4.2 Batch Size

We first explore the effect of batch size towards
the model’s quality. We use dynamic batching, in
which the toolkit fits as many sentences as it can
into a fixed amount of memory (so e.g. more sen-
tences will be in a batch if all of them are short).
Hence batch sizes are denominated in memory

sizes. Our GPUs each have 10 GB available for
batches which, on average, corresponds to 250
sentences.

With 4 GPUs, baseline synchronous SGD has
an effective batch size of 40 GB, compared to 10
GB in asynchronous. We fill in the two missing
scenarios: synchronous SGD with a total effec-
tive batch size of 10 GB and asynchronous SGD
with a batch size of 40 GB. Because GPU mem-
ory is limited, we simulate a larger batch size in
asynchronous SGD by locally accumulating gra-
dients in each processor four times before sending
the summed gradient to the parameter server (Ott
et al., 2018; Bogoychev et al., 2018).

Models with a batch size of 40GB achieve better
BLEU per update, compared with its 10GB vari-
ant as shown in Figure 1. However, synchronous
SGD training still outperforms asynchronous SGD
training, even with smaller batch size. From this
experiment, we conclude that batch size is not
the primary driver of poor performance of asyn-
chronously trained Transformers, though it does
have some lingering impact on final model qual-
ity. For RNNs, batch size and distributed training
algorithm had little impact beyond the early stages
of training, continuing the theme that Transform-
ers are more sensitive to noisy gradients.

4.3 Gradient Staleness

To study the impact of gradient staleness, we in-
troduce staleness into synchronous SGD. Work-
ers only pull the latest parameter once every U

updates, yielding an average staleness of (U−1)
2 .

Since asynchronous SGD has average staleness 3
with N = 4 GPUs, we set U = 7 to achieve
the same average staleness of 3. Additionally, we
also tried a lower average staleness of 2 by set-
ting U = 5. We also see the effect of doubling
the learning rate so the parameter moves twice as
far, hence introduces staleness in terms of model
distance.

In order to focus on the impact of the staleness,
we set the batch size to 40 GB total RAM con-
sumption, be they 4 GPUs with 10 GB each in
synchronous SGD or emulated 40 GB batches on
each GPU in asynchronous SGD.

Results are shown in Figure 2. Staleness 3 sub-
stantially degrades Transformer convergence and
final quality (Figure 2a). However, the impact of
staleness 2 is relatively minor. We also continue
to see that Transformers are more sensitive than

83

0 50 100 150 200 250
num updates x1000

0

10

20

30
va

lid
at

io
n

BL
EU

Convergence per-update

Trans + sync 40GB
Trans + s nc 10GB
Trans + sync 40GB
Trans + s nc 10GB

(a) Convergence over updates in Transformer model with
various batch sizes

0 20 40 60 80 100
num updates x1000

0

10

20

30

va
lid

at
io

n
BL

EU

Convergence per-update

RNN + sync 40 GB
RNN + s nc 10 GB
RNN + sync 40 GB
RNN + s nc 10 GB

(b) Convergence over updates in RNN model with vari-
ous batch sizes

Figure 1: The effect of batch sizes on convergence of Transformer and RNN models.

0 50 100 150 200
num updates x1000

0

10

20

30

va
lid

at
io

n
BL

EU

Convergence per-update (LR = 0.0003)

Trans + sync
Trans + sync + avg. staleness 2
Trans + sync + avg. staleness 3
Trans + sync

(a) Transformer model with lr = 0.0003

0 10 20 30 40 50
num updates x1000

0

10

20

30

va
lid

at
io

n
BL

EU

Convergence per-update (LR = 0.0006)

RNN + sync
RNN + sync + avg. staleness 2
RNN + sync + avg. staleness 3
RNN + sync

(b) RNN model with lr = 0.0006

Figure 2: Artificial staleness in synchronous SGD compared to synchronous and asynchronous baselines, all with
our usual learning rate for each model.

0 50 100 150 200
num updates x1000

0

10

20

30

va
lid

at
io

n
BL

EU

Convergence per-update (LR = 0.0006)

Trans + sync
Trans + sync + avg. staleness 2

(a) Transformer model with lr = 0.0006

0 10 20 30 40 50
num updates x1000

0

10

20

30

va
lid

at
io

n
BL

EU

Convergence per-update (LR = 0.0012)

RNN + sync
RNN + sync + avg. staleness 2
RNN + sync + avg. staleness 3
RNN + sync

(b) RNN model with lr = 0.0012

Figure 3: Artificial staleness in synchronous SGD with doubled learning rates. Transformers with learning rate
0.0006 and staleness 3 (synchronous and asynchronous) did not rise above 0.

RNNs to training conditions.
Results for Transformer worsen when we dou-

ble the learning rate (Figure 3). With staleness 3,
the model stayed at 0 BLEU for both synchronous
or asynchronous SGD, consistent with our earlier
result (Table 1).

We conclude that staleness is primary, but
not wholly, responsible for the poor performance
of asynchronous SGD in training Transformers.
However, asynchronous SGD still underperforms
synchronous SGD with artificial staleness of 3 and

the same batch size (40 GB). Our synchronous
SGD training has consistent parameters across
processors, whereas processors might have differ-
ent parameters in asynchronous training. The stal-
eness distribution might also play a role because
staleness in asynchronous SGD follows a normal
distribution (Zhang et al., 2016) while our syn-
thetic staleness in synchronous SGD follows a uni-
form distribution.

84

5 Asynchronous Transformer Training

5.1 Accumulated Asynchronous SGD
Previous experiments have shown that increasing
the batch size and reducing staleness improves the
final quality of asynchronous training. Increasing
the batch size can be achieved by accumulating
gradients before updating. We experiment with
variations on three ways to accumulate gradients:

Local Accumulation: Gradients can be accu-
mulated locally in each processor before sending
it to the parameter server (Ott et al., 2018; Bogoy-
chev et al., 2018). This approach scales the effec-
tive batch size and reduces communication costs
as the workers communicate less often. However,
this approach does not reduce staleness as the pa-
rameter server updates immediately after receiv-
ing a gradient. We experiment with accumulating
four gradients locally, resulting in 40 GB effective
batch size.

Global Accumulation: Each processor sends
the computed gradient to the parameter server nor-
mally. However, the parameter server holds the
gradient and only updates the model after it re-
ceives multiple gradients (Dean et al., 2012; Lian
et al., 2015). This approach scales the effective
batch size. On top of that, it decreases staleness as
the parameter server updates less often. However,
it does not reduce communication costs. We ex-
periment with accumulating four gradients glob-
ally, resulting in 40 GB effective batch size and
0.75 average staleness.

Combined Accumulation: Local and global
accumulation can be combined to gain the bene-
fits of both: reduced communication cost and re-
duced average staleness. In this approach, gradi-
ents are accumulated locally in each processor be-
fore being sent. The parameter server also waits
and accumulates gradients before running an opti-
mizer. We accumulate two gradients both locally
and globally. This yields in 40 GB effective batch
size and 1.5 average staleness.

We tested the three gradient accumulation fla-
vors on the English-to-German task with both
Transformer and RNN models. Synchronous SGD
also appears as a baseline. To compare results, we
report best BLEU, raw training speed, and time
needed to reach several BLEU checkpoints. Re-
sults are shown in Table 3.

Asynchronous SGD with global accumulation
actually improves the final quality of the model
over synchronous SGD, albeit not meaningfully.

This one change, accumulating every 4 gradients
(the number of GPUs), restores quality in asyn-
chronous methods. It also achieves the fastest time
to reach near-convergence BLEU in both Trans-
former and RNN.

While using local accumulation provides even
faster raw speed, the model produces the worst
quality among the other accumulation techniques.
Asynchronous SGD with 4x local accumulation is
essentially just ordinary asynchronous SGD with
4x larger batch size and 4x less update frequency.
In particular, gradient staleness is still the same,
therefore this does not help the convergence per-
update.

Combined accumulation performs somewhat in
the middle. It does not converge as fast as asyn-
chronous SGD with full global accumulation but
not as poor as asynchronous SGD with full local
accumulation. Its speed is also in between, reflect-
ing communication costs.

5.2 Generalization Across Learning Rates

Earlier in Table 1 we show that asynchronous
Transformer learning is very sensitive towards the
learning rate. In this experiment, we use an asyn-
chronous SGD with global gradient accumulation
to train English-to-German on different learning
rates. We compare our result with vanilla syn-
chronous and vanilla asynchronous SGD.

Our finding empirically show that asynchronous
Transformer training while globally accumulat-
ing the gradients is significantly more robust. As
shown in Table 5, the model is now capable to
learn on higher learning rate and yield compara-
ble results compared to its synchronous variant.

5.3 Generalization Across Languages

To test whether our findings on English-to-
German generalize, we train two more transla-
tion systems using globally accumulated gradi-
ents. Specifically, we train English to Finnish (EN
→ FI) and English to Russian (EN→ RU) models
for the WMT 2018 task (Bojar et al., 2018). We
validate our model on newstest2015 for EN→ FI
and newstest2017 for EN→ RU. Then, we test our
model on newstest2017 for EN → DE and new-
stest2018 for both EN → FI and EN → RU. The
same network structures and hyperparameters are
used as before.

The results shown in Table 4 empirically con-
firm that accumulating the gradient to obtain a

85

Transformer
Communication accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 33 34 35
synchronous 1 4 40 GB 0 36029 35.66 5.3 7.6 15.6
asynchronous 1 1 10 GB 3 39883 30.72 - - -
asynchronous 4 1 40 GB 3 45177 30.98 - - -
asynchronous 2 2 40 GB 1.5 43115 35.68 4.9 6.8 15.4
asynchronous 1 4 40 GB 0.75 39514 35.84 4.6 6.7 11.4

RNN
Communication accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 32 33 34
synchronous 1 4 40 GB 0 23054 34.30 3.6 6.2 18.8
asynchronous 1 1 10 GB 3 24683 33.76 2.7 5.1 -
asynchronous 4 1 40 GB 3 27090 33.83 4.1 6.1 -
asynchronous 2 2 40 GB 1.5 25578 34.20 3.2 5.9 13.7
asynchronous 1 4 40 GB 0.75 24312 34.48 3.1 5.4 14.5

Table 3: Quality and convergence of asynchronous SGD with accumulated gradients on English to German dataset.
Dashes indicate that model never reach the target BLEU.

Model EN→ DE EN→ FI EN→ RU
newstest 2016 2017 2017 2018 2015 2018
Trans. + synchronous SGD 35.66 28.81 18.47 14.03 29.31 25.49
Trans. + asynchronous SGD 30.72 24.68 11.63 8.73 21.12 17.78
Trans. + asynchronous SGD + 4x global accum. 35.84 28.66 18.47 13.78 29.12 25.25
RNN + synchronous SGD 34.30 27.43 16.94 12.75 26.96 23.11
RNN + asynchronous SGD 33.76 26.84 14.94 10.96 26.39 22.48
RNN. + asynchronous SGD + 4x global accum. 34.48 27.56 17.05 12.76 27.15 23.41

Table 4: The effect of global accumulation on translation quality for different language pairs on development and
test set, measured with BLEU score.

Communication
Sync. Async. Async

Learn Rate + 4x GA
0.0003 35.66 30.72 35.84
0.0006 35.42 0.00 35.81
0.0012 33.96 0.00 33.62
0.0024 29.35 0.00 1.20

Table 5: Performance of the asynchronous Transformer
on English to German with 4x Global accumulations
(GA) across different learning rates on development set
measured with BLEU score.

larger batch size and a lower staleness in Trans-
former massively improves the result, compared
to basic asynchronous SGD (+6 BLEU on aver-
age). The improvement is smaller in RNN experi-
ment, but still substantial (+1 BLEU on average).
We also have further confirmation that training

a Transformer model with normal asynchronous
SGD is impractical.

6 Related Work

6.1 Gradient Summing

Several papers wait and sum P gradients from dif-
ferent workers as a way to reduce staleness. In
Chen et al. (2016), gradients are accumulated from
different processors, and whenever theP gradients
have been pushed, other processors cancel their
process and restart from the beginning. This is rel-
atively wasteful since some computation is thrown
out and P−1 processors still idle for synchroniza-
tion. Gupta et al. (2016) suggest that restarting is
not necessary but processors still idle waiting for
P to finish. Our proposed method follows Lian
et al. (2015) in which an update happens every
time P gradients have arrived and processors con-

86

tinually generate gradients without synchroniza-
tion.

Another direction to overcome stale gradient
is to reduce its effect towards the model update.
McMahan and Streeter (2014) dynamically adjust
the learning rate depending on the staleness. Dutta
et al. (2018) suggests completely ignoring stale
gradient pushes.

6.2 Increasing Staleness

In the opposite direction, some work has added
noise to gradients or increased staleness, typi-
cally to cut computational costs. Recht et al.
(2011) propose a lock-free asynchronous gradient
update. Lossy gradient compression by bit quanti-
zation (Seide et al., 2014; Alistarh et al., 2017) or
threshold based sparsification (Aji and Heafield,
2017; Lin et al., 2017) also introduce noisy gradi-
ent updates. On top of that, these techniques store
unsent gradients to be added into the next gradient,
increasing staleness for small gradients.

Dean et al. (2012) mention that communica-
tion overload can be reduced by reducing gradient
pushes and parameter synchronization frequency.
In McMahan et al. (2017), each processor inde-
pendently updates its own local model and peri-
odically synchronize the parameter by averaging
across other processors. Ott et al. (2018) accumu-
lates gradients locally, before sending it to the pa-
rameter server. Bogoychev et al. (2018) also lo-
cally accumulates the gradient, but also updates
local parameters in between.

7 Conclusion

We evaluated the behavior of Transformer and
RNN models under asynchronous training. We
divide our analysis based on two main different
aspects in asynchronous training: batch size and
stale gradient. Our experimental results show that:

• In general, asynchronous training damages
the final BLEU of the NMT model. However,
we found that the damage with the Trans-
former is significantly more severe. In ad-
dition, asynchronous training also requires a
smaller learning rate to perform well.

• With the same number of processors, asyn-
chronous SGD has a smaller effective batch
size. We empirically show that training un-
der a larger batch size setting can slightly im-
proves the convergence. However, the im-

provement is very minimal. The result in
asynchronous Transformer model is subpar,
even with a larger batch size.

• Stale gradients play a bigger role in the
training performance of asynchronous Trans-
former. We have shown that the Transformer
model’s performed poorly by adding a syn-
thetic stale gradient.

Based on these findings, we suggest applying a
modification in asynchronous training by accumu-
lating a few gradients (for example for the number
of processors) in the server before applying an up-
date. This approach increases the batch size while
also reducing the average staleness. We empiri-
cally show that this approach combine the high
quality training of synchronous SGD and high
training speed of asynchronous SGD.

Future works should extend those experiments
to different hyper-parameter configurations. One
direction is to investigate wether vanilla asyn-
chronous Trasnformer can be trained under dif-
ferent optimizers. Another direction is to exper-
iment with more workers where gradients in asyn-
chronous SGD are more stale.

8 Acknowledgements

Alham Fikri Aji is funded by the Indone-
sia Endowment Fund for Education scholarship
scheme. This work was performed using re-
sources provided by the Cambridge Service for
Data Driven Discovery (CSD3) operated by the
University of Cambridge Research Computing
Service (http://www.csd3.cam.ac.uk/),
provided by Dell EMC and Intel using Tier-2 fund-
ing from the Engineering and Physical Sciences
Research Council (capital grant EP/P020259/1),
and DiRAC funding from the Science and Tech-
nology Facilities Council (www.dirac.ac.
uk).

References
Alham Fikri Aji and Kenneth Heafield. 2017. Sparse

communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
440–445.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota
Tomioka, and Milan Vojnovic. 2017. Qsgd:
Communication-efficient sgd via gradient quantiza-
tion and encoding. In Advances in Neural Informa-
tion Processing Systems, pages 1709–1720.

87

Antonio Valerio Miceli Barone, Jindřich Helcl, Rico
Sennrich, Barry Haddow, and Alexandra Birch.
2017. Deep architectures for neural machine trans-
lation. In Proceedings of the Second Conference on
Machine Translation, pages 99–107.

Nikolay Bogoychev, Kenneth Heafield, Alham Fikri
Aji, and Marcin Junczys-Dowmunt. 2018. Accel-
erating asynchronous stochastic gradient descent for
neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2991–2996.

Ondej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(wmt18). In Proceedings of the Third Conference
on Machine Translation (WMT), Volume 2: Shared
Task Papers, pages 272–307. Association for Com-
putational Linguistics.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy
Bengio, and Rafal Jozefowicz. 2016. Revisit-
ing distributed synchronous sgd. arXiv preprint
arXiv:1604.00981.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
et al. 2018. The best of both worlds: Combining re-
cent advances in neural machine translation. arXiv
preprint arXiv:1804.09849.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. 2012. Large
scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–
1231.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh,
Parijat Dube, and Priya Nagpurkar. 2018. Slow
and stale gradients can win the race: Error-
runtime trade-offs in distributed sgd. arXiv preprint
arXiv:1803.01113.

Suyog Gupta, Wei Zhang, and Fei Wang. 2016. Model
accuracy and runtime tradeoff in distributed deep
learning: A systematic study. In 2016 IEEE 16th
International Conference on Data Mining (ICDM),
pages 171–180. IEEE.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
2015. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural In-
formation Processing Systems, pages 2737–2745.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. 2017. Deep gradient compression:
Reducing the communication bandwidth for dis-
tributed training. arXiv preprint arXiv:1712.01887.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282.

Brendan McMahan and Matthew Streeter. 2014.
Delay-tolerant algorithms for asynchronous dis-
tributed online learning. In Advances in Neural In-
formation Processing Systems, pages 2915–2923.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. 2011. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Ad-
vances in neural information processing systems,
pages 693–701.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 2014. 1-bit stochastic gradient descent
and its application to data-parallel distributed train-
ing of speech dnns. In Fifteenth Annual Conference
of the International Speech Communication Associ-
ation.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural mt sys-
tems for WMT17. In Proceedings of the Second
Conference on Machine Translation, pages 389–
399.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

88

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 1715–1725.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V Le. 2017. Don’t decay the learn-
ing rate, increase the batch size. arXiv preprint
arXiv:1711.00489.

Anand Srinivasan, Ajay Jain, and Parnian Barekatain.
2018. An analysis of the delayed gradients problem
in asynchronous SGD.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Chong Wang, Xi Chen, Alexander J Smola, and Eric P
Xing. 2013. Variance reduction for stochastic gra-
dient optimization. In Advances in Neural Informa-
tion Processing Systems, pages 181–189.

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu.
2016. Staleness-aware async-sgd for distributed
deep learning. In IJCAI.

89

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 90–98
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Controlled Text Generation for Data Augmentation in Intelligent
Artificial Agents

Nikolaos Malandrakis1, Minmin Shen2, Anuj Goyal2,
Shuyang Gao2, Abhishek Sethi2, Angeliki Metallinou2

1 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, CA 90089
2 Amazon Alexa AI

malandra@usc.edu,
{shenm,anujgoya,shuyag,abhsethi,ametalli}@amazon.com

Abstract

Data availability is a bottleneck during early
stages of development of new capabilities for
intelligent artificial agents. We investigate the
use of text generation techniques to augment
the training data of a popular commercial ar-
tificial agent across categories of functional-
ity, with the goal of faster development of new
functionality. We explore a variety of encoder-
decoder generative models for synthetic train-
ing data generation and propose using condi-
tional variational auto-encoders. Our approach
requires only direct optimization, works well
with limited data and significantly outperforms
the previous controlled text generation tech-
niques. Further, the generated data are used
as additional training samples in an extrinsic
intent classification task, leading to improved
performance by up to 5% absolute f-score in
low-resource cases, validating the usefulness
of our approach.

1 Introduction

Voice-powered artificial agents have seen
widespread commercial use in recent years, with
agents like Google’s Assistant, Apple’s Siri and
Amazon’s Alexa rising in popularity. These
agents are expected to be highly accurate in
understanding the users’ requests and to be capable
of handling a variety of continuously expanding
functionality. New capabilities are initially defined
via a few phrase templates. Those are expanded,
typically through larger scale data collection, to
create datasets for building the machine learning
algorithms required to create a serviceable Natural
Language Understanding (NLU) system. This is a
lengthy and expensive process that is repeated for
new functionality expansion and can significantly
slow down development time.

We investigate the use of neural generative
encoder-decoder models for text data generation.

Given a small set of phrase templates for some new
functionality, our goal is to generate new semanti-
cally similar phrases and augment our training data.
This data augmentation is not necessarily meant as
a replacement for large-scale data collection, but
rather as a way to accelerate the early stages of
new functionality development. This task shares
similarities with paraphrasing. Therefore, inspired
by work in paraphrasing (Prakash et al., 2016) and
controlled text generation (Hu et al., 2018), we in-
vestigate the use of variational autoencoder models
and methods to condition neural generators.

For controlled text generation, (Hu et al., 2018)
used a variational autoencoder with an additional
discriminator and trained the model in a wake-sleep
way. (Zhou and Wang, 2018) used reinforcement
via an emoji classifier to generate emotional re-
sponses. However, we found that when the num-
ber of samples is relatively small compared to the
number of categories, such an approach might be
counter-productive, because the required classifier
components can not perform well. Inspired by re-
cent advantages of connecting information theory
with variational auto-encoders and invariant fea-
ture learning (Moyer et al., 2018), we instead use
this approach to our controlled text generation task,
without a discriminator.

Furthermore, our task differs from typical para-
phrasing in that semantic similarity between the
output text and the NLU functionality is not the
only objective. The synthetic data should be eval-
uated in terms of its lexical diversity and novelty,
which are important properties of a high quality
training set.

Our key contributions are as follows:

• We thoroughly investigate text generation
techniques for NLU data augmentation with
sequence to sequence model and variational
auto-encoders, in an atypically low-resource

90

https://www.aclweb.org/anthology/D19-56%2d

setting.

• We validate our method in an extrinsic intent
classification task, showing that the generated
data brings considerable accuracy gains in low
resource settings.

2 Related Work

Neural networks have revolutionized the field of
text generation, in machine translation (Sutskever
et al., 2014), summarization (See et al., 2017) and
image captioning (You et al., 2016). However, con-
ditional text generation has been relatively less stud-
ied as compared to conditional image generation
and poses some unique problems. One of the issues
is the non-differentiability of the sampled text that
limits the applicability of a global discriminator in
end-to-end training. The problem has been rela-
tively addressed by using CNNs for generation (Ra-
jeswar et al., 2017), policy gradient reinforcement
learning methods including SeqGAN (Yu et al.,
2017), LeakGAN (Guo et al., 2018), or using latent
representation like Gumbel softmax ((Jang et al.,
2016)). Many of these approaches suffer from high
training variance, mode collapse or cannot be eval-
uated beyond a qualitative analysis.

Many models have been proposed for text gen-
eration. Seq2seq models are standard encoder-
decoder models widely used in text applications
like machine translation (Luong et al., 2015) and
paraphrasing (Prakash et al., 2016). Variational
Auto-Encoder (VAE) models are another important
family (Kingma and Welling, 2013) and they con-
sist of an encoder that maps each sample to a latent
representation and a decoder that generates sam-
ples from the latent space. The advantage of these
models is the variational component and its poten-
tial to add diversity to the generated data. They
have been shown to work well for text generation
(Bowman et al., 2016). Conditional VAE (CVAE)
(Kingma et al., 2014) was proposed to improve over
seq2seq models for generating more diverse and
relevant text. CVAE based models (Serban et al.,
2017; Zhao et al., 2017; Shen et al., 2017; Zhou and
Wang, 2018) incorporate stochastic latent variables
that represents the generated text, and append the
output of VAE as an additional input to decoder.

Paraphrasing can be performed using neural net-
works with an encoder-decoder configuration, in-
cluding sequence to sequence (S2S) (Luong et al.,
2015) and generative models (Bowman et al., 2016)
and various modifications have been proposed to

domain: Movies
intent: MovieRating
slots: movie title
can children watch the movie movie title
can i watch the movie movie title with my son
is movie title p. g. thirteen
is movie title suitable for children

domain: Movies
intent: GetActorMovies
slots: genre, person name
give me genre movies starring person name
suggest genre movies starring person name
what genre movies is person name in
what are genre movies with person name

Figure 1: Example of template carrier phrases for two
signatures s.

allow for control of the output distribution of the
data generation (Yan et al., 2015; Hu et al., 2018).

Unlike the typical paraphrasing task we care
about the lexical diversity and novelty of the gener-
ated output. This has been a concern in paraphrase
generation: a generator that only produces trivial
outputs can still perform fairly well in terms of
typical paraphrasing evaluation metrics, despite the
output being of little use. Alternative metrics have
been proposed to encourage more diverse outputs
(Shima and Mitamura, 2011). Typically evalua-
tion of paraphrasing or text generation tasks is per-
formed by using a similarity metric (usually some
variant of BLEU (Papineni et al., 2002)) calculated
against a held-out set (Prakash et al., 2016; Ra-
jeswar et al., 2017; Yu et al., 2017).

3 Methodology

3.1 Problem Definition

New capabilities for virtual agents are typically
defined by a few phrases templates, also called car-
rier phrases, as seen in Fig. 1. In carrier phrases
the entity values, like the movie title ‘Batman’, are
replaced with their entity types, like movie title.
These are also called slot values and slot types,
respectively, in the NLU literature. For our gen-
eration task, these phrases define a category: all
carrier phrases that share the same domain, intent
and slot types are equivalent, in the sense that they
prompt the same agent response. For the remainder
of this paper we will refer to the combination of
domain, intent and slot types as the signature of a

91

phrase. Given a small amount of example carrier
phrases for a given signature of a new capability
(typically under 5 phrases), our goal is to generate
additional semantically similar carrier phrases for
the target signature.

The core challenge lies in the very limited data
we can work with. The low number of phrases per
category is, as we will show, highly problematic
when training some adversarial or reinforcement
structures. Additionally the high number of cate-
gories makes getting an output of the desired signa-
ture harder, because many similar signatures will
be very close in latent space.

Encoder Decoderz s

Discriminator

x x'

Encoder Decoderzx x'

Encoder Decoderz sx x'

s

(a)

(b)

(c)

Figure 2: The variants of VAE we used: (a) VAE, (b)
Conditional VAE (CVAE) and (c) VAE with discrimi-
nator

3.2 Generation models
Following is a short description of the models we
evaluated for data generation. For all models we
assume we have training carrier phrases ci ∈ Ds

tr

across signatures s, and we pool together the data
from all the signatures for training. The variational
auto-encoders we used can be seen in Fig 2.

Sequence to Sequence with Attention Here,
we use the seq2seq with global attention proposed
in (Luong et al., 2015) as our baseline generation
model. The model is trained on all input-output
pairs of carrier phrases belonging to the same sig-
nature s, e.g., c1, c2 ∈ Ds

tr. At generation, we aim
to control the output by using an input carrier of
the target signature s.

Variational Auto-Encoders (VAEs) The VAE
model can be trained with a paraphrasing objec-
tive, e.g., on pairs of carrier phrases c1, c2 ∈ Ds

tr,
similarly to the seq2seq model. Alternatively, the

VAE model can be trained with a reconstruction ob-
jective e.g., c1 ∈ Dtr can be both the input and the
output. However, if we train with a reconstruction
objective, during generation, we ignore the encoder
and randomly sample the VAE prior z (typically
from a normal distribution). As a result, we have
no control over the output signature distribution,
and we may generate any of the signatures s in
our training data. This disadvantage motivates the
investigation of two controlled VAE models.

VAE with discriminator is a modification of a
VAE proposed by (Hu et al., 2018) for a similar task
of controlled text generation. In this case, adversar-
ial type of training is used by training a discrimina-
tor, i.e., a classifier for the category (signature s),
to explicitly enforce control over the generated out-
put. The network is trained in steps, with the VAE
trained first, then the discriminator is attached and
the entire network re-trained using a sleep-wake
process. We tried two variations of this, one train-
ing a VAE, another training a CVAE, before adding
the discriminator. Note that control over the output
depends on the discriminator performance. While
this model worked well for controlling between a
small number of output categories as in (Hu et al.,
2018), our setup includes hundreds of signatures
s, which posed challenges in achieving accurate
control over the output phrases (Sec. 5.2).

Conditional VAE (CVAE) Inspired by (Moyer
et al., 2018) for invariant feature learning, we pro-
pose to use a CVAE based controlled model struc-
ture. Such structure is a modification on the VAE,
where we append the desired category label, here
signature s, in 1-hot encoding, to each step of
the decoder without an additional discriminator
as shown in (Hu et al., 2018). Note that the orig-
inal conditional VAE has already been applied to
controlled visual settings (Yan et al., 2015). It has
been shown that by direct optimizing the loss, this
model automatically learns a invariant representa-
tion z that is independent of the category (signature
s (Moyer et al., 2018)) although no explicit con-
straint is forced. We propose to use this model in
our task, because it is easy to train (no wake-sleep
or adversarial training), requires less data, and pro-
vides us a way to control the desired VAE output
signature, by setting the desired signature encod-
ing to s. Like the standard VAE, the CVAE can be
trained either with a paraphrasing or with a recon-
struction objective. If training with reconstruction,

92

during generation we randomly sample from z but
can control the output signature by setting s.

All model encoders and decoders are GRUs. For
the discriminator we tried CNN and LSTM with
no significant performance differences.

4 Datasets

We experiment on two datasets collected for Alexa,
a commercial artificial agent.

Movie dataset It contains carrier phrases that are
created as part of developing new movie-related
functionality. It is composed of 179 signatures
defined with an average of eight carrier phrases
each. This data represents a typical new capability
that starts out with few template carriers phrases,
and we use it to examine if this low resource dataset
can benefit from synthetic data generation.

Live entertainment dataset It contains live cus-
tomer data from deployed entertainment related
capabilities (music, books, etc), selected for their
semantic relevance to movies. These utterances
were de-lexicalized by replacing slot values with
their respective slot types. We used a frequency
threshold to filter out rare carrier phrases, and en-
sure a minimum number of three carrier phrases
per signature.

Table 1 shows the data splits for the movie, live
entertainment and ‘all’ datasets, the latter contain-
ing both movies and live entertainment data, in-
cluding the number of signatures, slot types and
unique non-slot words in each set. While the data
splits were stratified, signatures with fewer than
four carriers were placed only in the train set, lead-
ing to the discrepancy in signature numbers across
partitions.

5 Experiments

5.1 Experimental setup
At the core of our data augmentation task lies the
question “what defines a good training data set?”.
We can evaluate aspects of the generated data via
synthetic metrics, but the most reliable method is
to generate data for an extrinsic task and evaluate
any improvements in performance. In this paper
we employ both methods are reporting results for
intrinsic and extrinsic evaluation metrics.

For the intrinsic evaluation, we train the data
generator either only on movie data or on ‘all’ data
(movies and entertainment combined), using the re-
spective dev sets for hyper-parameter tuning. Dur-

ing generation, we similarly consider either the
movies test set, or the ‘all’ test set, and aim to
generate ten synthetic phrases per test set phrase.
VAE type generators can be trained for paraphras-
ing (c1→ c2) or reconstruction (c1→ c1). During
generation, sampling can be performed either from
the prior, e.g., by ignoring the encoder and sam-
pling z ∼ N (0, I) to generate an output, or from
the posterior e.g., using c1 as input to the encoder
and producing the output c2. Note that not all
combinations are applicable to all models. Those
applicable are shown in Table 3, where ‘para’, ‘re-
con’, ‘prior’ and ‘post’ denote paraphrasing, recon-
struction, prior and posterior respectively. Special
handling was required for a VAE with reconstruc-
tion training and prior sampling, where we have no
control over the output signature. To solve this, we
compared each output phrase to every signature in
the train set (via BLEU4 (Papineni et al., 2002))
and assigned it to the highest scoring signature.
Some sample output phrases can be seen in Fig. 3.

To examine the usefulness of the generated data
for an extrinsic ask, we perform intent classifica-
tion, a standard task in NLU. Our classifier is a BiL-
STM model. We use the same data as for the data
generation experiments (see Table 1), and group
our class labels into intents (as opposed to signa-
tures), which leads to classifying 136 intents in the
combined movies and entertainment data (‘all’).
Our setup follows two steps: First, the data gen-
erators are trained on ‘all’ train sets, and used to
generate phrases for the dev sets (‘all’ and movies).
Second, the intent classifier is trained on the ‘all’
train and dev sets (baseline), vs the combination of
‘all’ train, dev and generated synthetic data, which
is our proposed approach. We evaluate on the ‘all’
and movies test sets, and use macro-averaged F-
score across all intents as our metric.

5.2 Intrinsic evaluation

To evaluate the generated data we use an ensemble
of evaluation metrics attempting to quantify three
important aspects of the data: (1) how accurate or
relevant the data is to the task, (2) how diverse the
set of generated phrases is and (3) how novel these
synthetic phrases are. Intuitively, a NLG system
can be very accurate - generate valid phrases of the
correct signature - while only generating phrases
from the train set or while generating the same
phrase multiple times for the same signature; either
of these scenaria would not lead to useful data. To

93

domain subset carriers signatures slots words

Movies
train 1,382 179 21 353
dev 622 109 15 292
test 520 69 10 254

Live Entertainment
train 4269 588 120 332
dev 1236 244 77 194
test 1335 271 74 217

All
train 5,651 767 141 685
dev 1,858 353 92 486
test 1,855 340 84 471

Table 1: Data distribution and splits. ‘All’ contains the combined Movie and Entertainment live datasets

domain subset carriers intents

All

train 5651 136
dev 1858 101
train+dev 7509 136
test 1855 94

Movies test 520 37

Table 2: Data distribution and splits for the extrinsic
task.

evaluate accuracy we compare the generated data
to a held out test set using BLEU4 (Papineni et al.,
2002) and the slot carry-over rate, the probability
that a generated phrase contains the exact same slot
types as the target signature s. To evaluate novelty
we compare the generated data to the train set of
the generator, using 1-BLEU4 (where higher is bet-
ter) and 1-Match rate, where the match rate is the
chance that a perfect match to a generated phrase
exists in the train set. These scores tell us how
different, at the lexical level, the generated phrases
are to the phrases that already exist in the train
set. Finally, to evaluate diversity we compare the
phrases in the generated data to each other, using
again 1-BLEU4 and the unique rate, the number
of unique phrase produced over the total number
of phrases produced. These scores indicate how
lexically different the generated phrases are to each
other. Figure 4 shows the set comparisons made
to generate the intrinsic evaluation metrics. Note
that these metrics mostly evaluate surface forms;
we expect phrases generated for the same signature
to be semantically similar to phrases with the same
signature in the train set and to each other, how-
ever we would like them to be lexically novel and
diverse.

Table 3 presents the intrinsic evaluation results,
where generators are trained and tested on ‘all’ data,

for the best performing model per case, tuned on
the dev set. First, note the slot carry over (slot c.o.),
which can be used as a sanity check measuring the
chance of getting a phrase with the desired slot
types. Most models reach 0.8 or higher slot c.o.
as expected, but some fall short, indicating failure
to produce the desired signature. The failure for
VAE and CVAE models with discriminators is most
notable, and can be explained by the fact that we
have a large number of train signatures (∼800) and
too few samples per signature (mean 8, median
4), to accurately train the discriminator. We ver-
ified that the discriminator overall accuracy does
not exceed 0.35. The poor discriminator perfor-
mance leads to the decoder not learning how to use
signature s. The failure of VAE with posterior sam-
pling is similarly explained by the large number of
signatures: the signatures are so tightly packed in
the latent space, that the variance of sampling z is
likely to result in phrases from similar but different
signatures.

This sanity check leaves us with five reason-
ably performing models: S2S, VAE trained for
reconstruction and sampled from the prior and
CVAE with multiple training and sampling strate-
gies. Overall, these models achieve high accuracy
with respect to the slot c.o. and BLEU4 metrics,
assisted by the rather limited vocabulary of the data.
To examine the trade-offs between the models, in
Fig. 5, we show the accuracy BLEU4 as a function
of diversity unique rate, i.e., how many different
phrases we generated. Each point is a model trained
with different hyper-parameter settings, across rele-
vant hyper-parameters, network component dimen-
sionalities etc. As expected, diversity is negatively
correlated with accuracy. We make similar observa-
tions for novelty metrics (plots omitted for brevity),
i.e., diversity and novelty are negatively correlated

94

Model: S2S
Input: i negation feel like watching a movie with person name

ou
tp

ut
s

i negation like movies by person name
i negation feel like watching movies by person name
i negation feel like watching a movie by person name
i negation like person name
i negation feel like watching a movie
i negation want to talk about person name
no i negation like person name movies

Model: VAE, sampling from prior distribution
Input: GetMovieAwards (intent) - award title, movie title (slots)

ou
tp

ut
s

did movie title win an award title
any award title won by movie title
tell me any award title which movie title won
was movie title nominated for an award title the movie movie title
any award title for movie title
what are the award title which movie title won
give me any award title the movie was nominated for

Model: CVAE, sampling from prior distribution
Input: GetActorMovies (intent) - genre, person name (slots)

ou
tp

ut
s

give me genre movies starring person name
show me other genre movies with person name in it
what are the genre movies that person name starred in
tell me genre movies starring person name
what are genre movies with person name
genre movies starring person name
suggest genre movies starring person name

Figure 3: Sample output phrases. The S2S model and all posterior sampling models use a phrase as an input. For
prior sampling the desired signature is the model input.

Novelty
Generated

Data

Train
Set

Test
Set

Diversity

Accuracy

Model

Figure 4: Intrinsic evaluation overview

to accuracy within the hyper-parameter constraints
of each model. However the trade-off is not equally
steep for all models. Across our experiments the
VAE and CVAE models with reconstruction train-
ing and prior sampling provided the most favorable
trade-offs with CVAE being the best option for very

high accuracy, as seen in Fig. 5.

In Table 4, we show intrinsic results on the
movies test set. For brevity, we show the mean
relative change for the best performing models for
each metric, computed between using only movie
data to train the generators vs using the combined
‘all’ data. In the latter case, the live entertainment
data is added to train a more robust generator for
movies. As expected, we notice a small loss in ac-
curacy (-1.9 % rel. change on average for BLEU4)
when using the ‘all’ data for generator training,
but also a significant gain in diversity and novelty
of the movie generated data (121 % and 153 %
rel. change on average respectively for 1-BLEU4).
Overall, the reconstruction VAE and CVAE models
achieve the best results and have favorable perfor-
mance trade-offs when using ‘all’ data to enrich
movie data generation.

95

S2S VAE VAE+DISC CVAE CVAE+DISC
training para recon para recon recon recon para recon

sampling post prior post prior prior post post prior

accuracy
BLEU4 0.86 0.91 0.24 0.42 0.91 0.88 0.90 0.11
slot c.o. 0.84 0.95 0.02 0.12 0.98 0.93 0.95 0.01

diversity
1-BLEU4 0.06 0.19 0.83 0.84 0.14 0.23 0.33 0.19
uniq. rate 0.58 0.68 0.98 0.76 0.44 0.56 0.68 0.97

novelty
1-BLEU4 0.25 0.07 0.75 0.98 0.04 0.12 0.21 0.99
1-match rate 0.89 0.76 0.99 1.00 0.32 0.50 0.59 1.00

Table 3: Best performance per metric for each model when applied to ‘all’ domains.

metric % change
CVAE CVAE CVAE VAE
prior posterior s2s prior

accuracy
BLEU4 -0.7% -0.7% -4.3% -2.0%
slot c.o. -2.7% -3.1% -9.5% -5.9%

diversity
1-BLEU4 112.1% 103.6% 133.7% 134.6%
uniq. rate 19.6% 19.7% 32.7% 37.1%

novelty
1-BLEU4 147.1% 40.7% 222.1% 201.2%
1-match rate 113.5% 36.7% 145.4% 90.1%

Table 4: Relative change when adding more training data for generator training (movies only vs ‘all’) across
evaluation metrics on the movies test set

0.3 0.4 0.5 0.6 0.7
diversity: uniq. rate

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

: b
le

u4

S2S
VAE
CVAE-prior
CVAE-posterior
CVAE-S2S

Figure 5: Intrinsic accuracy BLEU4 as a function of in-
trinsic diversity for the ‘all’ test set for multiple hyper-
parameter combinations of each model.

5.3 Extrinsic Evaluation

In Figure 6 we present the change in the F1 score
for intent classification when adding the gener-
ated data into the classifier training (compared to
the baseline classifier with no generated data) as

a function of the intrinsic BLEU4 accuracy met-
ric. The plot presents results on the movies test
set. Each point is a model trained with differ-
ent hyper-parameters and the line y = 0 repre-
sents zero change from baseline, while models
over this line represent improvement. Some hyper-
parameter choices clearly lead to sub-optimal re-
sults, but they are included to show the relationship
between intrinsic and extrinsic performance across
a wider range of conditions. We notice that many
generators produce useful synthetic data that lead
to improvement in intent classification, with the
best performing ones being the CVAE models with
around 5% absolute improvement in F-score on
the movie test set (p < 0.01). This is an encour-
aging results, as it verifies the usefulness of the
generated data for improving the extrinsic low re-
source task. For the ‘all’ test set experiments, the
improvement is less pronounced, with maximum
gain from synthetic data being around 2%, again
for the CVAE models. This smaller improvement
could be because this test set is not as low resource
(roughly twice as many train carriers phrases per

96

0.70 0.75 0.80 0.85 0.90
accuracy: bleu4

0.08

0.06

0.04

0.02

0.00

0.02
ex

tr
in

si
c:

 m
ac

ro
f1

 d
iff

er
en

ce CVAE-S2S
CVAE-posterior
CVAE-prior
S2S
VAE

0.75 0.80 0.85 0.90
accuracy: bleu4

0.10

0.05

0.00

0.05

ex
tr

in
si

c:
 m

ac
ro

f1
 d

iff
er

en
ce

CVAE-S2S
CVAE-posterior
CVAE-prior
S2S
VAE

(a) (b)

Figure 6: Extrinsic task performance change as a function of intrinsic accuracy BLEU4 for (a) all domains and (b)
the movies domain. The y axis represents how much performance improved or deteriorated after adding synthetic
data to the train set.

intent on average, 41.55 instead of 24.25), there-
fore harder to improve using synthetic data. Note
that the baseline F1 scores (no synthetic data) are
0.58 for movies and 0.60 for the ‘all’ test set.

We investigate the correlation between the intrin-
sic metrics and the extrinsic F score by performing
Ordinary Least Squares (OLS) regression between
the two types of metrics, computed on the ‘all’
test set. We find that intrinsic accuracy metrics
like BLEU4 and slot c.o. have significant positive
correlation with macro F (R2 of 0.31 and 0.40 re-
spectively, p ≈ 0) across all experiments/models,
though perhaps not as high as one might expect.
We also computed via OLS the combined predic-
tive power of all intrinsic metrics for predicting
extrinsic F, and estimated an R2 coefficient of 0.53
(p ≈ 0). The diversity and novelty metrics add
a lot of predictive power to the OLS model when
combined with accuracy metrics, raising R2 from
0.40 to 0.53, validating the need to take these as-
pects of NLG performance into account. However,
intrinsic diversity and novelty are only good predic-
tors of extrinsic performance when combined with
accuracy, so they only become significant when
comparing models of similar intrinsic accuracy.

6 Conclusions

We described a framework for controlled text gener-
ation for enriching training data for new NLU func-
tionality. Our challenging text generation setup
required control of the output phrases over a large
number of low resource signatures of NLU func-

tionality. We used intrinsic metrics to evaluate the
quality of the generated synthetic data in terms
of accuracy, diversity and novelty. We empiri-
cally investigated variational encoder-decoder type
models and proposed to use a CVAE based model,
which yielded the best results, being able to gener-
ate phrases with favorable accuracy, diversity and
novelty trade-offs. We also demonstrated the use-
fulness of our proposed methods by showing that
the synthetic data can improve the accuracy of an
extrinsic low resource classification task.

7 Acknowledgments

This work was performed while Nikolaos Malan-
drakis was at Amazon Alexa AI, Sunnyvale.

References

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continu-
ous space. In Proceedings of the SIGNLL Confer-
ence on Computational Natural Language Learning
(CONLL), pages 10–21.

Jiaxian Guo, Weinan Zhang Yong Yu Sidi Lu, Han Cai,
and Jun Wang. 2018. Long text generation via ad-
versarial training with leaked information. In Pro-
ceedings of AAAI, pages 5141–5148.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2018. Toward con-
trolled generation of text. arXiv:1703.00955.

97

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with gumbel-softmax.
arXiv:1611.01144.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Advances
in Neural Information Processing Systems, pages
3581–3589.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv:1312.6114.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv:1508.04025.

Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram
Galstyan, and Greg Ver Steeg. 2018. Invariant repre-
sentations without adversarial training. In Advances
in Neural Information Processing Systems 31, pages
9101–9110.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual lstm networks. arXiv:1610.03098.

Rajeswar, Subramanian S., Dutil F., Pal C., and
A. Courville. 2017. Adversarial generation of nat-
ural language. arXiv:1705.10929.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer
generator networks. In Proceedings of ACL, pages
1073–1083.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating dia-
logues. In AAAI, pages 3295–3301.

Xiaoyu Shen, Hui Su, Yanran Li, Wenjie Li, Shuzi
Niu, Yang Zhao, Akiko Aizawa, and Guoping Long.
2017. A conditional variational framework for dia-
log generation. arXiv:1705.00316.

Hideki Shima and Teruko Mitamura. 2011. Diversity-
aware evaluation for paraphrase patterns. In Pro-
ceedings of the TextInfer 2011 Workshop on Textual
Entailment, pages 35–39.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
pages 3104–3112.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak
Lee. 2015. Attribute2image: Conditional image gen-
eration from visual attributes. arXiv:1512.00570.

Quanzeng You, Chen Fang Hailin Jin, Zhaowen Wang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4651–4659.

Lantao Yu, Jun Wang Weinan Zhang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of AAAI, pages
2852–2858.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. arXiv:1703.10960.

Xianda Zhou and William Yang Wang. 2018. MojiTalk:
Generating emotional responses at scale. In Pro-
ceedings of ACL), pages 1128–1137.

98

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 99–107
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Zero-Resource Neural Machine Translation with Monolingual Pivot Data

Anna Currey
University of Edinburgh

a.currey@sms.ed.ac.uk

Kenneth Heafield
University of Edinburgh
kheafiel@ed.ac.uk

Abstract

Zero-shot neural machine translation (NMT)
is a framework that uses source-pivot and
target-pivot parallel data to train a source-
target NMT system. An extension to zero-
shot NMT is zero-resource NMT, which gen-
erates pseudo-parallel corpora using a zero-
shot system and further trains the zero-shot
system on that data. In this paper, we ex-
pand on zero-resource NMT by incorporating
monolingual data in the pivot language into
training; since the pivot language is usually
the highest-resource language of the three, we
expect monolingual pivot-language data to be
most abundant. We propose methods for gen-
erating pseudo-parallel corpora using pivot-
language monolingual data and for leverag-
ing the pseudo-parallel corpora to improve the
zero-shot NMT system. We evaluate these
methods for a high-resource language pair
(German-Russian) using English as the pivot.
We show that our proposed methods yield
consistent improvements over strong zero-shot
and zero-resource baselines and even catch up
to pivot-based models in BLEU (while not re-
quiring the two-pass inference that pivot mod-
els require).

1 Introduction

Neural machine translation (NMT) has achieved
impressive results on several high-resource trans-
lation tasks (Hassan et al., 2018; Wu et al.,
2016). However, these systems have relied on
large amounts of parallel training data between
the source and the target language; for many lan-
guage pairs, such data may not be available. Even
two high-resource languages, such as German and
Russian, may not have sufficient parallel data be-
tween them.

Recently, unsupervised NMT systems that learn
to translate using only monolingual corpora have
been proposed as a solution to this problem

(Artetxe et al., 2018; Lample et al., 2018). How-
ever, such systems do not make full use of avail-
able parallel corpora between the source and target
languages and a potential pivot language.

Although most language pairs may have little
in-domain parallel data available, it is often possi-
ble to find parallel corpora with a third pivot lan-
guage. For example, while German↔Russian par-
allel data is relatively scarce, German↔English
and Russian↔English data is abundant. Pivot-
based and zero-shot NMT systems have been pro-
posed as a means of taking advantage of this data
to translate between e.g. German and Russian.

In pivot-based machine translation, text is first
translated from the source language into the pivot
language, and then from the pivot language into
the target language. Although such methods can
result in strong translation performance (Johnson
et al., 2017), they have a few disadvantages. The
two-step pivoting translation process doubles the
latency during inference and has the potential to
propagate errors from the source→pivot transla-
tion into the final target output. Additionally, there
is a risk that relevant information in the source
sentence can be lost in the pivot translation (e.g.
case distinctions if pivoting through English) and
not represented in the target sentence. Zero-shot
methods that take advantage of multilingual NMT
systems to perform direct source→target transla-
tion have become a popular method for address-
ing this problem, and zero-resource methods build
off of zero-shot methods by fine-tuning on pseudo-
parallel data to improve direct translation (see
section 2.1 for a review of zero-shot and zero-
resource methods). Zero-resource methods are
beneficial because they can potentially take advan-
tage of all available training data, including paral-
lel and monolingual corpora.

The goal of this paper is to augment zero-
resource NMT with monolingual data from the

99

https://www.aclweb.org/anthology/D19-56%2d

pivot language. Although there have been several
explorations into using parallel corpora through
a pivot language to improve NMT (Firat et al.,
2016; Lakew et al., 2017; Park et al., 2017) and
using monolingual source and target corpora in
NMT (Edunov et al., 2018; Gulcehre et al., 2015;
Hoang et al., 2018; Niu et al., 2018; Sennrich
et al., 2016a; Zhang and Zong, 2016), this is to
our knowledge the first attempt at using monolin-
gual pivot-language data to augment NMT train-
ing. Leveraging monolingual pivot-language data
is worthwhile because the pivot language is often
the highest-resource language of the three (e.g. it
is often English), so we expect there to be more
high-quality monolingual pivot data than mono-
lingual source or target data in many cases. Thus,
we make use of parallel source↔pivot data, par-
allel target↔pivot data, and monolingual pivot-
language data to build a zero-resource NMT sys-
tem. Although we use a basic multilingual NMT
system as the basis, the methods proposed here
could easily be applied to any zero-shot NMT ar-
chitecture.

2 Related Work

2.1 Zero-Shot and Zero-Resource NMT

Zero-shot neural machine translation, i.e. NMT
between two languages for which no parallel data
was used at training time, is often done by lever-
aging multilingual NMT systems. Firat et al.
(2016) first attempted zero-shot NMT with a mul-
tilingual model consisting of several encoders and
decoders, but found that without fine-tuning, the
model was not able to translate between the zero-
shot language pairs. On the other hand, multilin-
gual NMT with shared encoders and decoders (Ha
et al., 2016; Johnson et al., 2017) is more success-
ful at zero-shot NMT, although its performance
still lags behind pivoting.

Several modifications to the multilingual NMT
architecture have been proposed with the goal
of improving zero-shot NMT performance; here,
we review some such modifications. Lu et al.
(2018) added an interlingua layer to the mul-
tilingual NMT model; this layer transforms
language-specific encoder outputs into language-
independent decoder inputs. Platanios et al.
(2018) updated the shared encoder/decoder mul-
tilingual NMT model by adding a contextual pa-
rameter generator. This generator generates the
encoder and decoder parameters for a given source

and target language, taking only source and target
language as input. Arivazhagan et al. (2019) aug-
mented the NMT loss function with a term that
promotes the creation of an interlingua.

In this paper, we concentrate on the task of zero-
resource translation, which starts from a multilin-
gual NMT system and improves the zero-shot di-
rection using pseudo-parallel corpora. Firat et al.
(2016) found that zero-shot NMT performance
could be strongly improved by fine-tuning on a
pseudo-parallel corpus created by back-translating
from the pivot language into each zero-shot lan-
guage. Similarly, Lakew et al. (2017) improved
low-resource zero-shot NMT by back-translating
directly between the two zero-shot languages and
fine-tuning on the resulting corpus. Park et al.
(2017) combined both of these methods and also
included NMT-generated sentences on the target
side of the pseudo-parallel corpora.

2.2 NMT with Monolingual Data

This paper builds off the idea of back-translation
in order to incorporate pivot-language monolin-
gual data into NMT. Back-translation was intro-
duced for NMT by Sennrich et al. (2016a). This
technique consists of first training a target→source
NMT system and using that to translate the target
monolingual data into the source language. The
resulting pseudo-parallel source→target corpus is
used to augment the training of the final system.

Several methods for improving back-translation
have also been proposed. Zhang and Zong (2016)
extended back-translation to monolingual source-
language data by using the initial system to trans-
late the source data to the target and re-training
on the resulting pseudo-parallel corpus. Niu
et al. (2018) augmented multilingual NMT with
back-translation. They trained a single model
for source→target and target→source translation,
used that model to back-translate source and target
monolingual data, and fine-tuned the model on the
back-translated corpora.

3 Zero-Resource NMT with Pivot
Monolingual Data

In this paper, we concentrate on zero-resource
NMT between two languages X and Y given a
pivot language Z. We assume access to X↔Z and
Y↔Z parallel corpora, but no direct X↔Y paral-
lel corpus. Our goal is to use additional monolin-
gual data in the pivot language Z to improve both

100

pivot

source

pivot

target

NMT
training

source

pivot

target

pivot

(a) An initial multilingual NMT model is trained on source↔pivot and target↔pivot parallel data (section 3.1).

pivot monolingual NMT
inference

source’

target’

(b) The pivot monolingual corpus is back-translated into the source and target languages using the trained NMT model (sec-
tion 3.2).

source’

target’
NMT

training
target’

source’

(c) The source’→target’ and target’→source’ pseudo-parallel corpora are used to train the final NMT system from scratch or
fine-tune the initial model (section 3.3). In practice, we concatenate this data with a subset of the original parallel data (not
shown here).

Figure 1: Illustration of the basic steps in our zero-resource NMT model using pivot-language monolingual data.

X→Y and Y→X translation simultaneously. Fig-
ure 1 gives an overview of our proposed method.

3.1 Initial Multilingual Models

We start by giving an overview of the multilin-
gual NMT models that are used as the basis for
our experiments. Here, we do not consider single-
directional bilingual NMT models, only multilin-
gual NMT models. This is because we would like
to translate directly between language X and lan-
guage Y at inference time without using the pivot
language; translating through the pivot language
would double the amount of time it takes to trans-
late and potentially lead to information loss or er-
ror propagation. In this work, we also do not con-
sider the case of adding monolingual data from
the main languages of interest (X and Y), although
such data would likely further improve translation
quality.

Our initial multilingual NMT model is based on
the model introduced by Johnson et al. (2017), al-
though here we use the transformer architecture
(Vaswani et al., 2017). We train the initial model
on mixed X→Z, Z→X, Y→Z, and Z→Y paral-

lel data and use tags at the beginning and end of
each source sentence to indicate the desired target
language. We shuffle all of the data together ran-
domly, regardless of source and target language.
We do not employ any extensions to the zero-shot
architecture (Arivazhagan et al., 2019; Lu et al.,
2018; Platanios et al., 2018), although the meth-
ods described here could easily be applied to such
extensions as well.

3.2 Back-Translation of Pivot Monolingual
Data

We turn now to the task of leveraging the mono-
lingual corpus in the pivot language Z to improve
the multilingual NMT models. We aim to improve
only X→Y and Y→X translation, without regard
to performance on the other language pairs that
are included in the multilingual system (X↔Z and
Y↔Z).

First, we use the initial multilingual model de-
scribed in section 3.1 to back-translate the mono-
lingual pivot data into both languages of interest
(X and Y). Since the initial multilingual model
was trained on both these directions (Z→X and

101

Method Back-Translated Data Training Regime
pivot from scratch BT-pivot train from scratch
pivot fine-tune BT-pivot fine-tune initial model
pivot-parallel combined BT-pivot + BT-parallel fine-tune initial model

Table 1: Summary of the proposed methods for zero-shot NMT using pivot-language monolingual data.

Z→Y), we expect it to do reasonably well at
back-translation. Thus, for each sentence in the
Z monolingual corpus, we have its translation in
both X and Y, so we can create a pseudo-parallel
corpus X’↔Y’ (where the prime symbol indicates
machine-translated text). We concatenate both di-
rections (X’→Y’ and Y’→X’) together to create
our back-translated pivot (BT-pivot) corpus. This
resulting corpus contains synthetic data on both
the source and the target side.

3.3 Using the BT-Pivot Corpus

The BT-pivot corpus uses the monolingual cor-
pus from the pivot language Z to create a direct
pseudo-parallel corpus between the two languages
of interest, X and Y. In this section, we introduce
three methods for using this BT-pivot data to cre-
ate a zero-resource NMT system for X↔Y trans-
lation. In all cases, we concatenate the BT-pivot
corpus with a subset of the original training data
to train the zero-resource models; in preliminary
experiments, we found that using some original
training data yielded slightly higher BLEU scores
than training on back-translated data alone. We
take only a subset of the original parallel training
data rather than the entire corpus in order to cut
down on training time.

We dub our first method pivot from scratch. In
this method, we discard the initial NMT model and
train a new NMT model from scratch using the
BT-pivot data (concatenated with the subset of the
original parallel corpora). We use the same model
hyperparameters as for the initial NMT model.

Our second method, pivot fine-tune, is similar
to the first: both methods use the BT-pivot data
(along with the subset of the original parallel data).
However, for pivot fine-tune, we use the BT-pivot
data and the subset of the parallel data to fine-tune
the original multilingual model described in sec-
tion 3.1, rather than training a new model from
scratch.

Finally, we propose a pivot-parallel combined
method. This method also fine-tunes the original
multilingual model, but uses an augmented fine-

tuning dataset. In addition to the BT-pivot cor-
pus and the subset of the original training data, we
add a back-translated parallel (BT-parallel) corpus
generated following Firat et al. (2016) as follows:

1. Use the initial multilingual model to translate
the Z side of the subsetted X↔Z parallel cor-
pus into language Y.

2. Combine the resulting Y’ data with the X side
of the subsetted X↔Z parallel corpus to cre-
ate a Y’→X parallel corpus.

3. Use the initial multilingual model to translate
the Z side of the subsetted Y↔Z parallel cor-
pus into language X.

4. Combine the resulting X’ data with the Y side
of the subsetted Y↔Z parallel corpus to cre-
ate a X’→Y parallel corpus.

5. Concatenate the two back-translated corpora
(X’→Y and Y’→X) to create the BT-parallel
corpus.

The BT-parallel corpus is then combined with the
BT-pivot corpus and the subset of the original par-
allel data and used to fine-tune the initial multilin-
gual model.

Table 1 summarizes the three proposed methods
for zero-shot NMT. The three methods vary in the
back-translated data used (BT-pivot only vs. BT-
pivot and BT-parallel) and in the training regime
(training a new model from scratch vs. fine-tuning
the initial multilingual model). In initial experi-
ments, we also tried a version of the pivot-parallel
combined method that trained a new model from
scratch, although this did not do as well as the
pivot-parallel combined method with fine-tuning.

4 Experimental Setup

4.1 Data
We run our experiments on a high-resource set-
ting: translation between German (DE) and Rus-
sian (RU) using English (EN) as the pivot. The
data comes from the WMT16 news translation

102

Corpus Sentences
EN↔DE 4 497 878
EN↔RU 2 500 502
EN monolingual 1 000 000

Table 2: Number of sentences in each training corpus
for the DE↔RU experiments.

task (Bojar et al., 2016). We use all available
parallel corpora for EN↔DE (Europarl v7, Com-
mon Crawl, and News Commentary v11) and
for EN↔RU (Common Crawl, News Commen-
tary v11, Yandex Corpus, and Wiki Headlines)
to train the initial multilingual system, but no di-
rect DE↔RU parallel data. When the parallel
data is used alongside the back-translated corpora
for fine-tuning or re-training from scratch (as de-
scribed in section 3.1), we randomly sample one
million sentences from each parallel corpus.

For pivot (EN) monolingual data, we take a
random subset of one million sentences from the
News Crawl 2015 corpus. Since the goal of this
paper is to study the effectiveness of using pivot-
language monolingual data, we do not use any
DE or RU monolingual data; however, we ex-
pect that such data would also be beneficial. Ta-
ble 2 shows the size of each training corpus af-
ter preprocessing. We use the overlapping DE and
RU sentences from newstest2014 as the validation
set (1505 sentences), newstest2015 as the test set
(1433 sentences), and newstest2016 as the held-
out set (1500 sentences). The overlapping sen-
tences were originally written in English and were
translated by human translators into German and
Russian (Bojar et al., 2016).

All data is tokenized and truecased using the
Moses scripts (Koehn et al., 2007). We use a joint
byte pair encoding (Sennrich et al., 2016b) vocab-
ulary for all three languages (DE, EN, and RU)
trained on all parallel data with 50k merge opera-
tions. Similarly to Johnson et al. (2017), we use
tags at the beginning and end of the source sen-
tence to indicate the desired target language.

4.2 Models

All models in our experiments are based on the
transformer architecture (Vaswani et al., 2017).
We use the Sockeye toolkit (Hieber et al., 2017)
to run all experiments. We find that the default
Sockeye hyperparameters work well, so we stick
with those throughout. We use beam search with

beam size 5 both when back-translating and dur-
ing inference.

4.3 Baselines

Initial Models Without Monolingual Data
We compare our models to three baselines that are
trained without any monolingual data. We refer to
these baselines as initial models because they are
used as the basis for our proposed models: we use
them to generate the BT-pivot data and we fine-
tune them using the generated data to create our
proposed models.

The first baseline is a multilingual model based
on Johnson et al. (2017), but we use the trans-
former architecture and add target language tags
at both the beginning and end of the source sen-
tences. This multilingual model is trained on
the English↔German and English↔Russian par-
allel data. We evaluate this model both with
direct (zero-shot) translation (German→Russian
and Russian→German) and with pivot translation
through English.

Secondly, we consider the zero-resource NMT
method proposed by Lakew et al. (2017). This
method consists of selecting sentences from the
DE↔EN parallel corpus and back-translating
them from DE into RU, resulting in a RU’→DE
pseudo-parallel corpus. The same is also done
with the RU↔EN parallel corpus to create a
DE’→RU pseudo-parallel corpus. These corpora
are then concatenated with the original parallel
data and used to fine-tune the multilingual model.
This zero-resource method is only evaluated on
direct DE→RU and RU→DE translation (not on
pivoting through EN).

We also compare our models to a zero-resource
baseline based on the technique introduced by Fi-
rat et al. (2016). This method fine-tunes the initial
multilingual model with the BT-parallel corpus de-
scribed in section 3.3 (concatenated with the ori-
gial data). Like the other zero-resource baseline,
this baseline is only evaluated on direct translation
(not on pivot translation).

Baselines with Monolingual Data
In addition to the initial models, we compare
our proposed zero-resource NMT methods to two
baselines trained with monolingual EN data. For
both of these baselines, we evaluate both direct
zero-shot translation and pivot translation through
EN.

103

RU→DE DE→RU
BLEU test held-out test held-out

initial models

multilingual direct 15.2 14.5 3.4 2.7
multilingual pivot 21.7 20.2 21.3 19.3
Lakew et al., 2017 14.4 13.2 19.4 17.0
Firat et al., 2016 21.0 18.3 22.6 20.7

baselines

copied corpus direct 10.2 9.5 3.7 3.1
copied corpus pivot 21.1 19.9 20.9 18.9
back-translation direct 14.8 14.1 3.7 2.9
back-translation pivot 22.4 20.9 22.3 20.4

proposed models
pivot from scratch 22.3 21.5 23.0 20.6
pivot fine-tune 22.4 21.5 23.0 20.3
pivot-parallel combined 22.5 21.6 23.6 21.1

Table 3: BLEU scores for the initial multilingual models and zero-resource models without monolingual data,
for the baselines with pivot monolingual data, and for our proposed zero-resource models with pivot monolingual
data. We report results on the test set (newstest2015) and the held-out set (newstest2016). For the baselines and
the initial multilingual models, we use consider both direct (zero-shot) and pivot translation.

The first is based on the copied corpus method
of Currey et al. (2017). We train an identi-
cal model to the initial multilingual model, but
with additional EN→EN pseudo-parallel training
data from the EN monolingual corpus. Thus,
this model is trained on DE↔EN, RU↔EN, and
EN→EN data. We do not fine-tune this model
with any pseudo-parallel data.

The second baseline we consider is back-
translation (Sennrich et al., 2016a). Starting from
the trained multilingual model, we back-translate
the EN monolingual data into both DE and RU,
then fine-tune the multilingual model on the origi-
nal training data, plus the DE’→EN and RU’→EN
pseudo-parallel corpora.

5 Results

Table 3 shows translation performance (as es-
timated by BLEU score) for our main experi-
ments. We display results for initial multilingual
models without any monolingual data (rows 1–
4), for copied corpus and back-translation base-
lines using the monolingual data (rows 5–8), and
for our proposed zero-resource models (rows 9–
11). For the initial multilingual model and for
the copied corpus and back-translation baselines,
we consider both direct source→target transla-
tion and translation through the pivot language
(source→EN→target).

5.1 Initial Models Without Monolingual Data

For the multilingual baseline, direct
source→target translation does very poorly for
DE→RU. Although the performance is somewhat
more reasonable for RU→DE, direct translation
still lags far behind pivot (source→EN→target)
translation for this model. Our results differ
from those of Johnson et al. (2017), who showed
reasonable performance in both directions for
zero-shot translation. However, they tested their
zero-shot systems only on closely related lan-
guages or very large-scale multilingual systems,
whereas we use somewhat smaller training sets
and distantly related languages. This might be an
explanation for the discrepancy in results.

Both zero-resource models (Lakew et al., 2017
and Firat et al., 2016) outperform the multilingual
baseline overall for direct translation. In addi-
tion, the latter closes the gap with the pivot trans-
lation baseline for DE→RU and almost closes it
for RU→DE. Thus, fine-tuning on back-translated
parallel data is very helpful in improving zero-
resource NMT. In the next sections, we evalu-
ate methods for further improving zero-resource
NMT using EN monolingual data.

5.2 Baselines with Monolingual Data

The results for the copied corpus and back-
translation baselines (using both direct and pivot
translation) are shown in rows 5–8 of Table 3.
Both models are unable to translate well using
only direct translation, but when pivot translation

104

is used, their performance improves. In partic-
ular, the back-translation pivot baseline achieves
slightly higher BLEU scores overall than any of
the initial models trained without monolingual
data.

Currey et al. (2017) showed that the copied cor-
pus method was useful for adding target-language
monolingual data to NMT training. Here, we see
that the same method is not beneficial (and in fact
is slightly harmful compared to the baseline) for
adding pivot-language monolingual data to NMT.
This could be because the copied corpus is used
here to improve translation directions that are not
of interest (i.e. translation into and out of English,
rather than DE↔RU translation).

5.3 Proposed Models with Monolingual Data

We display the results for our three proposed mod-
els in the last three rows of Table 3. Compared
to the best pivot-based model (back-translation),
the pivot from scratch and pivot fine-tune models
perform slightly better overall in both translation
directions (DE→RU and RU→DE). Additionally,
the pivot-parallel combined model improves over
the best pivot-based model by about 1 BLEU
for DE→RU and also does slightly better for
RU→DE. This BLEU gain is especially interest-
ing since the proposed models do not require two-
step inference, unlike the back-translation pivot-
based model.

Comparing to the best direct translation model
(the zero-resource model based on Firat et al.,
2016) leads to similar conclusions. The pivot from
scratch and pivot fine-tune methods do similarly
to this baseline for DE→RU translation and im-
prove over it by 1.3–3.2 BLEU for RU→DE trans-
lation. For the pivot-parallel combined model, the
gains over the baseline for DE→RU are stronger
than for the other two methods, and the gains for
RU→DE are similar. Thus, we have shown that
adding pivot-language monolingual data through
these methods can strongly improve zero-resource
NMT performance.

All three of our proposed models improve over
a strong direct translation baseline and perform
similarly to or better than a pivot-based translation
baseline that uses EN monolingual data without
requiring the two-step inference process necessary
for pivot-based translation. The pivot from scratch
and pivot fine-tune models give similar results,
while the pivot-parallel combined method, which

DE→RU RU→DE
BLEU iter 1 iter 2 iter 1 iter 2
from scratch 23.0 23.0 22.3 22.7
fine-tune 23.0 23.3 22.4 22.8
combined 23.6 22.7 22.5 21.2

Table 4: BLEU scores for the proposed models on the
test set (newstest2015). We show BLEU scores for one
and two iterations (iter 1 and iter 2).

adds in the back-translated parallel corpus, yields
the best BLEU scores out of all models across the
board.

6 Iterating the Proposed Models

Inspired by Hoang et al. (2018) and Niu et al.
(2018), we study whether iterating the pro-
posed models can improve translation perfor-
mance. Starting from the trained models from sec-
tion 5.3, we run a second iteration as follows:

1. Back-translate the same EN data using the
new model to create a new BT-pivot corpus
(as described in section 3.2).

2. For the pivot-parallel combined method,
back-translate the EN side of the parallel data
as well (following Firat et al., 2016).

3. Fine-tune the model or train the model from
scratch using the new data concatenated with
the subset of the original parallel data (as de-
scribed in section 3.3).

Table 4 shows the performance on the test
dataset (newstest2015) when a second iteration of
back-translation and training is performed. For
the pivot from scratch and pivot fine-tune meth-
ods, we see small gains (up to 0.4 BLEU) from
running a second iteration. These small improve-
ments help the pivot from scratch and pivot fine-
tune methods catch up to the single-iteration ver-
sion of the pivot-parallel combined method. On
the other hand, running a second iteration is very
costly in terms of training time, since it requires
another back-translation step and another train-
ing step. For the pivot-parallel combined model,
which was the best-performing model with one it-
eration, adding a second iteration damages perfor-
mance in terms of BLEU score. This seems to
match the results of Hoang et al. (2018) that in-
dicate that there are diminishing returns as more
iterations are added.

105

7 Conclusions

This paper introduced the task of zero-resource
neural machine translation using pivot-language
monolingual data. We introduced a way of gen-
erating a pseudo-parallel source↔target training
corpus using the monolingual pivot-language cor-
pus, and we showed three ways of leveraging this
corpus to train a final source↔target NMT sys-
tem. All three methods improved over strong base-
lines that used both direct source→target transla-
tion and pivot translation through EN; the pivot-
parallel combined method was the most success-
ful.

Our proposed paradigm has several benefits.
First, it shows that monolingual data from a lan-
guage other than the source and target languages
can aid NMT performance, complementing litera-
ture on using source- and target-language mono-
lingual data in NMT. Second, this paradigm is
architecture-agnostic, so it would be easy to ap-
ply to architectures that improve upon the ba-
sic zero-shot and zero-resource models (e.g. Ari-
vazhagan et al., 2019; Lu et al., 2018; Platanios
et al., 2018). However, the methods we have pro-
posed are not without limitations. First, using the
pivot-language monolingual data might not work
as well when the source and target languages are
closely related; this might be a case where source
and target monolingual data is more useful than
pivot monolingual data. These models also tune a
multilingual NMT system for translation in two di-
rections only (source→target and target→source),
so they would not be applicable in cases where a
single massively multilingual NMT system (Aha-
roni et al., 2019) is required.

In the future, we hope to additionally study the
use of source-language and target-language mono-
lingual data in zero-resource NMT. We would also
like to test our proposed zero-resource methods on
other zero-shot NMT architectures and on other
language pairs. We also think that data selection
methods on the back-translated data (Niu et al.,
2018) could be helpful, since zero-shot multilin-
gual NMT models often generate translations in
the wrong target language (Arivazhagan et al.,
2019).

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.

arXiv preprint arXiv:1903.00089.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Roee Aharoni, Melvin Johnson, and Wolfgang
Macherey. 2019. The missing ingredient in zero-
shot neural machine translation. arXiv preprint
arXiv:1903.07091.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In 6th International Conference
on Learning Representations.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation. In Proceedings of the First
Conference on Machine Translation, pages 131–
198. Association for Computational Linguistics.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
Proceedings of the Second Conference on Machine
Translation, pages 148–156. Association for Com-
putational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 489–500. Association for Computational
Linguistics.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 268–277. Association for
Computational Linguistics.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. In Pro-
ceedings of the 13th International Workshop on Spo-
ken Language Translation.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Renqian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce

106

Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on automatic
Chinese to English news translation. arXiv preprint
arXiv:1803.05567.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint arXiv:1712.05690.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the Second Workshop on Neural Ma-
chine Translation and Generation, pages 18–24. As-
sociation for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL,
pages 177–180. Association for Computational Lin-
guistics.

Surafel M Lakew, Quintino F Lotito, Matteo Negri,
Marco Turchi, and Marcello Federico. 2017. Im-
proving zero-shot translation of low-resource lan-
guages. In Proceedings of the 14th International
Workshop on Spoken Language Translation.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2018. Unsupervised
machine translation using monolingual corpora
only. In 6th International Conference on Learning
Representations.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhard-
waj, Shaonan Zhang, and Jason Sun. 2018. A neu-
ral interlingua for multilingual machine translation.
In Proceedings of the Third Conference on Machine
Translation, pages 84–92. Association for Compu-
tational Linguistics.

Xing Niu, Michael Denkowski, and Marine Carpuat.
2018. Bi-directional neural machine translation
with synthetic parallel data. In Proceedings of the
Second Workshop on Neural Machine Translation
and Generation, pages 84–91. Association for Com-
putational Linguistics.

Jaehong Park, Jongyoon Song, and Sungroh Yoon.
2017. Building a neural machine translation system
using only synthetic parallel data. arXiv preprint
arXiv:1704.00253.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom Mitchell. 2018. Contex-
tual parameter generation for universal neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 425–435. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the ACL, pages 86–96. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the ACL, pages 1715–1725. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1535–1545. Association for Compu-
tational Linguistics.

107

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 108–117
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

On the use of BERT for Neural Machine Translation

Stéphane Clinchant
NAVER LABS Europe, France

stephane.clinchant@naverlabs.com

Kweon Woo Jung
NAVER Corp.,

South Korea
kweonwoo.jung@navercorp.com

Vassilina Nikoulina
NAVER LABS Europe, France

vassilina.nikoulina@naverlabs.com

Abstract

Exploiting large pretrained models for var-
ious NMT tasks have gained a lot of vis-
ibility recently. In this work we study
how BERT pretrained models could be ex-
ploited for supervised Neural Machine Trans-
lation. We compare various ways to in-
tegrate pretrained BERT model with NMT
model and study the impact of the mono-
lingual data used for BERT training on the
final translation quality. We use WMT-14
English-German, IWSLT15 English-German
and IWSLT14 English-Russian datasets for
these experiments. In addition to standard task
test set evaluation, we perform evaluation on
out-of-domain test sets and noise injected test
sets, in order to assess how BERT pretrained
representations affect model robustness.

1 Introduction

Pretrained Language Models (LM) such as ELMO
and BERT (Peters et al., 2018; Devlin et al.,
2018) have turned out to significantly improve
the quality of several Natural Language Process-
ing (NLP) tasks by transferring the prior knowl-
edge learned from data-rich monolingual corpora
to data-poor NLP tasks such as question answer-
ing, bio-medical information extraction and stan-
dard benchmarks (Wang et al., 2018; Lee et al.,
2019). In addition, it was shown that these rep-
resentations contain syntactic and semantic infor-
mation in different layers of the network (Tenney
et al., 2019). Therefore, using such pretrained
LMs for Neural Machine Translation (NMT) is
appealing, and has been recently tried by several
people (Lample and Conneau, 2019; Edunov et al.,
2019; Song et al., 2019).

Unfortunately, the results of the above-
mentioned works are not directly comparable to
each other as they used different methods, datasets
and tasks. Furthermore, pretrained LMs have

mostly shown improvements in low-resource or
unsupervised NMT settings, and has been little
studied in standard supervised scenario with rea-
sonable amount of data available.

Current state of the art NMT models rely on
the Transformer model (Vaswani et al., 2017), a
feed-forward network relying on attention mech-
anism, which has surpassed prior state of the art
architecture based on recurrent neural nets (Bah-
danau et al., 2014; Sutskever et al., 2014). Beyond
machine translation, the transformer models have
been reused to learn bi-directional language mod-
els on large text corpora. The BERT model (De-
vlin et al., 2018) consists in a transformer model
aiming at solving a masked language modelling
task, namely correctly predicting a masked word
from its context, and a next sentence prediction
task to decide whether two sentences are consecu-
tive or not. In this work, we study how pretrained
BERT models can be exploited for transformer-
based NMT, thus exploiting the fact that they rely
on the same architecture.

The objective of this work is twofold. On one
hand, we wish to perform systematic comparisons
of different BERT+NMT architectures for stan-
dard supervised NMT. In addition, we argue that
the benefits of using pretrained representations has
been overlooked in previous studies and should
be assessed beyond BLEU scores on in-domain
datasets. In fact, LMs trained on huge datasets
have the potentials of being more robust in general
and improve the performance for domain adapta-
tion in MT.

In this study, we compare different ways to train
and reuse BERT for NMT. For instance, we show
that BERT can be trained only with a masked LM
task on the NMT source corpora and yield signif-
icant improvement over the baseline. In addition,
the models robustness is analyzed thanks to syn-
thetic noise.

108

https://www.aclweb.org/anthology/D19-56%2d

The paper is organized as follows. In section
2, we review relevant state of the art. Section 3
enumerates different models we experiment with.
Finally section 4 and 5 present our results before
discussing the main contributions of this work in
section 6.

2 Related Works

The seminal work of (Bengio et al., 2003; Col-
lobert and Weston, 2008) were one of the first to
show that neural nets could learn word represen-
tations useful in a variety of NLP tasks, paving
the way for the word embedding era thanks to
word2vec (Mikolov et al., 2013) and its vari-
ants (Pennington et al., 2014; Levy and Goldberg,
2014).

With the recent advances and boost in perfor-
mance of neural nets, ELMO (Peters et al., 2018)
employed a Bi-LSTM network for language mod-
elling and proposed to combine the different net-
work layers to obtain effective word representa-
tions. Shortly after the publication of ELMO,
the BERT model (Devlin et al., 2018) was shown
to have outstanding performance in various NLP
tasks. Furthermore, the BERT model was refined
in (Baevski et al., 2019) where the transformer
self-attention mechanism is replaced by two di-
rectional self-attention blocks: a left-to-right and
right-to-left blocks are combined to predict the
masked tokens.

With respect to NMT, backtranslation (Sennrich
et al., 2016a) is up to now one of the most effective
ways to exploit large monolingual data. However,
backtranslation has the drawback of being only
applicable for target language data augmentation,
while pretrained LMs can be used both for source
and target language (independently (Edunov et al.,
2019) or jointly (Lample and Conneau, 2019;
Song et al., 2019)).

Lample and Conneau (2019) initializes the
entire encoder and decoder with a pretrained
MaskLM or Crosslingual MaskLM language mod-
els trained on multilingual corpora. Such ini-
tialization proved to be beneficial for unsuper-
vised machine translation, but also for English-
Romanian supervised MT, bringing additional im-
provements over standard backtranslation with
MLM initialization.

Edunov et al. (2019) uses ELMO (Peters et al.,
2018) language model to set the word embed-
dings layer in NMT model. In addition, the

ELMO embedding are compared with the cloze-
style BERT (Baevski et al., 2019) ones. The em-
bedding network parameters are then either fixed,
or fine-tuned. This work shows improvements on
English-German and English-Turkish translation
tasks when using pretrained language model for
source word embedding initialization. However,
the results are less clear when reusing embedding
on the target language side.

Futhermore, Song et al. (2019) goes one
step further and proposes Masked Sequence-to-
Sequence pretraining method. Rather than mask-
ing a single token, it masks a sequence of token
in the encoder and recovers them in the decoder.
This model has shown new state of the art for un-
supervised machine translation.

Our work is an attempt to perform systematic
comparison on some of the aforementioned archi-
tectures that incorporate pretrained LM in NMT
model, concentrating on BERT pretrained LM rep-
resentations applied on supervised machine trans-
lation. However, we restrict ourselves to encoder
part only, and leave the decoder initialization for
future work.

Regarding robustness, several recent studies
(Karpukhin et al., 2019; Vaibhav et al., 2019) have
tackled robustness issues with data augmentation.
In this work, we study whether the robustness
problem can be addressed at the model level rather
than at data level. Michel et al. (2019) address ro-
bustness problem with generative adversarial net-
works. This method, as well as data augmentation
methods are complementary to our work and we
believe that they address different issues of robust-
ness.

3 Methods

Typical NMT model adopts the encoder-decoder
architecture where the encoder forms contextual-
ized word embedding from a source sentence and
the decoder generates a target translation from left
to right.

Pretrained LM, namely BERT, can inject prior
knowledge on the encoder part of NMT, providing
rich contextualized word embedding learned from
large monolingual corpus. Moreover, pretrained
LMs can be trained once, and reused for different
language pairs1.

1As opposed to backtranslation techniques which requires
full NMT model retraining

109

In this study, we focus on reusing BERT mod-
els for the NMT encoder2. We will compare the
following models:

• Baseline:. A transformer-big model with
shared decoder input-output embedding pa-
rameters.

• Embedding (Emb): The baseline model
where the embedding layer is replaced by the
BERT parameters (thus having 6 + 6 encoder
layers). The model is then fine tuned simi-
lar to the ELMO setting from (Edunov et al.,
2019)

• Fine-Tuning (FT): The baseline model with
the encoder initialized by the BERT parame-
ters as in Lample and Conneau (2019)

• Freeze: The baseline model with the en-
coder initialized by the BERT parameters and
frozen. This means that the whole encoder
has been trained in purely monolingual set-
tings, and only parameters responsible for the
translation belong to the attention and de-
coder models.

We exploit the fact that BERT uses the same
architecture as NMT encoder which allows us to
initialize NMT encoder with BERT pretrained pa-
rameters. BERT pretraining has two advantages
over NMT training:

• it solves a simpler (monolingual) task of
‘source sentence encoding’, compared to
NMT (bilingual task) which has to ‘encode
source sentence information’, and ‘translate
into a target language’.

• it has a possibility to exploit much larger
data, while NMT encoder is limited to source
side of parallel corpus only.

Even though the role of NMT encoder may go
beyond source sentence encoding (nothing pre-
vents the model from encoding ‘translation re-
lated’ information at the encoder level), better ini-
tialization of encoder with BERT pretrained LM
allows for faster NMT learning. Comparing set-
tings where we freeze BERT parameters against
fine-tuning BERT allows to shed some light on
the capacity of the encoder/decoder model to learn
‘translation-related’ information.

2Similar approach can be applied on the target language
but we leave it for future work.

Moreover, since the BERT models are trained
to predict missing tokens from their context, their
representations may also be more robust to miss-
ing tokens or noisy inputs. We perform extensive
robustness study at section 4 verifying this hypoth-
esis.

Finally, language models trained on huge
datasets have the potentials of being more robust
in general and improve the performance for do-
main adaptation in MT. We therefore compare
BERT models trained on different datasets, and
perform evaluation on related test sets in order to
assess the capacity of pretrained LMs on domain
adaptation.

4 WMT experiments

4.1 Preprocessing
We learn BPE (Sennrich et al., 2016b) model with
32K split operations on the concatenation of Wiki
and News corpus. This model is used both for Pre-
trained LM subwords splitting and NMT source
(English) side subwords splitting. German side of
NMT has been processed with 32K BPE model
learnt on target part of parallel corpus only. Please
note, that this is different from standard settings
for WMT En-De experiments, which usually uses
joint BPE learning and shared source-target em-
beddings. We do not adopt standard settings since
it contradicts our original motivation for using pre-
trained LM: English LM is learnt once and reused
for different language pairs.

4.2 Training
BERT For pretraining BERT models, we use
three different monolingual corpora of different
sizes and different domains. Table 1 summarizes
the statistics of these three monolingual corpora.

• NMT-src: source part of our parallel corpus
that is used for NMT model training.

• Wiki: English wikipedia dump

• News: concatenation of 70M samples
from ”News Discussion”, ”News Crawl”
and ”Common Crawl” English monolingual
datasets distributed by WMT-2019 shared
task3. This resulted in total 210M samples.

The motivation of using NMT-src is to test
whether the resulting NMT model is more robust

3http://www.statmt.org/wmt19/translation-task.html

110

Lines Tokens
NMT-src 4.5M 104M

Wiki 72M 2086M
News 210M 3657M

Table 1: Monolingual (English) training data

after having being trained on the source corpora.
The Wiki corpora is bigger than the NMT-src but
could be classified as out-of-domain compared to
news dataset. Finally, the news dataset is the
biggest one and consists mostly of in-domain data.

In all of our experiments, we only consider us-
ing the masked LM task for BERT as the next sen-
tence prediction tasks put restrictions on possible
data to use. We closely follow the masked LM
task described in (Devlin et al., 2018) with few ad-
justments optimized for downstream NMT train-
ing. We use frequency based sampling (Lample
and Conneau, 2019) in choosing 15% of tokens to
mask, instead of uniformly sampling. Instead of
MASK token we used UNK token hoping that thus
trained model will learn certain representation for
unknowns that could be exploited by NMT model.
Warm-up learning scheme described in (Vaswani
et al., 2017) results in faster convergence than
linear decaying learning rate. The batch size of
64000 tokens per batch is used, with maximum to-
ken length of 250, half the original value, as we in-
put single sentence only. We do not use [CLS] to-
ken in the encoder side, as attention mechanism in
NMT task can extract necessary information from
token-level representations. The BERT model is
equivalent to the encoder side of Transformer Big
model. We train BERT model up to 200k iterations
until the accuracy for masked LM on development
saturates.

NMT For NMT system training, we use WMT-
14 English-German dataset.

We use Transformer-Big as our baseline model.
We share input embedding and output embed-
ding parameters just before softmax on the de-
coder side. Warm up learning scheme is used
with warm-up steps of 4000. We use batch size
of 32000 tokens per batch. Dropout of 0.3 is ap-
plied to residual connections, and no dropout is
applied in attention layers. We decode with beam
size 4 with length penalty described in Wu et al.
(2016). We conduct model selection with perplex-
ity on development set. We average 5 checkpoints
around lowest perplexity.

Lines Tok/line (en/de)
news14 3003 19.7/18.3
news18 2997 19.5/18.3
iwslt15 2385 16.4/15.4
OpenSub 5000 6.3/5.5
KDE 5000 8/7.7
wiki 5000 17.7/15.5

Table 2: In/Out of Domain test sets. news14 and
news18 are test sets from WMT-14 and WMT-18 news
translation shared task. iwslt: test set from IWSLT-
15 MT Track4. Wiki is randomly 5K sampled from
parallel Wikipedia distributed by OPUS5, OpenSub,
KDE and Wiki are randomly 5K sampled from paral-
lel Wikipedia, Open Subtitles and KDE corpora dis-
tributed by OPUS6

4.3 Evaluation

We believe that the impact of pretrained LM in
NMT model can not be measured by BLEU per-
formance on in-domain test set only. Therefore
we introduce additional evaluation that allows to
measure the impact of LM pretraining on different
out-of-domain tests. We also propose an evalua-
tion procedure to evaluate the robustness to vari-
ous types of noise for our models.

Domain Besides standard WMT-14 news test
set, models are evaluated on additional test sets
given by Table 2. We include two in-domain
(news) test sets, as well as additional out-of-
domain test sets described in Table 2.

Noise robustness. For robustness evaluation, we
introduce different type of noise to the standard
news14 test set:

Typos: Similar to Karpukhin et al. (2019), we
add synthetic noise to the test set by randomly (1)
swapping characters (chswap), (2) randomly in-
serting or deleting characters (chrand), (3) upper-
casing words (up). These test sets translations are
evaluated against the golden news14 reference.

Unk: An unknown character is introduced at the
beginning (noted UNK.S) or at the end of the sen-
tence (noted UNK.E) before a punctuation symbol
if any (this unknown character could be thought
as as an unknown emoji, a character in different
script, a rare unicode character). This token is in-
troduced both for source and target sentence, and
the evaluation is performed with the augmented-
reference.

Intuitively, we expect the model to simply copy
UNK token and proceed to the remaining tokens.

111

Interestingly, this simple test seems to produce
poor translations, therefore puzzling the attention
and decoding process a lot. Table 3 gives an ex-
ample of such translations for baseline model7.

Since the tasks are correlated, a better model
might be better on noisy test sets as it behaves bet-
ter in general. If we want to test that some models
are indeed better, we need to disentangle this ef-
fect and show that the gain in performance is not
just a random effect. A proper way would be to
compute the BLEU correlation between the orig-
inal test set and the noisy versions but it would
require a larger set of models for an accurate cor-
relation estimation.

∆(chrF) : We propose to look at the distribu-
tion of the difference of sentence charf between
the noisy test set and the original test set. Indeed,
looking at BLEU delta may not provide enough in-
formation since it is corpus-level metric. Ideally,
we would like to measure a number of sentences
or a margin for which we observe an ‘important
decrease’ in translation quality. According to Ma
et al. (2018); Bojar et al. (2017), sentence level
chrF achieves good correlation with human judge-
ments for En-De news translations.

More formally, let s be a sentence from the stan-
dard news14 test set, n a noise operation, m a
translation model and r the reference sentence8:

∆(chrF)(m,n, s) = chrF(m(n(s)), r)−
chrF(m(s), r) (1)

In the analysis, we will report the distribution of
∆(chrF) and its mean value as a summary. If a
model is good at dealing with noise, then the pro-
duced sentence will be similar to the one produced
by the noise-free input sentence. Therefore, the
∆(chrF) will be closer to zero.

4.4 Results

Table 4 presents the results of our experiments.
As expected, freezing the encoder with BERT pa-
rameters lead to a significant decrease in transla-
tion quality. However, other BERT+NMT archi-
tectures mostly improve over the baseline both on
in-domain and out-of-domain test sets. We con-
clude, that the information encoded by BERT is
useful but not sufficient to perform the translation

7Output for (UNK.S+src) input is not an error, the model
does produces an English sentence!

8In the case of UNK transformation, the reference is
changed but we omit that to simplify the notation.

task. We believe, that the role of the NMT encoder
is to encode both information specific to source
sentence, but also information specific to the tar-
get sentence (which is missing in BERT training).

Next, we observe that even NMTSrc.FT (NMT
encoder is initialized with BERT trained on source
part of parallel corpus) improves over the baseline.
Note that this model uses the same amount of data
as the baseline. BERT task is simpler compared to
the task of the NMT encoder, but it is still related,
thus BERT pretraining allows for a better initial-
ization point for NMT model.

When using more data for BERT training
(Wiki.FT and News.FT), we gain even more im-
provements over the baseline.

Finally, we observe comparable results for
News.Emb and News.FT (the difference in BLEU
doesn’t exceed 0.3 points, being higher for
News.FT on in-domain tests, and News.Emb for
out-of-domain tests). Although News.FT config-
uration keeps the size of the model same as stan-
dard NMT system, News.Emb adds BERT param-
eters to NMT parameters which doubles the size
of NMT encoder. Additional encoder layers intro-
duced in News.Emb does not add significant value.

4.5 Robustness analysis

Table 5 reports BLEU scores for the noisy test sets
(described in section 4.3). As expected, we ob-
serve an important drop in BLEU scores due to
the introduced noise. We observe that most pre-
trained BERT models have better BLEU scores
compared to baseline for all type of noise (except
NMTSrc.FT which suffers more from unknown
token introduction in the end of the sentence com-
pared to the Baseline). However, these results are
not enough to conclude, whether higher BLEU
scores of BERT-augmented models are due to bet-
ter robustness, or simply because these models are
slightly better than the baseline in general.

This is why figure 1 reports the mean ∆(chrF)
for several models. ∆(chrF) scores for UNK
tests show that BERT models are not better than
expected. However, for chswap, chrand, upper,
the BERT models have a slightly lower ∆(chrF).
Based on these results, we conclude that pretrain-
ing the encoder with a masked LM task does not
really bring improvement in terms of robustness
to unknowns. It seems that BERT does yield im-
provement for NMT as a better initialization for

112

source sentence ”In home cooking, there is much to be discovered - with a few minor
tweaks you can achieve good, if not sometimes better results,” said Proctor.

translation(src) ”Beim Kochen zu Hause gibt es viel zu entdecken - mit ein paar kleinen
nderungen kann man gute, wenn nicht sogar manchmal bessere
Ergebnisse erzielen”, sagte Proktor.

translation(UNK.S + src) • ”In home cooking, there is much to be discovered - with a few minor
tweaks you can achieve good, if not sometimes better results”, sagte Proktor.

Table 3: Example of a poor translation when adding unknown token to source sentences (translation done with a
baseline transformer model)

news14 news18 iwslt15 wiki kde OpenSub
Baseline 27.3 39.5 28.9 17.6 18.1 15.3
NMTsrc.FT 27.7 40.1 28.7 18.3 18.4 15.3
Wiki.FT 27.7 40.6 28.7 18.4 19.0 15.4
News.FT 27.9 40.2 29.1 18.8 17.9 15.7
News.Emb 27.7 39.9 29.3 18.9 18.2 16.0
News.Freeze 23.6 35.5 26.5 15.0 15.1 13.8

Table 4: FT: initialize NMT encoder with BERT and finetune; Freeze: fix NMT encoder parameters to BERT
parameters; Emb: fix encoder embeddding layer with BERT contextual word embeddings.

Figure 1: Mean ∆(chrF) for several noisy test set and
models. For the UNK test, the BERT models are sim-
ilar or worst than the basline. For the chrand, chswap,
upper, the BERT models are slightly better.

NMT encoders but the full potential of masked
LM task is not fully exploited for NMT.

5 IWSLT experiments

In order to explore the potential of masked
LM encoder pretraining for NMT in lower re-
source settings, we train NMT models on English-

German IWSLT 20159 and English-Russian
IWSLT 201410 MT track datasets. These are
pretty small datasets (compared to previous exper-
iments) which contain around 200K parallel sen-
tences each.

5.1 Experimental settings

In these experiments we (1) reuse pretrained
BERT models from previous experiments or (2)
train IWSLT BERT model. IWSLT BERT model
is trained on the concatenation of all the data avail-
able at IWSLT 2014-2018 campaigns. After filter-
ing out all the duplicates it contains around 780K
sentences and 13.8M tokens.

We considered various settings for IWSLT base-
line. First, for source side of the dataset, we
took 10K BPE merge operations, where BPE
model was trained (1) either on the source side of
NMT data only, or (2) on all monolingual English
IWSLT data. Target side BPE uses 10K merge
operations trained on the target side of the NMT
dataset in all the IWSLST experiments. In our first
set of experiments, BPE model learnt on source
data only lead to similar translation performance
as BPE model learnt on all IWSLT English data.
Therefore, in what follows we report results only

9https://sites.google.com/site/iwsltevaluation2015/mt-
track

10https://sites.google.com/site/iwsltevaluation2014/mt-
track

113

Models news14 +UNK.S +UNK.E +chswap +chrand +up
Baseline 27.3 24.8 24.4 24.2 24.7 23.5
NMTsrc.FT 27.7 24.9 22.9 24.4 25.2 24.5
Wiki.FT 27.7 25.8 24.9 24.4 24.9 24.4
News.FT 27.9 24.9 24.9 24.5 25.3 24.5
News.Emb 27.7 24.7 24.8 24.6 25.3 24.2

Table 5: Robustness tests. BLEU scores for clean and ’noisified’ (with different noise type) news14 testset.

for the latter (referred as bpe10k).
NMT model training on IWSLT datasets with

Transformer Big architecture on IWSLT data has
diverged both for en-de and en-ru dataset. There-
fore we use Transformer Base (tbase) architecture
as a baseline model for these experiments. IWSLT
BERT model is also based on tbase architecture
described in Vaswani et al. (2017) and for the rest
follows same training procedure as described in
the section 4.

In order to explore the potential of single pre-
trained model for all language pairs/datasets we
try to reuse Wiki and News pretrained BERT mod-
els from previous experiments for encoder initial-
ization of NMT model. However, in the previous
experiments, our pretrained BERT models used
32K BPE vocabulary and Transformer Big (tbig)
architecture which means that we have to reuse the
same settings for the encoder trained on IWSLT
dataset. It has been shown by Ding et al. (2019),
these are not optimal settings for IWSLT train-
ing because it leads to too many parameters for
the amount of data available. Therefore, in or-
der to reduce the amount of the parameters of the
model, we also consider the case where we re-
duce the amount of the decoder layers from 6 to
3 (tbig.dec3).

5.2 Results

Table 6 reports the results of different sets of the
experiments on IWSLT data. First, we observe
that BERT pretrained model improves over the
baseline, in any settings (BPE vocabulary, model
architecture, dataset used for pretraining). In
particular, it is interesting to mention that with-
out pretraining, both tbig.bpe32k and tbig.bpe10k
models diverge when trained on IWSLT. How-
ever, BERT pretraining gives a better initializa-
tion point, and allows to achieve very good per-
formance both for en-de and en-ru. Thus, such
pretraining can be an interesting technique in low-
resource scenarios.

en-de en-ru
Baseline

tbase.bpe10k 25.9 9.6
tbase.dec3.bpe10k 26.4 16.3

BERT+NMT
IWSLT.FT.tbase.bpe10k 27.4 17.6
IWSLT.FT.tbase.dec3.bpe10k 27.2 18.1
Wiki.FT.tbig.bpe32k 26.9 17.6
Wiki.FT.tbig.dec3.bpe32k 27.7 17.8
News.FT.tbig.bpe32k 27.1 17.9
News.FT.tbig.dec3.bpe32k 27.6 17.9

Table 6: IWSLT dataset results. IWSLT.FT: encoder
is initialised with BERT model trained on IWSLT
data; tbase/tbig: transformer base/big architecture for
NMT model; dec3: decoder layers reduced for 6 to
3; bpe10k/bpe32k : amount of BPE merge operations
used for source language, learnt on the same dataset as
BERT model (IWSLT or Wiki+News).

We do not observe big difference between
IWSLT pretrained model and News/Wiki pre-
trained model. We therefore may assume that
News/Wiki BERT model can be considered as
”general” English pretrained encoder, and be used
as a good starting point in any new model trans-
lating from English (no matter target language or
domain).

6 Discussion

BERT pretraining has been very successful in
NLP. With respect to MT, it was shown to pro-
vide better performance in Lample and Conneau
(2019); Edunov et al. (2019) and allows to in-
tegrate large source monolingual data in NMT
model as opposed to target monolingual data usu-
ally used for backtranslation.

In this experimental study, we have shown that:

• The next sentence prediction task in BERT
is not necessary to improve performance - a
masked LM task already is beneficial.

• It is beneficial to train BERT on the source

114

corpora, therefore supporting the claim that
pretraining the encoder provide a better in-
tialization for NMT encoders.

• Similar to Edunov et al. (2019), we observe
that the impact of BERT pretraining is more
important as the size of the training data de-
creases (WMT vs IWSLT).

• Information encoded by BERT is not suffi-
cient to perform the translation: NMT en-
coder encodes both information specific to
source sentence, and to the target sentence as
well (cf the low performance of BERT frozen
encoder).

• Pretraining the encoder enables us to train
bigger models. In IWSLT, the transformer
big models were diverging, but when the en-
coder is initialized with pretrained BERT the
training became possible. For WMT14, train-
ing a 12 layer encoder from scratch was prob-
lematic, but News.Emb model (which con-
tains 12 encoder layers) was trained and gave
one of the best performances on WMT14.

• Finetuning BERT pretrained encoder is more
convenient : it leads to similar performance
compared to reusing BERT as embedding
layers, with faster decoding speed.

• BERT pretrained models seem to be gener-
ally better on different noise and domain test
sets. However, we didn’t manage to obtain
clear evidence that these models are more ro-
bust.

This experimental study was limited to a par-
ticular dataset, language pair and model architec-
ture. However, many other combinations are pos-
sible. First, similar type of study needs to be per-
formed with BERT pretrained model for NMT de-
coder. Also, the model can be extended to other
scenarios with BERT models such as Baevski et al.
(2019). In addition, the comparison with ELMO
embeddings is also interesting as in Edunov et al.
(2019). Using embedding mostly influenced by
neighboring words seems to echo the recent re-
sults of convolutional self attention network (Yang
et al., 2019). Using convolutional self attention
network in BERT could bring additional benefit
for the pretrained representations. Another direc-
tion could look at the impact of the number of lay-
ers in BERT for NMT.

Besides, one key question in this study was
about the role of encoder in NMT as the roles of
encoders and decoders are not clearly understood
in current neural architectures. In the transformer
architecture, the encoder probably computes some
interlingual representations. In fact, nothing con-
straints the model in reconstructing or predicting
anything about the source sentences. If that is the
case, why would a monolingual encoder help for
the NMT task?

One hypothesis is that encoders have a role of
self encoding the sentences but also a translation
effect by producing interlingual representations.
In this case, a monolingual encoder could be a bet-
ter starting point and could be seen as a regular-
izer of the whole encoders. Another hypothesis is
that the regularization of transformers models is
not really effective and simply using BERT mod-
els achieve this effect.

7 Conclusion

In this paper, we have compared different ways to
use BERT language models for machine transla-
tion. In particular, we have argued that the ben-
efit of using pretrained representations should not
only be assessed in terms of BLEU score for the
in-domain data but also in terms of generalization
to new domains and in terms of robustness.

Our experiments show that fine-tuning the en-
coder leads to comparable results as reusing the
encoder as an additional embedding layers. How-
ever, the former has an advantage of keeping
the same model size as in standard NMT set-
tings, while the latter adds additional parameters
to the NMT model which increases significantly
the model size and might be critical in certain sce-
narios.

For MT practioners, using BERT has also sev-
eral practical advantages beyond BLEU score.
BERT can be trained for one source language and
further reused for several translation pairs, thus
providing a better initialization point for the mod-
els and allowing for better performance.

With respect to robustness tests, the conclusion
are less clear. Even if pretrained BERT models
obtained better performance on noisy test sets, it
seems that they are not more robust than expected
and that the potential of masked LM tasks is not
fully exploited for machine translation. An inter-
esting future work will be to assess the robustness
of models from Song et al. (2019).

115

References
Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke

Zettlemoyer, and Michael Auli. 2019. Cloze-
driven pretraining of self-attention networks. CoRR,
abs/1903.07785.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv e-prints,
abs/1409.0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

Ondřej Bojar, Yvette Graham, and Amir Kamran.
2017. Results of the wmt17 metrics shared task.
In Proceedings of the Second Conference on Ma-
chine Translation, Volume 2: Shared Task Papers,
pages 489–513, Copenhagen, Denmark. Association
for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Shuoyang Ding, Adithya Renduchintala, and Kevin
Duh. 2019. A call for prudent choice of subword
merge operations. CoRR, abs/1905.10453.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. CoRR, abs/1903.09722.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in ma-
chine translation. CoRR, abs/1902.01509.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. CoRR,
abs/1901.07291.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. CoRR, abs/1901.08746.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Pro-
ceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2177–2185, Cambridge, MA, USA.
MIT Press.

Qingsong Ma, Ondej Bojar, and Yvette Graham. 2018.
Results of the wmt18 metrics shared task: Both char-
acters and embeddings achieve good performance.
In Proceedings of the Third Conference on Machine
Translation, Volume 2: Shared Task Papers, pages
682–701, Belgium, Brussels. Association for Com-
putational Linguistics.

Paul Michel, Xian Li, Graham Neubig, and
Juan Miguel Pino. 2019. On evaluation of ad-
versarial perturbations for sequence-to-sequence
models. CoRR, abs/1903.06620.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’14, pages 3104–3112, Cam-
bridge, MA, USA. MIT Press.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline.

Vaibhav, Sumeet Singh, Craig Stewart, and Gra-
ham Neubig. 2019. Improving robustness of ma-
chine translation with synthetic noise. CoRR,
abs/1902.09508.

116

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Baosong Yang, Longyue Wang, Derek F. Wong,
Lidia S. Chao, and Zhaopeng Tu. 2019. Con-
volutional self-attention networks. CoRR,
abs/1904.03107.

117

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 118–127
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

On the Importance of the Kullback-Leibler Divergence Term
in Variational Autoencoders for Text Generation

Victor Prokhorov|, Ehsan Shareghi|, Yingzhen Li�
Mohammad Taher Pilehvar|}, Nigel Collier|

| Language Technology Lab, DTAL, University of Cambridge
�Microsoft Research Cambridge ,}Tehran Institute for Advanced Studies

|{vp361, es776, mp792, nhc30}@cam.ac.uk
�Yingzhen.Li@microsoft.com

Abstract
Variational Autoencoders (VAEs) are known
to suffer from learning uninformative latent
representation of the input due to issues such
as approximated posterior collapse, or en-
tanglement of the latent space. We impose
an explicit constraint on the Kullback-Leibler
(KL) divergence term inside the VAE objec-
tive function. While the explicit constraint nat-
urally avoids posterior collapse, we use it to
further understand the significance of the KL
term in controlling the information transmitted
through the VAE channel. Within this frame-
work, we explore different properties of the
estimated posterior distribution, and highlight
the trade-off between the amount of informa-
tion encoded in a latent code during training,
and the generative capacity of the model. 1

1 Introduction

Despite the recent success of deep genera-
tive models such as Variational Autoencoders
(VAEs) (Kingma and Welling, 2014) and Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014) in different areas of Machine Learn-
ing, they have failed to produce similar generative
quality in NLP. In this paper we focus on VAEs
and their mathematical underpinning to explain
their behaviors in the context of text generation.

The vanilla VAE applied to text (Bowman et al.,
2016) consists of an encoder (inference) and de-
coder (generative) networks: Given an input x,
the encoder network parameterizes q�(z|x) and in-
fers about latent continuous representations of x,
while the decoder network parameterizes p✓(x|z)
and generates x from the continuous code z. The
two models are jointly trained by maximizing the
Evidence Lower Bound (ELBO), L(✓,�; x, z):⌦

log p✓(x|z)
↵
q�(z|x)

�DKL

�
q�(z|x)||p(z)

�
(1)

1The code is available on https://github.com/
VictorProkhorov/KL_Text_VAE

where the first term is the reconstruction term, and
the second term is the Kullback-Leibler (KL) di-
vergence between the posterior distribution of la-
tent variable z and its prior p(z) (i.e., N (0, I)).
The KL term can be interpreted as a regularizer
which prevents the inference network from copy-
ing x into z, and for the case of a Gaussian prior
and posterior has a closed-form solution.

With powerful autoregressive decoders, such as
LSTMs, the internal decoder’s cells are likely to
suffice for representing the sentence, leading to
a sub-optimal solution where the decoder ignores
the inferred latent code z. This allows the en-
coder to become independent of x, an issue known
as posterior collapse (q�(z|x) ⇡ p(z)) where the
inference network produces uninformative latent
variables. Several solutions have been proposed
to address the posterior collapse issue: (i) Modi-
fying the architecture of the model by weakening
decoders (Bowman et al., 2016; Miao et al., 2015;
Yang et al., 2017; Semeniuta et al., 2017), or in-
troducing additional connections between the en-
coder and decoder to enforce the dependence be-
tween x and z (Zhao et al., 2017; Goyal et al.,
2017; Dieng et al., 2018); (ii) Using more flexi-
ble or multimodal priors (Tomczak and Welling,
2017; Xu and Durrett, 2018); (iii) Alternating the
training by focusing on the inference network in
the earlier stages (He et al., 2019), or augment-
ing amortized optimization of VAEs with instance-
based optimization of stochastic variational infer-
ence (Kim et al., 2018; Marino et al., 2018).

All of the aforementioned approaches impose
one or more of the following limitations: restrain-
ing the choice of decoder, modifying the training
algorithm, or requiring a substantial alternation of
the objective function. As exceptions to these,
�-VAE (Razavi et al., 2019) and �-VAE (Hig-
gins et al., 2017) aim to avoid the posterior col-
lapse by explicitly controlling the regularizer term

118

https://www.aclweb.org/anthology/D19-56%2d

in eqn. 1. While �-VAE aims to impose a lower
bound on the divergence term, �-VAE (§2.2) con-
trols the impact of regularization via an additional
hyperparameter (i.e., �DKL

�
q�(z|x)||p(z)

�
). A

special case of �-VAE is annealing (Bowman
et al., 2016), where � increases from 0 to 1 dur-
ing training.

In this study, we propose to use an extension of
�-VAE (Burgess et al., 2018) which permits us
to explicitly control the magnitude of the KL term
while avoiding the posterior collapse issue even in
the existence of a powerful decoder. We use this
framework to examine different properties of the
estimated posterior and the generative behaviour
of VAEs and discuss them in the context of text
generation via various qualitative and quantitative
experiments.

2 Kullback-Leibler Divergence in VAE

We take the encoder-decoder of VAEs as the
sender-receiver in a communication network.
Given an input message x, a sender generates a
compressed encoding of x denoted by z, while the
receiver aims to fully decode z back into x. The
quality of this communication can be explained in
terms of rate (R) which measures the compression
level of z as compared to the original message
x, and distortion (D) which quantities the over-
all performance of the communication in encod-
ing a message at sender and successfully decoding
it at the receiver. Additionally, the capacity of the
encoder channel can be measured in terms of the
amount of mutual information between x and z,
denoted by I(x; z) (Cover and Thomas, 2012).

2.1 Reconstruction vs. KL

The reconstruction loss can naturally measure dis-
tortion (D := �

⌦
log p✓(x|z)

↵
), while the KL

term quantifies the amount of compression (rate;
R := DKL[q�(z|x)||p(z)]) by measuring the di-
vergence between a channel that transmits zero bit
of information about x, denoted by p(z), and the
encoder channel of VAEs, q�(z|x). Alemi et al.
(2018) introduced the H � D I(x; z) R
bounds2, where H is the empirical data entropy (a
constant). These bounds on mutual information al-
low us to analyze the trade-off between the recon-
struction and KL terms in eqn. (1). For instance,

2This is dependent on the choice of encoder. For other
bounds on mutual information see Poole et al. (2018); Hoff-
man and Johnson (2016).

since I(x; z) is non-negative (using Jensen’s in-
equality), the posterior collapse can be explained
as the situation where I(x; z) = 0, where en-
coder transmits no information about x, causing
R = 0, D = H . Increasing I(x; z) can be encour-
aged by increasing both bounds: increasing the
upper-bound (KL term) can be seen as the mean
to control the maximum capacity of the encoder
channel, while reducing the distortion (reconstruc-
tion loss) will tighten the bound by pushing the
lower bound to its limits (H�D ! H). A similar
effect on the lower-bound can be encouraged by
using stronger decoders which could potentially
decrease the reconstruction loss. Hence, having a
framework that permits the use of strong decoders
while avoiding the posterior collapse is desirable.
Similarly, channel capacity can be decreased.

2.2 Explicit KL Control via �-VAE

Given the above interpretation, we now turn to a
slightly different formulation of ELBO based on
�-VAE (Higgins et al., 2017). This allows con-
trol of the trade-off between the reconstruction
and KL terms, as well as to set explicit KL value.
While �-VAE offers regularizing the ELBO via an
additional coefficient � 2 IR+, a simple exten-
sion (Burgess et al., 2018) of its objective func-
tion incorporates an additional hyperparameter C
to explicitly control the magnitude of the KL term,
⌦
log p✓(x|z)

↵
q�(z|x)

� �|DKL

�
q�(z|x)||p(z)

�
� C| (2)

where C2IR+ and |.| denotes the absolute value.
While we could apply constraint optimization to
impose the explicit constraint of KL=C, we found
that the above objective function satisfies the con-
straint (§3). Alternatively, it has been shown (Pels-
maeker and Aziz, 2019) the similar effect could
be reached by replacing the second term in eqn. 2
with max

�
C, DKL

�
q�(z|x)||p(z)

��
at the risk of

breaking the ELBO when KL<C (Kingma et al.,
2016).

3 Experiments

We conduct various experiments to illustrate the
properties that are encouraged via different KL
magnitudes. In particular, we revisit the interde-
pendence between rate and distortion, and shed
light on the impact of KL on the sharpness of the
approximated posteriors. Then, through a set of
qualitative and quantitative experiments for text
generation, we demonstrate how certain genera-

119

30
0

34
0

38
0

−3
0

−1
5

0

βc−VAEGRU

LogDetCov
Distortion

Yahoo
Yelp

31
5

35
0

38
5

 D
is

to
rti

on

Lo
gD

et
C

ov
−8

0
−4

0
0

βc−VAELSTM

36
0

39
0

42
0

10 20 30 40 50 60 70 80 90 100
Rate (C Value)

−1
90

−9
5

0

βc−VAECNN

Figure 1: Rate-Distortion and LogDetCov for C =
{10, 20, ..., 100} on Yahoo and Yelp corpora.

tive behaviours could be imposed on VAEs via a
range of maximum channel capacities. Finally, we
run some experiments to find if any form of syn-
tactic information is encoded in the latent space.
For all experiments, we use the objective function
of eqn. 2 with � = 1. We do not use larger �s be-
cause the constraint KL = C is always satisfied. 3

Corpora We use 5 different corpora cover-
ing different domains and size through this sec-
tion: Yelp and Yahoo Yang et al. (2017) both
have (100k,10k,10k) sentences in (train, dev,
test) sets and 20k words in vocabulary, Chil-
dren’s Book Test (CBT; Weston et al. (2016))
has (192k,10k,12k) sentences and 12k vocab,
Wikipedia (WIKI; Marvin and Linzen (2018)) has
(2m,270k,270k) sentences and 20k vocab, and
WebText (Radford et al., 2019) has (1m,23k,24k)
sentences and 22k vocab. 4

Models We examine three VAE architectures,
covering a range of decoding strengths to exam-
ine if the objective function in eqn. 2 is immune
to posterior collapse regardless of the choice of

3� can be seen as a Lagrange multiplier and any � value
that allows for constraint satisfaction (R = C) is fine.

4 Corpora and preprocessing scripts will be released.

encoder-decoder architectures: �C-VAELSTM with
(LSTM encoder, LSTM decoder), �C-VAEGRU
with (GRU encoder, GRU decoder) (Cho et al.,
2014), and �C-VAECNN with (LSTM encoder,
CNN decoder) (Dauphin et al., 2016). The di-
mension of word embeddings is 256 and the di-
mension of the latent variable is 64. The encoder
and the decoder, for both VAELSTM and VAEGRU,
have hidden size of 512 dimensions. VAECNN has
exactly the same encoder as VAELSTM, while the
decoder follows similar architecture to GLU with
a bottleneck structure (with two blocks) (Dauphin
et al., 2016) and has 512 channels externally and
128 internally for the convolutions with the fil-
ter size of 20. All models were trained for
10 epochs and optimised the objective function
(eqn. 2) with Adam (Kingma and Ba, 2015) with
following learning rates: 10�5 ⇥ 85 for VAEGRU
and VAELSTM, and 10�4 for VAECNN. To couple
the encoder with the decoder we concatenate the
latent variable to word embeddings at each time
step without initialisation of hidden state.

3.1 Rate and Distortion

To analyse the dependence between the values of
explicit rate (C) and distortion, we trained our
models with different values of C, ranging from
10 to 100. Figure 1 reports the results for �C-
VAEGRU, �C-VAELSTM, and �C-VAECNN models
on Yahoo and Yelp corpora. In all our experiments
we found that C�1 KLC+1, demonstrating
that the objective function effectively imposed the
desired constraint on KL term. Hence, setting any
C > 0 can in practice avoid the collapse issue.

The general trend is that by increasing the value
of C one can get a better reconstruction (lower dis-
tortion) while the amount of gain varies depend-
ing on the VAE’s architecture and corpus. 5 Addi-
tionally, we measured rate and distortion on CBT,
WIKI, and WebText corpora using �C-VAELSTM
and observed the same trend with the increase of
C, see Table 1. This observation is consistent with
the bound on I(x; z) we discussed earlier (§2.1)
such that with an increase of KL we increase an
upper bound on I(x; z) which in turn allows to
have smaller values of reconstruction loss. Addi-
tionally, as reported in Table 1, encouraging higher
rates (via larger C) encourages more active units

5We attribute the difference in performance across our
models to the non-optimal selection of training hyperparam-
eters, and corpus specific factors such as sentence length.

120

Bucket 1 Bucket 2 Bucket 3 All

C D R LogDetCov ||µ||22 AU BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4
C

B
T 3 62 3 -0.39 0.05 8 7.49/2.63 1.28/0.13 8.95/3.48 1.49/0.10 10.37/4.81 1.68/0.12 9.46/3.54 1.57/0.12

15 53 15 -0.38 0.05 29 21.68/12.92 8.99/3.07 14.82/7.01 4.25/0.81 14.68/6.73 3.31/0.36 15.87/8.86 4.60/1.43
100 32 99 -43.82 1.27 64 50.00/43.23 38.74/30.16 26.78/18.49 15.99/9.23 19.24/9.90 7.65/2.24 27.65/24.33 16.09/14.24

W
IK

I 3 81 3 -0.35 0.00 5 4.61/3.64 1.47/1.03 5.93/2.67 1.09/0.19 7.39/3.00 1.17/0.12 6.78/3.08 1.33/0.42
15 70 15 -0.57 0.01 12 13.73/8.46 7.12/3.86 10.07/4.45 3.93/1.32 9.93/3.27 1.95/0.29 10.08/5.35 3.42/1.79
100 17 100 -4.97 0.15 64 65.67/63.17 60.02/55.92 37.25/32.76 30.88/26.33 18.73/11.41 11.22/6.20 31.84/35.37 24.17/29.08

W
eb

Te
xt 3 77 3 -0.21 0.01 4 9.51/5.27 2.96/1.14 9.59/4.59 1.68/0.22 12.59/6.37 3.96/1.01 11.88/5.54 3.35/0.70

15 67 15 -0.51 0.01 16 21.69/12.41 9.86/3.69 15.48/7.44 5.35/1.51 15.63/7.29 5.59/1.59 15.84/7.85 5.69/1.76
100 22 100 -7.85 0.41 64 84.85/82.48 81.89/78.79 61.65/58.33 56.35/53.05 35.07/27.33 27.31/20.99 45.84/45.30 38.71/39.66

Table 1: �C-VAELSTM performance with C = {3, 15, 100} on the test sets of CBT, WIKI, and WebText. Each
bucket groups sentences of certain length. Bucket 1: length 10; Bucket 2: 10 < length 20; Bucket 3: 20
< length 30, and All contains all sentences. BL2/RG2 denotes BLEU-2/ROUGE-2, BL4/RG4 denotes BLEU-
2/ROUGE-2 BLEU-4/ROUGE-4, AU denotes active units, D denotes distortion, and R denotes rate.

(AU; Burda et al. (2015)) in the latent code z. 6

As an additional verification, we also group the
test sentences into buckets based on their length
and report BLEU-2/4 and ROUGE-2/4 metrics to
measure the quality of reconstruction step in Table
1. As expected, we observe that increasing rate has
a consistently positive impact on improving BLEU
and ROUGE scores.

3.2 Aggregated Posterior

To understand how the approximated posteriors
are being affected by the magnitude of the KL,
we adopted an approach from Zhao et al. (2017)
and looked at the divergence between the aggre-
gated posterior, q�(z) =

P
x⇠q(x) q�(z|x), and

prior p(z). Since during generation we generate
samples from the prior, ideally we would like the
aggregated posterior to be as close as possible to
the prior.

We obtained unbiased samples of z first by sam-
pling an x from data and then z ⇠ q�(z|x), and
measured the log determinant of covariance of
the samples (log det(Cov[q�(z)])). As reported
in Figure 1, we observed that log det(Cov[q�(z)])
degrades as C grows, indicating sharper approxi-
mate posteriors. We then consider the difference
of p(z) and q(z) in their means and variances, by
computing the KL divergence from the moment-
matching Gaussian fit of q(z) to p(z): This returns
smaller values for �C=5-VAEGRU (Yelp: 0, Yahoo:
0), and larger values for �C=100-VAEGRU (Yelp:
8, Yahoo: 5), which illustrates that the overlap be-
tween q�(z) and p(z) shrinks further as C grows.

6To see if the conclusions hold with different number of
parameters, we doubled the number of parameters in �C -
VAEGRU and �C -VAELSTM and observed the similar pattern
with a slight change in performance.

The above observation is better pronounced in
Table 1, where we also report the mean (||µ||22)
of unbiased samples of z, highlighting the diver-
gence from the mean of the prior distribution as
rate increases. Therefore, for the case of lower
C, the latent variables observed during training
are closer to the generated sample from the prior
which makes the decoder more suitable for gener-
ation purpose. We will examine this hypothesis in
the following section.

3.3 Text Generation

To empirically examine how channel capacity
translates into generative capacity of the model,
we experimented with the �C-VAELSTM models
from Table 1. To generate a novel sentence, after
a model was trained, a latent variable z is sampled
from the prior distribution and then transformed
into a sequence of words by the decoder p(x|z).

During decoding for generation we try three de-
coding schemes: (i) Greedy: which selects the
most probable word at each step, (ii) Top-k (Fan
et al., 2018): which at each step samples from the
K most probable words, and (iii) Nucleus Sam-
pling (NS) (Holtzman et al., 2019): which at each
step samples from a flexible subset of most proba-
ble words chosen based on their cumulative mass
(set by a threshold p, where p = 1 means sampling
from the full distribution). While similar to Top-
k, the benefit of NS scheme is that the vocabulary
size at each time step of decoding varies, a prop-
erty that encourages diversity and avoids degener-
ate text patterns of greedy or beam search decod-
ing (Holtzman et al., 2019). We experiment with
NS (p = {0.5, 0.9}) and Top-k (k = {5, 15}).

121

Greedy Top-15 NS(p=0.9)

C=3

1: oh, i m not going to be a good man. 1: come - look on my mind, said he. 1: and what is one of those trees creatures?
2: oh, it s a good thing, said the story girl. 2: how could i tell you, that it s a great deal? 2: here s a nice heart among those waters!
3: oh, how can you do it, dear? 3: said i. my sister, what a fool! 3: good-bye, said reddy fox, hardly fright-

ened was out of his life.
4: oh, how can you do it, dear? 4: and how was the way, you? 4: now, for a neighbor, who knows him.
5: oh, how can you do it, miss? 5: said the other little breezes, but i do n t . 5: oh, prince ivan, dear me!
6: and what is the matter with you? 6: and where s the news of the world? 6: cried her mother, who is hidden or power.
7: and what is the matter with you? 7: 〈unk〉 of 〈unk〉, said i. ay, 〈unk〉! 7: but this was his plight, and the smith

knew.

C=15

1: old mother west wind and her eyes were
in the same place, but she had never seen
her.

1: eric found out this little while, but there
in which the old man did not see it so.

1: aunt tommy took a sudden notion of re-
lief and yellow-dog between him sharply
until he tried to go to.

2: old mother west wind and his wife had
gone and went to bed to the palace.

2: old mother west wind and his wife gave
her to take a great 〈unk〉, she said.

2: his lord marquis of laughter expressed
that soft hope and miss cornelia was not
comforted.

3: little joe otter and there were a 〈unk〉 of
them to be seen.

3: little joe otter got back to school all the
〈unk〉 together.

3: meanwhile the hounds were both around
and then by a thing was not yet.

4: little joe otter s eyes are just as big as her. 4: little joyce s eyes grew well at once,
there.

4: in a tone, he began to enter after dinner.

5: a few minutes did not answer the 〈unk〉. 5: pretty a woman, but there had vanished. 5: once a word became, just got his way.
6: a little while they went on. 6: from the third day, she went. 6: for a few moments, began to find.
7: a little while they went. 7: three months were as usual. 7: meantime the thrushes were 〈unk〉.

C=100

1: it will it, all her 〈unk〉, not even her with
her?

1: it will her you, at last, bad and never in
her eyes.

1: it s; they liked the red, but i kept her and
growing.

2: it will get him to mrs. matilda and noth-
ing to eat her long clothes.

2: other time, i went into a moment – she
went in home and.

2: it 〈unk〉 not to her, in school, and never
his bitter now.

3: the thing she put to his love, when it were
〈unk〉 and too.

3: going quite well to his mother, and re-
member it the night in night!

3: was it now of the beginning, and dr.
hamilton was her away and.

4: one day, to the green forest now and a
long time ago, sighed.

4: one and it rained for his feet, for she was
their eyes like ever.

4: of course she flew for a long distance;
and they came a longing now.

5: one and it became clear of him on that
direction by the night ago.

5: the thing knew the tracks of 〈unk〉 and he
never got an 〈unk〉 before him.

5: one door what made the pain called for
her first ear for losing up.

6: every word of his horse was and the rest
as the others were ready for him.

6: of course he heard a sound of her as much
over the 〈unk〉 that night can.

6: one and he got by looking quite like her
part till the marriage know ended.

7: a time and was half the 〈unk〉 as before
the first 〈unk〉 things were ready as.

7: every, who had an interest in that till his
legs got splendid tongue than himself.

7: without the thought that danced in the
ground which made these delicate child s
teeth so.

Table 2: Homotopy (CBT corpus) - The three blocks correspond to C = {3, 15, 100} values used for training
�C-VAELSTM. The columns correspond to the three decoding schemes: greedy, top-k (with k=15), and the nucleus
sampling (NS; with p=0.9). Initial two latent variables z were sampled from a the prior distribution i.e. z ⇠ p(z)
and the other five latent variables were obtained by interpolation. The sequences that highlighted in gray are the one
that decoded into the same sentences condition on different latent variable. Note: Even though the learned latent
representation should be quite different for different models (trained with different C) in order to be consistent all
the generated sequences presented in the table were decoded from the same seven latent variables.

3.3.1 Qualitative Analysis
We follow the settings of homotopy experi-
ment (Bowman et al., 2016) where first a set of la-
tent variables was obtained by performing a linear
interpolation between z1 ⇠ p(z) and z2 ⇠ p(z).
Then each z in the set was converted into a se-
quence of words by the decoder p(x|z). Besides
the initial motivation of Bowman et al. (2016) to
examine how neighbouring latent codes look like,
our additional incentive is to analyse how sensi-
tive the decoder is to small variations in the latent
variable when trained with different channel ca-
pacities, C = {3, 15, 100}.

Table 2 shows the generated sentences via dif-
ferent decoding schemes for each channel capac-

ity. For space reason, we only report the gener-
ated sentences for greedy, Top-k = 15, and NS
p = 0.9. To make the generated sequences compa-
rable across different decoding schemes or C val-
ues, we use the same samples of z for decoding.

Sensitivity of Decoder To examine the sensitiv-
ity7 of the decoder to variations of the latent vari-
able, we consider the sentences generate with the
greedy decoding scheme (the first column in Ta-
ble 2). The other two schemes are not suitable
for this analysis as they include sampling proce-

7Note: we vary z in one (randomly selected) direction (in-
terpolating between z1 and z2). Alternatively, the sensitivity
analysis can be done by varying z along the gradient direction
of log p(x|z).

122

Greedy NS(p=0.9)

C |V| FCE %unk len. SB |V| FCE %unk len. SB

CBT
3 335 86.6(0.4) 9.7 15.3 4.2 9.8k 70.4(0.0) 2.1 15.6 0.0
15 335 52.3(0.3) 12.7 15.2 0.3 9.8k 70.7(0.2) 2.4 15.4 0.0
100 335 47.3(0.1) 21.3 17.5 0.0 9.8k 75.1(0.1) 2.2 17.6 0.0

Test 328 - 30.7 15.3 - 6.1k - 3.6 15.3 -

WIKI
3 1.5k 134.6(0.8) 27.3 19.9 7.6 20k 89.8(0.1) 5.8 19.4 0.0
15 1.5k 69.2(0.1) 18.9 19.8 0.2 20k 89.3(0.1) 5.6 19.8 0.0
100 1.5k 58.9(0.1) 34.8 20.7 0.0 20k 96.5(0.1) 4.5 20.7 0.0

Test 1.5k - 32.7 19.6 - 20k - 5.2 19.6 -

WebText
3 2.3k 115.8(0.7) 18.8 17.5 2.0 21.9k 86.4(0.1) 7.1 15.6 0.0
15 2.3k 74.4(0.1) 15.5 15.8 0.1 21.9k 85.8(0.1) 6.9 15.9 0.0
100 2.3k 62.5(0.1) 27.3 18.0 0.0 21.9k 93.7(0.1) 4.8 18.0 0.0

Test 2.2k - 30.1 16.1 - 17.1k - 6.8 16.1 -

Table 3: Forward Cross Entropy (FCE). Columns represent stats for Greedy and NS decoding schemes for �C-
VAELSTM models trained with C = {3, 15, 100} on CBT, WIKI or WebText. Each entry in the table is a mean
of negative log likelihood of an LM. The values in the brackets are the standard deviations. |V| is the vocabulary
size; Test stands for test set; %unk is the percentage of 〈unk〉 symbols in a corpora; len. is the average length of
a sentence in the generated corpus; SB is the self-BLEU:4 score calculated on the 10K sentences in the generated
corpus.

dure. This means that if we decode the same la-
tent variable twice we will get two different sen-
tences. We observed that with lower channel ca-
pacity (C = 3) the decoder tends to generate iden-
tical sentences for the interpolated latent variables
(we highlight these sentences in gray), exhibit-
ing decoder’s lower sensitivity to z’s variations.
However, with the increase of channel capacity
(C = 15, 100) the decoder becomes more sensi-
tive. This observation is further supported by the
increasing pattern of active units in Table 1: Given
that AU increases with increase of C one would
expect that activation pattern of a latent variable
becomes more complex as it comprises more in-
formation. Therefore small change in the pattern
would have a greater effect on the decoder.

Coherence of Sequences We observe that the
model trained with large values of C compromises
sequences’ coherence during the sampling. This is
especially evident when we compare C = 3 with
C = 100. Analysis of Top-15 and NS (p=0.9)
generated samples reveals that the lack of coher-
ence is not due to the greedy decoding scheme per
se, and can be attributed to the model in general.
To understand this behavior further, we need two
additional results from Table 1: LogDetCov and
||µ||22. One can notice that as C increases LogDet-
Cov decreases and ||µ||22 increases. This indicates
that the aggregated posterior becomes further apart
from the prior, hence the latent codes seen during

the training diverge more from the codes sampled
from the prior during generation. We speculate
this contributes to the coherence of the generated
samples, as the decoder is not equipped to decode
prior samples properly at higher Cs.

3.3.2 Quantitative Analysis

Quantitative analysis of generated text without
gold reference sequences (e.g. in Machine Trans-
lation or Summarization) has been a long-standing
challenge. Recently, there have been efforts to-
wards this direction, with proposal such as self-
BLEU (Zhu et al.), forward cross entropy (Cı́fka
et al., 2018, FCE) and Fréchet InferSent Distance
(Cı́fka et al., 2018, FID). We opted for FCE as a
complementary metric to our qualitative analysis.
To calculate FCE, first a collection of synthetic
sentences are generated by sampling z ⇠ p(z)
and decoding the samples into sentences. The syn-
thetic sequences are then used to train a language
model (an LSTM with the parametrisation of our
decoder). The FCE score is estimated by reporting
the negative log likelihood (NLL) of the trained
LM on the set of human generated sentences.

We generated synthetic corpora using trained
models from Table 1 with different C and decod-
ing schemes and using the same exact z samples
for all corpora. Since the generated corpora using
different C values would have different coverage
of words in the test set (i.e., Out-of-Vocabulary
ratios), we used a fixed vocabulary to minimize

123

the effect of different vocabularies in our analysis.
Our dictionary contains words that are common in
all of the three corpora, while the rest of the words
that don’t exist in this dictionary are replaced with
〈unk〉 symbol. Similarly, we used this fixed dic-
tionary to preprocess the test sets. Also, to reduce
bias to a particular set of sampled z’s we measure
the FCE score three times, each time we sampled a
new training corpus from a �C-VAELSTM decoder
and trained an LM from scratch. In Table 3 we
report the average FCE (NLL) for the generated
corpora.

In the qualitative analysis we observed that the
text generated by the �C-VAELSTM trained with
large values of C = 100 exhibits lower quality
(i.e., in terms of coherence). This observation is
supported by the FCE score of NS(p=0.9) decod-
ing scheme (3), since the performance drops when
the LM is trained on the corpus generated with
C = 100. The generated corpora with C = 3
and C = 15 achieve similar FCE score. How-
ever, these patterns are reversed for Greedy decod-
ing scheme8, where the general tendency of FCE
scores suggests that for larger values of C the �C-
VAELSTM seems to generate text which better ap-
proximates the natural sentences in the test set. To
understand this further, we report additional statis-
tics in Table 3: percentage of 〈unk〉 symbols, self-
BLEU and average sentence length in the corpus.

The average sentence length, in the generated
corpora is very similar for both decoding schemes,
removing the possibility that the pathological pat-
tern on FCE scores was caused by difference in
sentence length. However, we observe that for
Greedy decoding more than 30% of the test set
consists of 〈unk〉. Intuitively, seeing more evi-
dence of this symbol during training would im-
prove our estimate for the 〈unk〉. As reported in
the table, the %unk increases on almost all corpora
as C grows, which is then translated into getting
a better FCE score at test. Therefore, we believe
that FCE at high %unk is not a reliable quantitative
metric to assess the quality of the generated syn-
tactic corpora. Furthermore, for Greedy decoding,
self-BLEU decreases when C increases. This sug-
gests that generated sentences for higher value of
C are more diverse. Hence, the LM trained on
more diverse corpora can generalise better, which
in turn affects the FCE.

8For the other decoding schemes: Top-{5,15} and
NS(p=0.5) the pattern is the same as for the Greedy. For space
reason we only report the FCE for Greedy.

In contrast, the effect the 〈unk〉 symbol has on
the corpora generated with the NS(p=0.9) decod-
ing scheme is minimal for two reasons: First, the
vocabulary size for the generated corpora, for all
values of C is close to the original corpus (the
corpus we used to train the �C-VAELSTM). Sec-
ond, the vocabularies of the corpora generated
with three values of C is very close to each other.
As a result, minimum replacement of the words
with the 〈unk〉 symbol is required, making the ex-
periment to be more reflective of the quality of
the generated text. Similarly, self-BLEU for the
NS(p=0.9) is the same for all values of C. This
suggests that the diversity of sentences has mini-
mal, if any, effect on the FCE.

3.4 Syntactic Test

In this section, we explore if any form of syn-
tactic information is captured by the encoder and
represented in the latent codes despite the lack of
any explicit syntactic signal during the training of
the �C-VAELSTM. To train the models we used
the same WIKI data set as in Marvin and Linzen
(2018), but we filtered out all the sentences that
are longer than 50 space-separated tokens.9

We use the data set of Marvin and Linzen
(2018) which consists of pairs of grammatical and
ungrammatical sentences to test various syntac-
tic phenomenon. For example, a pair in subject-
verb agreement category would be: (The author
laughs, The author laugh). We encode both the
grammatical and ungrammatical sentences into the
latent codes z+ and z�, respectively. Then we
condition the decoder on the z+ and try to deter-
mine whether the decoder assigns higher probabil-
ity to the grammatical sentence (denoted by x+):
p(x�|z+) < p(x+|z+) (denoted by p1 in Table 4).
We repeat the same experiment but this time try to
determine whether the decoder, when conditioned
on the ungrammatical code (z�), still prefers to
assign higher probability to the grammatical sen-
tence: p(x�|z�) < p(x+|z�) (denoted by p2 in
Table 4). Table 4 shows the p1 and p2 for the �C-
VAELSTM model trained with C = {3, 100}. Both
the p1 and p2 are similar to the accuracy and corre-
spond to how many times a grammatical sentence
was assigned a higher probability.

As reported for C=3, p1 and p2 match in al-
most all cases. This is to some degree expected

9We applied the filtering to decrease the training time of
our models.

124

C = 3 C = 100

Syntactic Categories p1 p2 p1 p2 p̄1 p̄2

SUBJECT-VERB AGREEMENT
Simple 0.81 0.81 1.0 0.23 0.68 0.47
In a sentential complement 0.79 0.79 0.98 0.14 0.69 0.48
Short VP coordination 0.74 0.73 0.96 0.08 0.78 0.43
Long VP coordination 0.61 0.61 0.97 0.06 0.55 0.47
Across a prepositional phrase 0.78 0.78 0.97 0.07 0.62 0.49
Across a subject relative clause 0.77 0.77 0.93 0.08 0.68 0.41
Across an object relative clause 0.69 0.69 0.92 0.11 0.61 0.45
Across an object relative (no that) 0.58 0.58 0.94 0.09 0.61 0.44
In an object relative clause 0.74 0.74 0.99 0.01 0.60 0.45
In an object relative (no that) 0.74 0.74 0.99 0.02 0.61 0.46

REFLEXIVE ANAPHORA
Simple 0.79 0.78 0.99 0.07 0.70 0.39
In a sentential complement 0.74 0.73 1.00 0.00 0.70 0.38
Across a relative clause 0.63 0.62 0.99 0.03 0.69 0.35

NEGATIVE POLARITY ITEMS
Simple 0.42 0.33 1.00 0.00 0.76 0.20
Across a relative clause 0.37 0.36 1.00 0.00 0.98 0.02

Table 4: p1: p(x�|z+) < p(x+|z+) and p2: p(x�|z�) < p(x+|z�); p̄1: p(x�|z̄+) < p(x+|z̄+) and p̄2:
p(x�|z̄�) < p(x+|z̄�); �C=3-VAELSTM (D:103, R:3); �C=100-VAELSTM (D:39, R:101).

since lower channel capacity encourages a more
dominating decoder which in our case was trained
on grammatical sentences from the WIKI. On the
other hand, this illustrates that despite avoiding the
KL-collapse issue, the dependence of the decoder
on the latent code is so negligible that the decoder
hardly distinguishes the grammatical and ungram-
matical inputs. This changes for C = 100, as in
almost all the cases the decoder becomes strongly
dependent on the latent code and can differentiate
between what it has seen as input and the closely
similar sentence it hasn’t received as the input:
The decoder assigns larger probability to the un-
grammatical sentence when conditioned on the z�

and, similarly, larger probability to the grammati-
cal sentence when conditioned on the z+.

However, the above observations neither con-
firm nor reject existence of grammar signal in the
latent codes. We run a second set of experiments
where we aim to discard sentence specific infor-
mation from the latent codes by averaging the
codes10 inside each syntactic category. The av-
eraged codes are denoted by z̄+ and z̄�, and the
corresponding accuracies are reported by p̄1 and
p̄2 in Table 4. Our hypothesis is that the only in-
variant factor during averaging the codes inside a
category is the grammatical property of its corre-

10Each syntactic category is further divided into sub-
categories, for instance simple subject-verb agreement We
average z’s within each sub-categories.

sponding sentences.
As expected, due to the weak dependence of de-

coder on latent code, the performance of the model
under C = 3 is almost identical (not included for
space limits) when comparing p1 vs. p̄1, and p2
vs. p̄2. However, for C = 100 the performance
of the model deteriorates. While we leave further
exploration of this behavior to our future work, we
speculate this could be an indication of two things:
the increase of complexity in the latent code which
encourages a higher variance around the mean, or
the absence of syntactic signal in the latent codes.

4 Discussion and Conclusion

In this paper we analysed the interdependence of
the KL term in Evidence Lower Bound (ELBO)
and the properties of the approximated posterior
for text generation. To perform the analysis we
used an information theoretic framework based on
a variant of �-VAE objective, which permits ex-
plicit control of the KL term, and treats KL as a
mechanism to control the amount of information
transmitted between the encoder and decoder.

The immediate impact of the explicit constraint
is avoiding the collapse issue (DKL = 0) by set-
ting a non-zero positive constraint (C � 0) on the
KL term (|DKL

�
q�(z|x)||p(z)

�
� C|). We exper-

imented with a range of constraints (C) on the KL
term and various powerful and weak decoder ar-
chitectures (LSTM, GRU, and CNN), and empiri-

125

cally confirmed that in all cases the constraint was
satisfied.

We showed that the higher value of KL encour-
ages not only divergence from the prior distribu-
tion, but also a sharper and more concentrated ap-
proximated posteriors. It encourages the decoder
to be more sensitive to the variations on the latent
code, and makes the model with higher KL less
suitable for generation as the latent variables ob-
served during training are farther away from the
prior samples used during generation. To anal-
yse its impact on generation we conducted a set
of qualitative and quantitative experiments.

In the qualitative analysis we showed that small
and large values of KL term impose different prop-
erties on the generated text: the decoder trained
under smaller KL term tends to generate repetitive
but mainly plausible sentences, while for larger
KL the generated sentences were diverse but inco-
herent. This behaviour was observed across three
different decoding schemes and complemented by
a quantitative analysis where we measured the per-
formance of an LSTM LM trained on different
VAE-generated synthetic corpora via different KL
magnitudes, and tested on human generated sen-
tences.

Finally, in an attempt to understand the abil-
ity of the latent code in VAEs to represent some
form of syntactic information, we tested the abil-
ity of the model to distinguish between grammati-
cal and ungrammatical sentences. We verified that
at lower (and still non-zero) KL the decoder tends
to pay less attention to the latent code, but our find-
ings regarding the presence of a syntactic signal in
the latent code were inconclusive. We leave it as
a possible avenue to explore in our future work.
Also, we plan to develop practical algorithms for
the automatic selection of the C’s value, and verify
our findings under multi-modal priors and com-
plex posteriors.

Acknowledgments

The authors would like to thank the anony-
mous reviewers for their helpful suggestions.
This research was supported by an EPSRC Ex-
perienced Researcher Fellowship (N. Collier:
EP/M005089/1), an MRC grant (M.T. Pilehvar:
MR/M025160/1) and E. Shareghi is supported by
the ERC Consolidator Grant LEXICAL (648909).
We gratefully acknowledge the donation of a GPU
from the NVIDIA.

References
Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dil-

lon, Rif A. Saurous, and Kevin Murphy. 2018. Fix-
ing a broken ELBO. In ICML.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In CoNLL.

Yuri Burda, Roger B. Grosse, and Ruslan Salakhut-
dinov. 2015. Importance weighted autoencoders.
CoRR, abs/1509.00519.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loı̈c
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in �-vae. CoRR, abs/1804.03599.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Ondrej Cı́fka, Aliaksei Severyn, Enrique Alfonseca,
and Katja Filippova. 2018. Eval all, trust a few,
do wrong to none: Comparing sentence generation
models. CoRR, abs/1804.07972.

Thomas M Cover and Joy A Thomas. 2012. Elements
of information theory. John Wiley & Sons.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR,
abs/1612.08083.

Adji B. Dieng, Yoon Kim, Alexander M. Rush, and
David M. Blei. 2018. Avoiding latent variable
collapse with generative skip models. CoRR,
abs/1807.04863.

Angela Fan, Mike Lewis, and Yann N. Dauphin.
2018. Hierarchical neural story generation. CoRR,
abs/1805.04833.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial nets. In NIPS.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre
Côté, Nan Rosemary Ke, and Yoshua Bengio. 2017.
Z-forcing: Training stochastic recurrent networks.
In NIPS.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational au-
toencoders. In ICLR.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In ICLR.

126

Matthew D. Hoffman and Matthew J. Johnson. 2016.
ELBO surgery: yet another way to carve up the vari-
ational evidence lower bound. NIPS: Workshop on
Advances in Approximate Bayesian Inference.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. CoRR, abs/1904.09751.

Yoon Kim, Sam Wiseman, Andrew C. Miller, David
Sontag, and Alexander M. Rush. 2018. Semi-
amortized variational autoencoders. In ICML.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization.

Diederik P. Kingma, Tim Salimans, and Max Welling.
2016. Improving variational inference with inverse
autoregressive flow. CoRR, abs/1606.04934.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR.

Joseph Marino, Yisong Yue, and Stephan Mandt. 2018.
Iterative amortized inference. In ICML.

Rebecca Marvin and Tal Linzen. 2018. Targeted
syntactic evaluation of language models. CoRR,
abs/1808.09031.

Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neu-
ral variational inference for text processing. CoRR,
abs/1511.06038.

Tom Pelsmaeker and Wilker Aziz. 2019. Effective esti-
mation of deep generative language models. CoRR,
abs/1904.08194.

Ben Poole, Sherjil Ozair, Aäron van den Oord, Alexan-
der A Alemi, and George Tucker. 2018. On vari-
ational lower bounds of mutual information. In
NeurIPS Workshop on Bayesian Deep Learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol
Vinyals. 2019. Preventing posterior collapse with
delta-VAEs. In ICLR.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A hybrid convolutional variational au-
toencoder for text generation. In EMNLP.

Jakub M. Tomczak and Max Welling. 2017. VAE with
a vampprior. CoRR, abs/1705.07120.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
ICLR.

Jiacheng Xu and Greg Durrett. 2018. Spherical latent
spaces for stable variational autoencoders. CoRR,
abs/1808.10805.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. CoRR, abs/1702.08139.

Shengjia Zhao, Jiaming Song, and Stefano Ermon.
2017. Infovae: Information maximizing variational
autoencoders. CoRR, abs/1706.02262.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation mod-
els. In SIGIR.

127

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 128–137
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Decomposing Textual Information For Style Transfer
Ivan P. Yamshchikov∗
Max Planck Institute

for Mathematics in the Sciences
Leipzig, Germany

ivan@yamshchikov.info

Viacheslav Shibaev
Ural Federal University

Ekaterinburg, Russia

Aleksander Nagaev
Ural Federal University

Ekaterinburg, Russia

Jürgen Jost
Max Planck Institute

for Mathematics in the Sciences
Leipzig, Germany

Alexey Tikhonov∗
Yandex

Berlin, Germany
altsoph@gmail.com

Abstract

This paper focuses on latent representations
that could effectively decompose different as-
pects of textual information. Using a frame-
work of style transfer for texts, we propose
several empirical methods to assess infor-
mation decomposition quality. We validate
these methods with several state-of-the-art tex-
tual style transfer methods. Higher quality
of information decomposition corresponds to
higher performance in terms of bilingual evalu-
ation understudy (BLEU) between output and
human-written reformulations.

1 Introduction

The arrival of deep learning seems transformative
for many areas of information processing and is
especially interesting for generative models (Hu
et al., 2017b). However, natural language gener-
ation is still a challenging task due to a number
of factors that include the absence of local infor-
mation continuity and non-smooth disentangled
representations (Bowman et al., 2015), and discrete
nature of textual information (Hu et al., 2017a). If
information needed for different natural language
processing (NLP) tasks could be encapsulated in
independent components of the obtained latent rep-
resentations, one could have worked with different
aspects of text independently. This could also nat-
urally simplify learning transfer for NLP models
and potentially make them more interpretable.

Despite the fact that content and style are deeply
fused in natural language, style transfer for texts is
often addressed in the context of disentangled latent
representations (Hu et al., 2017a; Shen et al., 2017;
Fu et al., 2018; John et al., 2018; Romanov et al.,
2018; Tian et al., 2018). A majority of these works
use an encoder-decoder architecture with one or

∗Equal contribution

multiple style discriminators to improve latent rep-
resentations. An encoder takes a given sentence as
an input and generates a style-independent content
representation. The decoder then uses this content
representation and a target style representation to
generate a new sentence in the needed style. This
approach seems intuitive and appealing but has cer-
tain difficulties. For example, Subramanian et al.
(2018) question the quality and usability of the dis-
entangled representations for texts with an elegant
experiment. The authors train a state of the art
architecture that relies on disentangled represen-
tations and show that an external artificial neural
network can predict the style of the input using a
semantic component of an obtained latent represen-
tation (that supposedly did not incorporate stylistic
information).

In this work, we demonstrate that the decompo-
sition of latent representations is, indeed, attainable
with encoder-decoder based methods but depends
on the used architecture. Moreover, architectures
with higher quality of information decomposition
perform better in terms of the style transfer task.

The contribution of this paper is threefold: (1)
we propose several ways to quantify the quality of
the obtained latent semantic representations; (2)
we show that the quality of such representation can
significantly differ depending on the used architec-
ture; (3) finally we demonstrate that architectures
with higher quality of information decomposition
perform better in terms of BLEU (Papineni et al.,
2002) between output of a model and a human
written reformulations.

2 Related Work

It is hard to define style transfer rigorously (Xu,
2017). Therefore recent contributions in the field
are mostly motivated by several empirical results
and rather address specific narrow aspects of style

128

https://www.aclweb.org/anthology/D19-56%2d

that could be empirically measured. Stylistic at-
tributes of text include author-specific attributes
(see (Xu et al., 2012) or (Jhamtani et al., 2017)
on ’shakespearization’), politeness (Sennrich et al.,
2016), the ’style of the time’ (Hughes et al., 2012),
gender or political slant (Prabhumoye et al., 2018),
and formality of speech (Rao and Tetreault, 2018).
All these attributes are defined with varying de-
grees of rigor. Meanwhile, the general notion of
literally style is only addressed in a very broad
context. For example, Hughes et al. (2012) shows
that the style of a text can be characterized quanti-
tively and not only with an expert opinion; Potash
et al. (2015) demonstrate that stylized texts could
be generated if a system is trained on a dataset of
stylistically similar texts; and literary styles of the
authors could be learned end-to-end (Tikhonov and
Yamshchikov, 2018a,b; Vechtomova et al., 2018).

In this particular submission we focus on a very
narrow framework of sentiment transfer. There is
certain controversy whether sentiment of a text
could be regarded as its stylistic attribute, see
(Tikhonov and Yamshchikov, 2018c). However,
there seems to be certain agreement in the field that
sentiment could be regarded as a viable attribute to
be changed by the style transfer system. Address-
ing the problem of sentiment transfer Kabbara and
Cheung (2016); Li et al. (2018); Xu et al. (2018)
estimate the quality of the style transfer with a
pre-trained binary sentiment classifier. Fu et al.
(2018) and Ficler and Goldberg (2017) generalize
this ad-hoc approach and in principle enable the in-
formation decomposition approach. They define a
style as a set of arbitrary quantitatively measurable
categorical or continuous parameters that could be
automatically estimated with an external classifier.
In this submission we stay within this empirical
paradigm of literary style.

Generally speaking, a solution that works for one
aspect of a style could not be applied for a different
aspect of it. For example, a retrieve-edit approach
by (Guu et al., 2018) works for sentiment trans-
fer. A delete-retrieve model shows good results for
sentiment transfer in (Li et al., 2018). However,
these retrieval approaches could hardly be used for
the style of the time or formality or any other case
when the system is expected to paraphrase a given
sentence to achieve the target style. To address
this challenge Hu et al. (2017a) propose a more
general approach to the controlled text generation
combining variational autoencoder (VAE) with an

extended wake-sleep mechanism in which the sleep
procedure updates both the generator and external
discriminator that assesses generated samples and
feedbacks learning signals to the generator. Labels
for style were concatenated with the text represen-
tation of the encoder and used with ”hard-coded”
information about the sentiment of the output as
the input of the decoder. This approach is promis-
ing and is used in many recent contributions. Shen
et al. (2017) use an adversarial loss to decompose
information about the form of a sentence and apply
a GAN to align hidden representations of sentences
from two corpora. Fu et al. (2018) use an adver-
sarial network to make sure that the output of the
encoder does not include stylistic information. Hu
et al. (2017a) also use an adversarial component
to ensure there is no stylistic information within
the representation. A dedicated component that
controls semantic component of the latent repre-
sentation is proposed by John et al. (2018) who
demonstrate that decomposition of style and con-
tent could be improved with an auxiliary multi-task
for label prediction and adversarial objective for
a bag-of-words prediction. Romanov et al. (2018)
also introduce a dedicated component to control
semantic aspects of latent representations and an
adversarial-motivational training that includes a
special motivational loss to encourage a better de-
composition.

The framework of information decomposition
within latent representations is challenged by an
alternative family of neural machine translation ap-
proaches. These are works on style transfer with
(Carlson et al., 2018) and without parallel corpora
(Zhang et al., 2018) in line with (Lample et al.,
2017) and (Artetxe et al., 2017). In particular,
Subramanian et al. (2018) state that learning a la-
tent representation, which is independent of the
attributes specifying its style is rarely attainable.
They experiment with the model developed in (Fu
et al., 2018) where by design the discriminator,
which was trained adversarially and jointly with
the model, gets worse at predicting the sentiment
of the input when the coefficient of the adversarial
loss increases. Authors show that a classifier that
is separately trained on the resulting encoder repre-
sentations easily recovers the sentiment of a latent
representation produced by the encoder.

In this paper, we show that contrary to (Subra-
manian et al., 2018) decomposition of the stylis-
tic and semantic information is attainable with

129

autoencoder-type models and could be quanti-
fied. However, the quality of such decomposi-
tion severely depends on the particular architecture.
We propose three different measures for informa-
tion decomposition quality and using four different
architectures show that models with better infor-
mation decomposition outperform the state-of-the-
art models in terms of BLEU between output and
human-written reformulations.

3 Style transfer

In this work we experiment with extensions of a
model, described in (Hu et al., 2017a), using Texar
(Hu et al., 2018) framework. To generate plausi-
ble sentences with specific semantic and stylistic
features every sentence is conditioned on a rep-
resentation vector z which is concatenated with
a particular code c that specifies desired attribute,
see Figure 1. Under notation introduced in (Hu
et al., 2017a) the base autoencoder (AE) includes
a conditional probabilistic encoder E defined with
parameters θE to infer the latent representation z
given input x

z ∼ E(x) = qE(z, c|x).

Generator G defined with parameters θG is a GRU-
RNN for generating and output x̂ defined as a se-
quence of tokens x̂ = x̂1, ..., x̂T conditioned on the
latent representation z and a stylistic component c
that are concatenated and give rise to a generative
distribution

x̂ ∼ G(z, c) = pG(x̂|z, c).

These encoder and generator form an AE with the
following loss

Lae(θG, θE ;x, c) = −EqE(z,c|x) [log qG(x|z, c)] .
(1)

This standard reconstruction loss that drives the
generator to produce realistic sentences is com-
bined with two additional losses. The first discrimi-
nator provides extra learning signals which enforce
the generator to produce coherent attributes that
match the structured code in c. Since it is impossi-
ble to propagate gradients from the discriminator
through the discrete sample x̂, we use a determin-
istic continuous approximation a ”soft” generated
sentence, denoted as G̃ = G̃τ (z, c) with ”temper-
ature” τ set to τ → 0 as training proceeds. The
resulting soft generated sentence is fed into the

discriminator to measure the fitness to the target
attribute, leading to the following loss

Lc(θG, θE ;x) = −EqE(z,c|x)
[
log qD(c|G̃)

]
.

(2)
Finally, under the assumption that each struc-

tured attribute of generated sentences is controlled
through the corresponding code in c and is inde-
pendent from z one would like to control that other
not explicitly modelled attributes do not entangle
with c. This is addressed by the dedicated loss

Lz(θG;x) = −EqE(z,c|x)qD(c|x)
[
log qE(z|G̃)

]
.

(3)
The training objective for the baseline, shown in
Figure 1, is therefore a sum of the losses from
Equations (1) – (3) defined as

minθGLbaseline = Lae + λcLc + λzLz, (4)

where λc and λz are balancing parameters.

Figure 1: The generative model, where style is a struc-
tured code targeting sentence attributes to control. Blue
dashed arrows denote the proposed independence con-
straint of latent representation and controlled attribute,
see (Hu et al., 2017a) for the details.

Let us propose two further extensions of this
baseline architecture. To improve reproducibility
of the research the code of the studied models is
open1. Both extensions aim to improve the qual-
ity of information decomposition within the latent
representation. In the first one, shown in Figure 2,
a special dedicated discriminator is added to the
model to control that the latent representation does
not contain stylistic information. The loss of this
discriminator is defined as

LDz(θG;x, c) = −EqE(z|x) [log qDz(c|z)] . (5)
1https://github.com/VAShibaev/textstyletransfer

130

Here a discriminator denoted as Dz is trying to
predict code c using representation z. Combining
the loss defined by Equation (4) with the adversar-
ial component defined in Equation (5) the following
learning objective is formed

minθGL = Lbaseline − λDzLDz, (6)

where Lbaseline is a sum defined in Equation (4),
λDz is a balancing parameter.

Figure 2: The generative model with dedicated discrim-
inator introduced to ensure that semantic part of the
latent representation does not have information on the
style of the text.

The second extension of the baseline architec-
ture does not use an adversarial component Dz that
is trying to eradicate information on c from com-
ponent z. Instead, the system, shown in Figure 3
feeds the ”soft” generated sentence G̃ into encoder
E and checks how close is the representation E(G̃)
to the original representation z = E(x) in terms of
the cosine distance. We further refer to it as shifted
autoencoder or SAE. Ideally, both E(G̃(E(x), c))
and E(G̃(E(x), c̄)), where c̄ denotes an inverse
style code, should be both equal to E(x)2. The
loss of the shifted autoencoder is

minθGL = Lbaseline + λcosLcos + λcos−Lcos− ,
(7)

where λcos and λcos− are two balancing parame-
ters, with two additional terms in the loss, namely,
cosine distances between the softened output pro-
cessed by the encoder and the encoded original
input, defined as

Lcos(x, c) = cos
(
E(G̃(E(x), c)), E(x)

)
,

Lcos−(x, c) = cos
(
E(G̃(E(x), c̄)), E(x)

)
. (8)

2This notation is valid under the assumption that every
stylistic attribute is a binary feature

Figure 3: The generative model with a dedicated loss
added to control that semantic representation of the out-
put, when processed by the encoder, is close to the se-
mantic representation of the input.

We also study a combination of both approaches
described above, shown on Figure 4.

Figure 4: A combination of an additional discriminator
used in Figure 2 with a shifted autoencoder shown in
Figure 3

Tikhonov et al. (2019) carry out a series of exper-
iments for these architectures. In this contribution,
we work with the same data set of human-labeled
positive and negative reviews but focus solely on
the quality of information decomposition.

4 Information decomposition for texts

As we have mentioned earlier, several recent contri-
butions rely on the idea that decomposing different
aspects of textual information into various compo-
nents of a latent representation might be helpful for
a task of style transfer. To our knowledge, this is a
supposition that is rarely addressed rigorously. The
majority of the arguments in favor of information
decomposition based architectures is of an intu-

131

itive and qualitative rather than quantitative nature.
Moreover, there are specific arguments against this
idea.

In particular, Subramanian et al. (2018) show
that information decomposition does not necessar-
ily occur in autoencoder-based systems using a
method developed in (Fu et al., 2018). Subrama-
nian et al. (2018) demonstrate that as training pro-
ceeds, the internal discriminator, which was trained
adversarially and jointly with the model, gets worse
at predicting the sentiment of the input. However,
an external classifier that is separately trained on
the resulting latent representations easily recovers
the sentiment. This is a strong argument in favor
of the idea that actual disentanglement does not
happen. Instead of decomposing the semantic and
stylistic aspects of information, the encoder merely
’tricks’ internal classifier and ’hides’ stylistic in-
formation in the semantic component ending up in
some local optimum.

4.1 Empirical measure of information
decomposition quality

Yelp!3 reviews dataset that was lately enhanced
with human written reformulations by (Tian et al.,
2018) is one of the most frequently used baselines
for textual style transfer at the moment. It con-
sists of restaurant reviews split into two categories,
namely, positive and negative. There is a human
written reformulation of every review in which the
sentiment is changed that is commonly used as a
ground truth for the task performance estimation.

We applied an empirical method to estimate the
quality of information decomposition to the archi-
tectures described in Section 3 as well as architec-
tures developed by (Tian et al., 2018). An external
classifier was trained from scratch to predict a style
of a message using component z of a latent repre-
sentation produced by an encoder. If information
decomposition does not happen, one would expect
that accuracy of an external classifier would be
close to 1. This would mean that despite intuitive
expectations, information about the style of a mes-
sage is present in z. If decomposition were effec-
tive, the accuracy of an external classifier would be
close to 0.5; in (Tikhonov et al., 2019) it is shown
that style transfer methods show varying results in
terms of accuracy and BLEU for different retrains,
so in this paper the accuracy of an external clas-
sifier and BLEU between the system’s output and

3https://www.yelp.com/dataset

human-written reformulations was measured after
four independent retrains. On Figure 5, one can see
the results of these experiments.

Figure 5: BLEU between system’s output and human-
written reformulations seems to be higher if accuracy
of an external classifier is closer to one half. Systems
that decompose information better tend to show higher
BLEU.

The fact that the external classifier always pre-
dicts style with the probability that is above one
half could be partially attributed to the fact that full
information decomposition of sentiment and se-
mantics is hardly attainable. For example, such ad-
jectives as ”delicious” or ”yummy” incorporate pos-
itive sentiment with the semantics of taste, whereas
”polite” or ”friendly” in Yelp! reviews are combin-
ing positive sentiment with the semantics of ser-
vice. This internal entanglement of sentiment and
semantics is discussed in detail in (Tikhonov and
Yamshchikov, 2018c). It is essential to mention
that the very fact that semantics and stylistics are
entangled on the level of words does not deny a the-
oretical possibility to build a latent representation
where they are fully disentangled. Anyway, Figure
5 demonstrates that the quality of the disentangle-
ment is much better for SAE-type architectures.
Since the shifted autoencoder controls the cosine
distance between soft output and input, the encoder
has to disentangle the semantic component, rather
than ”hide” the sentiment information from the dis-
criminator.

On Figure 6 one can see how state of the art ap-
proaches compare to each other in terms of BLEU
between output and human-written reformulations.
All systems were retrained five times from scratch
to report error margins of the methods since the re-
sults are noisy. BLEU between output and human-
written reformulations is higher for lower values of

132

external classifier accuracy. Systems that perform
better in terms of information decomposition out-
perform system with lower quality of information
decomposition. Moreover, the system that does not
rely on an idea of disentangled latent representa-
tions at all shows weaker results than systems with
high information disentanglement. It is important
to note that there is a variety of methods to assess
the quality of style transfer such as PINC (Para-
phrase In N-gram Changes) score (Carlson et al.,
2018), POS distance (Tian et al., 2018), language
fluency (John et al., 2018), etc. The methodology
of style transfer quality assessment is addressed
in detail in (Tikhonov et al., 2019), but BLEU be-
tween output and input is a very natural all-purpose
metric for the task of such type that is common in
the style transfer literature.

Figure 6: Overview of the BLEU between output and
human-written reformulations of Yelp! reviews. Ar-
chitecture with additional discriminator, shifted autoen-
coder (SAE) with additional cosine losses, and a com-
bination of these two architectures measured after five
re-runs outperform the baseline by (Hu et al., 2017a)
as well as other state of the art models. Results of (Ro-
manov et al., 2018) are not displayed due to the absence
of self-reported BLEU scores

Tables 1 - 2 allow to compare random examples
for different architectures. Generally, baseline and
discriminator perform poorly once the syntax of a
review is irregular or if there are some omissions
in the text. SAE-based architectures tend to pre-
serve the semantic component better. They also
add sentimentally charged words at random not as
often as the baseline and the discriminator-based
architecture.

4.2 Preservation of semantic component
Another way to quantify the quality of latent repre-
sentations is to calculate cosine distance and KL-
divergence between semantic components of latent
representations for the inputs and corresponding
outputs. If we believe that the latent representation
captures the semantics of the input that should be
preserved in the output, the ideal behavior of the
system is to produce equal latent representation for
both the input and the output phrase. Indeed, on
Figure 7 one can see that SAE manages to learn a
space of latent representations in which semantic
components of inputs and outputs are always equal
to each other. Architecture with additional stylis-
tic discriminator shows lower cosine distances and
lower KL-divergences then the baseline yet. This
results are in line with the measurements discussed
above in Section 4.1.

Figure 7: Comparison of cosine distances and KL-
divergences between semantic components of latent
representation for inputs and outputs. After 12 epochs
of training SAE makes semantic component z for ev-
ery output equal to the semantic component for a cor-
responding input. Discriminator corresponds to lower
values of KL-divergence and cosine distance then base-
line (Hu et al., 2017a)

To get an intuition on how the resulting latent
space differs for different architectures, one can
look at the t-SNE visualizations (Maaten and Hin-
ton, 2008) for the resulting latent representations of
the data that different systems produce. In Figure 8,
one can see that the baseline latent representations
easily allow recovering the sentiment.

In contrast with the baseline, the architecture
with additional discriminator obtains better disen-
tanglement. Figure 9 shows that in this case one
has a harder time recovering the sentiment of the
sentence based on its latent representation.

SAE does not only show a higher level of disen-
tanglement but also produces equal semantic com-
ponents for the input and the corresponding output.
Judging by Figure 10 this makes SAE representa-
tions denser in certain areas of the semantic space
and sparser in the others.

133

input Human baseline
the carne asada burrito is awesome! the carne asada burrito is awful! the worst asada burrito is gross!
the rooms are not that nice and the rooms were spacious and the rooms are excellent that nice and
the food is not that good either. food was very well cooked the food is not that good either.
it was so delicious; everything tasted bad, it was so rude;
i’ve never had anything like it! nothing i liked i’ve never had anything like it!
so, that was my one and only i will be ordering the so, that was my one and best
time ordering the benedict there. benedict again very good meal! time ordering the perfect there.
you’ll see why once you get there. you’ll see why i don’t like it you’ll see why once you get there.

once you get there.
i wanted to like this place but a place like this i helped to like this place
it just became a big disappointment. is a great value it just became a big hidden.
and i had my sugar bowl favorite, my sugar bowl favorite and i had my sugar bowl worst,
the top hat sundae! was not in stock. the lackluster hat gross!
um... we just told him that um... we just told him, amazing... we just told him that
we didn’t want to finance. sure we’d go ahead and finance! we did definitely want to open.
definitely a place to keep in mind. not a place i would recommend disappointing a place to keep in mind.
firstly, their fees are generally the fees are comparable best, their fees are generally
higher than other places. to other places. higher than other places.
love the afternoon - hate the aternoon absurd the inappropriate -
tea at the phoenician. tea at the phoenician tea at the insult.

Table 1: Several random input lines alongside with human written reformulation and the reformulation generated
by the baseline.

Discriminator SAE SAE + Discriminator
the carne asada burrito is absurd! the carne asada burrito is worst! the carne asada burrito is sub-par!
the rooms are delicious that nice the rooms are definitely that nice and the rooms are consistantly that nice and
and the food is delicious that good either. the food is definitely that good either. the food is consistantly that good either.
it was so not; i’ve never it was so disgusting; i’ve never it was so angry ; i’ve never
had anything like it! had anything like it! had anything like it!
so, that was my one and fam so, that was my one and kids so, that was my one and always
time solid the benedict perfectly. time ordering the benedict there. time ordering the benedict there.
you’ll trash why once you get there. you’ll avoid why once you get there. you’ll see why once you get there.
i wanted to like this place but i wanted to like this place but i wanted to like this place but
it just delightful a big genius. it just became a big midwest. it just mildly a big stocked.
and i had my sugar bowl favorite, and i had my sugar bowl broken, and i had my sugar bowl misleading,
the absurd hurts ache! the garage hat holes! the top quesadilla sundae!
expertly... we just delightful him um... we just loved him that um... we just entertained him that
that we did magical want adds marvelous. we did definatly want to finance. we did perfected want to incredible.
ridiculous a place to keep in mind. would a place to keep in mind. wont a place to keep in mind.
firstly, their project are firstly, their draw are sheila, their round are
generally higher than other places. generally higher than other places. generally higher than other places.
horrific the trap - tea at the gut. dumb the afternoon - tea at the rabbit. wtf the afternoon - tea at the slim.

Table 2: Reformulations generated by the baseline with additional discriminator, shifted autoencoder and shifted
autoencoder with additional discriminator corresponding to the inputs in Table 1.

Aligning results shown on Figures 5 - 10 one
can clearly see several crucial things: (1) archi-
tectures based on the idea of disentangled latent
representations show varying performance in terms
of BLEU between output and human written re-
formulations; (2) architectures with higher quality
of information decomposition in terms of corre-
lation or KL-divergence between representations
for input and output, show higher performance; (3)
architectures that produce equal semantic compo-
nents for a given input and corresponding output
show the highest performance; (4) these results are
aligned with empirical estimation of decomposi-
tion quality with external classifiers; it shows that

architectures that are more successfully disentan-
gling semantics of the input from its stylistics tend
to perform better.

5 Conclusion

This paper addresses the questions of information
decomposition for the task of textual style trans-
fer. We propose three new architectures that use
latent representations to decompose stylistic and se-
mantics information of input. Two different meth-
ods to assess the quality of such decomposition
are proposed. It is shown that architectures that
produce an equal semantic component of latent
representations for input and corresponding output

134

Figure 8: t-SNE visualisation of the obtained latent rep-
resentations for the baseline architecture proposed in
(Hu et al., 2017a). Red dots represent positive reviews.
Blue dots represent negative reviews. One can clearly
see that stylistic information can be recovered from the
representation.

Figure 9: t-SNE visualisation of the obtained latent rep-
resentations for the architecture with an additional dis-
criminator. Red dots represent positive reviews. Blue
dots represent negative reviews. One can see that it is
harder to recover stylistic information from the repre-
sentation.

outperform state of the art architectures in terms
of BLEU between output and human written re-
formulations. An empirical method to assess the
quality of information decomposition is proposed.
There is a correspondence between higher BLEU
between output and human written reformulations
and better quality of information decomposition.

Figure 10: t-SNE visualisation of the obtained latent
representations for the shifted autoencoder. Red dots
represent positive reviews. Blue dots represent negative
reviews. One can see that it is harder to recover stylistic
information from the representation and the structure of
the differs significantly from the latent representation
space obtained by the baseline.

References
Mikel Artetxe, Gorka Labaka, Eneko Agirre, and

Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. In arXiv preprint.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642.

Keith Carlson, Allen Riddell, and Daniel Rockmore.
2018. Evaluating prose style transfer with the bible.
Royal Society open science, 5(10):171920.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylistic
Variation, volume 94-104.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. AAAI.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
of Computational Linguistics, 6:437–450.

Zhiting Hu, Haoran Shi, Zichao Yang, Bowen
Tan, Tiancheng Zhao, Junxian He, Wentao Wang,
Xingjiang Yu, Lianhui Qin, Di Wang, Xuezhe Ma,
Hector Liu, Xiaodan Liang, Wanrong Zhu, Deven-
dra Singh Sachan, and Eric P. Xing. 2018. Texar:
A modularized, versatile, and extensible toolkit for
text generation. In arXiv preprint.

135

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017a. Toward
controlled generation of text. In International Con-
ference on Machine Learning, pages 1587–1596.

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and
Eric Xing. 2017b. On unifying deep generative mod-
els. In arXiv preprint.

James M. Hughes, Nicholas J. Foti, David C. Krakauer,
and Daniel N. Rockmore. 2012. Quantitative pat-
terns of stylistic influence in the evolution of litera-
ture. Proceedings of the National Academy of Sci-
ences, 109(20):7682–7686.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric
Nyberg. 2017. Shakespearizing modern language
using copy-enriched sequence-to-sequence models.
In Proceedings of the Workshop on Stylistic Varia-
tion, pages 10–19.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2018. Disentangled representation
learning for text style transfer. In arXiv preprint.

Jad Kabbara and Jackie Chi Kit Cheung. 2016. Stylis-
tic transfer in natural language generation systems
using recurrent neural networks. Proceedings of the
Workshop on Uphill Battles in Language Process-
ing: Scaling Early Achievements to Robust Methods,
pages 43–47.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
In arXiv preprint.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: A simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, volume 1, pages 865–1874.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9:2579–2605.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Gbleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 311–318.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. Ghostwriter: Using an lstm for automatic rap
lyric generation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1919–1924. Association for Com-
putational Linguistics.

Shrimai Prabhumoye, Yulia Tsvetkov, Alan W. Black,
and Ruslan Salakhutdinov. 2018. Style transfer
through back-translation. In arXiv preprint.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style trans-
fer. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
volume 1, pages 129–140.

Alexey Romanov, Anna Rumshisky, Anna Rogers, and
David Donahue. 2018. Adversarial decomposition
of text representation. In arXiv preprint.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. 31st Conference on Neural In-
formation Processing Systems, pages 6833–6844.

Sandeep Subramanian, Guillaume Lample, Eric M.
Smith, Ludovic Denoyer, Marc Aurelio Ranzato,
and Y-Lan Boureau. 2018. Multiple-attribute text
style transfer. In arXiv preprint.

Youzhi Tian, Zhiting Hu, and Zhou Yu. 2018. Struc-
tured content preservation for unsupervised text
style transfer. In arXiv preprint.

Alexey Tikhonov, Viacheslav Shibaev, Aleksander Na-
gaev, Aigul Nugmanova, and Ivan Yamshchikov.
2019. Style transfer for texts: to err is human, but
error margins matter. In EMNLP.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018a.
Guess who? Multilingual approach for the auto-
mated generation of author-stylized poetry. In IEEE
Spoken Language Technology Workshop (SLT),
pages 787–794.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018b.
Sounds Wilde. Phonetically extended embeddings
for author-stylized poetry generation. In Proceed-
ings of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 117–124.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018c.
What is wrong with style transfer for texts? In arXiv
preprint.

Olga Vechtomova, Hareesh Bahuleyan, Amirpasha
Ghabussi, and Vineet John. 2018. Generating lyrics
with variational autoencoder and multi-modal artist
embeddings. In arXiv preprint.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xi-
aodong Zhang, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In arXiv
preprint.

136

Wei Xu. 2017. From shakespeare to twitter: What are
language styles all about? Proceedings of the Work-
shop on Stylistic Variation, pages 1–9.

Wei Xu, Alan Ritter, William B. Dolan, Ralph Grish-
man, and Colin Cherry. 2012. Paraphrasing for style.
Proceedings of COLING, pages 2899–2914.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018. Style transfer as unsupervised machine trans-
lation. In arXiv preprint.

137

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 138–147
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Unsupervised Evaluation Metrics and Learning Criteria
for Non-Parallel Textual Transfer

Richard Yuanzhe Pang1§ Kevin Gimpel2
1New York University, New York, NY 10011, USA

2Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
yzpang@nyu.edu, kgimpel@ttic.edu

Abstract

We consider the problem of automatically gen-
erating textual paraphrases with modified at-
tributes or properties, focusing on the setting
without parallel data (Hu et al., 2017; Shen
et al., 2017). This setting poses challenges
for evaluation. We show that the metric of
post-transfer classification accuracy is insuffi-
cient on its own, and propose additional met-
rics based on semantic preservation and flu-
ency as well as a way to combine them into
a single overall score. We contribute new loss
functions and training strategies to address the
different metrics. Semantic preservation is ad-
dressed by adding a cyclic consistency loss
and a loss based on paraphrase pairs, while flu-
ency is improved by integrating losses based
on style-specific language models. We experi-
ment with a Yelp sentiment dataset and a new
literature dataset that we propose, using multi-
ple models that extend prior work (Shen et al.,
2017). We demonstrate that our metrics corre-
late well with human judgments, at both the
sentence-level and system-level. Automatic
and manual evaluation also show large im-
provements over the baseline method of Shen
et al. (2017). We hope that our proposed met-
rics can speed up system development for new
textual transfer tasks while also encouraging
the community to address our three comple-
mentary aspects of transfer quality.

1 Introduction

We consider textual transfer, which we define
as the capability of generating textual paraphrases
with modified attributes or stylistic properties,
such as politeness (Sennrich et al., 2016a), sen-
timent (Hu et al., 2017; Shen et al., 2017), and
formality (Rao and Tetreault, 2018). An effec-
tive transfer system could benefit a range of user-

§Work completed while the author was a student at the
University of Chicago and a visiting student at Toyota Tech-
nological Institute at Chicago.

facing text generation applications such as dia-
logue (Ritter et al., 2011) and writing assistance
(Heidorn, 2000). It can also improve NLP systems
via data augmentation and domain adaptation.

However, one factor that makes textual transfer
difficult is the lack of parallel corpora. Advances
have been made in developing transfer methods
that do not require parallel corpora (see Section 2),
but issues remain with automatic evaluation met-
rics. Li et al. (2018) used crowdsourcing to obtain
manually-written references and used BLEU (Pa-
pineni et al., 2002) to evaluate sentiment transfer.
However, this approach is costly and difficult to
scale for arbitrary textual transfer tasks.

Researchers have thus turned to unsupervised
evaluation metrics that do not require references.
The most widely-used unsupervised evaluation
uses a pretrained style classifier and computes the
fraction of times the classifier was convinced of
transferred style (Shen et al., 2017). However, re-
lying solely on this metric leads to models that
completely distort the semantic content of the in-
put sentence. Table 1 illustrates this tendency.

We address this deficiency by identifying two
competing goals: preserving semantic content and
producing fluent output. We contribute two cor-
responding metrics. Since the metrics are un-
supervised, they can be used directly for tun-
ing and model selection, even on test data. The
three metric categories are complementary and
help us avoid degenerate behavior in model selec-
tion. For particular applications, practitioners can
choose the appropriate combination of our metrics
to achieve the desired balance among transfer, se-
mantic preservation, and fluency. It is often useful
to summarize the three metrics into one number,
which we discuss in Section 3.3.

We also add learning criteria to the frame-
work of Shen et al. (2017) to accord with our
new metrics. We encourage semantic preserva-

138

https://www.aclweb.org/anthology/D19-56%2d

tion by adding a “cyclic consistency” loss (to en-
sure that transfer is reversible) and a loss based
on paraphrase pairs (to show the model exam-
ples of content-preserving transformations). To
encourage fluent outputs, we add losses based
on pretrained corpus-specific language models.
We also experiment with multiple, complemen-
tary discriminators and find that they improve the
trade-off between post-transfer accuracy and se-
mantic preservation.

To demonstrate the effectiveness of our met-
rics, we experiment with textual transfer models
discussed above, using both their Yelp polarity
dataset and a new literature dataset that we pro-
pose. Across model variants, our metrics correlate
well with human judgments, at both the sentence-
level and system-level.

2 Related Work

Textual Transfer Evaluation Recent work has
included human evaluation of the three categories
(post-transfer style accuracy, semantic preserva-
tion, fluency), but does not propose automatic
evaluation metrics for all three (Li et al., 2018;
Prabhumoye et al., 2018; Chen et al., 2018; Zhang
et al., 2018). There have been recent proposals
for supervised evaluation metrics (Li et al., 2018),
but these require annotation and are therefore un-
available for new textual transfer tasks. There is a
great deal of recent work in textual transfer (Yang
et al., 2018b; Santos et al., 2018; Zhang et al.,
2018; Logeswaran et al., 2018; Nikolov and Hahn-
loser, 2018), but all either lack certain categories
of unsupervised metric or lack human validation
of them, which we contribute. Moreover, the tex-
tual transfer community lacks discussion of early
stopping criteria and methods of holistic model
comparison. We propose a one-number summary
for transfer quality, which can be used to select
and compare models.

In contemporaneous work, Mir et al. (2019)
similarly proposed three types of metrics for style
transfer tasks. There are two main differences
compared to our work: (1) They use a style-
keyword masking procedure before evaluating se-
mantic similarity, which works on the Yelp dataset
(the only dataset Mir et al. (2019) test on) but does
not work on our Literature dataset or similarly
complicated tasks, because the masking proce-
dure goes against preserving content-specific non-
style-related words. (2) They do not provide a

way of aggregating three metrics for the purpose
of model selection and overall comparison. We
address these two problems, and we also propose
metrics that are simple in addition to being ef-
fective, which is beneficial for ease of use and
widespread adoption.

Textual Transfer Models In terms of generat-
ing the transferred sentences, to address the lack
of parallel data, Hu et al. (2017) used variational
autoencoders to generate content representations
devoid of style, which can be converted to sen-
tences with a specific style. Ficler and Goldberg
(2017) used conditional language models to gen-
erate sentences where the desired content and style
are conditioning contexts. Li et al. (2018) used a
feature-based approach that deletes characteristic
words from the original sentence, retrieves simi-
lar sentences in the target corpus, and generates
based on the original sentence and the character-
istic words from the retrieved sentences. Xu et al.
(2018) integrated reinforcement learning into the
textual transfer problem. Another way to address
the lack of parallel data is to use learning frame-
works based on adversarial objectives (Goodfel-
low et al., 2014); several have done so for tex-
tual transfer (Yu et al., 2017; Li et al., 2017; Yang
et al., 2018a; Shen et al., 2017; Fu et al., 2018).
Recent work uses target-domain language models
as discriminators to provide more stable feedback
in learning (Yang et al., 2018b).

To preserve semantics more explicitly, Fu et al.
(2018) use a multi-decoder model to learn content
representations that do not reflect styles. Shetty
et al. (2017) use a cycle constraint that penalizes
L1 distance between input and round-trip transfer
reconstruction. Our cycle consistency loss is in-
spired by Shetty et al. (2017), together with the
idea of back translation in unsupervised neural
machine translation (Artetxe et al., 2017; Lample
et al., 2017), and the idea of cycle constraints in
image generation by Zhu et al. (2017).

3 Evaluation

3.1 Issues with Most Existing Methods

Prior work in automatic evaluation of textual
transfer has focused on post-transfer classifica-
tion accuracy (“Acc”), computed by using a pre-
trained classifier to measure classification accu-
racy of transferred texts (Hu et al., 2017; Shen
et al., 2017). However, there is a problem with

139

#ep Acc Sim Sentence

original input the host that walked us to the table and
left without a word .

0.5 0.87 0.65 the food is the best and the food is the .
3.3 0.72 0.75 the owner that went to to the table and

made a smile .
7.5 0.58 0.81 the host that walked through to the ta-

ble and are quite perfect !

Table 1: Examples showing why Acc is insufficient.
The original sentence has negative sentiment, and the
goal is to transfer to positive. #ep is number of epochs
trained when generating the sentence and Sim (de-
scribed below) is the semantic similarity to the original
sentence. High Acc is associated with low Sim.

relying solely on this metric. Table 1 shows ex-
amples of transferred sentences at several points
in training the model of Shen et al. (2017). Acc is
highest very early in training and decreases over
time as the outputs become a stronger semantic
match to the input, a trend we show in more detail
in Section 6. Thus transfer quality is inversely pro-
portional to semantic similarity to the input sen-
tence, meaning that these metrics are complemen-
tary and difficult to optimize simultaneously.

We also identify a third category of metric,
namely fluency of the transferred sentence, and
similarly find it to be complementary to the first
two. These three metrics can be used to eval-
uate textual transfer systems and to do hyperpa-
rameter tuning and early stopping. In our experi-
ments, we found that training typically converges
to a point that gives poor Acc. Intermediate re-
sults are much better under a combination of all
three unsupervised metrics. Stopping criteria are
rarely discussed in prior work on textual transfer.

3.2 Unsupervised Evaluation Metrics

We now describe our proposals. We validate the
metrics with human judgments in Section 6.3.

Post-transfer classification accuracy (“Acc”):
This metric was mentioned above. We use a CNN
(Kim, 2014) trained to classify a sentence as be-
ing from X0 or X1 (two corpora corresponding to
different styles or attributes). Then Acc is the per-
centage of transferred sentences that are classified
as belonging to the transferred class.

Semantic Similarity (“Sim”): We compute se-
mantic similarity between the input and trans-
ferred sentences. We embed sentences by averag-
ing their word embeddings weighted by idf scores,

where idf(q) = log(|C| · |{s ∈ C : q ∈ s}|−1) (q
is a word, s is a sentence, C = X0 ∪X1). We use
300-dimensional GloVe word embeddings (Pen-
nington et al., 2014). Then, Sim is the average of
the cosine similarities over all original/transferred
sentence pairs. Though this metric is quite simple,
we show empirically that it is effective in captur-
ing semantic similarity. Simplicity in evaluation
metrics is beneficial for computational efficiency
and widespread adoption. The quality of transfer
evaluations will be significantly boosted with even
such a simple metric. We also experimented with
METEOR (Denkowski and Lavie, 2014). How-
ever, given that we found it to be strongly corre-
lated with Sim (shown in supplemental materials),
we adopt Sim due to its computational efficiency
and simplicity.

Different textual transfer tasks may require dif-
ferent degrees of semantic preservation. Our sum-
mary metric, described in Section 3.3, can be
tailored by practitioners for various datasets and
tasks which may require more or less weight on
semantic preservation.

Fluency (“PP”): Transferred sentences can ex-
hibit high Acc and Sim while still being ungram-
matical. So we add a third unsupervised metric
to target fluency. We compute perplexity (“PP”)
of the transferred corpus, using a language model
pretrained on the concatenation of X0 and X1.
We note that perplexity is distinct from fluency.
However, certain measures based on perplexity
have been shown to correlate with sentence-level
human fluency judgments (Gamon et al., 2005;
Kann et al., 2018). Furthermore, as discussed
in Section 3.3, we punish abnormally small per-
plexities, as transferred texts with such perplexi-
ties typically consist entirely of words and phrases
that do not result in meaningful sentences. Our
summary metric, described in Section 3.3, can be
tailored by practitioners for various datasets and
tasks which may require more or less weight on
semantic preservation.

3.3 Summarizing Metrics into One Score

It is often useful to summarize multiple metrics
into one number, for ease of tuning and model se-
lection. To do so, we propose an adjusted geomet-
ric mean (GM) of a generated sentence q:

GMt(q) =
(
[100 ·Acc− t1]+ · [100 · Sim− t2]+

·min{[t3 − PP]+, [PP− t4]+}
) 1

3 (1)

140

where t = (ti)i∈[4], and [·]+ = max(·, 0). Note
that as discussed above, we punish abnormally
small perplexities by setting t4.

When choosing models, different practition-
ers may prefer different trade-offs of Acc, Sim,
and PP. As one example, we provide a set of
parameters based on our experiments: t =
(63, 71, 97,−37). We sampled 300 pairs of trans-
ferred sentences from a range of models from our
two different tasks (Yelp and literature) and asked
annotators which of the two sentences is better.
We denote a pair of sentences by (y+, y−) where
y+ is preferred. We train the parameters t using
the following loss:

LGM(t) = max(0,−GMt(y
+) + GMt(y

−) + 1)

In future work, a richer function f(Acc,Sim,PP)
could be learned from additional annotated data,
and more diverse textual transfer tasks can be in-
tegrated into the parameter training.

4 Textual Transfer Models

The textual transfer systems introduced below are
designed to target the metrics. These system vari-
ants are also used for metric evaluation. Note that
each variant of the textual transfer system uses dif-
ferent components described below.

Our model is based on Shen et al. (2017). We
define y ∈ R200 and z ∈ R500 to be latent
style and content variables, respectively. X0 and
X1 are two corpora containing sentences x(i)

0 and
x
(i)
1 respectively, where the word embeddings are

in R100. We transfer using an encoder-decoder
framework. The encoder E : X × Y → Z
(where X ,Y,Z are sentence domain, style space,
and content space, respectively) is defined using
an RNN with gated recurrent unit (GRU; Chung
et al., 2014) cells. The decoder/generator G :
Y × Z → X is defined also using a GRU RNN.
We use x̃ to denote the style-transferred version
of x. We want x̃

(i)
t = G(y1−t, E(x

(i)
t ,yt)) for

t ∈ {0, 1}.

4.1 Reconstruction and Adversarial Losses
Shen et al. (2017) used two families of losses
for training: reconstruction and adversarial losses.
The reconstruction loss solely helps the encoder
and decoder work well at encoding and generating
natural language, without any attempt at transfer:
Lrec(θE , θG)

=
∑1

t=0 Ext

[
− log pG(xt | yt, E(xt,yt))

]
(2)

The loss seeks to ensure that when a sentence xt is
encoded to its content vector and then decoded to
generate a sentence, the generated sentence should
match xt. For their adversarial loss, Shen et al.
(2017) used a pair of discriminators: D0 tries to
distinguish between x0 and x̃1, and D1 between
x1 and x̃0. In particular, decoderG’s hidden states
are aligned instead of output words.

Ladv t(θE , θG, θDt) = − 1
k

∑k
i=1 logDt(h

(i)
t)

− 1
k

∑k
i=1 log(1−Dt(h̃

(i)
1−t)) (3)

where k is the size of a mini-batch. Dt outputs
the probability that its input is from style t where
the classifiers are based on the convolutional neu-
ral network from Kim (2014). The CNNs use fil-
ter n-gram sizes of 3, 4, and 5, with 128 filters
each. We obtain hidden states h by unfolding
G from the initial state (yt, z

(i)
t) and feeding in

x
(i)
t . We obtain hidden states h̃ by unfolding G

from (y1−t, z
(i)
t) and feeding in the previous out-

put probability distributions.

4.2 Cyclic Consistency Loss

We use a “cyclic consistency” loss (Zhu et al.,
2017) to encourage already-transferred sentences
to be able to be recovered by transferring back
again. This loss is similar to Lrec except we now
transfer style twice in the loss. Recall that we seek
to transfer xt to x̃t. After successful transfer, we
expect x̃t to have style y1−t, and ˜̃xt (transferred
back from x̃t) to have style yt. We want ˜̃xt to be
very close to the original untransferred xt. The
loss is defined as

Lcyc(θE , θG)=
∑1

t=0 Ext

[
−log pG(xt |yt, z̃t)

]
(4)

where z̃t = E(G(y1−t, E(xt,yt)),y1−t) or,
more concisely, z̃t = E(x̃t,y1−t).

To use this loss, the first step is to transfer sen-
tences xt from style t to 1− t to get x̃t. The sec-
ond step is to transfer x̃t of style 1− t back to t
so that we can compute the loss of the words in
xt using probability distributions computed by the
decoder. Backpropagation on the embedding, en-
coder, and decoder parameters will only be based
on the second step, because the first step involves
argmax operations which prevent backpropaga-
tion. Still, we find that the cyclic loss greatly im-
proves semantic preservation during transfer.

141

4.3 Paraphrase Loss
While Lrec provides the model with one way to
preserve style (i.e., simply reproduce the input),
the model does not see any examples of style-
preserving paraphrases. To address this, we add a
paraphrase loss very similar to losses used in neu-
ral machine translation. We define the loss on a
sentential paraphrase pair 〈u,v〉 and assume that
u and v have the same style and content. The loss
is the sum of token-level log losses for generating
each word in v conditioned on the encoding of u:

Lpara(θE , θG)

=
∑1

t=0 E〈u,v〉
[
−log pG(v | yt, E(u,yt))

]
(5)

For paraphrase pairs, we use the ParaNMT-50M
dataset (Wieting and Gimpel, 2018).1

4.4 Language Modeling Loss
We attempt to improve fluency (our third metric)
and assist transfer with a loss based on matching a
pretrained language model for the target style. The
loss is the cross entropy (CE) between the proba-
bility distribution from this language model and
the distribution from the decoder:

Llang(θE , θG)=
∑1

t=0Ext

[∑
iCE(lt,i,gt,i)

]
(6)

where lt,i and gt,i are distributions over the vocab-
ulary defined as follows:

lt,i = pLM 1−t(· | x̃t1:(i−1)
)

gt,i = pG(· | x̃t1:(i−1)
,y1−t, E(xt,yt))

where · stands for all words in the vocabulary built
from the corpora. When transferring from style t
to 1 − t, lt,i is the distribution under the language
model pLM 1−t pretrained on sentences from style
1− t and gt,i is the distribution under the decoder
G. The two distributions lt,i and gt,i are over
words at position i given the i − 1 words already
predicted by the decoder. The two style-specific
language models are pretrained on the corpora cor-
responding to the two styles. They are GRU RNNs
with a dropout probability of 0.5, and they are kept
fixed during the training of the transfer network.

4.5 Multiple Discriminators
Note that each of the textual transfer system vari-
ants uses different losses or components described

1We first filter out sentence pairs where one sentence is
the substring of another, and then randomly select 90K pairs.

in this section. To create more variants, we add a
second pair of discriminators, D′0 and D′1, to the
adversarial loss to address the possible mode col-
lapse problem (Nguyen et al., 2017). In particular,
we use CNNs with n-gram filter sizes of 3, 4, and
5 for D0 and D1, and we use CNNs with n-gram
sizes of 1, 2, and 3 for D′0 and D′1. Also, for D′0
and D′1, we use the Wasserstein GAN (WGAN)
framework (Arjovsky et al., 2017). The adversar-
ial loss takes the following form:

Ladv ′t(θE , θG, θD′t) = 1
k

∑k
i=1

[
D′t(h̃

(i)
t)

−D′t(h(i)
t) + ξ(‖∇◦

h
(i)
t

D′t(
◦
h
(i)
t)‖2 − 1)2

]
(7)

where
◦
h
(i)
t = εih

(i)
t + (1 − εi)h̃

(i)
t where εi ∼

Uniform([0, 1]) is sampled for each training in-
stance. The adversarial loss is based on Arjovsky
et al. (2017),2 with the exception that we use the
hidden states of the decoder instead of word dis-
tributions as inputs to D′t, similar to Eq. (3).

We choose WGAN in the hope that its differen-
tiability properties can help avoid vanishing gra-
dient and mode collapse problems. We expect the
generator to receive helpful gradients even if the
discriminators perform well. This approach leads
to much better outputs, as shown below.

4.6 Summary
We iteratively update (1) θD0 , θD1 , θD′0 , and θD′1
by gradient descent on Ladv0 , Ladv1 , Ladv ′0

, and
Ladv ′1

, respectively, and (2) θE , θG by gradient de-
scent on Ltotal = λ1Lrec + λ2Lpara + λ3Lcyc +
λ4Llang−λ5(Ladv0 +Ladv1)−λ6(Ladv ′0

+Ladv ′1
).

Depending on which model is being trained (see
Table 2), the λi’s for the unused losses will be
zero. More details are shown in Section 5. The
appendix shows the full algorithm.

5 Experimental Setup

5.1 Datasets
Yelp sentiment. We use the same Yelp dataset as
Shen et al. (2017), which uses corpora of positive
and negative Yelp reviews. The goal of the transfer
task is to generate rewritten sentences with similar
content but inverted sentiment. We use the same
train/development/test split as Shen et al. (2017).
The dataset has 268K, 38K, 76K positive train-
ing, development, and test sentences, respectively,
and 179K/25K/51K negative sentences. Like Shen

2We use a default value of ξ = 10.

142

et al. (2017), we only use sentences with 15 or
fewer words.

Literature. We consider two corpora of litera-
ture. The first corpus contains works of Charles
Dickens collected from Project Gutenberg. The
second corpus is comprised of modern literature
from the Toronto Books Corpus (Zhu et al., 2015).
Sentences longer than 25 words are removed. Un-
like the Yelp dataset, the two corpora have very
different vocabularies. This dataset poses chal-
lenges for the textual transfer task, and it provides
diverse data for assessing quality of our evalua-
tion system. Given the different and sizable vo-
cabulary, we preprocess by using the named en-
tity recognizer in Stanford CoreNLP (Manning
et al., 2014) to replace names and locations with -
PERSON- and -LOCATION- tags, respectively. We
also use byte-pair encoding (BPE), commonly
used in generation tasks (Sennrich et al., 2016b).
We only use sentences with lengths between 6 and
25. The resulting dataset has 156K, 5K, 5K Dick-
ens training, development, and testing sentences,
respectively, and 165K/5K/5K modern literature
sentences.

5.2 Hyperparameter Settings
Section 4.6 requires setting the λ weights for each
component. Depending on which model is being
trained (see Table 2), the λi’s for the unused losses
will be zero. Otherwise, we set λ1 = 1, λ2 = 0.2,
λ3 = 5, λ4 = 10−3, λ5 = 1, λ6 = 2−ep where ep
is the number of epochs. For optimization we use
Adam (Kingma and Ba, 2014) with a learning rate
of 10−4. We implement our models using Tensor-
Flow (et al., 2015).3 Code is available via the first
author’s webpage yzpang.me.

5.3 Pretrained Evaluation Models
For the pretrained classifiers, the accuracies on the
Yelp and Literature development sets are 0.974
and 0.933, respectively. For language models, the
perplexities on the Yelp and Literature develop-
ment sets are 27.4 and 40.8, respectively.

6 Results and Analysis

6.1 Analyzing Metric Relationships
Table 2 shows results for the Yelp dataset and Fig-
ure 1 plots learning trajectories of those models.

3Our implementation is based on code from Shen et al.
(2017).

Acc Sim PP GM

M0: Shen et al. (2017) 0.818 0.719 37.3 10.0
M1: M0+para 0.819 0.734 26.3 14.2
M2: M0+cyc 0.813 0.770 36.4 18.8
M3: M0+cyc+lang 0.807 0.796 28.4 21.5
M4: M0+cyc+para 0.798 0.783 39.7 19.2
M5: M0+cyc+para+lang 0.804 0.785 27.1 20.3
M6: M0+cyc+2d 0.805 0.817 43.3 21.6
M7: M6+para+lang 0.818 0.805 29.0 22.8

Table 2: Yelp results with various systems and auto-
matic metrics at a nearly-fixed Acc, with best scores in
boldface. We use M0 to denote Shen et al. (2017).

Acc Sim PP GM

M0: Shen et al. (2017) 0.694 0.728 22.3 8.81
M1: M0+para 0.702 0.747 23.6 11.7
M2: M0+cyc 0.692 0.781 49.9 12.8
M3: M0+cyc+lang 0.698 0.754 39.2 12.0
M4: M0+cyc+para 0.702 0.757 33.9 12.8
M5: M0+cyc+para+lang 0.688 0.753 28.6 11.8
M6: M0+cyc+2d 0.704 0.794 63.2 12.8
M7: M6+para+lang 0.706 0.768 49.0 12.8

Table 3: Literature results with various systems and au-
tomatic metrics at a nearly-fixed Acc, with best scores
in boldface. We use M0 to denote Shen et al. (2017).

Figure 1: Learning trajectories with models from Table
2. Metrics are computed on the dev sets. Figures for
Literature (with similar trends) are in supplementary.

Table 3 shows results for the Literature dataset.
Models for the Literature dataset show similar

143

Models Transfer quality Semantic preservation Fluency
Dataset A B A>B B>A Tie A>B B>A Tie ∆Sim A>B B>A Tie ∆PP

M0 M2 9.0 6.0 85.1 1.5 25.4 73.1 -0.05 10.4 23.9 65.7 0.9

Yelp M0 M7 9.6 14.7 75.8 2.5 54.5 42.9 -0.09 4.6 39.4 56.1 8.3
M6 M7 13.7 11.6 74.7 16.0 16.7 67.4 0.01 10.3 20.0 69.7 14.3
M2 M7 5.8 9.3 84.9 8.1 25.6 66.3 -0.04 14.0 26.7 59.3 7.4

Literature M2 M6 4.2 6.7 89.2 16.7 20.8 62.5 0.01 40.8 13.3 45.8 -13.3
M6 M7 15.8 13.3 70.8 25.0 9.2 65.8 0.03 14.2 20.8 65.0 14.2

Table 4: Manual evaluation results (%) using models from Table 2 (i.e., with roughly fixed Acc). > means “better
than”. ∆Sim = Sim(A) − Sim(B), and ∆PP = PP(A) − PP(B) (note that lower PP generally means better
fluency). Each row uses at least 120 sentence pairs. A cell is bold if it represents a model win of at least 10%.

trends. The figures show trajectories of statis-
tics on corpora transferred/generated from the dev
set during learning. Each two consecutive mark-
ers deviate by half an epoch of training. Lower-
left markers generally precede upper-right ones.
In Figure 1(a), the plots of Sim by error rate
(1−Acc) exhibit positive slopes, meaning that er-
ror rate is positively correlated with Sim. Curves
to the upper-left corner represent better trade-off
between error rate and Sim. In the plots of PP
by Sim in Figure 1(b), the M0 curve exhibits large
positive slope but the curves for other models do
not, which indicates that M0 sacrifices PP for
Sim. Other models maintain consistent PP as Sim
increases during training.

6.2 System-Level Validation
Annotators were shown the untransferred sen-
tence, as well as sentences produced by two mod-
els (which we refer to as A and B). They were
asked to judge which better reflects the target style
(A, B, or tie), which has better semantic preser-
vation of the original (A, B, or tie), and which is
more fluent (A, B, or tie). Results are shown in
Table 4.

Overall, the results show the same trends as
our automatic metrics. For example, on Yelp,
large differences in human judgments of semantic
preservation (M2>M0, M7>M0, M7>M2) also
show the largest differences in Sim, while M6 and
M7 have very similar human judgments and very
similar Sim scores.

6.3 Sentence-Level Validation of Metrics
We describe a human sentence-level validation of
our metrics in Table 5.

To validate Acc, human annotators were asked
to judge the style of 100 transferred sentences
(sampled equally from M0, M2, M6, M7). Note
that it is a binary choice question (style 0 or style 1

Metric Method of validation Yelp Lit.

Acc % of machine and human judg-
ments that match

94 84

Sim Spearman’s ρ b/w Sim and human
ratings of semantic preservation

0.79 0.75

PP Spearman’s ρ b/w negative PP and
human ratings of fluency

0.81 0.67

Table 5: Human sentence-level validation of metrics;
100 examples for each dataset for validating Acc; 150
each for Sim and PP; see text for validation of GM.

without “tie” option) so that human annotators had
to make a choice. We then compute the percentage
of machine and human judgments that match.

We validate Sim and PP by computing
sentence-level Spearman’s ρ between the metric
and human judgments (an integer score from 1 to
4) on 150 generated sentences (sampled equally
from M0, M2, M6, M7). We presented pairs
of original sentences and transferred sentences to
human annotators. They were asked to rate the
level of semantic similarity (and similarly for flu-
ency) where 1 means “extremely bad”, 2 means
“bad/ok/needs improvement”, 3 means “good”,
and 4 means “very good.” They were also given
5 examples for each rating (i.e., a total of 20 for
four levels) before annotating. From Table 5, all
validations show strong correlations on the Yelp
dataset and reasonable correlations on Literature.

We validate GM by obtaining human pairwise
preferences (without the “tie” option) of over-
all transfer quality and measuring the fraction of
pairs in which the GM score agrees with the hu-
man preference. Out of 300 pairs (150 from each
dataset), 258 (86%) match.

The transferred sentences used in the evaluation
are sampled from the development sets produced
by models M0, M2, M6, and M7, at the accuracy
levels used in Table 2. In the data preparation for

144

the manual annotation, there is sufficient random-
ization regarding model and textual transfer direc-
tion.

6.4 Comparing Losses

Cyclic Consistency Loss. We compare the tra-
jectories of the baseline model (M0) and the +cyc
model (M2). Table 2 and Figure 1 show that under
similar Acc, M2 has much better semantic simi-
larity for both Yelp and Literature. In fact, cyclic
consistency loss proves to be the strongest driver
of semantic preservation across all of our model
configurations. The other losses do not constrain
the semantic relationship across style transfer, so
we include the cyclic loss in M3 to M7.

Paraphrase Loss. Table 2 shows that the model
with paraphrase loss (M1) slightly improves Sim
over M0 on both datasets under similar Acc. For
Yelp, M1 has better Acc and PP than M0 at com-
parable semantic similarity. So, when used alone,
the paraphrase loss helps. However, when com-
bined with other losses (e.g., compare M2 to M4),
its benefits are mixed. For Yelp, M4 is slightly bet-
ter in preserving semantics and producing fluent
output, but for Literature, M4 is slightly worse. A
challenge in introducing an additional paraphrase
dataset is that its notions of similarity may clash
with those of content preservation in the transfer
task. For Yelp, both corpora share a great deal of
semantic content, but Literature shows systematic
semantic differences even after preprocessing.

Language Modeling Loss. When comparing
between M2 and M3, between M4 and M5, and
between M6 and M7, we find that the addition
of the language modeling loss reduces PP, some-
times at a slight cost of semantic preservation.

6.5 Results based on Supervised Evaluation

If we want to compare the models using one sin-
gle number, GM is our unsupervised approach.
We can also compute BLEU scores between our
generated outputs and human-written gold stan-
dard outputs using the 1000 Yelp references from
Li et al. (2018). For BLEU scores reported for
the methods of Li et al. (2018), we use the val-
ues reported by Yang et al. (2018b). We use the
same BLEU implementation as used by Yang et al.
(2018b), i.e., multi-bleu.perl. We compare
three models selected during training from each
of our M6 and M7 settings. We also report post-
transfer accuracies reported by prior work, as well

Model BLEU Acc∗

Fu et al. (2018)
Multi-decoder 7.6 0.792
Style embed. 15.4 0.095

Li et al. (2018)
Template 18.0 0.867
Delete/Retrieve 12.6 0.909

Yang et al. (2018b)
LM 13.4 0.854
LM + classifier 22.3 0.900

Untransferred 31.4 0.024

M. BLEU Acc

M0 4.9 0.818
M6 22.3 0.804
M6 22.5 0.843
M6 16.3 0.897
M7 17.0 0.814
M7 16.3 0.839
M7 12.9 0.901

Table 6: Results on Yelp sentiment transfer, where
BLEU is between 1000 transferred sentences and hu-
man references, and Acc is restricted to the same 1000
sentences. Our best models (right table) achieve higher
BLEU than prior work at similar levels of Acc, but un-
transferred sentences achieve the highest BLEU. Acc∗:
the definition of Acc varies by row because of different
classifiers in use. Other results from Li et al. (2018) are
not included as they are worse.

our own computed Acc scores for M0, M6, M7,
and the untransferred sentences. Though the clas-
sifiers differ across models, their accuracy tends to
be very high (> 0.97), making it possible to make
rough comparisons of Acc across them.

BLEU scores and post-transfer accuracies are
shown in Table 6. The most striking result is that
untransferred sentences have the highest BLEU
score by a large margin, suggesting that prior work
for this task has not yet eclipsed the trivial baseline
of returning the input sentence. However, at sim-
ilar levels of Acc, our models have higher BLEU
scores than prior work. We additionally find that
supervised BLEU shows a trade-off with Acc: for
a single model type, higher Acc generally corre-
sponds to lower BLEU.

7 Conclusion

We proposed three kinds of metrics for non-
parallel textual transfer, studied their relation-
ships, and developed learning criteria to address
them. We emphasize that all three metrics are
needed to make meaningful comparisons among
models. We expect our components to be applica-
ble to a broad range of generation tasks.

Acknowledgments

We thank Karl Stratos and Zewei Chu for helpful
discussions, the annotators for performing manual
evaluations, and the anonymous reviewers for use-
ful comments. We also thank Google for a faculty
research award to K. Gimpel that partially sup-
ported this research.

145

References

Martı́n Abadi et al. 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org.

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. 2017. Wasserstein GAN. arXiv preprint
arXiv:1701.07875.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao
Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang,
Guoyin Wang, Ruiyi Zhang, and Lawrence Carin.
2018. Adversarial text generation via feature-
mover’s distance. In Advances in Neural Informa-
tion Processing Systems, pages 4671–4682.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylis-
tic Variation, pages 94–104, Copenhagen, Denmark.
Association for Computational Linguistics.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Rui Yan. 2018. Style transfer in text: ex-
ploration and evaluation. In 32nd AAAI Conference
on Artificial Intelligence (AAAI-18).

Michael Gamon, Anthony Aue, and Martine Smets.
2005. Sentence-level MT evaluation without refer-
ence translations: Beyond language modeling. In
Proceedings of EAMT, pages 103–111.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680.

George Heidorn. 2000. Intelligent writing assistance.
Handbook of natural language processing, pages
181–207.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1587–1596.

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: Refer-
ences help, but can be spared! In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, CoNLL 2018, Brussels, Belgium,
October 31 - November 1, 2018, pages 313–323.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. arXiv preprint arXiv:1711.00043.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversarial
learning for neural dialogue generation. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 2147–2159. Asso-
ciation for Computational Linguistics.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1865–1874. Association for Computa-
tional Linguistics.

Lajanugen Logeswaran, Honglak Lee, and Samy Ben-
gio. 2018. Content preserving text generation with
attribute controls. In Advances in Neural Informa-
tion Processing Systems, pages 5103–5113.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 495–504,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung.
2017. Dual discriminator generative adversarial
nets. In Advances in Neural Information Process-
ing Systems, pages 2667–2677.

Nikola I Nikolov and Richard HR Hahnloser. 2018.
Large-scale hierarchical alignment for author style
transfer. arXiv preprint arXiv:1810.08237.

146

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan
Salakhutdinov, and Alan W Black. 2018. Style
transfer through back-translation. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 866–876, Melbourne, Australia.
Association for Computational Linguistics.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style transfer.
arXiv preprint arXiv:1803.06535.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the conference on empirical methods
in natural language processing, pages 583–593. As-
sociation for Computational Linguistics.

Cicero Nogueira dos Santos, Igor Melnyk, and Inkit
Padhi. 2018. Fighting offensive language on social
media with unsupervised text style transfer. arXiv
preprint arXiv:1805.07685.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40. Asso-
ciation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems 30, pages 6833–6844. Cur-
ran Associates, Inc.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2017.
Author attribute anonymity by adversarial train-
ing of neural machine translation. arXiv preprint
arXiv:1711.01921.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations.

In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics.

Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu-
ancheng Ren, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 979–988, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018a.
Improving neural machine translation with condi-
tional sequence generative adversarial nets. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1346–1355, New
Orleans, Louisiana. Association for Computational
Linguistics.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and
Taylor Berg-Kirkpatrick. 2018b. Unsupervised text
style transfer using language models as discrimina-
tors. arXiv preprint arXiv:1805.11749.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Yi Zhang, Jingjing Xu, Pengcheng Yang, and Xu Sun.
2018. Learning sentiment memories for sentiment
modification without parallel data. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1103–1108,
Brussels, Belgium. Association for Computational
Linguistics.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv
preprint arXiv:1703.10593.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
19–27.

147

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 148–156
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Enhanced Transformer Model for Data-to-Text Generation

Li Gong, Josep Crego, Jean Senellart
SYSTRAN / 5 rue Feydeau, 75002 Paris, France

firstname.lastname@systrangroup.com

Abstract

Neural models have recently shown signifi-
cant progress on data-to-text generation tasks
in which descriptive texts are generated con-
ditioned on database records. In this work,
we present a new Transformer-based data-to-
text generation model which learns content se-
lection and summary generation in an end-
to-end fashion. We introduce two extensions
to the baseline transformer model: First, we
modify the latent representation of the input,
which helps to significantly improve the con-
tent correctness of the output summary; Sec-
ond, we include an additional learning objec-
tive that accounts for content selection mod-
elling. In addition, we propose two data aug-
mentation methods that succeed to further im-
prove performance of the resulting generation
models. Evaluation experiments show that our
final model outperforms current state-of-the-
art systems as measured by different metrics:
BLEU, content selection precision and con-
tent ordering. We made publicly available the
transformer extension presented in this paper1.

1 Introduction

Data-to-text generation is an important task in
natural language generation (NLG). It refers to
the task of automatically producing a descriptive
text from non-linguistic structured data (tables,
database records, spreadsheets, etc.). Table 1 illus-
trates an example of data-to-text NLG, with statis-
tics of a NBA basketball game (top) and the corre-
sponding game summary (bottom).

Traditional approaches perform the summary
generation in two separate steps: content se-
lection (“what to say”) (Duboue and McKeown,
2001, 2003) and surface realization (“how to say
it”) (Stent et al., 2004; Reiter et al., 2005). Af-
ter the emergence of sequence-to-sequence (S2S)

1https://github.com/gongliym/
data2text-transformer

learning, a variety of data-to-text generation mod-
els are proposed (Lebret et al., 2016; Mei et al.,
2015; Wiseman et al., 2017) and trained in an
end-to-end fashion. These models are actually
conditional language models which generate sum-
maries conditioned on the latent representation of
input tables. Despite producing overall fluent text,
Wiseman et al. (2017) show that NLG models per-
form poorly on content-oriented measures.

Different from other NLG tasks (e.g., machine
translation), data-to-text generation faces several
additional challenges. First, data-to-text genera-
tion models have to select the content before gen-
erating text. In machine translation, the source
and target sentences are semantically equivalent to
each other, whereas in data-to-text generation, the
model initially selects appropriate content from
the input data to secondly generate fluent sen-
tences that incorporate the selected content. Sec-
ond, the training data in data-to-text generation
task is often very limited. Unlike machine trans-
lation, where training data consist of translated
sentence pairs, data-to-text generation models are
trained from examples composed of structured
data and its corresponding descriptive summary,
which are much harder to produce.

In this paper, we tackle both challenges previ-
ously discussed. We introduce a new data-to-text
generation model which jointly learns content se-
lection and text generation, and we present two
data augmentation methods. More precisely, we
make the following contributions:

1. We adapt the Transformer (Vaswani et al.,
2017) architecture by modifying the input
table representation (record embedding) and
introducing an additional objective function
(content selection modelling).

2. We create synthetic data following two
data augmentation techniques and investigate

148

https://www.aclweb.org/anthology/D19-56%2d

their impacts on different evaluation metrics.

We show that our model outperforms current
state-of-the-art systems on BLEU, content selec-
tion precision and content ordering metrics.

2 Related Work

Automatic summary generation has been a topic
of interest for a long time (Reiter and Dale, 1997;
Tanaka-Ishii et al., 1998). It has interesting appli-
cations in many different domains, such as sport
game summary generation (Barzilay and Lapata,
2005; Liang et al., 2009), weather-forecast gen-
eration (Reiter et al., 2005) and recipe genera-
tion (Yang et al., 2016).

Traditional data-to-text generation approaches
perform the summary generation in two separate
steps: content selection and surface realization.
For content selection, a number of approaches
were proposed to automatically select the ele-
ments of content and extract ordering constraints
from an aligned corpus of input data and output
summaries (Duboue and McKeown, 2001, 2003).
In (Barzilay and Lapata, 2005), the content selec-
tion is treated as a collective classification problem
which allows the system to capture contextual de-
pendencies between input data items. For surface
realization, Stent et al. (2004) proposed to trans-
form the input data into an intermediary structure
and then to generate natural language text from it;
Reiter et al. (2005) presented a method to generate
text using consistent data-to-word rules. Angeli
et al. (2010) broke up the two steps into a sequence
of local decisions where they used two classifiers
to select content form database and another clas-
sifier to choose a suitable template to render the
content.

More recently, work on this topic has focused
on end-to-end generation models. Konstas and
Lapata (2012) described an end-to-end generation
model which jointly models content selection and
surface realization. Mei et al. (2015) proposed a
neural encoder-aligner-decoder model which first
encodes the entire input record dataset then the
aligner module performs the content selection for
the decoder to generate output summary. Some
other work extends the encoder-decoder model
to be able to copy words directly from the in-
put (Yang et al., 2016; Gu et al., 2016; Gulcehre
et al., 2016). Wiseman et al. (2017) investigates
different data-to-text generation approaches and
introduces a new corpus (ROTOWIRE, see Table 1)

for the data-to-text generation task along with
a series of automatic measures for the content-
oriented evaluation. Based on (Wiseman et al.,
2017), Puduppully et al. (2019) incorporates con-
tent selection and planing mechanisms into the
encoder-decoder system and improves the state-
of-the-art on the ROTOWIRE dataset.

3 Data-to-Text Generation Model

In this section, we first formulate the data-to-
text generation problem and introduce our data-
to-text generation baseline model. Next, we detail
the extensions introduced to our baseline network,
namely Record Embedding and Content Selection
Modelling.

Problem Statement
The objective of data-to-text generation is to gen-
erate a descriptive summary given structured data.
Input of the model consists of a table of records
(see Table 1, top and middle). Let s = {ri}Ii=1

be a set of records, each record ri consists of four
features:

• Entity: the name of player or team (e.g.,
Celtics, LeBron James)

• Type: the table header (e.g., WIN, PTS)

• Value: the value in the table (e.g., 14, Boston)

• Info: game information (e.g., H/W, V/L)
which represents the team or player is Home-
or Vis-team and Win- or Loss-team.

Note that there is no order relationship in s.
The output t (see Table 1, bottom) is a text

document which is a descriptive summary for the
record set s. Note t = t1 . . . tJ with J as the doc-
ument length. Pairs (s, t) constitute the training
data for data-to-text generation systems. Data-to-
text generation probability is given by:

P (t|s, θ) =
J∏

j=1

P (tj |s, t<j ; θ) (1)

where t<j = t1 . . . tj−1 is the generated partial
document and θ is the model parameters.

Data-to-Text Transformer Model
In this section, we present how we adapt the Trans-
former model for the data-to-text generation tasks.
First, the input embedding of Transformer encoder

149

is replaced by our record embedding to better in-
corporate the record information. Second, a new
learning objective is added into our model to im-
prove its content-oriented performance.

3.1 Record Embedding
The input of data-to-text model encoder is a se-
quence of records. Each record is a tuple of four
features (Entity, Type, Value, Info). Inspired by
previous work (Yang et al., 2016; Wiseman et al.,
2017; Puduppully et al., 2019), we embed features
into vectors, and use the concatenation of feature
embeddings as the embedding of record.

ri = [ri,1; ri,2; ri,3; ri,4] (2)

where ri ∈ Rdim is the ith record embedding in
the input sequence and ri,j ∈ R

dim
4 is the jth fea-

ture embedding in ri.
Since there is no order relationship within the

records, the positional embedding of the Trans-
former encoder is removed.

3.2 Content Selection Modeling
Besides record embedding, we also add a new
learning objective into the Transformer model.

As presented before, we need to select the con-
tent from the input records before generating the
output summary. Some records are generally im-
portant no mater the game context, such as the
team name record and team score record, whereas
the importance of some other records depend on
the game context. For example, a player having
the highest points in the game is more likely to
be mentioned in the game summary. Within the
Transformer architecture, the self-attention mech-
anism can generate the latent representation for
each record by jointly conditioning on all other
records in the input dataset. A binary prediction
layer is added on top of the Transformer encoder
output (as shown in Figure 1) to predict whether
or not one record will be mentioned in the target
summary.

The architecture of our data-to-text Transformer
model is shown in Figure 1. As presented be-
fore, the encoder takes the record embedding as
input and generates the latent representation for
each record in the input sequence. The output of
encoder is then used to predict the importance of
each record and also serves as the context of the
decoder. The decoder of our model is the same as
the original Transformer model in machine trans-
lation. It predicts the next word conditioned on

the encoder output and the previous tokens in the
summary sequence.

In content selection modeling, the input record
sequences together with its label sequences are
used to optimize the encoder by minimizing the
cross-entropy loss. In language generation train-
ing, the encoder and decoder are trained together
to maximize the log-likelihood of the training
data. The two learning objectives are trained al-
ternatively2.

Transformer
Encoder

rJ
<latexit sha1_base64="JBdZO07IximDjYGIGbzvj4OxBGM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSg+rd9Uplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8pvo23</latexit>

r1
<latexit sha1_base64="w+fMBncFYKx0kEKsDtLgWG6j6to=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAD2o2e</latexit>

r2
<latexit sha1_base64="qRYq8+LBOBKrAYqfcugvOTPcEds=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAFXo2f</latexit>

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>

Pred_layer

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

Transformer
Decoder

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

yT
<latexit sha1_base64="JJSaiNpL04FogISMGU77Y0OBc24=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOdtEs3m7C7EULpT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYLEE/okPJQ86osdJj1m/0S2W34s5BVomXkzLkqPdLX71BzNIIpWGCat313MT4E6oMZwKnxV6qMaFsTIfYtVTSCLU/mZ86JedWGZAwVrakIXP198SERlpnUWA7I2pGetmbif953dSEN/6EyyQ1KNliUZgKYmIy+5sMuEJmRGYJZYrbWwkbUUWZsekUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMhPMMrvDnCeXHenY9F65qTz5zAHzifP0OQjcg=</latexit>

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>

Softmax

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>y1

<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

<eos>
<latexit sha1_base64="xDzQvAFdLmBTev1IjeBitAarx+g=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQQ8iQS8eI5gHJGuYnfQmQ2YfzPSqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3ebEUGm3728otLa+sruXXCxubW9s7xd29ho4SxaHOIxmplsc0SBFCHQVKaMUKWOBJaHrD64nffAClRRTe4SgGN2D9UPiCMzTSfQfhCRHTC4j05bhbLNllewq6SJyMlEiGWrf41elFPAkgRC6Z1m3HjtFNmULBJYwLnURDzPiQ9aFtaMgC0G46vXpMj4zSo36kTIVIp+rviZQFWo8Cz3QGDAd63puI/3ntBP1zNxVhnCCEfLbITyTFiE4ioD2hgKMcGcK4EuZWygdMMY4mqIIJwZl/eZE0KmXnpFy5PS1Vr7I48uSAHJJj4pAzUiU3pEbqhBNFnskrebMerRfr3fqYteasbGaf/IH1+QPyi5LM</latexit>

<bos>
<latexit sha1_base64="8AaeR7MZfhElgpaTf2flakQjM2E=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQQ8iRS8eK9gPaNeSTbNtaDZZklm1LP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXhALbsB1v53c0vLK6lp+vbCxubW9U9zdaxiVaMrqVAmlWwExTHDJ6sBBsFasGYkCwZrB8HriNx+YNlzJOxjFzI9IX/KQUwJWuu8AewKA9CJQ5nLcLZbcsjsFXiReRkooQ61b/Or0FE0iJoEKYkzbc2PwU6KBU8HGhU5iWEzokPRZ21JJImb8dHr1GB9ZpYdDpW1JwFP190RKImNGUWA7IwIDM+9NxP+8dgLhuZ9yGSfAJJ0tChOBQeFJBLjHNaMgRpYQqrm9FdMB0YSCDapgQ/DmX14kjUrZOylXbk9L1assjjw6QIfoGHnoDFXRDaqhOqJIo2f0it6cR+fFeXc+Zq05J5vZR3/gfP4A7fOSyQ==</latexit>

Figure 1: Model Architecture

4 Data Augmentation Methods

In data-to-text generation task, the model needs to
not only generate fluent text, but also generate text
which is coherent with the input records. Several
content-oriented evaluation metrics are proposed
in (Wiseman et al., 2017) to evaluate such cohe-
sion, including the precision of record generation
and the recall rate with respect to the records in
gold summary.

In this section, we present two data augmenta-
tion methods: synthetic data generation and train-
ing data selection. Each of them has different im-
pacts on the content-oriented evaluation results.

4.1 Synthetic Data Generation
In order to improve the cohesion between the in-
put records and output summary, we need more
data to enhance the encoder-decoder attention of
the decoder. Here we introduce a method to gen-
erate synthetic training data.

We first randomly change the values of records
and the changed record set (s′) is then used to gen-
erate automatic summary (t′) by a trained data-to-
text system. The synthetic data pairs (s′, t′) are
then used to improve such system.

2An alternative approach is joint training that achieves
comparable results.

150

This idea is inspired by the back-translation
technique widely used in neural machine transla-
tion, with two important differences:

First, back-translation, typically employs
monolingual human texts, which are easy found.
In our case, since it is difficult to find additional
structured (table) data for the same kind of game
matches, we use the existing data sets and intro-
duce variations in the values of the table records.
In order to keep the data cohesion in the table, the
change is constrained with the following rules:

• only numeric values are changed. Non-
numeric values such as the position of a
player or the city name of a team are kept the
same.

• after the change, the team scores should not
violate the win/loss relation

• the changed values should stay in the normal
range of its value type. It should not bigger
than its maximum value or smaller than its
minimum value through all games.

Our data generation technique doubles the amount
of training data available for learning.

Second, another difference with the back-
translation technique is the “translation direc-
tion”. In machine translation, the additional
monolingual text used is found in target lan-
guage, and back-translated into the source lan-
guage. Thus, ensuring that the target side of the
synthetic data follows the same distribution as real
human texts. In our case, the target side of syn-
thetic data is also automatically generated which
is known to introduce noise in the resulting net-
work.

4.2 Training Data Selection

A deficiency of data-to-text NLG systems is the
poor coverage of relations produced in the gener-
ated summaries. In order to increase the coverage,
a simple solution consists of learning to produce
a larger number of relations. Here, we present a
straightforward method to bias our model to out-
put more relations by means of fine-tuning on the
training examples containing a greater number of
relations.

We use an information extraction (IE) system
to extract the number of relations of each train-
ing summary. Then, we select for fine-tuning our
baseline model the subset of training data in which

each summary contains at least N relations. In
this work, we take advantage of the IE system3

provided by (Puduppully et al., 2019), and the dis-
tribution of the number of relations in the training
summary is illustrated in Figure 2.

Figure 2: relation count distribution in training data.

5 Experimental Setup

5.1 Data and Preprocessing

We run the experiments with the ROTOWIRE

dataset (Wiseman et al., 2017), a dataset of NBA
basketball game summaries, paired with their cor-
responding box- and line-score tables. Table 1 il-
lustrates an example of the dataset. In the box-
score table, each team has at most 13 players and
each player is described by 23 types of values.
In the line-score table, each team has 15 differ-
ent types of values. In addition, the date of each
game is converted into the day of the week (such
as “Saturday”) as an additional record. In the pre-
processing step, the input box- and line-score ta-
bles are converted into a fix-length sequence of
records. Each sequence contains 629 records.4 As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The
ROTOWIRE dataset contains 4853 summaries in
total, in which 3398 summaries are for training,
727 for validation and 728 for test.

In content selection modelling, we need the la-
bels of input records to indicate which records in
the input will be mentioned in the output sum-
mary. Here we use a very simple method to gener-

3The model is publicly available at https://github.
com/ratishsp/data2text-plan-py

4In the 629 records, 598 records are for players, 30
records for teams and 1 record for the date.

151

NAME POS MIN PTS FGM FGA FG PCT FG3M FG3A FG3 PCT FTM FTA FT PCT OREB DREB REB AST TO STL BLK PF
Matt Barnes F 26 0 0 3 0 0 3 0 0 0 0 1 4 5 4 1 0 0 0
Blake Griffin F 34 24 10 17 59 0 0 0 4 5 80 4 2 6 8 4 1 0 3
DeAndre Jordan C 34 9 4 8 50 0 0 0 1 4 25 5 11 16 0 1 1 2 4
JJ Redick G 34 23 9 15 60 5 8 63 0 0 0 0 3 3 2 1 1 0 2
Chris Paul G 36 27 6 16 38 4 6 67 11 12 92 1 2 3 9 2 2 1 3
Glen Davis N/A 13 2 1 2 50 0 0 0 0 0 0 0 4 4 1 0 3 0 0
Jamal Crawford N/A 29 17 5 16 31 3 8 38 4 6 67 0 2 2 2 1 2 1 2
Hedo Turkoglu N/A 6 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 1
Reggie Bullock N/A 14 2 1 1 100 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Jordan Farmar N/A 12 2 1 3 33 0 1 0 0 0 0 0 0 0 2 1 0 0 3
Jared Cunningha N/A
Chris Douglas-R N/A
Ekpe Udoh N/A
Giannis Antetok F 38 18 8 12 67 0 1 0 2 3 67 1 8 9 6 3 2 0 3
Johnny O’Bryant F 6 4 2 3 67 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Larry Sanders C 26 10 5 6 83 0 0 0 0 2 0 2 5 7 3 0 1 1 5
O.J. Mayo G 23 3 1 6 17 0 2 0 1 3 33 0 1 1 3 2 0 0 4
Brandon Knight G 27 8 3 10 30 2 6 33 0 0 0 1 4 5 5 4 0 0 3
Jared Dudley N/A 30 16 7 12 58 2 4 50 0 0 0 2 6 8 3 3 2 0 2
Zaza Pachulia N/A 20 5 1 3 33 0 0 0 3 4 75 2 5 7 2 2 0 0 1
Jerryd Bayless N/A 28 16 7 13 54 2 3 67 0 0 0 1 3 4 2 1 0 0 4
Khris Middleton N/A 24 12 5 10 50 1 5 20 1 1 100 1 3 4 2 0 1 0 2
Kendall Marshal N/A 18 10 4 6 67 1 3 33 1 2 50 0 1 1 3 3 0 0 0
Damien Inglis N/A
Jabari Parker N/A
Nate Wolters N/A

TEAM-NAME CITY P QTR1 P QTR2 P QTR3 P QTR4 PTS FG PCT FG3 PCT FT PCT REB AST TOV WINS LOSSES
Clippers Los Angeles 28 22 32 24 106 46 46 74 41 29 12 19 8
Bucks Milwaukee 24 28 31 19 102 53 33 53 46 29 18 14 14

The Los Angeles Clippers (19-8) defeated the Milwaukee Bucks (14-14) 106-102 on Saturday. Los
Angeles has won three of their last four games. Chris Paul paced the team with a game-high 27 points and
nine assists. DeAndre Jordan continued his impressive work on the boards, pulling down 16 rebounds,
and Blake Griffin and J.J. Redick joined Paul in scoring over 20 points. The Clippers have a tough
stretch of their schedule coming up with the Spurs, Hawks, Warriors and Raptors all on this week’s
docket. Even with the loss, Milwaukee finished their four-game Western Conference road trip 2-2, a job
well done by the developing squad. In the three games since Jabari Parker went down with a season-
ending ACL injury, coach Jason Kidd has cut the umbilical cord they had on Giannis Antetokounmpo.
He played over 37 minutes for the second straight game Saturday, which is ten more minutes than his
season average of 27 minutes per game. Larry Sanders returned to the starting lineup after sitting out
Thursday’s game on a league mandated one-game suspension. Ersan Ilyasova (concussion) and John
Henson (foot) remain out, and it seems Ilyasova may be closer to returning than Henson.

Table 1: An example of box-score (top), line-score (middle) and the corresponding summary (bottom) from
ROTOWIRE dataset. The definition of table header could be found at https://github.com/harvardnlp/
boxscore-data

ate such labels. First, we label the entity records5.
An entity record is labeled as 1 if its value is men-
tioned in the associated summary, otherwise it is
labeled as 0. Second, for each player or team men-
tioned in the summary, the rest of its values in the
table are labeled as 1 if they occur in the same sen-
tence in the summary.

5.2 Evaluation metrics

The model output is evaluated with BLEU (Pa-
pineni et al., 2002) as well as several content-
oriented metrics proposed by (Wiseman et al.,
2017) including three following aspects:

5Record whose Value feature is an entity (see Section 3),
for example: “LeBron James|NAME|LeBron James|H/W”.
The labeling is according to the Value feature

• Relation Generation (RG) evaluates the num-
ber of extracted relations in automatic sum-
maries and their correctness (precision) w.r.t
the input record dataset;

• Content Selection (CS) evaluates the preci-
sion and recall rate of extracted relations in
automatic summaries w.r.t that in the gold
summaries;

• Content Ordering (CO) evaluates the normal-
ized Damerau-Levenshtein Distance (Brill
and Moore, 2000) between the sequence of
extracted relations in automatic summaries
and that in the gold summaries.

All these content-oriented metrics are based on
an IE system which extracts record relations from

152

Model
RG CS CO

BLEU
P% P% R% DLD%

GOLD 23.32 94.77 100 100 100 100
TEMPL 54.29 99.92 26.61 59.16 14.42 8.51
WS-2017 23.95 75.10 28.11 35.86 15.33 14.57
NCP-2019 33.88 87.51 33.52 51.21 18.57 16.19
DATA-TRANS 23.31 79.81 36.90 43.06 22.75 20.60
+DATA GEN 22.59 82.49 39.48 42.84 23.32 19.76
+DATA SEL 26.94 79.54 35.27 47.49 22.22 19.97
+BOTH 24.24 80.52 37.33 44.66 23.04 20.22

Table 2: Automatic evaluation on ROTOWIRE devel-
opment set using relation generation (RG) count (#)
and precision (P%), content selection (CS) precision
(P%) and recall (R%), content ordering (CO) in nor-
malized Damerau-Levenshtein distance (DLD%), and
BLEU.

summaries. For the purpose of comparison, we
directly use the publicly available IE system of
(Puduppully et al., 2019) to evaluate our models.

5.3 Training Details
In all experiments, we use our model with 1 en-
coder layer and 6 decoder layers, 512 hidden
units (hence, the record feature embedding size
is 128, see Section 3), 8 heads, GELU activa-
tions (Hendrycks and Gimpel, 2016), a dropout
rate of 0.1 and learned positional embedding for
the decoder. The model is trained with the Adam
optimizer (Kingma and Ba, 2014), learning rate is
fixed to 10−4 and batch size is 6. As for inference,
we use beam size 4 for all experiments, and the
maximum decoding length is 600.

We implement all our models in Pytorch, and
train them on 1 GTX 1080 GPU.

6 Results

The results of our model on the development
set are summarized in Table 2. GOLD repre-
sents the evaluation result on the gold summary.
The RG precision rate is 94.77%, indicating that
the IE system for evaluation is not perfect but
has very high precision. After that, results of
three contrast systems are reported, where TEMPL

and WS-2017 are the updated results6 of Wise-
man et al. (2017) models. TEMPL is template-
based generator model which generates a sum-
mary consisting of 8 sentences: a general de-
scription sentence about the teams playing in the
game, 6 player-specific sentences and a conclusion
sentence. WS-2017 reports an encoder-decoder

6Here we all use the IE system of (Puduppully et al., 2019)
which is improved from the original IE system of (Wiseman
et al., 2017)

model with conditional copy mechanism. NCP-
2019 is the best system configuration (NCP+CC)
reported in (Puduppully et al., 2019) which is a
neural content planning model enhanced with con-
ditional copy mechanism. As for our model, re-
sults with four configurations are reported.

DATA-TRANS represents our data-to-text
Transformer model (as illustrated in Figure 1)
without any data augmentation. Comparing to
NCP-2019, our model performs 3.4% higher
on content selection precision, 4.2% higher on
content ordering metric and 4.4 points higher
on BLEU. Our model performs better on the
CO metric, we attribute this improvement to that
our model generates nearly the same number of
relations as the gold summary which reduces
the edit distance between the two sequences of
relations. However, our model is 7.7% lower on
RG precision. And on the CS recall rate, our
model is 8.2% lower than NCP-2019. This is
probably due to the fact that NCP-2019 generates
much more records than our model (33.88 vs.
23.31) which could result higher coverage on the
relations in gold summary.

Comparing to TEMPL and WS-2017, our
model is much better on BLEU and CS precision.
Our model generates nearly the same number of
relations as WS-2017, but with 7.2% higher on
recall rate and 7.4% higher on CO metric.

By synthetic data generation (+DATA GEN), we
generate synthetic table records as described in se-
cion 4.1. These synthetic table records are then
used as input to the DATA-TRANS model to gener-
ate summaries. All training table records are used
to generate synthetic data. The synthetic data is
then combined with the original training data to
fine-tune the DATA-TRANS model. From Table 2,
we can see that the RG and CS precisions are both
improved by 2.7% and 2.6% respectively. There is
no significant change on others metrics. The CO
metric is slightly improved due to higher RG and
CS precisions. The CS recall rate is slightly de-
graded with the number of extracted relations.

By training data selection (+DATA SEL), we se-
lect the data whose summary contains the num-
ber of relations N >= 16 as the new training
data. The result training data size is 2242 (original
size: 3398). It is then used to fine-tune the DATA-
TRANS model. As shown in Table 2, as expected,
the model after fine-tuning generates more rela-
tions in the output summaries. The average num-

153

Model
RG CS CO

BLEU
P% P% R% DLD%

TEMPL 54.23 99.94 26.99 58.16 14.92 8.46
WS-2017 23.72 74.80 29.49 36.18 15.42 14.19
NCP-2019 34.28 87.47 34.18 51.22 18.58 16.50
DATA-TRANS 24.12 79.17 36.48 42.74 22.40 20.16
+DATA GEN 24.01 83.89 38.98 42.85 23.02 19.48
+DATA SEL 27.47 80.70 35.33 46.25 21.87 20.03
+BOTH 24.80 81.08 37.10 43.78 22.51 20.14

Table 3: Automatic evaluation on ROTOWIRE test set.

Model
RG CS CO

BLEU
P% P% R% DLD%

DATA-TRANS 23.31 79.81 36.90 43.06 22.75 20.60
-CS OBJ 23.37 72.70 32.67 41.99 21.14 20.28
-REC EMB 18.00 63.14 32.94 37.71 21.15 20.24

Table 4: Ablation results on ROTOWIRE dev set.

ber of relations in the output summaries increases
from 23.31 to 26.94. Respectively, the CS recall is
increased from 43.06% to 47.49%. However, the
CS precision is slightly degraded by 1.6%.

Finally, we combine both of the data augmen-
tation methods (+BOTH). Synthetic data genera-
tion improves the RG and CS precisions. Train-
ing data selection improves the CS recall rate by
making the model generate more relations. To
combine the two methods, we choose to fine-tune
the +DATA GEN model with the selected train-
ing data of +DATA SEL (so this configuration is
actually +DATA GEN+DATA SEL). As shown in
Table 2, all content-oriented evaluation metrics
are improved compared to DATA-TRANS but not
as much as each single of the data augmentation
method. This configuration is like a trade-off be-
tween the two data augmentation configurations.

Results on the test set are reported in Table 3.
They follow the same pattern as those found on
the development set. Our DATA-TRANS model
outperforms all other contrast systems on BLEU,
CS precision and content ordering metrics. The
synthetic data generation method helps to improve
the RG and CS precisions. The training data se-
lection method improves the CS recall by mak-
ing the model generate more relations. Combining
these two data augmentation methods, all content-
oriented evaluation results are improved compared
to DATA-TRANS. However, there is no significant
change on BLEU.

7 Ablation Experiments

Next we evaluate the extensions introduced in our
data-to-text Transformer model (DATA-TRANS)
by means of ablation experiments. This is:

• The concatenation of feature embeddings as
input of the encoder presented in Section 3.1
in order to generate a better representation of
the input records.

• The secondary learning objective presented
in Sectioin 3.2 aiming at improving the
content-oriented results.

Removing the content selection additional ob-
jective function In this configuration, we keep
the same data embedding and the model architec-
ture as the DATA-TRANS, but the model is trained
without the content selection objective. The eval-
uation results are shown in Table 4 (-CS OBJ). We
can see that the CS precision and CS recall are de-
graded by 4.2% and 1% respectively. The model
extracts nearly the same number of records as the
baseline system, but with much lower precision.
The content ordering metric is also degraded by
1.6%. Surprisingly, there is no significant change
on BLEU.

Removing Record Encoding In this configu-
ration, the record encoding is removed from the
DATA-TRANS model. Instead, we directly use the
Value feature (see Section 3) sequence as the in-
put. To keep model size unchanged, the dimen-
sion of embedding for the Value feature sequence
is four times bigger than the original feature em-
bedding size (see Equation 2). In addition, we also
add back the positional embedding for the input
sequence. Since the record sequence has a fixed
length of 629, the positional embedding could help
to build a 1-to-1 mapping from the position in
record sequence and the position in the real table.

The model is trained with the same data and the
same configuration as DATA-TRANS. From the re-
sults in Table 4 (-REC EMB), we can see that with-
out record embedding all content-oriented evalu-
ation results are degraded, especially the RG pre-
cision and CS recall. And again, the model still
achieves comparable BLEU score with DATA-
TRANS which demonstrates the effectiveness of
Transformer model on language modeling.

An example output of -REC EMB system is
shown in Table 5 (left). The generation has high
precision at the beginning, and many erroneous re-
lations are generated after several sentences. Our
DATA-TRANS performs much better, but we can
also observe such problem. The generation has
high precision at the beginning and the quality de-
graded after several sentences. We believe this is

154

The Los Angeles Clippers (19-8) defeated the Milwaukee

Bucks (14-14) 106-102 on Saturday. Milwaukee has won

four straight games. They were paced by J.J. Redick’s game

with 23 points, five assists and five rebounds. Chris Paul had

a nice game with 27 points and nine assists to go along with a

double-double with nine points and nine assists. The Clippers

shot 53 percent from the field and 46 percent from beyond

the arc. Milwaukee will wrap up their two-game road trip

in Houston against the Grizzlies on Tuesday. Milwaukee has

lost four straight games. They’ve lost five of their last five

games. Chris Paul (ankle) and Blake Griffin (knee) sat out

Saturday’s game. The Clippers missed their last two games

with a hamstring strain. Jordan had to leave the lead the team

with a foot injury but were able to return for the Clippers to

action on Friday.

The Los Angeles Clippers (19-8) defeated the Milwaukee

Bucks (14-14) 106-102 on Saturday. Los Angeles stopped

their two-game losing streak with the win. Jamal Crawford

paced the team with a game-high 17 points in 29 minutes off

the bench. Crawford shot 9-of-16 from the field and 3-of-8

from downtown. He had nine assists, two rebounds and two

steals in 29 minutes. Blake Griffin had 24 points, eight as-

sists, six rebounds and one steal in 34 minutes. The Clippers

will go on the road to face the Denver Nuggets on Monday.

Milwaukee has lost two straight, and are now 9-2 in their last

10 games. Jabari Parker (ankle) didn’t play Saturday as he

recorded a double-double with 18 points and nine rebounds.

Giannis Antetokounmpo (8-12 FG, 2-1 3Pt, 2-3 FT) and nine

rebounds in 38 minutes off the bench. The Clippers will stay

home and host the Brooklyn Nets on Monday.

Table 5: Example output from DATA-TRANS (right) and ablation model -REC EMB (left). The corresponding
box- and line-table are given in Table 1. Text that accurately reflects a record in the associated table data is in blue,
erroneous text is in red. Text in black is not contradictory to the table records and text in orange is self-contradictory
within the summary.

caused by the error accumulation effect in autore-
gressive decoding.

Another problem we have observed, not only
in Table 5 but also in other output summaries, is
repetition and self-contradictory. In the left ex-
ample of Table 5, it contains two sentences (in
orange color) which are completely contradictory
with each other. And in the right example, the sen-
tence in orange color contains contradictory infor-
mation within the sentence.

8 Conclusions

We presented a Transformer-based data-to-text
generation model. Experimental results have
shown that our two modifications on the Trans-
former model significantly improve the content-
oriented evaluation metrics. In addition, we pro-
posed two data augmentation methods, each of
them improves different aspects of the model. Our
final model outperforms current state-of-the-art
system on BLEU, content selection precision and
content ordering metics. And we believe it has
great potential for the future work. In the next step,
we would like to apply some experimental tech-
niques of machine translation such as right-to-left
decoding and system ensemble to the data-to-text
generation task.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Com-
putational Linguistics.

Regina Barzilay and Mirella Lapata. 2005. Collective
content selection for concept-to-text generation. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 331–338. Association for
Computational Linguistics.

Eric Brill and Robert C Moore. 2000. An improved er-
ror model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, pages 286–293.
Association for Computational Linguistics.

Pablo A Duboue and Kathleen R McKeown. 2001.
Empirically estimating order constraints for content
planning in generation. In Proceedings of the 39th
Annual Meeting on Association for Computational
Linguistics, pages 172–179. Association for Com-
putational Linguistics.

Pablo A Duboue and Kathleen R McKeown. 2003. Sta-
tistical acquisition of content selection rules for nat-
ural language generation. In Proceedings of the
2003 conference on Empirical methods in natural
language processing, pages 121–128. Association
for Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

155

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ioannis Konstas and Mirella Lapata. 2012. Unsuper-
vised concept-to-text generation with hypergraphs.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 752–761. Association for Computational Lin-
guistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. arXiv preprint
arXiv:1603.07771.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages
91–99. Association for Computational Linguistics.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2015. What to talk about and how? selective gen-
eration using lstms with coarse-to-fine alignment.
arXiv preprint arXiv:1509.00838.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu,
and Ian Davy. 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelligence,
167(1-2):137–169.

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex in-
formation presentation in spoken dialog systems. In
Proceedings of the 42nd annual meeting on associa-
tion for computational linguistics, page 79. Associ-
ation for Computational Linguistics.

Kumiko Tanaka-Ishii, Kôiti Hasida, and Itsuki Noda.
1998. Reactive content selection in the generation
of real-time soccer commentary. In Proceedings of
the 17th international conference on Computational
linguistics-Volume 2, pages 1282–1288. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2016. Reference-aware language models.
arXiv preprint arXiv:1611.01628.

156

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 157–167
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Generalization in Generation: A closer look at Exposure Bias

Florian Schmidt
Department of Computer Science

ETH Zürich
florian.schmidt@inf.ethz.ch

Abstract

Exposure bias refers to the train-test discrep-
ancy that seemingly arises when an autoregres-
sive generative model uses only ground-truth
contexts at training time but generated ones at
test time. We separate the contributions of the
model and the learning framework to clarify
the debate on consequences and review pro-
posed counter-measures.
In this light, we argue that generalization is
the underlying property to address and pro-
pose unconditional generation as its funda-
mental benchmark. Finally, we combine la-
tent variable modeling with a recent formu-
lation of exploration in reinforcement learn-
ing to obtain a rigorous handling of true and
generated contexts. Results on language mod-
eling and variational sentence auto-encoding
confirm the model’s generalization capability.

1 Introduction

Autoregressive models span from n-gram mod-
els to recurrent neural networks to transformers
and have formed the backbone of state-of-the-
art machine learning models over the last decade
on virtually any generative task in Natural Lan-
guage Processing. Applications include machine
translation (Bahdanau et al., 2015; Vaswani et al.,
2017), summarization (Rush et al., 2015; Khan-
delwal et al., 2019), dialogue (Serban et al., 2016)
and sentence compression (Filippova et al., 2015).

The training methodology of such models is
rooted in the language modeling task, which is to
predict a single word given a context of previous
words. It has often been criticized that this set-
ting is not suited for multi-step generation where
– at test time – we are interested in generating
words given a generated context that was poten-
tially not seen during training. The consequences
of this train-test discrepancy are summarized as
exposure bias. Measures to mitigate the prob-

lem typically rely on replacing, masking or per-
tubing ground-truth contexts (Bengio et al., 2015;
Bowman et al., 2016; Norouzi et al., 2016; Ran-
zato et al., 2016). Unfortunately, exposure bias
has never been succesfully separated from general
test-time log-likelihood assessment and minor im-
provements on the latter are used as the only signi-
fier of reduced bias. Whenever explicit effects are
investigated, no significant findings are made (He
et al., 2019).

In this work we argue that the standard training
procedure, despite all criticism, is an immediate
consequence of combining autoregressive model-
ing and maximum-likelihood training. As such,
the paramount consideration for improving test-
time performance is simply regularization for bet-
ter generalization. In fact, many proposed mea-
sures against exposure bias can be seen as exactly
that, yet with respect to an usually implicit metric
that is not maximum-likelihood.

With this in mind, we discuss regularization
for conditional and unconditional generation. We
note that in conditional tasks, such as translation,
it is usually sufficient to regularize the mapping
task – here translation – rather than the generative
process itself. For unconditional generation,
where tradeoffs between accuracy and coverage
are key, generalization becomes much more
tangible.

The debate on the right training procedure for
autoregressive models has recently been ampli-
fied by the advent of latent generative models
(Rezende et al., 2014; Kingma and Welling, 2013).
Here, the practice of decoding with true contexts
during training conflicts with the hope of obtain-
ing a latent representation that encodes significant
information about the sequence (Bowman et al.,
2016). Interestingly, the ad hoc tricks to reduce
the problem are similar to those proposed to ad-

157

https://www.aclweb.org/anthology/D19-56%2d

dress exposure bias in deterministic models.
Very recently, Tan et al. (2017) have presented

a reinforcement learning formulation of explo-
ration that allows following the intuition that an
autoregressive model should not only be trained on
ground-truth contexts. We combine their frame-
work with latent variable modeling and a reward
function that leverages modern word-embeddings.
The result is a single learning regime for uncon-
ditional generation in a deterministic setting (lan-
guage modeling) and in a latent variable setting
(variational sentence autoencoding). Empirical re-
sults show that our formulation allows for better
generalization than existing methods proposed to
address exposure bias. Even more, we find the re-
sulting regularization to also improve generaliza-
tion under log-likelihood.

We conclude that it is worthwhile explor-
ing reinforcement learning to elegantly extend
maximum-likelihood learning where our desired
notion of generalization cannot be expressed with-
out violating the underlying principles. As a re-
sult, we hope to provide a more unified view on
the training methodologies of autoregressive mod-
els and exposure bias in particular.

2 Autoregressive Modeling

Modern text generation methods are rooted in
models trained on the language modeling task. In
essence, a language model p is trained to predict a
word given its left-side context

p(wt|w1:t−1) . (1)

With a trained language model at hand, a simple
recurrent procedure allows to generate text of arbi-
trary length. Starting from an initial special sym-
bol ŵ0, we iterate t = 1 . . . and alternate between
sampling ŵt ∼ p(wt|ŵ1:t−1) and appending ŵt to
the context ŵ1:t−1. Models of this form are called
autoregressive as they condition new predictions
on old predictions.

Neural Sequence Models Although a large cor-
pus provides an abundance of word-context pairs
to train on, the cardinality of the context space
makes explicit estimates of (1) infeasible. There-
fore, traditional n-gram language models rely on
a truncated context and smoothing techniques to
generalize well to unseen contexts.

Neural language models lift the context re-
striction and instead use neural context represen-
tations. This can be a hidden state as found

in recurrent neural networks (RNNs), i.e. an
LSTM (Hochreiter and Schmidhuber, 1997) state,
or a set of attention weights, as in a transformer
architecture (Vaswani et al., 2017). While the con-
siderations in this work apply to all autoregressive
models, we focus on recurrent networks which en-
code the context in a fixed-sized continuous rep-
resentation h(w1:t−1). In contrast to transformers,
RNNs can be generalized easily to variational au-
toencoders with a single latent bottleneck (Bow-
man et al., 2016), a particularly interesting special
case of generative models .

2.1 Evaluation and Generalization

Conditional vs. Unconditional
Conditional generation tasks, such as translation
or summarization, are attractive from an appli-
cation perspective. However, for the purpose of
studying exposure bias, we argue that uncondi-
tional generation is the task of choice for the fol-
lowing reasons.

First, exposure bias addresses conditioning on
past words generated which becomes less essen-
tial when words in a source sentence are available,
in particular when attention is used.

Second, the difficulty of the underlying map-
ping task, say translation, is of no concern for
the mechanics of generation. This casts sentence
autoencoding as a less demanding, yet more eco-
nomic task.

Finally, generalization of conditional models is
only studied with respect to the underlying map-
ping and not with respect to the conditional distri-
bution itself. A test-set in translation usually does
not contain a source sentence seen during training
with a different target1. Instead, it contains un-
seen source-target pairs that evaluate the general-
ization of the mapping. Even more, at test-time
most conditional models resort to an arg-max de-
coding strategy. As a consequence, the entropy
of the generative model is zero (given the source)
and there is no generalization at all with respect to
generation. For these reasons, we address uncon-
ditional generation and sentence auto-encoding for
the rest of this work.

The big picture Let us briefly characterize out-
put we should expect from a generative model
with respect to generalization. Figure 1 shows

1Some datasets do provide several targets for a single
source. However, those are typically only used for BLEU
computation, which is the standard test metric reported.

158

Figure 1: Generalization

an idealized two-dimensional dataspace of (fixed-
length) sentences w ∈ V T . We sketch the sup-
port of the unknown underlying generating distri-
bution, the train set and the test set.2 Let us look at
some hypothetical examples ŵ1, ŵ2, ŵ3, ŵ4 gen-
erated from some well trained model. Samples
like ŵ1 certify that the model did not overfit to
the training data as can be certified by test log-
likelihood. In contrast, the remaining samples
are indistinguishable under test log-likelihood in
the sense that they identically decrease the metric
(assuming equal model probability) even though
ŵ2, ŵ3 have non-zero probability under the true
data distribution. Consequently, we cannot iden-
tify ŵ4 as a malformed example. Holtzman et
al. (2019) show that neural generative models –
despite their expressiveness – put significant prob-
ability on clearly unreasonable repetitive phrases,
such as I dont know. I dont know. I dont know.3

Evaluation under smoothed data distribution
The most common approach to evaluating an un-
conditional probabilistic generative model is train-
ing and test log-likelihood. For a latent variable
model, the exact log-likelihood (2) is intractable
and a lowerbound must be used instead. How-
ever, at this point it should be noted that one can
always estimate the log-likelihood from an empir-
ical distribution across output generated. That is,
one generates a large set of sequences S and sets
p̂(w) to the normalized count of w in S . However,
the variance of this estimate is impractical for all
but the smallest datasets. Also, even a large test-
set cannot capture the flexibility and composition-
ality found in natural language.

2Here we do not discuss generalization error, the discrep-
ancy between empirical test error and expected test error. It
should also be noted that cross-validation provides another
complementary technique to more robust model estimation,
which we omit to keep the picture simple.

3They report that this also holds for non-grammatical
repetitive phrase, which is what we would expect for ŵ4.

With aforementioned shortcomings of test log-
likelihood in mind, it is worthwhile discussing
a recently proposed evaluation technique. Fe-
dus et al. (2018) propose to use n-gram statis-
tics of the underlying data to asses generated out-
put. For example, one can estimate an n-gram lan-
guage model and report perplexity of the gener-
ated data under the n-gram model. Just as BLEU
and ROUGE break the sequence reward assign-
ment problem into smaller sub-problems, n-gram
language models effectively smooth the sequence
likelihood assignment which is usually done with
respect to the empirical data distribution. Under
this metric, some sequences such as ŵ2 which are
close to sequences in the dataset at hand might re-
ceive positive probability.

This raises two questions. First, can we break
sequence-level evaluation into local statistics by
using modern word embeddings instead of n-
grams (as BLEU does)? Second, can we incor-
porate these measures already during training to
obtain better generative models. These considera-
tions will be key when defining a reward function
in Section 4.5.

3 Teacher Forcing and Exposure Bias

A concern often expressed in the context of au-
toregressive models is that the recursive sampling
procedure for generation presented in Section 1 is
never used at training time; hence the model can-
not learn to digest its own predictions. The result-
ing potential train-test discrepancy is referred to as
exposure bias and is associated with compounding
errors that arise when mistakes made early accu-
mulate (Bengio et al., 2015; Ranzato et al., 2016;
Goyal et al., 2016; Leblond et al., 2018). In this
context, teacher-forcing refers to the fact that –
seen from the test-time perspective – ground-truth
contexts are substituted for model predictions. Al-
though formally teacher forcing and exposure bias

159

should be seen as cause (if any) and symptom, they
are often used exchangeably.

As is sometimes but rarely mentioned, the
presence of the ground-truth context is simply
a consequence of maximum-likelihood train-
ing and the chain rule applied to (1) as in
p(w1:T) =

∏
p(wt|w1:t−1) (Goodfellow et al.,

2016). As such, it is out of question whether
generated contexts should be used as long as log-
likelihood is the sole criterion we care about. In
this work we will furthermore argue the following:

Proposition 1 Exposure bias describes a lack
of generalization with respect to an – usually
implicit and potentially task and domain depen-
dent – measure other than maximum-likelihood.

The fact that we are dealing with generalization is
obvious, as one can train a model – assuming suffi-
cient capacity – under the criticized methodology
to match the training distribution. Approaches that
address exposure bias do not make the above no-
tion of generalization explicit, but follow the in-
tuition that training on other contexts than (only)
ground-truth contexts should regularize the model
and result in – subjectively – better results. Of
course, these forms of regularization might still
implement some form of log-likelihood regular-
ization, hence improve log-likelihood generaliza-
tion. Indeed, all of the following methods do re-
port test log-likelihood improvements.

Proposed methods against exposure bias
Scheduled sampling (Bengio et al., 2015) pro-
posed for conditional generation randomly mixes
in predictions form the model, which violates
the underlying learning framework (Husz’ar,
2015). RAML (Norouzi et al., 2016) proposes
to effectively perturbs the ground-truth context
according to the exponentated payoff distribution
implied by a reward function. Alternatively,
adversarial approaches (Goyal et al., 2016) and
learning-to-search (Leblond et al., 2018) have
been proposed.

VAE Collapse In Section 4.1 we will take a look
at latent generative models. In that context, the
standard maximum-likelihood approach to autore-
gressive models has been criticized from a second
perspective that is worth mentioning. Bowman et
al. (2016) show empirically that autoregressive de-
coders p(w|z) do not rely on the latent code z, but

collapse to a language model as in (1).
While some work argues that the problem is

rooted in autoregressive decoders being “too pow-
erful” (Shen et al., 2018), the proposed measures
often address the autoregressive training regime
rather than the models (Bowman et al., 2016) and,
in fact, replace ground-truth contexts just as the
above methods to mitigate exposure bias.

In addition, a whole body of work has discussed
the implications of optimizing only a bound to the
log-likelihood (Alemi et al., 2017) and the impli-
cations of re-weighting the information-theoretic
quantities inside the bound (Higgins et al., 2017;
Rainforth et al., 2018).

4 Latent Generation with ERPO

We have discussed exposure bias and how it has
been handled by either implicitly or explicitly
leaving the maximum-likelihood framework. In
this section, we present our reinforcement learning
framework for unconditional sequence generation
models. The generative story is the same as in a
latent variable model:

1. Sample a latent code z ∼ Rd

2. Sample a sequence from a code-conditioned
policy pθ(w|z).

However, we will rely on reinforcement learning
to train the decoder p(w|z). Note that for a con-
stant code z = 0 we obtain a language model as
a special case. Let us now briefly review latent
sequential models.

4.1 Latent sequential models

Formally, a latent model of sequences w = w1:T

is written as a marginal over latent codes

p(w) =

∫
p(w, z)dz =

∫
p(w|z)p0(z)dz . (2)

The precise form of p(w|z) and whether z refers
to a single factor or a sequence of factors z1:T de-
pends on the model of choice.

The main motivation of enhancing p with a la-
tent factor is usually the hope to obtain a meaning-
ful structure in the space of latent codes. How such
a structure should be organized has been discussed
in the disentanglement literature in great detail, for
example in Chen et al. (2018), Hu et al. (2017) or
Tschannen et al. (2018).

160

In our context, latent generative models are in-
teresting for two reasons. First, explicitly in-
troducing uncertainty inside the model is often
motivated as a regularizing technique in Bay-
seian machine learning (Murphy, 2012) and has
been applied extensively to latent sequence mod-
els (M. Ziegler and M. Rush, 2019; Schmidt and
Hofmann, 2018; Goyal et al., 2017; Bayer and Os-
endorfer, 2014). Second, as mentioned in Sec-
tion 3 (VAE collapse) conditioning on ground-
truth contexts has been identified as detrimental to
obtaining meaningful latent codes (Bowman et al.,
2016) – hence a methodology to training decoders
that relaxes this requirement might be of value.

Training via Variational Inference Variational
inference (Zhang et al., 2018) allows to optimize
a lower-bound instead of the intractable marginal
likelihood and has become the standard method-
ology to training latent variable models. Introduc-
ing an inference model q and applying Jensen’s in-
equality to (2), we obtain

log p(w) = Eq(z|w)
[
log

p0(z)

q(z|w)+logP (w|z)
]

≥ DKL(q(z|w)||p0(z)) + Eq(z|w) [logP (w|z)] (3)

Neural inference networks (Rezende et al., 2014;
Kingma and Welling, 2013) have proven as effec-
tive amortized approximate inference models.

Let us now discuss how reinforcement learning
can help training our model.

4.2 Generation as Reinforcement Learning
Text generation can easily be formulated as a re-
inforcement learning (RL) problem if words are
taken as actions (Bahdanau et al., 2016). Formally,
pθ is a parameterized policy that factorizes autore-
gressively pθ(w) =

∏
pθ(wt|h(w1:t−1)) and h is

is a deterministic mapping from past predictions
to a continuous state, typically a recurrent neural
network (RNN). The goal is then to find policy pa-
rameters θ that maximize the expected reward

J(θ) = Epθ(w)[R(w,w
?)] (4)

where R(w,w?) is a task-specific, not necessarily
differentiable metric.

Policy gradient optimization The REIN-
FORCE (Williams, 1992) training algorithm is a
common strategy to optimize (4) using a gradient
estimate via the log-derivative

∇θJ(θ) = Epθ(w)[R(w,w
?) log pθ(w)] (5)

Since samples from the policy ŵ ∼ pθ often yield
low or zeros reward, the estimator (5) is known for
its notorious variance and much of the literature is
focused on reducing this variance via baselines or
control-derivative (Rennie et al., 2016).

4.3 Reinforcement Learning as Inference

Recently, a new family of policy gradient meth-
ods has been proposed that draws inspiration from
inference problems in probablistic models. The
underlying idea is to pull the reward in (5) into
a new implicit distribution p̃ that allows to draw
samples ŵ with much lower variance as it is in-
formed about reward.

We follow Tan et al. (2017) who optimize
an entropy-regularized version of (4), a common
strategy to foster exploration. They cast the rein-
forcement learning problem as

J(θ, p̃) = Ep̃[R(w,w?)]
+ αDKL(p̃(w)||pθ(w))
+ βH(p̃) (6)

where α, β are hyper-parameters and p̃ is the new
non-parametric, variational distribution4 across
sequences. They show that (6) can be optimized
using the following EM updates

E-step: p̃n+1∝ exp

(
αpθ

n(w) +R(w,w?)

α+ β

)
(7)

M-step: θn+1=argmax
θ

Ep̃n+1 [log pθ(w)] (8)

As Tan et al. 2018 have shown, for α → 0,
β = 1 and a specific reward, the framework re-
covers maximum-likelihood training.5 It is explic-
itly not our goal to claim text generation with end-
to-end reinforcement learning but to show that it
is beneficial to operate in an RL regime relatively
close to maximum-likelihood.

4.4 Optimization with Variational Inference

In conditional generation, a policy is conditioned
on a source sentence, which guides generation to-
wards sequences that obtain significant reward.
Often, several epochs of MLE pretraining (Rennie
et al., 2016; Bahdanau et al., 2016) are necessary
to make this guidance effective.

4In (Tan et al., 2018) p̃ is written as q, which resembles
variational distributions in approximate Bayesian inference.
However, here p̃ is not defined over variables but datapoints.

5Refer to their work for more special cases, including
MIXER (Ranzato et al., 2016)

161

In our unconditional setting, where a source is
not available, we employ the latent code z to pro-
vide guidance. We cast the policy pθ as a code-
conditioned policy pθ(w|z) which is trained to
maximize a marginal version of the reward (6):

J(θ) = Ep0(z)Epθ(w|z)[R(w,w
?)]] . (9)

Similar formulations of expected reward have re-
cently been proposed as goal-conditioned poli-
cies (Ghosh et al., 2018). However, here it is our
explicit goal to also learn the representation of the
goal, our latent code. We follow Equation (3) and
optimize a lower-bound instead of the intractable
marginalization (9). Following (Bowman et al.,
2015; Fraccaro et al., 2016) we use a deep RNN
inference network for q to optimize the bound.
The reparametrization-trick (Kingma and Welling,
2013) allows us to compute gradients with respect
to q. Algorithm 1 shows the outline of the training
procedure.

Algorithm 1 Latent ERPO Training

for do w? ∈ DATASET

Sample a latent code z ∼ q(z|w?)
Sample a datapoint w̃ ∼ p̃(w|z)
Perform a gradient step ∇θ log pθ(w̃|z)

Note that exploration (sampling w̃) and the gra-
dient step are both conditioned on the latent code,
hence stochasticity due to sampling a single z is
coupled in both. Also, no gradient needs to be
propagated into p̃.

So far, we have not discussed how to efficiently
sample from the implicit distribution p̃. In the
remainder of this section we present our reward
function and discuss implications on the tractabil-
ity of sampling.

4.5 Reward
Defining a meaningful reward function is central
to the success of reinforcement learning. The
usual RL forumlations in NLP require a measure
of sentence-sentence similarity as reward. Com-
mon choices include BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Banerjee and Lavie,
2005) or SPICE (Anderson et al., 2016). These are
essentially n-gram metrics, partly augmented with
synonym resolution or re-weighting schemes.

Word-movers distance (WMD) (Kusner et al.,
2015) provides an interesting alternative based on
the optimal-transport problem. In essence, WMD

computes the minimum accumulated distance that
the word vectors of one sentence need to “travel”
to coincide with the word vectors of the other
sentence. In contrast to n-gram metrics, WMD
can leverage powerful neural word representa-
tions. Unfortunately, the complexity of computing
WMD is roughly O(T 3 log T).

4.6 A Reward for Tractable Sampling

Tan et al. (2018) show that thanks to the factor-
ization of pθ the globally-normalized inference
distribution p̃ in (7) can be written as a locally-
normalized distribution at the word-level

p̃(wt|w1:t−1)∝

exp

(
αpθ(wt|w1:t−1)+Rt(w,w?)

α+ β

)
(10)

when the reward is written as incremental re-
ward Rt defined via Rt(w,w?) = R(w1:t, w

?) −
R(w1:t−1, w?). Sampling form (10) is still hard, if
Rt hides dynamic programming routines or other
complex time-dependencies. With this in mind,
we choose a particularly simple reward

R(w,w?) =
T∑

t=1

φ(wt)
>φ(w?t) (11)

where φ is a lookup into a length-normalized pre-
trained but fixed word2vec (Mikolov et al., 2013)
embedding. This casts our reward as an effi-
cient, yet drastic approximation to WMD, which
assumes identical length and one-to-one word cor-
respondences. Putting (10) and (11) together, we
sample sequentially from

p̃(wt|w1:t−1)∝

exp

(
αpθ(wt|w1:t−1)+φ(wt)>φ(w?t)

α+ β

)
(12)

with the complexityO(dV) of a standard softmax.
Compared to standard VAE training, Algorithm 1
only needs one additional forward pass (with iden-
tical complexity) to sample w̃ form p̃.

Equation (12) gives a simple interpretation of
our proposed training methodology. We locally
correct predictions made by the model proportion-
ally to the distance to the ground-truth in the em-
beddings space. Hence, we consider the ground-
truth and the model prediction for exploration.

162

48

50

52

54

Training Time

Tr
ai

n
N

L
L

52.5

53

53.5

54

Training Time

Te
st

N
L

L

OURS OURS-B OURS-DET
SS-0.99 SS-0.98 SS-0.95 SS-0.90 SS-0.99-DET
RAML RAML-DET VAE WDROP-0.99 LM-DET

Figure 2: Generalization performance in terms of sequence NLL across latent and deterministic methods

5 Related Work

Our discussion of exposure bias complements re-
cent work that summarizes modern generative
models, for example Caccia et al. (2018) and Lu et
al. (2018). Shortcomings of maximum-likelihood
training for sequence generation have often been
discussed (Ding and Soricut, 2017; Leblond et al.,
2018; Ranzato et al., 2016), but without pointing
to generalization as the key aspect. An overview
of recent deep reinforcement learning methods for
conditional generation can be found in (Keneshloo
et al., 2018).

Our proposed approach follows work by Ding
et al. (2017) and Tan et al. (2018) by employing
both, policy and reward for exploration. In con-
trast to them, we do not use n-gram based reward.
Compared to RAML (Norouzi et al., 2016), we do
not perturb the ground-truth context, but correct
the policy predictions. Scheduled sampling (Ben-
gio et al., 2015) and word-dropout (Bowman et al.,
2016) also apply a correction, yet one that only
affects the probability of the ground-truth. Chen
et al. (2017) propose Bridge modules that simi-
larly to Ding et al. (2017) can incorporate arbitrary
ground-truth perturbations, yet in an objective mo-
tivated by an auxiliary KL-divergence.

Merity et al. (2017) have shown that gener-
alization is crucial to language modeling, but
their focus is regularizing parameters and activa-
tions. Word-embeddings to measure deviations
from the ground-truth have also been used by Inan
et al. (2016), yet under log-likelihood. Concur-
rently to our work, Li et al. (2019) employ em-
beddings to design reward functions in abstractive
summarization.

6 Experiments

Parametrization The policies of all our mod-
els and all baselines use the same RNN. We use
a 256 dimensional GRU (Cho et al., 2014) and
100-dimensional pre-trained word2vec input em-
beddings. Optimization is preformed by Adam
(Kingma and Ba, 2014) with an initial learning
rate of 0.001 for all models. For all methods,
including scheduled sampling, we do not anneal
hyper-parameters such as the keep-probability for
the following reasons. First, in an unconditional
setting, using only the model’s prediction is not a
promissing setting, so it is unclear what value to
anneal to. Second, the continous search-space of
schedules makes it sufficiently harder to compare
different methods. For the same reason, we do
not investigate annealing the KL term or the α, β-
parametrization of the models. We use the infer-
ence network parametrization of (Bowman et al.,
2016) which employs a diagonal Gaussian for q.

We found the training regime to be very sensi-
tive to the α, β-parametrization. In particular, it is
easy to pick a set of parameters that does not truly
incorporate exploration, but reduces to maximum
likelihood training with only ground truth contexts
(see also the discussion of Figure 3 in Section 6.2).
After performing a grid-search (as done also for
RAML) we choose6 α = 0.006, β = 0.067 for
OURS, the method proposed. In addition, we re-
port for an alternative model OURS-B with α =
0.01, β = 0.07.

6The scale of α is relatively small as the log-probabilities
in (12) have significantly larger magnitude than the inner
products, which are in [0, 1] due to the normalization.

163

Data For our experiments, we use a one million
sentences subset of the BooksCorpus (Kiros et al.,
2015; Zhu et al., 2015) with a 90-10 train-test split
and a 40K words vocabulary. The corpus size is
chosen to challenge the above policy with both
scenarios, overfitting and underfitting.

6.1 Baselines

As baselines we use a standard VAE and a VAE
with RAML decoding that uses identical reward
as our method (see Tan et al.(2018) for details on
RAML as a special case). Furthermore, we use
two regularizations of the standard VAE, sched-
uled sampling SS-P and word-dropout WDROP-P

as proposed by Bowman et al. (2016), both with
fixed probability p of using the ground-truth.

In addition, we report as special cases with
z = 0 results for our model (OURS-DET), RAML
(RAML-DET), scheduled sampling (SS-P-DET),
and the VAE (LM, a language model).

6.2 Results

Figure 2 shows training and test negative sequence
log-likelihood evaluated during training and Table
1 shows the best performance obtained. All figures
and tables are averaged across three runs.

Model Train NLL Test NLL
OURS 48.52 52.54
OURS-B 49.51 52.61
OURS-DET 48.06 52.87
SS-0.99 48.11 52.60
SS-0.98 48.21 52.62
SS-0.95 48.38 52.69
SS-0.90 49.02 52.89
SS-0.99-DET 48.08 52.90
RAML 48.26 52.56
RAML-DET 48.26 52.86
WDROP-0.99 48.19 52.86
LM 47.65 53.01
VAE 47.86 52.66
WDROP-0.9 50.86 54.65

Table 1: Training and test performance

We observe that all latent models outperform
their deterministic counterparts (crossed curves)
in terms of both, generalization and overall test
performance. This is not surprising as regulariza-
tion is one of the benefits of modeling uncertainty
through latent variables. Scheduled sampling does
improve generalization for p ≈ 1 with diminishing
returns at p = 0.95 and in general performed bet-
ter than word dropout. Our proposed models out-
perform all others in terms of generalization and

test performance. Note that the performance dif-
ference over RAML, the second best method, is
solely due to incorporating also model-predicted
contexts during training.

Despite some slightly improved performance,
all latent models except for OURS-B have a KL-
term relatively close to zero. OURS-B is α-β-
parametrized to incorporte slightly more model
predictions at higher temperatur and manages to
achieve a KL-term of about 1 to 1.5 bits. These
findings are similar to what (Bowman et al., 2016)
report with annealing but still significantly behind
work that addresses this specific problem (Yang
et al., 2017; Shen et al., 2018). Appendix A illus-
trates how our models can obtain larger KL-terms
– yet at degraded performance – by controlling ex-
ploration. We conclude that improved autoregres-
sive modeling inside the ERPO framework cannot
alone overcome VAE-collapse.

We have discussed many approaches that devi-
ate from training exclusively on ground-truth con-
texts. Therefore, an interesting quantity to mon-
itor across methods is the fraction of words that
correspond to the ground-truth. Figure 3 shows
these fractions during training for the configura-
tions that gave the best results. Interestingly, in the
latent setting our method relies by far the least on
ground-truth contexts whereas in the deterministic
setting the difference is small.

0.9

0.95

1

Training Time

OURS OURS-B OURS-DET RAML
SS-0.98 SS-0.99 SS-0.95 LM/VAE

Figure 3: Fraction of correct words during training.
Numbers include forced and correctly predicted words.

7 Conclusion

We have argued that exposure bias does not point
to a problem with the standard methodology of
training autoregressive sequence model. Instead,
it refers to a notion of generalization to unseen se-
quences that does not manifest in log-likelihood
training and testing, yet might be desirable in or-
der to capture the flexibility of natural language.

To rigorously incorporate the desired gener-
alization behavior, we have proposed to follow

164

the reinforcement learning formulation of Tan et
al. (2018). Combined with an embedding-based
reward function, we have shown excellent gener-
alization performance compared to the unregular-
ized model and better generalization than existing
techniques on language modeling and sentence au-
toencoding.

Future work We have shown that the simple
reward function proposed here leads to a form
of regularization that fosters generalization when
evaluated inside the maximum-likelihood frame-
work. In the future, we hope to conduct a human
evaluation to assess the generalization capabili-
ties of models trained under maximum-likelihood
and reinforcement learning more rigorously. Only
such a framework-independent evaluation can re-
veal the true gains of carefully designing re-
ward functions compared to simply performing
maximum-likelihood training.

References
Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V.

Dillon, Rif A. Saurous, and Kevin Murphy. 2017.
An information-theoretic analysis of deep latent-
variable models. CoRR, abs/1711.00464.

Peter Anderson, Basura Fernando, Mark Johnson,
and Stephen Gould. 2016. SPICE: semantic
propositional image caption evaluation. CoRR,
abs/1607.08822.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2016. An actor-
critic algorithm for sequence prediction. CoRR,
abs/1607.07086.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In ACL
Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summa-
rization, pages 65–72, Ann Arbor, Michigan. Asso-
ciation for Computational Linguistics.

Justin Bayer and Christian Osendorfer. 2014. Learn-
ing stochastic recurrent networks. arXiv preprint
arXiv:1411.7610. ArXiv.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In ACL.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo
Larochelle, Joelle Pineau, and Laurent Charlin.
2018. Language gans falling short. CoRR,
abs/1811.02549.

Tian Qi Chen, Xuechen Li, Roger B. Grosse, and
David Duvenaud. 2018. Isolating sources of dis-
entanglement in variational autoencoders. CoRR,
abs/1802.04942.

Wenhu Chen, Guanlin Li, Shujie Liu, Zhirui Zhang,
Mu Li, and Ming Zhou. 2017. Neural sequence pre-
diction by coaching. CoRR, abs/1706.09152.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In EMNLP, pages
1724–1734.

Nan Ding and Radu Soricut. 2017. Cold-start rein-
forcement learning with softmax policy gradients.
CoRR, abs/1709.09346.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai.
2018. Maskgan: Better text generation via filling in
the . In ICLR.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
EMNLP 2015, pages 360–368.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet,
and Ole Winther. 2016. Sequential neural models
with stochastic layers. pages 2199–2207. NIPS.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine.
2018. Learning actionable representations with
goal-conditioned policies. CoRR, abs/1811.07819.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng
Zhang, Aaron C. Courville, and Yoshua Bengio.
2016. Professor forcing: A new algorithm for train-
ing recurrent networks. In NIPS.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre
Côté, Nan Rosemary Ke, and Yoshua Bengio. 2017.
Z-forcing: Training stochastic recurrent networks.
In NIPS.

165

Tianxing He, Jingzhao Zhang, Zhiming Zhou, and
James R. Glass. 2019. Quantifying exposure bias for
neural language generation. CoRR, abs/1905.10617.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2017.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. In ICLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. CoRR, abs/1904.09751.

Z. Hu, Z. Yang, Liang X., R. Salakhutdinov, and E. R.
Xing. 2017. Toward controlled generation of text.
In International Conference on Machine Learning
(ICML).

Ferenc Husz’ar. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary?

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. ArXiv,
abs/1611.01462.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and
Chandan K. Reddy. 2018. Deep reinforcement
learning for sequence to sequence models. CoRR,
abs/1805.09461.

Urvashi Khandelwal, Kevin Clark, Dan Jurafsky, and
Lukasz Kaiser. 2019. Sample efficient text sum-
marization using a single pre-trained transformer.
CoRR, abs/1905.08836.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings
to document distances. In ICML, ICML’15, pages
957–966. JMLR.org.

Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin,
and Simon Lacoste-Julien. 2018. SEARNN: train-
ing rnns with global-local losses. In ICLR.

Siyao Li, Deren Lei, Pengda Qin, and William Wang.
2019. Deep reinforcement learning with distribu-
tional semantic rewards for abstractive summariza-
tion.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. page 10.

Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang,
and Yong Yu. 2018. Neural text generation: Past,
present and beyond. CoRR, abs/1803.07133.

Zachary M. Ziegler and Alexander M. Rush. 2019. La-
tent normalizing flows for discrete sequences. arXiv
preprint arXiv:1901.10548.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

Kevin P. Murphy. 2012. Machine Learning: A Proba-
bilistic Perspective. The MIT Press.

Mohammad Norouzi, Samy Bengio, Zhifeng Chen,
Navdeep Jaitly, Mike Schuster, Yonghui Wu, and
Dale Schuurmans. 2016. Reward augmented max-
imum likelihood for neural structured prediction.
CoRR, abs/1609.00150.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation.

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le,
Chris J. Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. 2018. Tighter variational
bounds are not necessarily better. In ICML.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2016. Self-critical
sequence training for image captioning. CoRR,
abs/1612.00563.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic back-propagation and
variational inference in deep latent gaussian models.
In ICML.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP.

Florian Schmidt and Thomas Hofmann. 2018. Deep
state space models for unconditional word genera-
tion. In NeurIPS.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI.

166

Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg.
2018. Improving variational encoder-decoders in di-
alogue generation. CoRR, abs/1802.02032.

Bowen Tan, Zhiting Hu, Zichao Yang, Ruslan
Salakhutdinov, and Eric P. Xing. 2018. Connecting
the dots between MLE and RL for sequence genera-
tion. CoRR, abs/1811.09740.

Michael Tschannen, Olivier Bachem, and Mario Lucic.
2018. Recent advances in autoencoder-based repre-
sentation learning. CoRR, abs/1812.05069.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3-4):229–256.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. CoRR, abs/1702.08139.

Cheng Zhang, Judith Butepage, Hedvig Kjellstrom,
and Stephan Mandt. 2018. Advances in variational
inference. IEEE transactions on pattern analysis
and machine intelligence.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watch-
ing movies and reading books. arXiv preprint
arXiv:1506.06724.

167

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 168–176
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Machine Translation of Restaurant Reviews:
New Corpus for Domain Adaptation and Robustness

Alexandre Bérard Ioan Calapodescu Marc Dymetman
Claude Roux Jean-Luc Meunier Vassilina Nikoulina

Naver Labs Europe
firstname.lastname@naverlabs.com

Abstract
We share a French-English parallel corpus of
Foursquare restaurant reviews, and define a
new task to encourage research on Neural Ma-
chine Translation robustness and domain adap-
tation, in a real-world scenario where better-
quality MT would be greatly beneficial. We
discuss the challenges of such user-generated
content, and train good baseline models that
build upon the latest techniques for MT robust-
ness. We also perform an extensive evaluation
(automatic and human) that shows significant
improvements over existing online systems. Fi-
nally, we propose task-specific metrics based
on sentiment analysis or translation accuracy
of domain-specific polysemous words.

1 Introduction
Very detailed information about social venues such
as restaurants is available from user-generated re-
views in applications like Google Maps, TripAd-
visor or Foursquare1 (4SQ). Most of these reviews
are written in the local language and are not di-
rectly exploitable by foreign visitors: an analysis of
the 4SQ database shows that, in Paris, only 49% of
the restaurants have at least one review in English,
and the situation can be much worse for other cities
and languages (e.g., only 1% of Seoul restaurants
for a French-only speaker).

Machine Translation of such user-generated
content can improve the situation and make the
data available for direct display or for down-
stream NLP tasks (e.g., cross-lingual information
retrieval, sentiment analysis, spam or fake review
detection), provided its quality is sufficient.

We asked professionals to translate 11.5k French
4SQ reviews (18k sentences) to English. We be-
lieve that this resource2 will be valuable to the

1https://foursquare.com/
2https://europe.naverlabs.com/

research/natural-language-processing/
machine-translation-of-restaurant-reviews/

community for training and evaluating MT systems
addressing challenges posed by user-generated
content, which we discuss in detail in this paper.

We conduct extensive experiments and combine
techniques that address these challenges (e.g., fac-
tored case, noise generation, domain adaptation
with tags) on top of a strong Transformer baseline.
In addition to BLEU evaluation and human evalua-
tion, we use targeted metrics that measure how well
polysemous words are translated, or how well sen-
timents expressed in the original review can still be
recovered from its translation.

2 Related work

Translating restaurant reviews written by casual
customers presents several challenges for NMT, in
particular robustness to non-standard language and
adaptation to a specific style or domain (see Sec-
tion 3.2 for details).

Concerning robustness to noisy user generated
content, Michel and Neubig (2018) stress differ-
ences with traditional domain adaptation prob-
lems, and propose a typology of errors, many of
which we also detected in the 4SQ data. They also
released a dataset (MTNT), whose sources were
selected from a social media (Reddit) on the ba-
sis of being especially noisy (see Appendix for a
comparison with 4SQ). These sources were then
translated by humans to produce a parallel corpus
that can be used to engineer more robust NMT sys-
tems and to evaluate them. This corpus was the
basis of the WMT 2019 MT Robustness Task (Li
et al., 2019), in which Berard et al. (2019) ranked
first. We use the same set of robustness and do-
main adaptation techniques, which we study more
in depth and apply to our review translation task.

Sperber et al. (2017), Belinkov and Bisk (2018)
and Karpukhin et al. (2019) propose to improve
robustness by training models on data-augmented

168

https://www.aclweb.org/anthology/D19-56%2d

corpora, containing noisy sources obtained by ran-
dom word or character deletions, insertions, substi-
tutions or swaps. Recently, Vaibhav et al. (2019)
proposed to use a similar technique along with
noise generation through replacement of a clean
source by one obtained by back-translation.

We employ several well-known domain adapta-
tion techniques: back-translation of large monolin-
gual corpora close to the domain (Sennrich et al.,
2016b; Edunov et al., 2018), fine-tuning with in-
domain parallel data (Luong and Manning, 2015;
Freitag and Al-Onaizan, 2016; Servan et al., 2016),
domain tags for knowledge transfer between do-
mains (Kobus et al., 2017; Berard et al., 2019).

Addressing the technical issues of robustness
and adaptation of an NMT system is decisive for
real-world deployment, but evaluation is also crit-
ical. This aspect is stressed by Levin et al. (2017)
(NMT of curated hotel descriptions), who point out
that automatic metrics like BLEU tend to neglect
semantic differences that have a small textual foot-
print, but may be seriously misleading in practice,
for instance by interpreting available parking as if
it meant free parking. To mitigate this, we conduct
additional evaluations of our models: human eval-
uation, translation accuracy of polysemous words,
and indirect evaluation with sentiment analysis.

3 Task description
We present a new task of restaurant review trans-
lation, which combines domain adaptation and ro-
bustness challenges.

3.1 Corpus description
We sampled 11.5k French reviews from 4SQ,
mostly in the food category,3 split them into sen-
tences (18k), and grouped them into train, valid
and test sets (see Table 1). The French reviews
contain on average 1.5 sentences and 17.9 words.
Then, we hired eight professional translators to
translate them to English. Two of them cre-
ated the training set by post-editing (PE) the out-
puts of baseline NMT systems.4 The other six
translated the valid and test sets from scratch.
They were asked to translate (or post-edit) the re-
views sentence-by-sentence (to avoid any align-
ment problem), but they could see the full con-

3https://developer.foursquare.com/docs/
resources/categories

4ConvS2S or Transformer Big trained on the “UGC” cor-
pus described in Section 6, without domain adaptation or ro-
bustness tricks.

Corpus Sentences Reviews Words (FR)
4SQ-PE 12 080 8 004 141 958
4SQ-HT 2 784 1 625 29 075
4SQ-valid 1 243 765 13 976
4SQ-test 1 838 1 157 21 525

Table 1: 4SQ corpora. 4SQ-PE is the training set. 4SQ-
HT is not used in this work.

text. We manually filtered the test set to remove
translations that were not satisfactory. The full re-
views and additional metadata (e.g., location and
type of the restaurant) are also available as part of
this resource, to encourage research on contextual
machine translation. 4SQ-HT was translated from
scratch by the same translators who post-edited
4SQ-PE. While we did not use it in this work, it
can be used as extra training or development data.
We also release a human translation of the French-
language test set (668 sentences) of the Aspect-
Based Sentiment Analysis task at SemEval 2016
(Pontiki et al., 2016).

3.2 Challenges
Translating restaurant reviews presents two main
challenges compared to common tasks in MT.
First, the reviews are written in a casual style, close
to spoken language. Some liberty is taken w.r.t.
spelling, grammar, and punctuation. Slang is also
very frequent. MT should be robust to these vari-
ations. Second, they generally are reactions, by
clients of a restaurant, about its food quality, ser-
vice or atmosphere, with specific words relating to
these aspects or sentiments. These require some
degree of domain adaptation. The following table
illustrates these issues, with outputs from an online
MT system. Examples of full reviews from 4SQ-
PE along with metadata are shown in Appendix.

(1)
é qd g vu sa ... (source)
and when I saw that ... (reference)
é qd g seen his ... (online MT)

(2)
c’est trooop bon !
it’s toooo good!
it’s good trooop!

(3)
le cadre est nul
the setting is lousy
the frame is null

(4)
le garçon a pété un cable
the waiter went crazy
the boy farted a cable

(5)
pizza nickel, tres bonnes pattes
great pizza, very good pasta
nickel pizza, very good legs

169

Examples 1 and 2 fall into the robustness cat-
egory: 1 is an extreme form of SMS-like, quasi-
phonetic, language (et quand j’ai vu ça); 2 is a lit-
eral transcription of a long-vowel phonetic stress
(trop → trooop). Example 3 falls into the domain
category: in a restaurant context, cadre typically
refers to the setting. Examples 4 and 5 involve both
robustness and domain adaptation: pété un cable is
a non-compositional slang expression and garçon
is not a boy in this domain; nickel is slang for great,
très is missing an accent, and pâtes is misspelled as
pattes, which is another French word.

Regarding robustness, we found many of the
same errors listed by Michel and Neubig (2018)
as noise in social media text: SMS language (é
qd g vu sa), typos and phonetic spelling (pattes),
repeated letters (trooop, merciiii), slang (nickel,
bof, mdr), missing or wrong accents (tres), emoti-
cons (‘:-)’) and emojis (😉), missing punctua-
tion, wrong or non-standard capitalization (lower-
case proper names, capitalized words for empha-
sis). Regarding domain aspects, there are polyse-
mous words with typical specific meaning carte →
map, menu; cadre → frame, executive, setting), id-
iomatic expressions (à tomber par terre → to die
for), and venue-related named entities (La Boîte à
Sardines).

4 Robustness to noise

We propose solutions for dealing with non-
standard case, emoticons, emojis and other issues.

4.1 Rare character placeholder
We segment our training data into subwords with
BPE (Sennrich et al., 2016c), implemented in Sen-
tencePiece (Kudo and Richardson, 2018). BPE can
deal with rare or unseen words by splitting them
into more frequent subwords but cannot deal with
unseen characters.5 While this is not a problem in
most tasks, 4SQ contains a lot of emojis, and some-
times symbols in other scripts (e.g., Arabic). Uni-
code now defines around 3k emojis, most of which
are likely to be out-of-vocabulary.

We replace rare characters on both sides of the
training corpus by a placeholder (<x>); a model
trained on this data is typically able to copy the
placeholder at the correct position. Then, at in-
ference time, we replace the output tokens <x>
by the rare source-side characters, in the same or-

5Unless actually doing BPE at the byte level, as suggested
by Radford et al. (2019).

Uppercase Lowercase
Input UNE HONTE ! une honte !
Pre-proc UN E _H ON TE _! une _honte _!
MT output A _H ON E Y ! A _dis gra ce !
Post-proc A HONEY! A disgrace!

Table 2: Capital letters break NMT. BPE segmentation
and translation of capitalized or lowercase input.

der. This approach is similar to that of Jean et al.
(2015), who used the attention mechanism to re-
place output UNK symbols with the aligned word in
the source. Berard et al. (2019) used the same tech-
nique to deal with emojis in the WMT robustness
task.

4.2 Capital letters
As shown in Table 2, capital letters are another
source of confusion. HONTE and honte are con-
sidered as two different words. The former is
out-of-vocabulary and is split very aggressively by
BPE. This causes the MT model to hallucinate.

Lowercasing A solution is to lowercase the in-
put, both at training and at test time. However,
when doing so, some information may be lost (e.g.,
named entities, acronyms, emphasis) which may
result in lower translation quality.

Factored translation Levin et al. (2017) do fac-
tored machine translation (Sennrich and Haddow,
2016; Garcia-Martinez et al., 2016) where a word
and its case are split in two different features. For
instance, HONTE becomes honte + upper.

We implement this with two embedding matri-
ces, one for words and one for case, and repre-
sent a token as the sum of the embeddings of its
factors. For the target side, we follow Garcia-
Martinez et al. (2016) and have two softmax op-
erations. We first predict the word in its lowercase
form and then predict its case.6 The embeddings
of the case and word are then summed and used as
input for the next decoder step.

Inline casing Berard et al. (2019) propose an-
other approach, inline casing, which does not re-
quire any change in the model. We insert the case
as a regular token into the sequence right after the
word. Special tokens <U>, <L> and <T> (upper,
lower and title) are used for this purpose and ap-
pended to the vocabulary. Contrary to the previous

6Like the “dependency model” of Garcia-Martinez et al.
(2016), we use the current state of the decoder and the embed-
ding of the output word to predict its case.

170

solution, there is only one embedding matrix and
one softmax.

In practice, words are assumed to be lowercase
by default and the <L> tokens are dropped to keep
the factored sequences as short as possible. “Best
fries EVER” becomes “best <T> _f ries _ever
<U>”. Like Berard et al. (2019), we force Senten-
cePiece to split mixed-case words like MacDon-
alds into single-case subwords (Mac and Donalds).

Synthetic case noise Another solution that we
experiment with (see Section 6) is to inject noise
on the source side of the training data by changing
random source words to upper (5% chance), title
(10%) or lower case (20%).

4.3 Natural noise
One way to make an NMT system more robust is to
train it with some of the most common errors that
can be found in the in-domain data. Like Berard
et al. (2019), we detect the errors that occur nat-
urally in the in-domain data and then apply them
to our training corpus, while respecting their natu-
ral distribution. We call this “natural noise gen-
eration” in opposition to what is done in (Sper-
ber et al., 2017; Belinkov and Bisk, 2018; Vaibhav
et al., 2019) or in Section 4.2, where the noise is
more synthetic.

Detecting errors We compile a general-purpose
French lexicon as a transducer,7 implemented to be
traversed with extended edit distance flags, similar
to Mihov and Schulz (2004). Whenever a word is
not found in the lexicon (which means that it is a
potential spelling mistake), we look for a French
word in the lexicon within a maximum edit dis-
tance of 2, with the following set of edit operations:

(1) deletion (e.g., apelle instead of appelle)

(2) insertion (e.g., appercevoir instead of
apercevoir)

(3) constrained substitution on diacritics (e.g.,
mangè instead of mangé)

(4) swap counted as one operation: (e.g.,
mnager instead of manger)

(5) substitution (e.g., menger instead of
manger)

(6) repetitions (e.g., Merciiiii with a threshold
of max 10 repetitions)

We apply the transducer to the French monolin-
gual Foursquare data (close to 1M sentences) to
detect and count noisy variants of known French
words. This step produces a dictionary mapping

7In Tamgu: https://github.com/naver/tamgu

the correct spelling to the list of observed errors
and their respective frequencies.

In addition to automatically extracted spelling
errors, we extract a set of common abbreviations
from (Seddah et al., 2012) and we manually iden-
tify a list of common errors in French:

(7) Wrong verb endings (e.g., il a manger in-
stead of il a mangé)

(8) Wrong spacing around punctuation symbols
(e.g., Les.plats ... instead of Les plats...)

(9) Upper case/mixed case words (e.g., manQue
de place instead of manque de place)

(10) SMS language (e.g., bcp instead of beau-
coup)

(11) Phonetic spelling (e.g., sa instead of ça)

Generating errors With this dictionary, de-
scribing the real error distribution in 4SQ text, we
take our large out-of-domain training corpus, and
randomly replace source-side words with one of
their variants (rules 1 to 6), while respecting the
frequency of this variant in the real data. We also
manually define regular expressions to randomly
apply rules 7 to 11 (e.g., "er "→"é ").

We obtain a noisy parallel corpus (which we use
instead of the “clean” training data), where about
30% of all source sentences have been modified, as
shown below:

Error type Examples of sentences with injected noise

(1) (6) (9) L’Union eUropéene espere que la réunion
de suiviii entre le Président [...]

(2) (3) (10) Le Comité notte avec bcp d’interet k les
projets d’articles [...]

(4) (7) (8) Réunoin sur.la comptabiliter nationale [...]

5 Domain Adaptation
To adapt our models to the restaurant review do-
main we apply the following types of techniques:
back-translation of in-domain English data, fine-
tuning with small amounts of in-domain parallel
data, and domain tags.

5.1 Back-translation
Back-translation (BT) is a popular technique for
domain adaptation when large amounts of in-
domain monolingual data are available (Sennrich
et al., 2016b; Edunov et al., 2018). While our
in-domain parallel corpus is small (12k pairs),
Foursquare contains millions of English-language
reviews. Thus, we train an NMT model8 in the re-
verse direction (EN→FR) and translate all the 4SQ

8Like the “UGC” model with rare character handling and
inline case described in Section 6.3.

171

English reviews to French.9 This gives a large syn-
thetic parallel corpus.

This in-domain data is concatenated to the out-
of-domain parallel data and used for training.

Edunov et al. (2018) show that doing back-
translation with sampling instead of beam search
brings large improvements due to increased diver-
sity. Following this work, we test several settings:

Name Description

BT-B Back-translation with beam search.

BT-S Back-translation with sampling.

BT-S × 3 Three different FR samplings for each EN
sentence. This brings the size of the back-
translated 4SQ closer to the out-of-domain
corpus.

BT No oversampling, but we sample a new ver-
sion of the corpus for each training epoch.

We use a temperature10 of T = 1
0.9 to avoid the

extremely noisy output obtained with T = 1 and
strike a balance between quality and diversity.

5.2 Fine-tuning
When small amounts of in-domain parallel data are
available, fine-tuning (FT) is often the preferred
solution for domain adaptation (Luong and Man-
ning, 2015; Freitag and Al-Onaizan, 2016). It con-
sists in training a model on out-of-domain data,
and then continuing its training for a few epochs
on the in-domain data only.

5.3 Corpus tags
Kobus et al. (2017) propose a technique for multi-
domain NMT, which consists in inserting a to-
ken in each source sequence specifying its domain.
The system can learn the particularities of multiple
domains (e.g., polysemous words that have a dif-
ferent meaning depending on the domain), which
we can control at test time by manually setting the
tag. Sennrich et al. (2016a) also use tags to control
politeness in the model’s output.

As our corpus (see Section 6.1) is not clearly di-
vided into domains, we apply the same technique
as Kobus et al. (2017) but use corpus tags (each
sub-corpus has its own tag: TED, Paracrawl, etc.)
which we add to each source sequence. Like in
(Berard et al., 2019), the 4SQ post-edited and back-
translated data also get their own tags (PE and BT).

9This represents ≈15M sentences. This corpus is not
available publicly, but the Yelp dataset (https://www.
yelp.com/dataset) could be used instead.

10with p(wi) = exp(zi/T)∑|V |
k=1

exp(zk/T)

Corpus tag SRC: La carte est trop petite.

TED The map is too small.

Multi-UN The card is too small.

PE The menu is too small.

Figure 1: Example of ambiguous source sentence,
where using corpus tags help the model pick a more ad-
equate translation.

Corpus Lines Words (FR) Words (EN)
WMT 29.47M 1 003M 883.5M
UGC 51.39M 1 125M 1 041M

Table 3: Size of the WMT and UGC training corpora
(after filtering).

Figure 1 gives an example where using the PE cor-
pus tag at test time helps the model pick a more
adequate translation.

6 Experiments

6.1 Training data
After some initial work with the WMT 2014 data,
we built a new training corpus named UGC (User
Generated Content), closer to our domain, by
combining: Multi UN, OpenSubtitles, Wikipedia,
Books, Tatoeba, TED talks, ParaCrawl11 and
Gourmet12 (See Table 3). Notably, UGC does not
include Common Crawl (which contains a lot of
misaligned sentences and caused hallucinations),
but it includes OpenSubtitles (Lison and Tiede-
mann, 2016) (spoken-language, possibly closer to
4SQ). We observed an improvement of more than 1
BLEU on news-test 2014 when switching to UGC,
and almost 6 BLEU on 4SQ-valid.

6.2 Pre-processing
We use langid.py (Lui and Baldwin, 2012) to fil-
ter sentence pairs from UGC. We also remove du-
plicate sentence pairs, and lines longer than 175
words or with a length ratio greater than 1.5 (see
Table 3). Then we apply SentencePiece and our
rare character handling strategy (Section 4.1). We
use a joined BPE model of size 32k, trained on the
concatenation of both sides of the corpus, and set
SentencePiece’s vocabulary threshold to 100. Fi-
nally, unless stated otherwise, we always use the
inline casing approach (see Section 4.2).

11Corpora available at http://opus.nlpl.eu/
123k translations of dishes and other food terminology

http://www.gourmetpedia.eu/

172

6.3 Model and settings
For all experiments, we use the Transformer Big
(Vaswani et al., 2017) as implemented in Fairseq,
with the hyperparameters of Ott et al. (2018).
Training is done on 8 GPUs, with accumulated gra-
dients over 10 batches (Ott et al., 2018), and a max
batch size of 3500 tokens (per GPU). We train for
20 epochs, while saving a checkpoint every 2500
updates (≈ 2

5 epoch on UGC) and average the 5
best checkpoints according to their perplexity on a
validation set (a held-out subset of UGC).

For fine-tuning, we use a fixed learning rate, and
a total batch size of 3500 tokens (training on a
single GPU without delayed updates). To avoid
overfitting on 4SQ-PE, we do early stopping ac-
cording to perplexity on 4SQ-valid.13 For each
fine-tuned model we test all 16 combinations of
dropout in {0.1, 0.2, 0.3, 0.4} and learning rate in
{1, 2, 5, 10} × 10−5. We keep the model with the
best perplexity on 4SQ-valid.14

6.4 Evaluation methodology
During our work, we used BLEU (Papineni et al.,
2002) on news-valid (concatenation of news-test
2012 and 2013) to ensure that our models stayed
good on a more general domain, and on 4SQ-valid
to measure performance on the 4SQ domain.

For sake of brevity, we only give the final BLEU
scores on news-test 2014 and 4SQ-test. Scores on
4SQ-valid, and MTNT-test (for comparison with
Michel and Neubig, 2018; Berard et al., 2019) are
given in Appendix. We evaluate “detokenized”
MT outputs15 against raw (non-tokenized) refer-
ences using SacreBLEU (Post, 2018).16

In addition to BLEU, we do an indirect eval-
uation on an Aspect-Based Sentiment Analysis
(ABSA) task, a human evaluation, and a task-
related evaluation based on polysemous words.

6.5 BLEU evaluation
Capital letters Table 4 compares the case han-
dling techniques presented in Section 4.2. To
better evaluate the robustness of our models to
changes of case, we built 3 synthetic test sets from
4SQ-test, with the same target, but all source words
in upper, lower or title case.

13The best perplexity was achieved after 1 to 3 epochs.
14The best dropout rate was always 0.1, and the best learn-

ing rate was either 2 × 10−5 or 5 × 10−5.
15Outputs of our models are provided with the 4SQ corpus.
16SacreBLEU signature: BLEU+case.mixed+numrefs.1

+smooth.exp+tok.13a+version.1.2.10

Model BLEU Case insensitive BLEU
4SQ Upper Lower Title

Cased 31.78 16.02 32.42 26.67
LC to cased 30.91 33.09 33.09 33.09
Factored case 31.62 32.31 32.96 29.86
Inline case 31.55 31.08 32.63 29.61
Noised case 31.99 32.64 33.73 33.63
Table 4: Robustness to capital letters (see Section 4.2).
4SQ’s source side has been set to upper, lower or title
case. The first column is case sensitive BLEU. “LC to
cased” always gets the same scores because it is invari-
ant to source case.

Model news noised news 4SQ
UGC (Inline case) 40.68 35.59 31.55
+ natural noise 40.43 40.35 31.69
Table 5: Baseline model with or without natural noise
(see Section 4.3). Noised news is the same type of noise,
artificially applied to news-test.

Inline and factored case perform equally well,
significantly better than the default (cased) model,
especially on all-uppercase inputs. Lowercasing
the source is a good option, but gives a slightly
lower score on regular 4SQ-test.17 Finally, syn-
thetic case noise added to the source gives surpris-
ingly good results. It could also be combined with
factored or inline case.

Natural noise Table 5 compares the baseline
“inline case” model with the same model aug-
mented with natural noise (Section 4.3). Per-
formance is the same on 4SQ-test, but signifi-
cantly better on news-test artificially augmented
with 4SQ-like noise.

Domain adaptation Table 6 shows the results
of the back-translation (BT) techniques. Surpris-
ingly, BT with beam search (BT-B) deteriorates
BLEU scores on 4SQ-test, while BT with sampling
gives a consistent improvement. BLEU scores on
news-test are not significantly impacted, suggest-
ing that BT can be used for domain adaptation
without hurting quality on other domains.

Table 7 compares the domain adaptation tech-
niques presented in Section 5. We observe that:
1. Concatenating the small 4SQ-PE corpus to

the 50M general domain corpus does not help
much, unless using tags.

17The “LC to cased” and “Noised case” models are not able
to preserve capital letters for emphasis (as in Table 2), and the
“Cased” model often breaks on such examples.

173

Model news 4SQ
UGC (Inline case) 40.68 31.55
UGC ⊕ BT-B 40.56 30.17
UGC ⊕ BT-S 40.64 32.64
UGC ⊕ BT 40.84 32.69
UGC ⊕ BT-S × 3 40.63 32.84

Table 6: Comparison of different back-translation
schemes (see Section 5.1). ⊕ denotes the concatena-
tion of several training corpora.

Model Tag news 4SQ
UGC (Inline case) – 40.68 31.55
UGC ⊕ 4SQ-PE – 40.80 32.05
UGC + FT – 39.78 35.02

UGC ⊕ 4SQ-PE + tags – 40.71 32.12
PE 38.97 34.36

UGC ⊕ BT + tags – 40.67 33.47
BT 39.02 33.00

Table 7: Domain adaptation with 4SQ-PE fine-tuning
(FT) or corpus tags. The “tag” column represents the
corpus tag used at test time (if any).

2. 4SQ-PE + tags is not as good as fine-tuning
with 4SQ-PE. However, fine-tuned models get
slightly worse results on news.

3. Back-translation combined with tags gives a
large boost.18 The BT tag should not be used
at test time, as it degrades results.

4. Surprisingly, using no tag at test time works
fine, even though all training sentences had
tags.19

As shown in Table 8, these techniques can be
combined to achieve the best results. The nat-
ural noise does not have a significant effect on
BLEU scores. Back-translation combined with
fine-tuning gives the best performance on 4SQ
(+4.5 BLEU vs UGC). However, using tags instead
of fine-tuning strikes a better balance between gen-
eral domain and in-domain performance.

6.6 Targeted evaluation
In this section we propose two metrics that tar-
get specific aspects of translation adequacy: trans-
lation accuracy of domain-specific polysemous
words and Aspect-Based Sentiment Analysis per-
formance on MT outputs.

18Caswell et al. (2019); Berard et al. (2019) observed the
same thing.

19We tried keeping a small percentage of UGC with no tag,
or with an ANY tag, but this made no difference.

Model news 4SQ
WMT 39.37 26.26
UGC (Inline case) 40.68 31.55
Google Translate (Feb 2019) 36.31 29.63
DeepL (Feb 2019) ? 32.82
UGC ⊕ BT + FT 39.55 35.95
UGC ⊕ BT ⊕ PE + tags 40.99 35.72
Nat noise ⊕ BT + FT 39.91 36.35
Nat noise ⊕ BT ⊕ PE + tags 40.72 35.60

Table 8: Combination of several robustness or domain
adaptation techniques. At test time, we don’t use any tag
on news, and use the PE tag on 4SQ (when applicable).
BT: back-translation. PE: 4SQ-PE. FT: fine-tuning with
4SQ-PE. ⊕: concatenation.

French word Meanings
Cadre setting, frame, executive
Cuisine food, kitchen
Carte menu, card, map

Table 9: French polysemous words found in 4SQ, and
translation candidates in English. The most frequent
meanings in 4SQ are underlined.

Translation of polysemous words We propose
to count polysemous words specific to our domain,
similarly to (Lala and Specia, 2018), to measure
the degree of domain adaptation. TER between the
translation hypotheses and the post-edited refer-
ences in 4SQ-PE reveals the most common substi-
tutions (e.g., “card” is often replaced with “menu”,
suggesting that “card” is a common mistranslation
of the polysemous word “carte”). We filter this list
manually to only keep words that are polysemous
and that have a high frequency in the test set. Ta-
ble 9 gives the 3 most frequent ones.20

Table 10 shows the accuracy of our models when
translating these words. We see that the domain-
adapted model is better at translating domain-
specific polysemous words.

Indirect evaluation with sentiment analysis
We also measure adequacy by how well the trans-
lation preserves the polarity of the sentence re-
garding various aspects. To evaluate this, we per-
form an indirect evaluation on the SemEval 2016
Aspect-Based Sentiment Analysis (ABSA) task
(Pontiki et al., 2016). We use our internal ABSA
systems trained on English or French SemEval

20Rarer ones are: adresse (place, address), café (coffee,
café), entrée (starter, entrance), formule (menu, formula),
long (slow, long), moyen (average, medium), correct (decent,
right), brasserie (brasserie, brewery) and coin (local, corner).

174

Model cadre cuisine carte Total
Total (source) 23 32 29 100%
WMT 13 17 14 52%
UGC (Inline case) 22 27 18 80%
UGC ⊕ PE + tags 23 31 29 99%
Table 10: Number of correct translations for difficult
polysemous words in 4SQ-test by different models. The
first row is the number of source sentences that contain
this word. Other domain-adapted models (e.g., “UGC
+ FT” or “UGC ⊕ BT”) also get ≈ 99% accuracy.

ABSA Model Aspect Polarity
ABSA French 64.7 83.2
ABSA English 59.5 72.1

ABSA English on MT outputs
WMT 54.5 66.1
UGC (Inline case) 58.1 70.7
UGC ⊕ BT ⊕ PE + tags 60.2 72.0
Nat noise ⊕ BT ⊕ PE + tags 60.8 73.3

Table 11: Indirect evaluation with Aspect-Based Senti-
ment Analysis (accuracy in %). ABSA French: ABSA
model trained on French data and applied to the Se-
mEval 2016 French test set; ABSA English: trained on
English data and applied to human translations of the
test set; ABSA English on MT outputs: applied to MT
outputs instead of human translations.

2016 data. The evaluation is done on the SemEval
2016 French test set: either the original version
(ABSA French), or its translation (ABSA English).
As shown in Table 11, translations obtained with
domain-adapted models lead to significantly better
scores on the ABSA task than the generic models.

6.7 Human Evaluation
We conduct a human evaluation to confirm the ob-
servations with BLEU and to overcome some of
the limitations of this metric.

We select 4 MT models for evaluation (see Ta-
ble 12) and show their 4 outputs at once, sentence-
by-sentence, to human judges, who are asked to
rank them given the French source sentence in con-
text (with the full review). For each pair of models,
we count the number of wins, ties and losses, and
apply the Wilcoxon signed-rank test.

We took the first 300 test sentences to create 6
tasks of 50 sentences each. Then we asked bilin-
gual colleagues to rank the output of 4 models by
their translation quality. They were asked to do
one or more of these tasks. The judge did not
know about the list of models, nor the model that
produced any given translation. We got 12 an-

Pairs Win Tie Loss
Tags ≈ Tags + noise 82 453 63
Tags ≫ Baseline 187 337 74
Tags ≫ GT 226 302 70
Tags + noise ≫ Baseline 178 232 97
Tags + noise ≫ GT 218 315 65
Baseline ≫ GT 173 302 123

Table 12: In-house human evaluation (“≫” means bet-
ter with p ≤ 0.05). The 4 models Baseline, GT, Tags
and Tags + noise correspond respectively to rows 2
(UGC with inline case), 3 (Google Translate), 6 (Com-
bination of BT, PE and tags) and 8 (Same as 6 with
natural noise) in Table 8.

swers. The inter-judge Kappa coefficient ranged
from 0.29 to 0.63, with an average of 0.47, which
is a good value given the difficulty of the task. Ta-
ble 12 gives the results of the evaluation, which
confirm our observations with BLEU.

We also did a larger-scale monolingual eval-
uation using Amazon Mechanical Turk (see Ap-
pendix), which lead to similar conclusions.

7 Conclusion
We presented a new parallel corpus of user re-
views of restaurants, which we think will be valu-
able to the community. We proposed combinations
of multiple techniques for robustness and domain
adaptation, which address particular challenges of
this new task. We also performed an extensive
evaluation to measure the improvements brought
by these techniques.

According to BLEU, the best single technique
for domain adaptation is fine-tuning. Corpus tags
also achieve good results, without degrading per-
formance on a general domain. Back-translation
helps, but only with sampling or tags. The robust-
ness techniques (natural noise, factored case, rare
character placeholder) do not improve BLEU.

While our models are promising, they still show
serious errors when applied to user-generated con-
tent: missing negations, hallucinations, unrecog-
nized named entities, insensitivity to context.21

This suggests that this task is far from solved.
We hope that this corpus, our natural noise dic-

tionary, model outputs and human rankings will
help better understand and address these prob-
lems. We also plan to investigate these problems
on lower resource languages, where we expect the
task to be even harder.

21See additional examples in Appendix.

175

References
Yonatan Belinkov and Yonatan Bisk. 2018. Syn-

thetic and Natural Noise Both Break Neural Machine
Translation. In ICLR.

Alexandre Berard, Calapodescu Ioan, and Claude
Roux. 2019. NAVER LABS Europe’s Systems for
the WMT19 Machine Translation Robustness Task.
In WMT.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged Back-Translation. In WMT.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding Back-Translation at
Scale. In EMNLP.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast Do-
main Adaptation for Neural Machine Translation.
arXiv.

Mercedes Garcia-Martinez, Loic Barrault, and Fethi
Bougares. 2016. Factored Neural Machine Transla-
tion. arXiv.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On Using Very Large
Target Vocabulary for Neural Machine Translation.
NAACL-HLT.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on Synthetic
Noise Improves Robustness to Natural Noise in Ma-
chine Translation. arXiv.

Catherine Kobus, Josep Crego, and Jean Senellart.
2017. Domain Control for Neural Machine Trans-
lation. In RANLP.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In EMNLP.

Chiraag Lala and Lucia Specia. 2018. Multimodal lex-
ical translation. In LREC.

Pavel Levin, Nishikant Dhanuka, Talaat Khalil, Fedor
Kovalev, and Maxim Khalilov. 2017. Toward a full-
scale neural machine translation in production: the
Booking.com use case. In MT Summit XVI.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir K. Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan M. Pino, and
Hassan Sajjad. 2019. Findings of the First Shared
Task on Machine Translation Robustness. In WMT.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting Large Parallel Corpora from
Movie and TV Subtitles. In LREC.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
Off-the-shelf Language Identification Tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
ACL.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford Neural Machine Translation Systems
for Spoken Language Domain. In IWSLT.

Paul Michel and Graham Neubig. 2018. MTNT: A
Testbed for Machine Translation of Noisy Text. In

EMNLP.
Stoyan Mihov and Klaus U. Schulz. 2004. Fast Approx-

imate Search in Large Dictionaries. Computational
Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling Neural Machine Translation. In
WMT.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wj Zhu. 2002. BLEU: a Method for Automatic Eval-
uation of Machine Translation. In ACL.

Maria Pontiki, Dimitris Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, Mo-
hammed AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Veronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Núria Bel,
Salud Maria Jiménez-Zafra, and Gülşen Eryiğit.
2016. SemEval-2016 Task 5: Aspect Based Senti-
ment Analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. In WMT.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Djamé Seddah, Benoît Sagot, Marie Candito, Virginie
Mouilleron, and Vanessa Combet. 2012. Build-
ing a treebank of noisy user-generated content: The
French Social Media Bank. In The 11th Interna-
tional Workshop on Treebanks and Linguistic The-
ories (TLT).

Rico Sennrich and Barry Haddow. 2016. Linguistic In-
put Features Improve Neural Machine Translation.
In WMT.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling Politeness in Neural Machine
Translation via Side Constraints. In NAACL-HLT.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving Neural Machine Translation
Models with Monolingual Data. In ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016c. Neural Machine Translation of Rare Words
with Subword Units. In ACL.

Christophe Servan, Josep Crego, and Jean Senel-
lart. 2016. Domain specialization: a post-training
domain adaptation for neural machine translation.
arXiv.

Matthias Sperber, Jan Niehues, and Alex Waibel.
2017. Toward Robust Neural Machine Translation
for Noisy Input Sequences. In IWSLT.

Vaibhav, Sumeet Singh, Craig Stewart, and Graham
Neubig. 2019. Improving Robustness of Machine
Translation with Synthetic Noise. In NAACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NIPS.

176

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 177–186
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Adaptively Scheduled Multitask Learning:
The Case of Low-Resource Neural Machine Translation

Poorya Zaremoodi1,2 Gholamreza Haffari1
1Monash University, Melbourne, Australia

2CSIRO Data61, Sydney, Australia
first.last@monash.edu

Abstract

Neural Machine Translation (NMT), a data-
hungry technology, suffers from the lack of
bilingual data in low-resource scenarios. Mul-
titask learning (MTL) can alleviate this is-
sue by injecting inductive biases into NMT,
using auxiliary syntactic and semantic tasks.
However, an effective training schedule is re-
quired to balance the importance of tasks to
get the best use of the training signal. The
role of training schedule becomes even more
crucial in biased-MTL where the goal is to
improve one (or a subset) of tasks the most,
e.g. translation quality. Current approaches
for biased-MTL are based on brittle hand-
engineered heuristics that require trial and er-
ror, and should be (re-)designed for each learn-
ing scenario. To the best of our knowledge,
ours is the first work on adaptively and dy-
namically changing the training schedule in
biased-MTL. We propose a rigorous approach
for automatically reweighing the training data
of the main and auxiliary tasks throughout
the training process based on their contribu-
tions to the generalisability of the main NMT
task. Our experiments on translating from En-
glish to Vietnamese/Turkish/Spanish show im-
provements of up to +1.2 BLEU points, com-
pared to strong baselines. Additionally, our
analyses shed light on the dynamic of needs
throughout the training of NMT: from syntax
to semantic.

1 Introduction

While Neural Machine Translation (NMT) is
known for its ability to learn end-to-end with-
out any need for many brittle design choices
and hand-engineered features, it is notorious for
its demand for large amounts of bilingual data
to achieve reasonable translation quality (Koehn
and Knowles, 2017). Recent work has investi-
gated multitask learning (MTL) for injecting in-
ductive biases from auxiliary syntactic and/or se-

0

0.05

0.1

0.15

0.2

0.25

20
0

60
0
10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Av
er

ag
e

W
ei

gh
t

Training iteration

Adaptive vs Fixed schedules

Adaptive-Semantic
Adaptive-Syntactic
Adaptive-NER
Fixed-schedule

Figure 1: The dynamic in the relative importance of
named entity recognition, syntactic parsing, and se-
mantic parsing as the auxiliary tasks for the main ma-
chine translation task (based on our experiments in §3).
The plot shows our proposed adaptive scheduling vs
fixed scheduling (Kiperwasser and Ballesteros, 2018)
(scaled down for better illustration).

mantic tasks into NMT to improve its generali-
sation (Zaremoodi and Haffari, 2018; Zaremoodi
et al., 2018; Kiperwasser and Ballesteros, 2018).

The majority of the MTL literature has focused
on investigating how to share common knowledge
among the tasks through tying their parameters
and joint training using standard algorithms. How-
ever, a big challenge of MTL is how to get the best
signal from the tasks by changing their importance
in the training process aka training schedule; see
Figure 1.

Crucially, a proper training schedule would
encourage positive transfer and prevent negative
transfer, as the inductive biases of the auxiliary
tasks may interfere with those of the main task
leading to degradation of generalisation capabili-
ties. Most of the works on training schedule fo-
cus on general MTL where the goal is to im-
prove the performance of all tasks. They are
based on addressing the imbalance in task dif-
ficulties and co-evolve easy and difficult tasks
uniformly (performance-wise). These methods

177

https://www.aclweb.org/anthology/D19-56%2d

achieve competitive performance with existing
single-task models of each task, and not necessar-
ily much better performance (Chen et al., 2018;
Guo et al., 2018b). On the other hand, biased-MTL
focuses on the main task to achieve higher im-
provements on it. (Zaremoodi and Haffari, 2018)
has proposed a fixed training schedule to balance
out the importance of the main NMT task vs auxil-
iary task to improve NMT the most. (Kiperwasser
and Ballesteros, 2018) has shown the effective-
ness of a changing training schedule through the
MTL process. However, their approach is based
on hand-engineered heuristics, and should be (re-
)designed and fine-tuned for every change in tasks
or even training data.

In this paper, for the first time to the best of
our knowledge, we propose a method to adap-
tively and dynamically set the importance weights
of tasks for biased-MTL. By using influence func-
tions from robust statistics (Cook and Weisberg,
1980; Koh and Liang, 2017), we adaptively exam-
ine the influence of training instances inside mini-
batches of the tasks on the generalisation capabil-
ities on the main task. The generalisation is mea-
sured as the performance of the main task on a
validation set, separated from the training set, in
each parameter update step dynamically. In this
paper, we consider translation as the main task
along with syntactic and semantic auxiliary tasks,
and re-weight instances in such a way to max-
imise the performance of the translation task. As
our method is general and does not rely on hand-
engineered heuristics, it can be used for effective
learning of multitask architectures beyond NMT.

We evaluate our method on translating from En-
glish to Vietnamese/Turkish/Spanish, with auxil-
iary tasks including syntactic parsing, semantic
parsing, and named entity recognition. Compared
to strong training schedule baselines, our method
achieves considerable improvements in terms of
BLEU score. Additionally, our analyses on the
weights assigned by the proposed training sched-
ule show that although the dynamic of weights are
different for different language pairs, the underly-
ing pattern is gradually altering tasks importance
from syntactic to semantic-related tasks.

In summary, our main contributions to MTL and
low-resource NMT are as follows:

• We propose an effective training schedule for
biased-MTL that adaptively and dynamically
set the importance of tasks throughout the

training to improve the main task the most.

• We extensively evaluate on three language
pairs, and experimental results show that
our model outperforms the hand-engineered
heuristics.

• We present an analysis to better understand
and shed light on the dynamic of needs of an
NMT model during training: from syntax to
semantic.

2 Learning to Reweigh Mini-Batches

Suppose we are given a set of a main task along
with K − 1 auxiliary tasks, each of which with its
own training set {(x(k)

i ,y
(k)
i)}Nk

i=1. In multitask
formulation, parameters are learned by maximis-
ing the log-likelihood objective:

argmax
Θmtl

K∑

k=1

Nk∑

i=1

w
(k)
i logPΘmtl

(y
(k)
i |x

(k)
i).

Without loss of generality, let us assume we
use minibatch-based stochastic gradient descent
(SGD) to train the parameters of the multitask ar-
chitecture. In standard multitask learning w(k)

i is
set to 1, assuming all of the tasks and their train-
ing instances have the same importance. Con-
ceptually, these weights provide a mechanism to
control the influence of the data instances from
auxiliary tasks in order to maximise the bene-
fit in the generalisation capabilities of the main
task. Recently, (Zaremoodi and Haffari, 2018;
Kiperwasser and Ballesteros, 2018) have proposed
hand-engineered heuristics to set the importance
weights and change them dynamically throughout
the training process, e.g., iterations of the stochas-
tic gradient descent (SGD). However, there is no
guarantee that these fixed schedules give rise to
learning the best inductive biases from the auxil-
iary tasks for the main task.

Our main idea is to determine the importance
weights w(k)

i for each training instance based on
its contribution to the generalisation capabilities
of the MTL architecture for machine translation,
measured on a validation set Dval separated from
the training set. As shown in Figure 2, at each
parameter update iteration for the MTL architec-
ture, the MTL training mini-batch is the concate-
nation of single mini-batches from all MTL tasks.
We then assign an Adaptive Importance Weight

178

Translation Syntactic
Parsing

Semantic
Parsing

Adaptive
Importance Weights

Multi-Task NMT

Figure 2: High-level idea for training an MTL architec-
ture using adaptive importance weights (AIWs). Here,
translation is the main task along with syntactic and se-
mantic parsing as auxiliary linguistic tasks.

(AIW) to each training instance in the MTL mini-
batch, regardless from the task which they come
from. In the experiments of §3, we will see that
our proposed method automatically finds interest-
ing patterns in how to best make use of the data
from the auxiliary and main tasks, e.g. it starts by
assigning higher weights (on average) to syntactic
parsing which is then shifted to semantic parsing.

More specifically, we learn the AIWs based on
the following optimisation problem:

argmin
ŵww
−
∑

(x,y)∈Dval

logPΘ̂mtl(ŵww)(x|y) (1)

Θ̂mtl(ŵww) := Θ
(t)
mtl + (2)

η

K∑

k=1

|b(k)|∑

i=1

ŵ
(k)
i ∇ logP

Θ
(t)
mtl

(y
(k)
i |x

(k)
i)

where ŵ(k)
i is the raw weight of the ith training

instance in the mini-batch b(k) of the kth task,
Θ̂mtl is the resulting parameter in case SGD up-
date rule is applied on the current parameters Θ(t)

mtl

using instances weighted by ŵww. Following (Ren
et al., 2018), we zero out negative raw weights,
and then normalise them with respect to the other
instances in the MTL training mini-batch to obtain

the AIWs: w(k)
i =

w̃
(k)
i∑

k′
∑

i′ w̃
(k′)
i′

where w̃(k)
i =

ReLU(ŵ
(k)
i).

In the preliminary experiments, we observed
that using w(k)

i as AIW does not perform well. We

Algorithm 1 Adaptively Scheduled Multitask
Learning

1: while t=0 ... T-1 do
2: b(1), .., b(K) ← SampleMB(D(1), ..,D(K))

3: b(val) ← SampleMB(D(val))

. Step 1: Update model with initialised

weights

4: `
(k)
i ← − logPΘt

mtl
(y

(k)
i |x

(k)
i) . Forward

5: ŵ
(k)
i,0 ← 0 . Initialise weights

6: Ltrn ←
∑K

k=1

∑|b(k)|
i=1 ŵ

(k)
i,0 `

(k)
i

7: gtrn ← Backward(Ltrn,Θt
mtl)

8: Θ̂t
mtl = Θt

mtl + ηgtrn

. Step 2: Calculate loss of the updated model

on validation MB

9: Lval = −
∑|bval|

i=1 logPΘ̂t
mtl

(yi|xi)
. Step 3: Calculate raw weights.

10: gval ← Backward(Lval, ŵ(k)
0)

11: ŵ(k) = gval

. Step 4: Normalise weights to get AIWs

12: w̃
(k)
i = ReLU(ŵ

(k)
i)

13: w
(k)
i =

w̃
(k)
i∑

k′
∑

i′ w̃
(k′)
i′

+ 1

. Step 5: Update MTL with AIWs

14: L̂trn ←
∑K

k=1

∑|b(k)|
i=1 w

(k)
i `

(k)
i

15: ĝtrn ← Backward(L̂trn,Θt
mtl)

16: Θt+1
mtl = Θt

mtl + ηĝtrn

17: end while

speculate that a small validation set does not pro-
vide a good estimation of the generalisation, hence
influence of the training instances. This is exacer-
bated as we approximate the validation set by only
one of its mini-batches for the computational effi-
ciency. Therefore, we hypothesise that the com-
puted weights should not be regarded as the final
verdict for the usefulness of the training instances.
Instead, we regarded them as rewards for enhanc-
ing the training signals of instances that lead to a
lower loss on the validation set. Hence, we use
1+w

(k)
i as our AIWs in the experiments. The full

algorithm is in Algorithm 1.

Implementation Details. As exactly solving the
optimisation problem in Eq. (1) is challenging,
we resort to an approximation and consider the
raw weights as the gradient of the validation loss

179

(3
) b

ac
kw

ar
d

ov
er

 b
ac

kw
ar

d

 Multi-
Task
NMT

 Multi-
Task
NMT

 Multi-
Task
NMT(1

) F
or

w
ar

d

(2
) b

ac
kw

ar
d

Figure 3: Computation graph of the proposed method for adaptively determining weights.

wrt the training instances’ weights around zero.
This is a notion called influence in robust statistics
(Cook and Weisberg, 1980; Koh and Liang, 2017).

More concretely, let us define the loss function
L(Θ̂mtl) := −∑|bval|

i=1 logPΘ̂mtl
(yi|xi), where

bval is a minibatch from the validation set. The
training instances’ raw weights, i.e. influences, are
then calculated using the chain rule:

ŵww = ∇ŵ0L(Θ̂mtl(ŵ0))
∣∣∣
ŵ0=000

= ∇Θ̂mtl
L(Θ̂mtl)

∣∣∣
Θ̂mtl=Θ

(t)
mtl

· ∇ŵ0Θ̂mtl(ŵ0)
∣∣∣
ŵ0=000

The last term∇ŵ0
Θ̂mtl involves backpropagation

through Θ̂mtl wrt ŵ0, which according to Eq. (2),
involves an inner backpropagation wrt Θmtl. The
computation graph is depicted in Figure 3.

3 Experiments

3.1 Bilingual Corpora
We use three language-pairs, translating from En-
glish to Vietnamese (Vi), Turkish (Tr) and Span-
ish (Es). We have chosen them to analyse the
effect of adaptive mini-batch weighting on lan-
guages with different underlying linguistic struc-
tures. The structure of Vietnamese and Span-
ish is generally subject-verb-object (SVO) while
Turkish follows subject-object-verb (SOV) struc-
ture. Although Spanish is not a low-resource lan-
guage we have chosen it because of available ac-
curate POS taggers and Named-Entity recognisers
required for some of the analyses. For each pair,
we use BPE (Sennrich et al., 2016) with 40K types
on the union of the source and target vocabularies.
We use the Moses toolkit (Koehn et al., 2007) to

filter out pairs where the number of tokens is more
than 250 and pairs with a source/target length ratio
higher than 1.5. For fair comparison, we add the
Val data used in the AIW-based approach to the
training set of the competing baselines.

• English-Vietnamese: we use the prepro-
cessed version of IWSLT 2015 corpus (Cet-
tolo et al., 2015) provided by (Luong and
Manning, 2015). It consists of about 133K
training pairs from the subtitles of TED and
TEDx talks and their translations. We use
”tst2013” as the test set and ”tst2012” is
divided and used as validation and meta-
validation sets (with the ratio 2 to 1).

• English-Turkish: we use WMT parallel cor-
pus (Bojar et al., 2016) with about 200K
training pairs gathered from news articles.
”newstest2016”, ”newstest2017” and ”new-
stest2018” parts are used as validation, meta-
validation and test set.

• English-Spanish: we have used the first 150K
training pairs of Europarl corpus (Koehn,
2005). ”newstest2011”, ”newstest2012” and
”newstest2013” parts are used as validation,
meta-validation and test set, respectively.

3.2 Auxiliary tasks
Following (Zaremoodi and Haffari, 2018), we
have chosen following auxiliary tasks to inject
the syntactic and semantic knowledge to improve
NMT:

• Named-Entity Recognition (NER): we use
CONLL shared task1 data. This dataset is

1https://www.clips.uantwerpen.be/conll2003/ner

180

En→Vi En→Tr En→Es
BLEU BLEU BLEU METEOR

Dev Test Dev Test Dev Test Dev Test
MT only 22.83 24.15 8.55 8.5 14.49 13.44 31.3 31.1
MTL with Fixed Schedule

+ Uniform 23.10 24.81 9.14 8.94 12.81 12.12 29.6 29.5
+ Biased (Constant)†‡ 23.42 25.22 10.06 9.53 15.14 14.11 31.8 31.3
+ Exponential‡ 23.45 25.65 9.62 9.12 12.25 11.62 28.0 28.1
+ Sigmoid‡ 23.35 25.36 9.55 9.01 11.55 11.34 26.6 26.9

MTL with Adaptive Schedule
+ Biased + AIW 23.95 25.75 10.67 10.25 11.23 10.66 27.5 27.4
+ Uniform + AIW 24.38 26.68 11.03 10.81 16.05 14.95 33.0 32.5

Table 1: Results for three language pairs. ”+ AIW” indicates Adaptive Importance Weighting is used in training.
†: Proposed in (Zaremoodi and Haffari, 2018), ‡: Proposed in (Kiperwasser and Ballesteros, 2018).

consists of a collection of newswire articles
from the Reuters Corpus.

• Syntactic Parsing: we use Penn TreeBank
parsing with the standard split (Marcheggiani
and Titov, 2017). This task is casted to
SEQ2SEQ transduction by linearising con-
stituency trees (Vinyals et al., 2015)

• Semantic Parsing: we use Abstract Meaning
Representation (AMR) corpus Release 2.02

linearised by the method proposed in (Kon-
stas et al., 2017). This corpus is gathered
from from newswire, weblogs, web discus-
sion forums and broadcast conversations.

3.3 MTL architecture and training schedule

Since partial-sharing has been shown to be more
effective than full sharing (Liu et al., 2017; Guo
et al., 2018a; Zaremoodi and Haffari, 2018), we
use the MTL architecture proposed in (Zaremoodi
and Haffari, 2018). We use three stacked LSTM
layers in encoders and decoders. For En→Vi
and En→Tr, one/two layer(s) are shared among
encoders/decoders while for En→Es, two/one
layer(s) are shared among encoders/decoders. The
LSTM dimensions, batch size and dropout are set
to 512, 32 and 0.3, respectively. We use Adam
optimiser (Kingma and Ba, 2014) with the learn-
ing rate of 0.001. We train models for 25 epochs
and save the best model based on the perplexity
on the validation (Val) set. We have implemented
the methods using PyTorch on top of OpenNMT
(Klein et al., 2017).

2https://catalog.ldc.upenn.edu/LDC2017T10

Fixed hand-engineered schedule baselines.
We use different MTL scheduling strategies
where at each update iteration:

• Uniform: Selects a random mini-batch from
all of the tasks;

• Biased (Zaremoodi and Haffari, 2018): Se-
lects a random mini-batch from the transla-
tion task (bias towards the main task) and an-
other one for a randomly selected task.

We also use schedules proposed in (Kiper-
wasser and Ballesteros, 2018). They consider a
slope parameter3 α and the fraction of training
epochs done so far t = sents/||corpus||. The
schedules determine the probability of selecting
each of the tasks as the source of the next train-
ing pair. In each of these schedules the probability
of selecting the main task is:

• Constant: Pm(t) = α; When α is set to 0.5,
it is similar to the Biased schedule we have
seen before.

• Exponential: Pm(t) = 1 − e−αt; In this
schedule the probability of selecting the main
task increases exponentially throughout the
training.

• Sigmoid: Pm(t) =
1

1 + e−αt
; Similar to the

previous schedule, the probability of select-
ing the main task increases, following a sig-
moid function.

In each of these schedules, the rest of the proba-
bility is uniformly divided among the remaining

3Following their experiments, we set α to 0.5.

181

tasks. By using them, a mini-batch can have train-
ing pairs from different tasks which makes it in-
efficient for partially shared MTL models. Hence,
we modified these schedules to select the source
of the next training mini-batch.

Combination of Adaptive and Fixed schedules
As mentioned in Section 2, we assign an AIW
to each training instance inside mini-batches of
all tasks, i.e. applying AIWs on top of Uniform
schedule. Additionally, we also apply it on top
of Biased schedule to analyse the effect of the
combination of AIWs (for instances) and a hand-
engineered heuristic (for mini-batch selection).

3.4 Results and Analysis

Table 1 reports the results for baselines and the
proposed method4. As seen, our method has
made better use of the auxiliary tasks and achieved
the highest performance (see Section 3.4 for an
analysis of the generated translations). It shows
that while some of the heuristic-based schedules
are beneficial, our proposed Adaptive Importance
Weighting approach outperforms them. There rea-
sons are likely that the hand-engineered strategies
do not consider the state of the model, and they do
not distinguish among the auxiliary tasks.

It is interesting to see that the Biased schedule
is beneficial for standard MTL, while it is harm-
ful when combined with the AIWs. The stan-
dard MTL is not able to select training signals on-
demand, and using a biased heuristic strategy im-
proves it. However, our weighting method can se-
lectively filter out training signals; hence, it is bet-
ter to provide all of the training signals and leave
the selection to the AIWs.

Analysis on how/when auxiliary tasks have
been used? This analysis aims to shed light on
how AIWs control the contribution of each task
through the training. As seen, our method has the
best result when it is combined with the Uniform
MTL schedule. In this schedule, at each update it-
eration, we have one mini-batch from each of the
tasks, and AIWs are determined for all of the train-
ing pairs in these mini-batches. For this analysis,
we divided the training into 200 update iteration
chunks. In each chunk, we compute the average
weights assigned to the training pairs of each task.

4METEOR score (Denkowski and Lavie, 2014) is re-
ported only for Spanish as it is the only target languages in
our experiments which is supported by it.

Figure 1 shows the results of this analysis for
the MTL model trained with En→Vi as the main
task. and Figure 4 shows the results of this analy-
sis for En→Es and En→Tr. Also, it can be seen
that at the beginning of the training the Adap-
tive Importance Weighting mechanism gradually
increases the training signals which come from the
auxiliary tasks. However, after reaching a certain
point in the training, it will gradually reduce the
auxiliary training signals to concentrate more on
the adaptation to the main task. It can be seen that
the weighting mechanism distinguishes the impor-
tance of auxiliary tasks. More interestingly, it can
be seen that for the English→Turkish, the contri-
bution of NER task is more than the syntactic pars-
ing while for the other languages we have seen the
reverse. It shows that our method can adaptively
determine the contribution of the tasks by consid-
ering the demand of the main translation task.

As seen, it gives more weight to the syntac-
tic tasks at the beginning of the training while it
gradually reduces their contribution and increases
the involvement of the semantics-related task. We
speculate the reason is that at the beginning of
the training, the model requires more lower-level
linguistic knowledge (e.g. syntactic parsing and
NER) while over time, the needs of model grad-
ually change to higher-level linguistic knowledge
(e.g. semantic parsing).

Analysis of The Effect of Auxiliary Tasks on
The Generated Translations In this analysis,
we want to take a deeper look at the generated
translations and see how the proposed method im-
proved the quality of the translations. More specif-
ically, we want to compare the number of words in
the gold translations which are missed in the gen-
erated translations produced by the following sys-
tems: (i) MT only; (ii) MTL-Biased; (iii) MTL-
Uniform + AIW. To find out what kind of knowl-
edge is missed in the process of generating the
translations, we categorised words by their Part-
of-Speech tags and named-entities types. We have
done this analysis on En→Es language pair as
there are accurate annotators for the Spanish lan-
guage. We use Stanford POS tagger (Toutanova
et al., 2003) and named-entity recogniser (Finkel
et al., 2005) to annotate Spanish gold translations.
Then, we categorised the missed words in the
generated translations concerning these tags, and
count the number of missed words in each cat-
egory. Figure 5 depicts the result. As seen in

182

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Auxiliary tasks Translation

(a) Translation task (En→Es) vs. auxiliary tasks.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Semantic Parsing Syntactic Parsing Named-Entity Recognition

(b) Auxiliary tasks vs. each other.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Auxiliary tasks Translation

(c) Translation task (En→Tr) vs. auxiliary tasks.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

62
00

66
00

70
00

74
00

78
00

82
00

86
00

90
00

94
00

98
00

Semantic Parsing Syntactic Parsing Named-Entity Recognition

(d) Auxiliary tasks vs. each other.

Figure 4: Weights assigned to the training pairs of different tasks (averaged over 200 update iteration chunks).
Y-axis shows the average weight and X-axis shows the number of update iteration. In the top figures, the main
translation task is English→Spanish while in the bottom ones it is English→Turkish.

Figure 5a, the knowledge learned from auxiliary
tasks helps the MTL model to miss less number
of named-entities during translation. Moreover,
AIWs help the MTL model further by making bet-
ter use of the knowledge conveyed in the auxiliary
tasks. We can see the same pattern for the POS
of missed words. As seen, for most POS cate-
gories, the standard MTL has missed less number
of words in comparison with the MT only base-
line. Furthermore, our method helps the MTL
model to miss even less amount of words in every
of the POS categories (specifically in Noun and
Preposition categories). We speculate the reason
is that the AIWs makes it possible to control the
contribution of each of the auxiliary tasks sepa-
rately and taking into account the demand of the
model at each stage of the training procedure.

4 Related Work

Multitask learning (Caruana, 1997) has been used
for various NLP problems, e.g. machine trans-
lation (Dong et al., 2015), dependency parsing
(Peng et al., 2017), key-phrase boundary classi-
fication (Augenstein and Søgaard, 2017), video

captioning (Pasunuru and Bansal, 2017), Chinese
word segmentation, and text classification prob-
lem (Liu et al., 2017). For the case of low-resource
NMT, (Niehues and Cho, 2017) has explored the
use of part-of-speech and named-entity recogni-
tion in improving NMT. (Kiperwasser and Balles-
teros, 2018) has investigated part-of-speech tag-
ging and dependency parsing tasks, and (Zare-
moodi et al., 2018; Zaremoodi and Haffari, 2018)
have tried syntactic parsing, semantic parsing, and
named-entity recognition tasks.

The current research on MTL is focused on en-
couraging positive transfer and preventing the neg-
ative transfer phenomena in two lines of research:
(1) Architecture design: works in this area try
to learn effective parameter sharing among tasks
(Ruder et al., 2017; Zaremoodi et al., 2018); (2)
Training schedule: works in this area, including
ours, focus on setting the importance of tasks.

Training schedule is the beating heart of MTL,
and has a critical role in the performance of the
resulted model. Since there are more than one
task involved in MTL, the performance is mea-
sured differently in different MTL flavours: (1)

183

200

300

400

500

600

700

800

900

1000

1100

1200

OTROS ORG PERS LUG

MT MTL-Biased MTL-Uniform + AIW

(a) Named-Entities

0

2000

4000

6000

8000

10000

12000

14000

Adjecti
ve

s

Conjuncti
ons

Determ
iners

Punctu
ati

on
Nouns

Pronouns

Adverbs

Preposit
ions

Verbs
Dates

Numerals

MT MTL-Biased MTL-Uniform + AIW

(b) Part-of-Speech tags

Figure 5: The number of words in the gold English→Spanish translation which are missed in the generated trans-
lations (lower is better). Missed words are categorised by their tags (Part-of-Speech and named-entity types).

general-MTL aims to improve performance of all
tasks; (2) biased-MTL aims to improve one (or
a subset) of tasks the most. Training schedules
designed for the global-MTL are focused on co-
evolving easy and difficult tasks uniformly. These
methods are designed to achieve competitive per-
formance with existing single-task models of each
task (Chen et al., 2018; Guo et al., 2018b). On the
other hand, training schedules for biased-MTL fo-
cus on achieving higher improvements on the main
task, and our method belongs to this category.

Training schedules can be fixed/dynamic
throughout the training and be hand-
engineered/adaptive. (Zaremoodi and Haffari,
2018) has made use of a fixed hand-engineered
schedule for improving low-resource NMT with
auxiliary linguistic tasks. Recently, (Guo et al.,
2019) has proposed an adaptive way to compute
the importance weights of tasks. Instead of
manual tuning of importance weights via a large
grid search, they model the performance of each
set of weights as a sample from a Gaussian
Process (GP), and search for optimal values. In
fact, their method is not completely adaptive as a
strong prior needs to be set for the main task. This
method can be seen as a guided yet computation-
ally exhaustive trial-and-error where in each trial,
MTL models need to be re-trained (from scratch)
with the sampled weights. Moreover, the weight
of tasks are fixed throughout the training. At least,
for the case of low-resource NMT, it has been
shown that dynamically changing the weights
throughout the training is essential to make better
use of auxiliary tasks (Kiperwasser and Balles-
teros, 2018). (Kiperwasser and Ballesteros, 2018)
has proposed hand-engineered training schedules

for MTL in NMT, where they dynamically change
the importance of the main task vs the auxiliary
tasks throughout the training process. While
their method relies on hand-engineered schedules
which should be tuned by trial-and-error, our
proposed method adaptively and dynamically sets
the importance of the tasks and learn the MTL
model in the course of a single training run.

5 Conclusions

This paper presents a rigorous approach for adap-
tively and dynamically changing the training
schedule in biased-MTL to make the best use of
auxiliary tasks. To balance the importance of
the auxiliary tasks vs. the main task, we re-
weight training data of tasks to adjust their con-
tributions to the generalisation capabilities of the
resulted model on the main task. In this paper,
we consider low-resource translation as the main
task along with syntactic and semantic auxiliary
tasks. Our experimental results on English to Viet-
namese/Turkish/Spanish show up to +1.2 BLEU
score improvement compared to strong baselines.
Additionally, the analyses show that the proposed
method automatically finds a schedule which puts
more importance to the auxiliary syntactic tasks at
the beginning while gradually it alters the impor-
tance toward the auxiliary semantic task. As this
method does not rely on hand-engineered heuris-
tics, as a future work, we want to apply it for ef-
fective learning of multitask architectures beyond
NMT.

Acknowledgement

This work is supported by CSIRO Data61 through
a PhD Fellowship to P. Z., and by an Amazon Re-

184

search Award to G. H. This work is partly spon-
sored by DARPA through the contract no FA8750-
19-2-0501. The views and conclusions contained
herein are those of the authors and should not
be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed
or implied, of DARPA or the US government.
This work was supported by the Multi-modal
Australian ScienceS Imaging and Visualisation
Environment (MASSIVE) (www.massive.org.au)
through computational infrastructure. We would
like to thank anonymous reviewers for their in-
sightful comments.

References
Isabelle Augenstein and Anders Søgaard. 2017. Multi-

task learning of keyphrase boundary classification.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 341–
346.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of
the 2016 conference on machine translation. In
ACL 2016 First Conference On Machine Transla-
tion (WMT16), pages 131–198. The Association for
Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The iwslt 2015 evaluation campaign. In
IWSLT 2015, International Workshop on Spoken
Language Translation.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International Conference on
Machine Learning, pages 793–802.

R Dennis Cook and Sanford Weisberg. 1980. Char-
acterizations of an empirical influence function for
detecting influential cases in regression. Technomet-
rics, 22(4):495–508.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics,
pages 363–370.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2018a. Soft layer-specific multi-task summarization
with entailment and question generation. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 687–697.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2019. Autosem: Automatic task selection and mix-
ing in multi-task learning. CoRR, abs/1904.04153.

Michelle Guo, Albert Haque, De-An Huang, Serena
Yeung, and Li Fei-Fei. 2018b. Dynamic task priori-
tization for multitask learning. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 270–287.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to
translation. Transactions of the Association for
Computational Linguistics, 6:225–240.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics on Interactive
Poster and Demonstration Sessions, pages 177–180.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions.
In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1885–1894.
JMLR. org.

185

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pages
146–157.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics,
pages 1–10.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation systems
for spoken language domain. In International Work-
shop on Spoken Language Translation, Da Nang,
Vietnam.

Diego Marcheggiani and Ivan Titov. 2017. En-
coding sentences with graph convolutional net-
works for semantic role labeling. arXiv preprint
arXiv:1703.04826.

Jan Niehues and Eunah Cho. 2017. Exploiting linguis-
tic resources for neural machine translation using
multi-task learning. In Proceedings of the Second
Conference on Machine Translation, pages 80–89.

Ramakanth Pasunuru and Mohit Bansal. 2017. Multi-
task video captioning with video and entailment
generation. In Proceedings of ACL.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International Conference
on Machine Learning, pages 4331–4340.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks.
arXiv preprint arXiv:1705.08142.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 conference of the North
American chapter of the association for computa-
tional linguistics on human language technology-
volume 1, pages 173–180.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2773–2781.

Poorya Zaremoodi, Wray L. Buntine, and Gholam-
reza Haffari. 2018. Adaptive knowledge sharing in
multi-task learning: Improving low-resource neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics,, pages 656–661.

Poorya Zaremoodi and Gholamreza Haffari. 2018.
Neural machine translation for bilingually scarce
scenarios: a deep multi-task learning approach. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1356–1365.

186

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 187–193
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

On the Importance of Word Boundaries
in Character-level Neural Machine Translation

Duygu Ataman*
University of Trento

Fondazione Bruno Kessler
ataman@fbk.eu

Orhan Fırat
Google AI

orhanf@google.com

Mattia A. Di Gangi
University of Trento

Fondazione Bruno Kessler
digangi@fbk.eu

Marcello Federico
Amazon AI

marcfede@amazon.com

Alexandra Birch
University of Edinburgh
a.birch@ed.ac.uk

Abstract

Neural Machine Translation (NMT) models
generally perform translation using a fixed-
size lexical vocabulary, which is an important
bottleneck on their generalization capability
and overall translation quality. The standard
approach to overcome this limitation is to seg-
ment words into subword units, typically using
some external tools with arbitrary heuristics,
resulting in vocabulary units not optimized
for the translation task. Recent studies
have shown that the same approach can be
extended to perform NMT directly at the level
of characters, which can deliver translation
accuracy on-par with subword-based models,
on the other hand, this requires relatively
deeper networks. In this paper, we propose
a more computationally-efficient solution
for character-level NMT which implements
a hierarchical decoding architecture where
translations are subsequently generated at the
level of words and characters. We evaluate
different methods for open-vocabulary NMT
in the machine translation task from English
into five languages with distinct morpholog-
ical typology, and show that the hierarchical
decoding model can reach higher translation
accuracy than the subword-level NMT model
using significantly fewer parameters, while
demonstrating better capacity in learning
longer-distance contextual and grammatical
dependencies than the standard character-level
NMT model.

*Work done while the first author was a visiting post-
graduate research student at the University of Edinburgh and
prior to joining Amazon.

1 Introduction
Neural Machine Translation (NMT) models are typically
trained using a fixed-size lexical vocabulary. In addition to
controlling the computational load, this limitation also serves
to maintain better distributed representations for the most fre-
quent set of words included in the vocabulary. On the other
hand, rare words in the long tail of the lexical distribution are
often discarded during translation since they are not found
in the vocabulary. The prominent approach to overcome this
limitation is to segment words into subword units (Sennrich
et al., 2016) and perform translation based on a vocabulary
composed of these units. However, subword segmentation
methods generally rely on statistical heuristics that lack any
linguistic notion. Moreover, they are typically deployed as a
pre-processing step before training the NMT model, hence,
the predicted set of subword units are essentially not op-
timized for the translation task. Recently, (Cherry et al.,
2018) extended the approach of NMT based on subword units
to implement the translation model directly at the level of
characters, which could reach comparable performance to
the subword-based model, although this would require much
larger networks which may be more difficult to train. The
major reason to this requirement may lie behind the fact that
treating the characters as individual tokens at the same level
and processing the input sequences in linear time increases
the difficulty of the learning task, where translation would
then be modeled as a mapping between the characters in two
languages. The increased sequence lengths due to process-
ing sentences as sequences of characters also augments the
computational cost, and a possible limitation, since sequence
models typically have limited capacity in remembering long-
distance context.

In many languages, words are the core atomic units of
semantic and syntactic structure, and their explicit model-
ing should be beneficial in learning distributed representa-
tions for translation. There have been early studies in NMT
which proposed to perform translation at the level of char-
acters while also regarding the word boundaries in the trans-
lation model through a hierarchical decoding procedure, al-
though these approaches were generally deployed through
hybrid systems, either as a back-off solution to translate un-
known words (Luong and Manning, 2016), or as pre-trained
components (Ling et al., 2015). In this paper, we explore
the benefit of achieving character-level NMT by processing
sentences at multi-level dynamic time steps defined by the
word boundaries, integrating a notion of explicit hierarchy
into the decoder. In our model, all word representations are
learned compositionally from character embeddings using bi-

187

https://www.aclweb.org/anthology/D19-56%2d

directional recurrent neural networks (bi-RNNs) (Schuster
and Paliwal, 1997), and decoding is performed by generat-
ing each word character by character based on the predicted
word representation through a hierarchical beam search algo-
rithm which takes advantage of the hierarchical architecture
while generating translations.

We present the results of an extensive evaluation com-
paring conventional approaches for open-vocabulary NMT
in the machine translation task from English into five
morphologically-rich languages, where each language be-
longs to a different language family and has a distinct mor-
phological typology. Our findings show that using the hierar-
chical decoding approach, the NMT models are able to obtain
higher translation accuracy than the subword-based NMT
models in many languages while using significantly fewer
parameters, where the character-based models implemented
with the same computational complexity may still struggle to
reach comparable performance. Our analysis also shows that
explicit modeling of word boundaries in character-level NMT
is advantageous for capturing longer-term contextual depen-
dencies and generalizing to morphological variations in the
target language.

2 Neural Machine Translation
In this paper, we use recurrent NMT architectures based on
the model developed by Bahdanau et al. (Bahdanau et al.,
2014). The model essentially estimates the conditional prob-
ability of translating a source sequence x “ px1, x2, . . . xmq
into a target sequence y “ py1, y2, . . . ynq, using the decom-
position

ppy|xq “
nź

j“1

ppyj |yăj , xm, .., x1q (1)

where yăj is the target sentence history defined by the se-
quence ty1...yj´1u.

The inputs of the network are one-hot vectors representing
the tokens in the source sentence, which are binary vectors
with a single bit set to 1 to identify a specific token in the
vocabulary. Each one-hot vector is then mapped to a dense
continuous representation, i.e. an embedding, of the source
tokens via a look-up table. The representation of the source
sequence is computed using a multi-layer bi-RNN, also re-
ferred as the encoder, which maps x into m dense vectors
corresponding to the hidden states of the last bi-RNN layer
updated in response to the input token embeddings.

The generation of the translation of the source sentence
is called decoding, and it is conventionally implemented in
an auto-regressive mode, where each token in the target sen-
tence is generated based on an sequential classification pro-
cedure defined over the target token vocabulary. In this de-
coding architecture, a unidirectional recurrent neural network
(RNN) predicts the most likely output token yi in the target
sequence using an approximate search algorithm based on the
previous target token yi´1, represented with the embedding
of the previous token in the target sequence, the previous de-
coder hidden state, representing the sequence history, and the
current attention context in the source sequence, represented
by the context vector ct. The latter is a linear combination
of the encoder hidden states, whose weights are dynamically
computed by a dot product based similarity metric called the
attention model (Luong et al., 2015).

The probability of generating each target word yi is esti-
mated via a softmax function

ppyi “ zj |x; θq “ ez
T
j oi

řK
k“1 e

zT
k
oi

(2)

where zj is the jth one-hot vector of the target vocabu-
lary of size K, and oi is the decoder output vector for the ith

target word yi. The model is trained by maximizing the log-
likelihood of a parallel training set via stochastic gradient-
descent (Bottou, 2010), where the gradients are computed
with the back propagation through time (Werbos, 1990) al-
gorithm.

Due to the softmax function in Equation 2, the size of the
target vocabulary plays an important role in defining the com-
putational complexity of the model. In the standard architec-
ture, the embedding matrices account for the vast majority
of the network parameters, thus, the amount of embeddings
that could be learned and stored efficiently needs to be lim-
ited. Moreover, for many words corresponding to the long tail
of the lexical distribution, the model fails in learning accu-
rate embeddings, as they are rarely observed in varying con-
text, leading the model vocabulary to typically include the
most frequent set of words in the target language. This cre-
ates an important bottleneck over the vocabulary coverage of
the model, which is especially crucial when translating into
low-resource and morphologically-rich languages, which of-
ten have a high level of sparsity in the lexical distribution.

The standard approach to overcome this limitation has
now become applying a statistical segmentation algorithm on
the training corpus which splits words into smaller and more
frequent subword units, and building the model vocabulary
composed of these units. The translation problem is then
modeled as a mapping between sequences of subword units
in the source and target languages (Sennrich et al., 2016; ?;
Ataman et al., 2017). The most popular statistical segmen-
tation method is Byte-Pair Encoding (BPE) (Sennrich et al.,
2016), which finds the optimal description of a corpus vo-
cabulary by iteratively merging the most frequent character
sequences. One problem related to the subword-based NMT
approach is that segmentation methods are typically imple-
mented as pre-processing steps to NMT, thus, they are not
optimized simultaneously with the translation task in an end-
to-end fashion. This can lead to morphological errors at dif-
ferent levels, and cause loss of semantic or syntactic infor-
mation (Ataman et al., 2017), due to the ambiguity in sub-
word embeddings. In fact, recent studies have shown that
the same approach can be extended to implement the NMT
model directly at the level of characters, which could allevi-
ate potential morphological errors due to subword segmenta-
tion. Although character-level NMT models have shown the
potential to obtain comparable performance with subword-
based NMT models, this would require increasing the compu-
tational cost of the model, defined by the network parameters
(Kreutzer and Sokolov, 2018; Cherry et al., 2018). As given
in Figure 1a implementing the NMT decoder directly at the
level of characters leads to repetitive passes over the attention
mechanism and the RNNs modeling the target language for
each character in the sentence. Since the distributed repre-
sentations of characters are shared among different word and
sentence-level context, the translation task requires a network
with high capacity to learn this vastly dynamic context.

3 Hierarchical Decoding
In this paper, we explore the benefit of integrating a notion of
hierarchy into the decoding architecture which could increase
the computational efficiency in character-level NMT, follow-
ing the work of (Luong and Manning, 2016). In this architec-
ture, the input embedding layer of the decoder is augmented
with a character-level bi-RNN, which estimates a composi-
tion function over the embeddings of the characters in each
word in order to compute the distributed representations of
target words.

Given a bi-RNN with a forward (f) and backward (b)
layer, the word representation w of a token of t characters

188

(a)

(b)

Figure 1: (a) Hierarchical NMT decoder: input words are encoded as character sequences and the translation is
predicted at the level of words. The output words are generated as character sequences. (b) Character-level NMT
decoder: the next token in the sentence is predicted by computing the attention weights and the target context
repetitively for each character in the sentence.

is computed from the hidden states ht
f and h0

b , i.e. the final
outputs of the forward and backward RNNs, as follows:

w “Wfh
t
f `Wbh

0
b ` b (3)

where Wf and Wb are weight matrices associated to each
RNN and b is a bias vector. The embeddings of charac-
ters and the parameters of the word composition layer are
jointly learned while training the NMT model. Since all tar-
get word representations are computed compositionally, the
hierarchical decoding approach eliminates the necessity of
storing word embeddings, significantly reducing the number
of parameters.

Each word in the target sentence is predicted by an RNN
operating at the level of words, using the compositional target
word representations, target sentence history and the context
vector computed by the attention mechanism only in the be-
ginning of a new word generation. Instead of classifying the
predicted target word in the vocabulary, its distributed rep-
resentation is fed to a character-level RNN to generate the
surface form of the word one character at a time by modeling
the probability of observing the kth character of the jth word
with length l, ppyj,k|yăj , yj,ăkq, given the previous words in
the sequence and the previous characters in the word.

The translation probability is then decomposed as:

ppy|xq “
nź

j“1

lź

k“1

ppyj,k|yj,ăk, yăj , xămq (4)

Similar to (Luong and Manning, 2016), the information
necessary to generate the surface form is encoded into the
attentional vector ĥt:

ĥt “ tanhpW rct;htsq (5)

where ht is the hidden state of the word-level RNN represent-
ing the current target context. The attentional vector is used
to initialize the character RNN, and after the generation of
the first character in the word, character decoding continues
in an auto-regressive mode, where the embedding of the each
character is fed to the RNN to predict the next character in the
word. The decoder consecutively iterates over the words and
characters in the target sentence, where each RNN is updated
at dynamic time steps based on the word boundaries.

4 Hierarchical Beam Search

function HierarhicalBeamSearch(Hyp,Best,t)
NewHyp Ð ()
for all (seq,score,state) in Hyp do:

(chars,logpr, ˆstate) Ð CharRNNFwd(tail(seq), state)
for all (c,lp) in (characters,logpr) do:
hyp=[append(seq,c),score+lp, ˆstate]
if (IsSolution(hyp) and
hyp.score ą Best.score)
then Best=hyp
else Push(NewHyp,hyp)

NewHyp Ð Prune(NewHyp,Best)
NewHyp Ð TopB(NewHyp)
NewHyp.state Ð WordRNNFwd(NewHyp)
if (NewHyp)

return BeamSearch(NewHyp,Best,t+1)
else return Best

Algorithm 1: Hierarchical beam search algo-
rithm.

189

Model BLEU Avg. Num.
AR CS DE IT TR Params

Subwords 14.27 16.60 24.29 26.23 8.52 22M
Characters 12.72 16.94 22.23 24.33 10.63 7.3M

Hierarchical 15.55 16.79 23.91 26.64 9.74 7.3M

Table 1: Results of the evaluation of models in translating languages with different morphological typology using
the IWSLT data sets. The average number of parameters are calculated only for the decoders of the NMT models
at a resolution of millions (M). The best scores for each translation direction are in bold font. All improvements
over the baselines are statistically significant (p-value ă 0.01).

Figure 2: Lexical sparsity and average sentence lengths in different languages.

In order to achieve efficient decoding with the hierarchical
NMT decoder, we implement a hierarchical beam search al-
gorithm. Similar to the standard algorithm, the beam search
starts by predicting the B most likely characters and storing
them in a character beam along with their probabilities. The
beams are reset each time the generation of a word is com-
plete and the B most likely words are used to update the
hidden states of the word-level RNN, which are fed to the
character RNN to continue the beam search. When the beam
search is complete, the most likely character sequence is gen-
erated as the best hypothesis.

5 Experiments
We evaluate decoding architectures using different levels of
granularity in the vocabulary units and the attention mech-
anism, including the standard decoding architecture imple-
mented either with subword (Sennrich et al., 2016) or fully
character-level (Cherry et al., 2018) units, which constitute
the baseline approaches, and the hierarchical decoding archi-
tecture, by implementing all in Pytorch (Paszke et al., 2017)
within the OpenNMT-py framework (Klein et al., 2017). In
order to evaluate how each generative method performs in
languages with different morphological typology, we model
the machine translation task from English into five languages
from different language families and exhibiting distinct mor-
phological typology: Arabic (templatic), Czech (mostly fu-
sional, partially agglutinative), German (fusional), Italian
(fusional) and Turkish (agglutinative). We use the TED Talks
corpora (Cettolo, 2012) for training the NMT models, which
range from 110K to 240K sentences, and the official devel-
opment and test sets from IWSLT1 (Cettolo et al., 2017). The
low-resource settings for the training data allows us to exam-
ine the quality of the internal representations learned by each
decoder under high data sparseness. In order to evaluate how

1The International Workshop on Spoken Language Trans-
lation.

the performance of each method scales with increasing data
size, we evaluate the models also by training with a multi-
domain training data using the public data sets from WMT2

(Bojar et al., 2016) in the English-to-German direction, fol-
lowed by an analysis on each model’s capability in generaliz-
ing to morphological variations in the target language, using
the Morpheval (Burlot et al., 2018) evaluation sets.

All models are implemented using gated recurrent units
(GRU) (Cho et al., 2014) with the same number of parame-
ters. The hierarchical decoding model implements a 3-layer
GRU architecture, which is compared with a character-level
decoder which also uses a 3-layer stacked GRU architecture.
The subword-level decoder has a 2-layer stacked GRU ar-
chitecture, to account also for the larger number of embed-
ding parameters. The models using the standard architec-
ture have the attention mechanism after the first GRU layer,
and have residual connections after the second layer (Barone
et al., 2017). The hierarchical decoder implements the at-
tention mechanism after the second layer and has a residual
connection between the first and second layers.

The source sides of the data used for training character-
level NMT models are segmented using BPE with 16,000
merge rules on the IWSLT data, and 32,000 on WMT. For
subword-based models we learn shared merging rules for
BPE for 16,000 (in IWSLT) and 32,000 (in WMT) units.
The models use an embedding and hidden unit size of 512
under low-resource (IWSLT) and 1024 under high-resource
(WMT) settings, and are trained using the Adam (Kinga and
Ba, 2015) optimizer with a learning rate of 0.0003 and decay
of 0.5, batch size of 100 and a dropout of 0.2. Decoding in
all models is performed with a beam size of 5. The accuracy
of each output is measured in terms of the BLEU metric (Pa-
pineni et al., 2002) and the significance of the improvements
are measured using bootstrap hypothesis testing (Clark et al.,
2011).

2The Conference on Machine Translation, with shared
task organized for news translation.

190

Variation Chars Subwords Hier.
Paradigm contrast features

Positive vs. comparative adjective 71.4 68.4 70.1
Present vs. future tense 85.7 92.0 90.6

Negation 97.8 97.0 94.8
Singular vs. plural noun 88.2 88.8 88.6

Present vs. past tense 92.0 93.3 95.4
Compound generation 60.2 65.4 57.8

Indicative vs. conditional mode 86.4 88.2 92.3
Average 83.1 84.7 84.2

Agreement features
Pronoun vs. Nouns (gender) 96.5 97.4 98.8
Pronoun vs. Nouns (number) 95.4 96.0 93.4

Pronoun (plural) 88.6 94.3 92.2
Pronoun (relative-gender) 74.2 76.4 78.9
Pronoun (relative-number) 84.2 90.2 87.0

Positive vs. superlative adjective 76.2 68.2 80.4
Simple vs. coordinated verbs (number) 96.4 93.4 97.2
Simple vs. coordinated verbs (person) 92.3 92.8 93.5
Simple vs. coordinated verbs (tense) 82.4 86.0 90.2

Average 87.4 88.3 90.17

Table 2: Results of the evaluation of models in capturing morphological variations in the output using the Morphe-
val English-German test set. The accuracy is measured with the percentage of correctly captured morphological
contrasts. The best scores for each translation direction are in bold font.

6 Results

The results of the experiments given in Table 1 show that
the hierarchical decoder can reach performance comparable
to or better than the NMT model based on subword units in
all languages while using almost three times less number of
parameters. The improvements are especially evident in Ara-
bic and Turkish, languages with the most complex morphol-
ogy, where the accuracy with the hierarchical decoder is 1.28
and 1.22 BLEU points higher, respectively, and comparable
in Czech, Italian and German, which represent the fusional
languages. In Czech, the hierarchical model outperforms the
subword-based model by 0.19 BLEU and in Italian by 0.41
BLEU points. The subword-based NMT model achieves the
best performance in German, a language that is rich in com-
pounding, where explicit subword segmentation might allow
learning better representations for translation units.

The fully character-level NMT model, on the other hand,
obtains higher translation accuracy than the hierarchical
model in Turkish, with an improvement of 0.91 BLEU, and
in Czech with 0.15 BLEU points. As can be seen in the statis-
tical characteristics of the training sets illustrated by plotting
the token-to-type ratios in each language (Figure 2), these two
directions constitute the most sparse settings, where Turkish
has the highest amount of sparsity in the benchmark, followed
by Czech, and the improvements seem to be proportional to
the amount of sparsity in the language. This suggests that
in case of high lexical sparsity, learning to translate based on
representations of characters might aid in reducing contextual
sparsity, allowing to learn better distributed representations.
As the training data size increases, one would expect the like-
lihood of observing rare words to decrease, especially in lan-
guages with low morphological complexity, along with the
significance of representing rare and unseen words (Cherry

Model newstest15
Subwords 22.71
Characters 20.34

Hierarchical 22.19

Table 3: Experiment results in the English-to-German
direction with WMT data sets. Translation accuracy is
measured with BLEU. Best scores are in bold font.

et al., 2018). Our results support this hypothesis, where de-
creasing lexical sparsity, either in the form of the training data
size, or the morphological complexity of the target language,
eliminates the advantage of character-level translation. In
Arabic and Italian, where the training data is almost twice as
large as the other languages, using the hierarchical model pro-
vides improvements of 2.83 and 2.31 BLEU points over the
character-level NMT model. In German, the fully character-
level NMT model still achieves the lowest accuracy, with 2.06
BLEU points below the subword-based model. This might be
due to the increased level of contextual ambiguity leading to
difficulty in learning reliable character embeddings when the
model is trained over larger corpora. Another factor which
might affect the lower performance of character-level models
is the average sentence lengths, which are much longer com-
pared to the sentence lengths resulting from with subword
segmentation (Figure 2).

In the experiments conducted in the English-to-German
translation direction, the results of which are given in Table
3, accuracy obtained with the hierarchical and subword-based
NMT decoders significantly increase with the extension of

191

Input when a friend of mine told me that I needed to
see this great video about a guy protesting bicycle fines

in New York City, I admit I wasn’t very interested.
Output bir arkadaşım New York’ta bisiklet protestosunu

Subword-based protesto etmek için bu filmi izlemeye
Decoder ihtiyacım olduğunu söylemişti.
Output bana bir arkadaşım bana New York’ta bir adam ile ilgili

Character-based bir adam hakkında görmem gereken bir adam hakkında
Decoder görmem gerektiğini söyledi.
Output bir arkadaşım New York’ta bisiklet yapmaya

Hierarchical ihtiyacım olduğunu söylediği zaman,
Decoder kabul ettim.

Reference bir arkadaşım New York şehrindeki bisiklet cezalarını protesto
eden bir adamın bu harika videosunu izlemem gerektiğini
söylediğinde, kabul etmeliyim ki çok da ilgilenmemiştim.

Table 4: Example translations with different approaches in Turkish

the training data, where the subword-based model obtains the
best accuracy, followed by the hierarchical model, and the
character-level NMT model obtains significantly lower accu-
racy compared to both approaches. Studies have shown that
character-level NMT models could potentially reach the same
performance with the subword-based NMT models (Cherry
et al., 2018), although this might require increasing the ca-
pacity of the network. On the other hand, the consistency in
the accuracy obtained using the hierarchical decoding model
from low to mid resource settings suggests that explicit mod-
eling of word boundaries aids in achieving a more efficient
solution to character-level translation.

Since solely relying on BLEU scores may not be sufficient
in understanding the generative properties of different NMT
models, we perform an additional evaluation in order to as-
sess the capacity of models in learning syntactic or morpho-
logical dependencies using the Morpheval test suites, which
consist of sentence pairs that differ by one morphological
contrast, and each output accuracy is measured in terms of
the percentage of translations that could convey the morpho-
logical contrast in the target language. Table 2 lists the per-
formance of different NMT models implementing decoding
at the level of subwords, characters, or hierarchical word-
character units in capturing variances in each individual mor-
phological paradigm and preserving the agreement between
inflected words and their dependent lexical items. The results
of our analysis support the benefit of using BPE in German as
a subword segmentation algorithm, which obtains the highest
accuracy in most of the morphological paradigm generation
tasks, although the character-level model shows to be promis-
ing in capturing some morphological features better than the
former, such as negation or comparative adjectives. In cap-
turing syntactic agreement features, the hierarchical decoding
model performs much better than the subword and character-
level models, which is likely due to processing the sentence
context at the word level, inducing a better notion of syntactic
ordering during generation.

In order to better illustrate the differences in the outputs of
each NMT model, we also present some sample translations
in Table 4, obtained by translating English into Turkish using
the NMT models trained on the TED Talks corpus. The in-
put sentences are selected such that they are sufficiently long
so that one can see the ability of each model in capturing
long-distance dependencies in context. The input sentence is
from a typical conversation, which requires remembering a
long context with many references. We highlight the words
in each output that is generated for the first time. Most of the
models fail to generate a complete translation, starting to for-
get the sentence history after the generation of a few words,

indicated by the start of generation of repetitions of the pre-
viously generated words. The character-level decoder seems
to have the shortest memory span, followed by the subword-
based decoder, which completely omits the second half of the
sentence. Despite omitting the translations of the last four
words in the input and some lexical errors, the hierarchical
decoder is the only model which can generate a meaningful
and grammatically-correct sentence, suggesting that model-
ing translation based on a context defined at the lexical level
might help to learn better grammatical and contextual depen-
dencies, and remembering longer history.

Although current methodology in NMT allows more effi-
cient processing by implementing feed-forward architectures
(Vaswani et al., 2017), our approach can conceptually be ap-
plied within these frameworks. In this paper, we limit the
evaluation to recurrent architectures for comparison to previ-
ous work, including (Luong and Manning, 2016), (Sennrich
et al., 2016) and (Cherry et al., 2018), and leave implementa-
tion of hierarchical decoding with feed-forward architectures
to future work.

7 Conclusion
In this paper, we explored the idea of performing the decod-
ing procedure in NMT in a multi-dimensional search space
defined by word and character level units via a hierarchical
decoding structure and beam search algorithm. Our model
obtained comparable to better performance than conven-
tional open-vocabulary NMT solutions, including subword
and character-level NMT methods, in many languages while
using a significantly smaller number of parameters, showing
promising application under high-resource settings.Our soft-
ware is available for public usage 3.

8 Acknowledgments
This project received funding from the European Unions
Horizon 2020 research and innovation programme un-
der grant agreements 825299 (GoURMET) and 688139
(SUMMA).

3https://github.com/d-ataman/Char-NMT

192

References
Duygu Ataman, Matteo Negri, Marco Turchi, and Marcello

Federico. 2017. Linguistically motivated vocabulary re-
duction for neural machine translation from Turkish to En-
glish. The Prague Bulletin of Mathematical Linguistics,
108(1):331–342.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2014. Neural machine translation by jointly learning
to align and translate. Computing Research Repository,
arXiv:1409.0473.

Antonio Valerio Miceli Barone, Jindřich Helcl, Rico Sen-
nrich, Barry Haddow, and Alexandra Birch. 2017. Deep
architectures for neural machine translation. In Proceed-
ings of the 2nd Conference on Machine Translation, pages
99–107.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette
Graham, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz,
et al. 2016. Findings of the 2016 Conference on Machine
Translation. In Proceedings of the 1st Conference on Ma-
chine Translation, volume 2, pages 131–198.

Léon Bottou. 2010. Large-Scale Machine Learning with
Stochastic Gradient Descent. In Proceedings of 19th
International Conference on Computational Statistics
(COMPSTAT), pages 177–186. Springer.

Franck Burlot, Yves Scherrer, Vinit Ravishankar, Ondřej Bo-
jar, Stig-Arne Grönroos, Maarit Koponen, Tommi Niemi-
nen, and François Yvon. 2018. The WMT’18 Morpheval
test suites for English-Czech, English-German, English-
Finnish and Turkish-English. In Proceedings of the 3rd
Conference on Machine Translation, volume 2, pages
550–564.

Mauro Cettolo. 2012. WIT3: Web inventory of transcribed
and translated talks. In Conference of European Associa-
tion for Machine Translation, pages 261–268.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan
Niehues, Sebastian Stüker, Katsuitho Sudoh, Koichiro
Yoshino, and Christian Federmann. 2017. Overview of
the iwslt 2017 evaluation campaign. In Proceedings of the
14th International Workshop on Spoken Language Trans-
lation, pages 2–14.

Colin Cherry, George Foster, Ankur Bapna, Orhan Firat, and
Wolfgang Macherey. 2018. Revisiting character-based
neural machine translation with capacity and compres-
sion. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4295–
4305.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau,
and Yoshua Bengio. 2014. On the properties of neural ma-
chine translation: Encoder–decoder approaches. In Pro-
ceedings of 8th Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation (SSST), pages 103–111.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A
Smith. 2011. Better hypothesis testing for statistical ma-
chine translation: Controlling for optimizer instability. In
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics, volume 2, pages 176–181.

D Kinga and J Ba. 2015. Adam: A method for stochastic op-
timization. In International Conference on Learning Rep-
resentations (ICLR), volume 5.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-source
toolkit for neural machine translation. Proceedings of
ACL 2017, System Demonstrations, pages 67–72.

Julia Kreutzer and Artem Sokolov. 2018. Learning to seg-
ment inputs for nmt favors character-level processing. In
Proceedings of the 15th International Workshop on Spo-
ken Language Translation, pages 166–172.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W. Black.
2015. Character-based neural machine translation. Com-
puting Research Repository, arxiv:1511.04586.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics, volume 1, pages 1054–1063.

Minh-Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 1412–1421.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a Method for Automatic Evaluation of
Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics,
pages 311–318.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. 2017. Au-
tomatic differentiation in Pytorch.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional
recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016.
Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, volume 1,
pages 1715–1725.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–
6008.

Paul J Werbos. 1990. Backpropagation Through Time: What
it does and how to do it. In Proceedings of the Institute of
Electrical and Electronics Engineers (IEEE), volume 78,
pages 1550–1560.

193

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 194–198
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Big Bidirectional Insertion Representations for Documents

Lala Li
Google Research, Brain Team

lala@google.com

William Chan
Google Research, Brain Team
williamchan@google.com

Abstract

The Insertion Transformer is well suited for
long form text generation due to its parallel
generation capabilities, requiring O(log2 n)
generation steps to generate n tokens. How-
ever, modeling long sequences is difficult,
as there is more ambiguity captured in the
attention mechanism. This work proposes
the Big Bidirectional Insertion Representa-
tions for Documents (Big BIRD), an insertion-
based model for document-level translation
tasks. We scale up the insertion-based mod-
els to long form documents. Our key contri-
bution is introducing sentence alignment via
sentence-positional embeddings between the
source and target document. We show an im-
provement of +4.3 BLEU on the WMT’19
English→German document-level translation
task compared with the Insertion Transformer
baseline.

1 Introduction

Recently, insertion-based models (Stern et al.,
2019; Welleck et al., 2019; Gu et al., 2019; Chan
et al., 2019) have been introduced for text gen-
eration. Unlike traditional autoregressive left-to-
right models (Cho et al., 2014; Sutskever et al.,
2014; Vaswani et al., 2017), insertion-based mod-
els are not restricted to generating text sequences
in a serial left-to-right manner, but these models
are endowed with the capabilities of parallel gen-
eration. More specifically, Stern et al. (2019);
Chan et al. (2019) showed that we can teach neural
nets to generate text to follow a balanced binary
tree order. An autoregressive left-to-right model
would require O(n) generation steps to gener-
ate n tokens, whereas the Insertion Transformer
(Stern et al., 2019) and KERMIT (Chan et al.,
2019) following a balanced binary tree policy re-
quires only O(log2 n) generation steps to generate
n tokens. This is especially important for long-

form text generation, for example, Document-
Level Machine Translation.

Document-Level Machine Translation is be-
coming an increasingly important task. Recent re-
search suggests we are nearing human-level parity
for sentence-level translation in certain domains
(Hassan et al., 2018), however, we lag signifi-
cantly behind in document-level translation (Lubli
et al., 2018). Various papers have proposed in-
corporating context for document-level translation
(Junczys-Dowmunt, 2019), which has been shown
to improve translation quality. There are two pri-
mary methods to include context in a document-
level machine translation model compared to a
sentence-level translation model.

1. Source Contextualization. We can include
source context, wherein when we generate
the target sentence, we can condition on the
corresponding source sentence and its neigh-
bours, or even the whole source document.
This allows the target sentence to be contex-
tualized to the source document.

2. Target Contextualization. We can include
target context, wherein when we generate the
target sentence, we can condition on all the
target tokens generated thus far in the whole
document. This allows the target sentence to
be contextualized to other target sentences.

Target contextualization is especially difficult in
an autoregressive left-to-right model (i.e., Trans-
former (Vaswani et al., 2017)), the model must
generate the whole document in linear fashion,
which would be prohibitively expensive costing
O(n) iterations to generate n tokens. Additionally,
the model is unable to model bidirectional context,
since the text is always generated in a left-to-right
manner. Some prior work have focused on utiliz-
ing block coordinate descent like algorithms dur-
ing inference (Maruf and Haffari, 2018), however

194

https://www.aclweb.org/anthology/D19-56%2d

this adds complexity and additional runtime cost
during inference.

Insertion-based models, for example, the Inser-
tion Transformer (Stern et al., 2019) is one po-
tential solution. The Insertion Transformer can
generate text following a balanced binary tree or-
der. It requires O(log2 n) iterations to generate n
tokens, offering significant inference time advan-
tages over a serial generation model. The source
document is naturally fully conditioned on, which
provides full source contextualization. Addition-
ally, the generation order offers bidirectional con-
textualization, permitting target contextualization
that is not solely on a left-to-right basis.

In this paper, we present Big Bidirectional
Insertion Representations for Documents (Big
BIRD). We address the limitations of scaling up
the Insertion Transformer to document-level ma-
chine translation. We present a model that can
model long-form documents with thousands of to-
kens in a fully contextualized manner.

2 Big BIRD

In this section, we present Big Bidirectional
Representations for Documents (Big BIRD). Big
BIRD is an extension of the Insertion Transformer
(Stern et al., 2019), scaling up from sentences to
documents. The key contributions are 1) extend-
ing the context window size to cover a document,
and 2) informing the model of sentence positional
information, which are aligned between source
and target sentences.

Insertion Transformer. In the Insertion Trans-
former (Stern et al., 2019), sequences are gener-
ated via insertion operations. In the context of Ma-
chine Translation, there is a source canvas x and a
target canvas y, where the target canvas is updated
at each iteration via inserting one token at each
plausible location. At time t during training, a hy-
pothesis target canvas ŷt must be a subsequence
of the final output. For example, if the final out-
put is [A,B,C,D,E], then ŷt = [B,D] would
be a valid intermediate canvas, in which case the
model would be taught to predict [A,C,E]. The
model is taught to insert multiple tokens at incom-
plete slots, or predict end-of-slot for completed
slots. The intermediate canvases are uniformly
sampled from the ground truth target sequence.
During inference, the target canvas starts empty,
and tokens will be inserted iteratively until the
model predicts to insert empty tokens everywhere,

or the sequence has exceeded the specified maxi-
mum length.

Larger Context and Sentence-Positional Em-
beddings. Longer sequences lead to more un-
certainties for the Insertion Transformer. For ex-
ample, if a token in ŷt appears in multiple sen-
tences in the final output, there is ambiguity to the
model which sentence it belongs to (and therefore
where to attend to on both the source and target
canvases). While there is location information en-
dowed in the Transformer model, we hypothesize
that token level positional information is insuffi-
cient (especially since we have limited training
data). We believe that endowing the model with
sentence-level positional information (i.e., which
sentence each token belongs to) may help signifi-
cantly disambiguate in such situations and help the
model build a more robust attention mechanism.

Based on this motivation and assuming that the
datasets have not only parallel documents, but also
sentence alignment between source and target doc-
uments (which is true for WMT’19 document-
level translation), we use sentence-positional em-
beddings on both the source and target sequences
as shown in Figure 1. The intention is to endow
the model with this prior knowledge on sentence
alignment between the source and target, and thus
more easily attend to the appropriate sentences
based on sentence locality. More specifically, on
the source side, we do not use any sentence sepa-
rator tokens; on the target side, we start each sen-
tence with a sentence separator. During inference
we initialize the output hypothesis with empty
〈s〉 sentence separator tokens, where the number
of 〈s〉 equals to the number of source sentences,
which is equal to the number of target sentences
to be generated. These 〈s〉 tokens serve as sen-
tence anchor points, and have sentence-positional
information. Figure 1 visualizes the model.

In this work we increased the context window
size to cover multiple sentences or a short docu-
ment. Note that there is only a limit on the max-
imum number of tokens in the entire sequence;
there is no limit on the length of a single sentence,
or the total number of sentences in the sequence.

3 Experiments

We experiment with the WMT’19
English→German document-level translation
task (Barrault et al., 2019). The training dataset
consists of parallel document-level data (Eu-

195

Figure 1: Big Bidirectional Insertion Representations for Documents

roparl, Rapid, News-Commentary) and parallel
sentence-level data (WikiTitles, Common Crawl,
Paracrawl). The test set is newstest2019. The
document-level portion contains 68.4k parallel
documents, or a total of 7.7M parallel sentences;
while the sentence-level portion has 19.9M
parallel sentences. We generated a vocabulary of
32k subwords from the training data using the
SentencePiece tokenizer (Kudo and Richardson,
2018).

The Big BIRD model is as described in Section
2, and the baseline Insertion Transformer model
has exactly the same configurations except with-
out sentence-positional embeddings. To be ex-
plicit, our baseline Insertion Transformer model
is also given the prior knowledge of number of
source sentences in the document. The target can-
vas is initialized target with 〈s〉 sentence separator
tokens, where the number of 〈s〉 tokens is equal
to the number of sentences in the document. All
our models follow the same architecture as the
Transformer Base model in (Vaswani et al., 2017),
and a context window of 1536 tokens during train-
ing (determined based on the longest document in
the test set). All models were trained with the
SM3 optimizer (Anil et al., 2019) with momen-
tum 0.9, learning rate 0.1, and a quadratic learning
rate warm-up schedule with 10k warm-up steps.
The learning rate were chosen after some prelim-
inary comparison runs between Adam and SM3.
We opted to use the SM3 optimizer over Adam
due to its more memory efficient properties, thus
allowing us to use larger minibatches. Training
was around 800k steps at batch size 512.

During training, each batch consists of 256 sub-

Model BLEU

Insertion Transformer 25.3

Big BIRD 29.6

Table 1: WMT19 English→German Document-Level
Translation.

documents and 256 sentences. Sub-documents are
continuous sentences dynamically sampled from a
document. The lengths of sub-documents are uni-
formly sampled in (0, 1536] tokens. The number
of sampled sub-documents from each document is
1/10 of the number of sentences in the full doc-
ument. Sentences directly come from sentence-
level data. This 1:1 mixing of sub-documents and
sentences results in training examples of vastly
different lengths and therefore many masked po-
sitions, and we plan to improve it in the future by
packing multiple sentences into one example.

We report sacreBLEU (Post, 2018) scores of the
two models in Table 1. Our Big BIRD model out-
performs the Insertion Transformer model by +4.3
BLEU.

When we inspected the outputs more closely for
the two models, we uncovered an interesting phe-
nomenon. The Insertion Transformer, even though
its target canvas is also initialized with the cor-
rect number of sentence 〈s〉 separators, struggles
to align source and target sentences. For example,
it can map two sources sentences into one sen-
tence in the target, or vice versa. This is not al-
ways bad, as long as it captures the semantics ac-
curately. However, there are cases when misalign-
ment causes loss of coherency. Table 2 shows such
an example where Big BIRD captures alignment

196

Source:
(...) Chelsea faces Videoton in the UEFA Europa Leaguge at 3 p.m. on Thursday in London.

Target:
(...) Chelsea trifft in der UEFA Europa League am Donnerstag um 15 Uhr in London auf Videoton.

Insertion Transformer:
(...) Chelsea Gesichter am Donnerstag um 15.00 Uhr in London. Chelsea Gesichter Videoton in der
UEFA Europa Leaguge.
Translation: (Google Translate)
Chelsea faces on Thursday at 15.00 in London. Chelsea faces Videoton in UEFA Europa Leaguge.

Big BIRD:
(...) Chelsea sieht am Donnerstag um 15.00 Uhr in London Videoton in der UEFA Europa Leaguge.
Translation: (Google Translate)
Chelsea sees Videoton in UEFA Europa League on Thursday at 15.00 in London.

Table 2: An example where the Insertion Transformer gets confused with sentence alignment: it maps one sentence
from the source into two sentences in the translation and loses semantic accuracy. When given sentence alignment
explicitly, i.e. Big BIRD, it translates the sentence coherently.

better than the Insertion Transformer, and there-
fore its translation is more accurate and coherent.

4 Conclusion

In this paper, we presented Big BIRD, an adap-
tation of the Insertion Transformer to document-
level translation. In addition to a large context
window, Big BIRD also uses sentence-positional
embeddings to directly capture sentence alignment
between source and target documents. We show
both quantitatively and qualitatively the promise
of Big BIRD, with a +4.3 BLEU improvement
over the baseline model and examples where Big
BIRD achieves better translation quality via sen-
tence alignment. We believe Big BIRD is a
promising direction for document level under-
standing and generation.

References
Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram

Singer. 2019. Memory-Efficient Adaptive Opti-
mization for Large-Scale Learning. In arXiv.

Loc Barrault, Ondej Bojar, Marta R. Costa-juss, Chris-
tian Federmann, Mark Fishel, Yvette Graham, Barry
Haddow, Matthias Huck, Philipp Koehn, Shervin
Malmasi, Christof Monz, Mathias Mller, Santanu
Pal, Matt Post, and Marcos Zampieri. 2019. Find-
ings of the 2019 Conference on Machine Transla-
tion. In ACL.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. KERMIT: Gen-

erative Insertion-Based Modeling for Sequences. In
arXiv.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In
EMNLP.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based Decoding with Automatically In-
ferred Generation Order. In arXiv.

Hany Hassan, Anthony Aue andChang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Renqian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving Human Parity on Automatic
Chinese to English News Translation. In arXiv.

Marcin Junczys-Dowmunt. 2019. Microsoft Transla-
tor at WMT 2019: Towards Large-Scale Document-
Level Neural Machine Translation. In WMT.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Samuel Lubli, Rico Sennrich, and Martin Volk. 2018.
Has Machine Translation Achieved Human Parity?
A Case for Document-level Evaluation. In EMNLP.

197

Sameen Maruf and Gholamreza Haffari. 2018. Doc-
ument Context Neural Machine Translation with
Memory Networks. In ACL.

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. In WMT.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion Transformer: Flexible
Sequence Generation via Insertion Operations. In
ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NIPS.

Sean Welleck, Kiante Brantley, Hal Daume, and
Kyunghyun Cho. 2019. Non-Monotonic Sequential
Text Generation. In ICML.

198

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 199–205
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

A Margin-based Loss with Synthetic Negative Samples for
Continuous-output Machine Translation

Gayatri Bhat Sachin Kumar Yulia Tsvetkov
Language Technologies Institute

Carnegie Mellon University
{gbhat,sachink,ytsvetko}@cs.cmu.edu

Abstract

Neural models that eliminate the softmax
bottleneck by generating word embeddings
(rather than multinomial distributions over a
vocabulary) attain faster training with fewer
learnable parameters. These models are cur-
rently trained by maximizing densities of pre-
trained target embeddings under von Mises-
Fisher distributions parameterized by corre-
sponding model-predicted embeddings. This
work explores the utility of margin-based loss
functions in optimizing such models. We
present syn-margin loss, a novel margin-
based loss that uses a synthetic negative sam-
ple constructed from only the predicted and
target embeddings at every step. The loss
is efficient to compute, and we use a geo-
metric analysis to argue that it is more con-
sistent and interpretable than other margin-
based losses. Empirically, we find that syn-
margin provides small but significant improve-
ments over both vMF and standard margin-
based losses in continuous-output neural ma-
chine translation.

1 Introduction

A new approach to conditional language mod-
eling (Kumar and Tsvetkov, 2019) generates
continuous-valued embeddings in place of discrete
tokens (such as words or subwords). These em-
beddings are trained to lie in a pretrained word
embedding space by maximizing, at each step of
training, the von Mises-Fisher (vMF) probability
density of the target pretrained embedding given
the model-predicted embedding (§2). This elimi-
nates the softmax bottleneck to ensure time- and
memory-efficient training.

We investigate alternative loss functions for this
new class of models, specifically margin-based
formulations. These have been used to train em-
beddings for a range of tasks (Bojanowski et al.,

2017; Bredin, 2017; Wu et al., 2018), and stan-
dard margin-based losses yield slight but incon-
sistent improvements over vMF on continuous-
output neural machine translation (NMT). We pro-
pose syn-margin, a novel margin-based loss for
which negative samples are synthesized using only
the predicted and target embeddings, without sam-
pling from or searching through the large pre-
trained embedding space (§3). These samples
are constructed by extracting the portion of the
predicted embedding that is not along the tar-
get embedding; intuitively, suppressing this com-
ponent will increase the predicted embedding’s
similarity to the target. We use a geometric
analysis to argue that this principled construc-
tion renders syn-margin loss more consistent and
interpretable than standard margin-based losses
that select negative samples randomly or heuris-
tically (Collobert et al., 2011; Hadsell et al., 2006;
Schroff et al., 2015; Mikolov et al., 2013a). Em-
pirically, we find that syn-margin attains small but
statistically significant improvements over vMF
(§4) on continuous-output neural machine trans-
lation (NMT).

The key contributions of this work are: (1) the
formulation of syn-margin loss, which is applica-
ble across natural language processing and com-
puter vision tasks for which the targets lie in pre-
trained embedding spaces (2) a geometric analysis
of the functionality of syn-margin loss, which pro-
vides insights into the mechanism of margin-based
losses in general and (3) the empirical result of im-
proved performance on continuous-output NMT.

2 Continuous-output models

Conditional language models generate text condi-
tioned on some input, e.g., produce translations of
input sentences (Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015). State-of-the-art

199

https://www.aclweb.org/anthology/D19-56%2d

neural models generate the text as a sequence of
discrete tokens such as words.1

A traditional model, at every step of genera-
tion, produces a context vector c that encodes both
the conditioning input and the output from previ-
ous generation steps. It then transforms c into a
discrete distribution over the target vocabulary V
using a softmax-activated linear transformation of
size |c| × |V |. These models are typically trained
using cross-entropy loss, and inference uses either
greedy or beam decoding.

Instead of the multinomial distribution over
V , continuous-output conditional language mod-
els generate a d-dimensional word embedding û
(Kumar and Tsvetkov, 2019). For this purpose,
the |c| × |V | transformation is replaced by a lin-
ear layer of size |c| × d. This design enables the
model to have far fewer parameters than the origi-
nal (d� V).

The model is trained and decoded in conjunc-
tion with a table of pretrained embeddings for
words in V . Proposing that the predicted embed-
ding û parametrizes a von Mises-Fisher distribu-
tion over all d-dimensional vectors, Kumar and
Tsvetkov (2019) train the model by maximizing
the probability density at the target word’s pre-
trained embedding u under this distribution cen-
tered at û:

p(u; û) = Cm(‖û‖)eûTu

where

Cm(‖û‖) = ‖û‖d/2−1

(2π)d/2Id/2−1(‖û‖)
with Iv being the modified Bessel function of the
first kind of order v.

Thus, every predicted embedding is driven to-
wards its target embedding u, which can be iden-
tified since target words are available during train-
ing. This is much faster than training in the
discrete-output case, since vMF densities are im-
plicitly normalized. During inference, choosing
the most likely word reduces to finding the pre-
dicted embedding’s nearest neighbour (by cosine
similarity) in the L2-normalized pretrained em-
bedding space.2

1The discrete units may be words, sub-word units (Sen-
nrich et al., 2016), characters (Ling et al., 2015; Kim et al.,
2016) or tokens of any other granularity. We focus on the
generation of words, since pretrained embeddings spaces at
this granularity are interpretable and semantically coherent
across languages.

2In line with the inference mechanism, all references we

û
u

û-u
û-u
û-u

û

u

û-ucosθ

θ

û-ucosθ

û
u

û-u
û-u
û-u

û

u

û-ucosθ

θ

û-ucosθ

Figure 1: Synthesizing negative samples. Consider
predicted and target embeddings û (blue) and u (solid
black), respectively. To synthesize a negative exam-
ple for the margin-based loss by projection (top), we
project û onto u (dotted blue), use this to find compo-
nent of û that is orthogonal to u (dotted orange) and
normalize it to obtain uorth (solid orange). To synthe-
size by difference (bottom), we normalize û − u to
obtain udiff (long orange).

3 Margin-based loss formulations

To explore the space of additional loss functions
for continuous-output models, we study margin-
based losses commonly used to compare embed-
dings in both natural language and image process-
ing (Collobert et al., 2011; Schroff et al., 2015)
tasks:

L = max{0, λ+ u′T û− uT û} (1)

This requires û to be closer to u than to some
negative sample u′ by a margin of λ. (Since the
embeddings are normalized, inner product corre-
sponds to cosine similarity.) Here λ is a hyperpa-
rameter that, along with u′, decides whether û is
‘close enough’ to u.

The negative sample u′ is usually chosen by (1)
stochastic processes such as negative sampling:
randomly choosing an embedding from the pre-
trained embedding table, and averaging loss over
k random draws or (2) heuristic selections such as
the most informative negative sample introduced
by Lazaridou et al. (2015): the embedding in the
table that is closest to û− u.

3.1 The role of negative samples
What is the role of the negative sample in this
margin-based loss? We investigate with a geomet-

make to ‘similarity’ or ‘closeness’ will be in the cosine, not
Euclidean sense. In a slight change of notation, we will
henceforth use û to refer to the unit vector along a predicted
embedding rather than the predicted embedding itself.

200

ric analysis.
At the outset, consider predicted and target em-

beddings û and u, both of unit length. The pre-
dicted embedding’s components parallel and or-
thogonal to u are (ûTu)u and û−(ûTu)u (dotted
blue and dotted orange lines respectively in Fig-
ure 1, which illustrates this decomposition). Let
the unit vector along this orthogonal component
be uorth (solid orange line). It follows that (1)
uorth ⊥ u and (2) û is a linear combination of
these orthogonal vectors, say, λ1u+ λ2uorth.

Now, choose any embedding x of unit length
from the d-dimensional space (not necessarily the
pretrained embedding of any word) to use as
the negative sample in a margin-based loss. Let
its projections along u and uorth be λ3u and
λ4uorth Since these are orthogonal, x decomposes
as λ3u+ λ4uorth + y where y is some vector or-
thogonal to both u and uorth (y = 0 when d = 2).

Using the decomposed forms of û and uorth

in the margin-based loss, the second argument of
equation 1 becomes

λ+λ4uorth
T û−(1−λ3)u

T û+yT (λ1u+λ2uorth)

Applying orthogonality to set the final term to
zero gives

L = max{0, λ+ λ4uorth
T û− (1− λ3)u

T û}
Thus, regardless of the actual negative sample

chosen, the loss reduces to a form wherein some
scalar multiples of u and uorth are the positive and
negative samples respectively. The loss essentially
penalizes the component of û that is orthogonal to
u.

3.2 Synthesized negative samples

Drawing on this insight, we propose to use the syn-
thesized vector uorth as the negative sample in a
margin-based loss. This sets λ4 and λ3 at 1 and 0
respectively, providing a steady training signal. In
contrast, these coefficients fluctuate during train-
ing if heuristic or stochastic methods are used to
select negative samples. We also propose a second
closely related negative sample udiff , synthesized
by subtraction rather than projection: the unit vec-
tor along the difference û − u (see Figure 1 for
a visualization). Synthesizing uorth and udiff is
efficient since it does not require any sampling
from or searching through the pretrained embed-
ding space. We refer to the loss formulations us-
ing uorth and udiff as syn-margin by projection
(SMP) and difference (SMD) respectively.

Although uorth and udiff are functions of û,
they are plugged into L as constant vectors de-
tached from the computational graph; this pre-
vents them from being optimized to minimize L.
We highlight that using these synthesized nega-
tive samples cannot lead to a degenerate state in
which all the word embeddings collapse to a single
point. This is because the target embeddings are,
unlike in some previous work that uses margin-
based losses, pretrained and fixed.

4 Experimental Setup

We follow Kumar and Tsvetkov (2019) to conduct
experiments on neural machine translation.
Datasets We evaluate our models on IWSLT’16
(Cettolo et al., 2015) French→English and
German→English datasets. We pretrain target em-
beddings on a large English-language corpus (4B+
tokens) using FastText on default settings (Bo-
janowski et al., 2017) and L2-normalize the em-
beddings. Vocabulary sizes are limited to 50000.
We follow Kumar and Tsvetkov (2019) in using
the standard development (tst2013 and tst2014)
and test (tst2015 and tst2016) sets associated with
the parallel corpora and in processing the data;
train, development and test splits contain roughly
200K, 2300 and 2200 parallel sentences each.
Setup We use a neural machine translation
system with attention (Bahdanau et al., 2015),
set up to match that described in Kumar and
Tsvetkov (2019). The encoder and decoder are 1-
layer bidirectional and 2-layer LSTMs with 1024-
dimensional hidden and output states. Word em-
beddings are 512-dimensional on the encoder side
and 300-dimensional on the decoder side. De-
coder input and target embeddings are tied to
the same parameter matrix, these embeddings are
transformed to the correct dimensions with a lin-
ear layer when used as inputs to the decoder. Gen-
erated embeddings are normalized before comput-
ing margin-based losses (vMF loss accounts sepa-
rately for embedding norm). We train for up to 20
epochs with Adam (Kingma and Ba, 2015), an ini-
tial learning rate of 0.0005 and no dropout. Dur-
ing inference, vMF density is used to choose an
output word given an embedding predicted by the
vMF system, and the predicted embedding’s near-
est neighbour is chosen as the output for margin-
trained systems. Hyperparameters are selected us-
ing performance on the development set and we
report means and standard deviations of BLEU

201

Output Type Loss Function IWSLT
Fr→En

IWSLT
De→En

Discrete Cross-entropy: untied embeddings 31.3 ± 0.4 25.1 ± 0.2
Cross-entropy: tied embeddings 31.3 ± 0.9 24.8 ± 0.2

Continuous

von Mises-Fisher 31.8 ± 0.3 25.0 ± 0.2
Most informative negative sample 32.0 ± 0.2 25.1‡ ± 0.1
Negative sampling 32.2∗ ± 0.4 24.8 ± 0.2
Syn-margin by difference (SMD) 32.0∗ ± 0.3 25.4∗†‡ ± 0.3
Syn-margin by projection (SMP) 32.3∗† ± 0.2 25.3∗‡ ± 0.5

Table 1: Experimental results. Means and standard deviations of BLEU scores across 4 runs of each experiment,
for the (1) discrete-output baseline, (2) continuous-output models trained using vMF, most informative negative
example (Lazaridou et al., 2015) and negative sampling, and (3) proposed syn-margin losses constructed using
vector projection and vector difference, on IWSLT’16 Fr→En and De→En datasets. Asterisks, daggers and double
daggers indicate significant gains over vMF, most informative negative sample and negative sampling respectively
(p = 0.05).

scores (Papineni et al., 2002) over 4 runs of each
experiment.
Baselines and benchmarks We compare syn-
margin losses constructed using projection (SMP)
and difference (SMD) techniques against: (1)
vMF loss (specifically, the negative log-likelihood
formulation in the original paper), (2) margin-
based loss averaged over 5 negative samples
drawn uniformly at random from the pretrained
word embeddings and (3) margin-based loss using
the most informative negative sample (Lazaridou
et al., 2015). We also report results on a softmax-
based system with identical architecture except in
the last layer, initializing the softmax parameters
with pretrained embeddings, with and without tied
embeddings.

5 Results and Analysis

Syn-margin methods show small (+0.4 and +0.5
BLEU) and statistically significant gains over
vMF on both datasets, although there is no con-
sistent winner among the two syn-margin vari-
ants (Table 1). The improvement over most infor-
mative negative sample and negative sampling is
less prominent, and significant only in some cases.
Syn-margin’s computational efficiency matches
that of vMF (Figure 2).

Comparing translations produced by vMF and
syn-margin models in the Fr→En task, we find
SMP translations to be more grammatical. They
better preserve grammatical information such as
gender (SMP correctly predicts the fragment ‘her
personality’ while vMF generates ‘his personal-
ity’) and tense (SMP generates ‘does it predict’

Figure 2: Speed comparisons. We compare the num-
ber of training instances that can processed per second
for each loss formulation. Syn-margin is found to be
faster than other margin-based methods, and compara-
ble in speed to vMF.

while vMF produces ‘does it predicted’), and are
better-formed without cascading errors.

Next, to develop a qualitative understanding of
the synthesized negative samples, we identify pre-
dicted embeddings’ and SMP negative samples’
nearest neighbours (NN) among the pretrained tar-
get embeddings. Either both embeddings share a
common NN, or in a weak pattern, the SMP’s NN
captures û’s semantic or grammatical divergence
from u. For instance, where the target is ‘means’
and the prediction’s NN is ‘meant’, the negative
sample’s NN ‘held’ penalizes past-tense informa-
tion in the predicted embedding. Similarly, tar-
get ‘Hollywood’ and prediction ‘movies’ are as-
sociated with negative sample ‘concerts’. This
confirms our intuition about the functionality of

202

vMF Laz Random SMD SMP
Correct prediction: similarity to nearest neighbour 0.96 0.87 0.88 0.91 0.88
Wrong prediction: similarity to nearest neighbour 0.91 0.80 0.83 0.88 0.86
Wrong prediction: similarity to target embedding 0.39 0.28 0.21 0.41 0.42

Accuracy (%) 23.55 23.18 23.39 23.89 24
Accuracy @2 (%) 28.91 28.04 28.28 29.59 29.89
Accuracy @5 (%) 32.23 31.45 31.16 32.96 33.22

Accuracy @10 (%) 34.77 33.85 33.42 35.49 35.6

Table 2: Error margins and accuracies. The average similarity of predicted embeddings to their nearest neigh-
bours is lower in SMP/SMD-trained models than in vMF-trained models. Among predicted embeddings whose
nearest neighbours are not the targets, similarity to the targets increases when we switch from vMF to syn-margin
loss. This is potentially linked to the increase in accuracies @2, 5 and 10 that results from the switch to syn-margin
loss.

margin-based losses in general and syn-margin in
particular.

We briefly analyze the properties of embeddings
predicted by vMF and SMP Fr→En systems.
Among incorrect predictions (cases in which the
pretrained embedding closest to û is not u), the
average cosine similarity between predicted em-
beddings and their nearest pretrained embeddings
falls from vMF to SMP (0.91 to 0.86), while that
between the predicted and target embeddings rises
(0.39 to 0.42). This is accompanied by increases
in accuracy @2, @5 and @10 (Table 2).

6 Related Work

Pretrained embeddings trained in an unsupervised
manner (Mikolov et al., 2013a) are used as in-
put and intermediate representations of data for
natural language processing tasks such as part-of-
speech tagging and named entity recognition (Ma
and Hovy, 2016), sentiment analysis (Tang et al.,
2016) and dependency parsing (He et al., 2018).

We build on (Kumar and Tsvetkov, 2019), one
of the first instances of using pretrained embed-
dings as model outputs for complex sequence-
generation tasks. Closely related work on em-
bedding prediction includes zero-shot learning for
word translation (Nakashole, 2018; Conneau et al.,
2018) and image labeling (Lazaridou et al., 2015),
as well as rare word prediction (Pinter et al., 2018)
and classification (Card et al., 2019).

Margin-based losses are commonly used to train
neural networks that predict dense vectors for clas-
sification tasks, and have long been used in com-
puter vision. Standard formulations include con-
trastive (Hadsell et al., 2006) and triplet (Schroff
et al., 2015) losses; triplet loss is identical to the
max-margin framework we use. Other closely re-

lated approaches are the imposition of an angu-
lar margin constraint and the minimization of dis-
tance to the farthest intra-class example coupled
with maximization of distance to the nearest inter-
class example (Liu et al., 2016; Deng et al., 2017).
In contrast to syn-margin, many of these losses
pertain to trainable target embedding spaces.

The triplet loss has also been used in various
NLP applications (Collobert et al., 2011). Tech-
niques used to pick negative samples include per-
turbing training data (Smith and Eisner, 2005),
sampling according to word frequency (Mikolov
et al., 2013b), sampling until a non-zero loss is ob-
tained (Weston et al., 2011) and searching for the
negative sample that gives the largest (Rao et al.,
2016) or most informative (Lazaridou et al., 2015)
loss. These techniques also correspond to train-
able target embedding spaces, and are all equally
or less efficient than syn-margin.

7 Conclusion

We explore the use of margin-based loss functions
to train continuous-output neural models, provid-
ing a geometric analysis of their functionality in
this framework. Through this analysis, we develop
a principled method to synthesize negative sam-
ples for margin-based losses, efficiently and on the
fly. We argue that these negative samples are more
consistent and interpretable than those picked us-
ing stochastic or heuristic techniques. Experi-
ments on neural machine translation show that the
proposed syn-margin loss improves over vMF and
is either comparable or preferable to other margin-
based losses. The analysis and loss function we
propose are more generally applicable to neural
models whose outputs lie in pretrained embedding
spaces.

203

Acknowledgments

We gratefully acknowledge Anjalie Field, Aditi
Chaudhury, Elizabeth Salesky, Shruti Rijhwani
and our anonymous reviewers for the helpful feed-
back and discussions. This material is based upon
work supported by NSF grant IIS1812327 and an
Amazon MLRA award.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL.

Hervé Bredin. 2017. Tristounet: Triplet loss for
speaker turn embedding. In Proc. ICASSP.

Dallas Card, Michael Zhang, and Noah A. Smith. 2019.
Deep weighted averaging classifiers. In Proc. FAT*.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The IWSLT 2015 evaluation campaign. In
Proc. IWSLT.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Proc.
ICLR.

Jiankang Deng, Yuxiang Zhou, and Stefanos Zafeiriou.
2017. Marginal loss for deep face recogni-
tion. In Proc. CVPR, Faces in-the-wild Work-
shop/Challenge.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In Proc. CVPR.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syn-
tactic structure with invertible neural projections. In
Proc. EMNLP.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proc. AAAI.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. ICLR.

Sachin Kumar and Yulia Tsvetkov. 2019. Von Mises-
Fisher loss for training sequence to sequence models
with continuous outputs. In Proc. ICLR.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015. Hubness and pollution: Delving into
cross-space mapping for zero-shot learning. In
Proc. ACL.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. In Proc. EMNLP.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng
Yang. 2016. Large-margin softmax loss for convo-
lutional neural networks. In Proc. ICML.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proc. EMNLP.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNS-
CRF. In Proc. ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In ICLR Workshop.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proc. NeurIPS.

Ndapa Nakashole. 2018. Norma: Neighborhood sen-
sitive maps for multilingual word embeddings. In
Proc. EMNLP.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proc. ACL.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2018. Mimicking word embeddings using subword
RNNs. In Proc. ACL.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proc. CIKM.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proc. CVPR.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. ACL.

Noah A Smith and Jason Eisner. 2005. Contrastive es-
timation: Training log-linear models on unlabeled
data. In Proc. ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. NIPS.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu,
and Ming Zhou. 2016. Sentiment embeddings with
applications to sentiment analysis. IEEE Transac-
tions on Knowledge and Data Engineering.

204

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. Wsabie: Scaling up to large vocabulary im-
age annotation. In Proc. IJCAI.

Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith
Adams, Antoine Bordes, and Jason Weston. 2018.
Starspace: Embed all the things! In Proc. AAAI.

205

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 206–214
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Mixed Multi-Head Self-Attention for Neural Machine Translation

Hongyi Cui1, Shohei Iida1, Po-Hsuan Hung1, Takehito Utsuro1, Masaaki Nagata2

1Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
2NTT Communication Science Laboratories, NTT Corporation, Japan

Abstract

Recently, the Transformer becomes a state-
of-the-art architecture in the filed of neural
machine translation (NMT). A key point of
its high-performance is the multi-head self-
attention which is supposed to allow the model
to independently attend to information from
different representation subspaces. However,
there is no explicit mechanism to ensure that
different attention heads indeed capture dif-
ferent features, and in practice, redundancy
has occurred in multiple heads. In this pa-
per, we argue that using the same global at-
tention in multiple heads limits multi-head
self-attention’s capacity for learning distinct
features. In order to improve the expres-
siveness of multi-head self-attention, we pro-
pose a novel Mixed Multi-Head Self-Attention
(MMA) which models not only global and lo-
cal attention but also forward and backward at-
tention in different attention heads. This en-
ables the model to learn distinct representa-
tions explicitly among multiple heads. In our
experiments on both WAT17 English-Japanese
as well as IWSLT14 German-English trans-
lation task, we show that, without increas-
ing the number of parameters, our models
yield consistent and significant improvements
(0.9 BLEU scores on average) over the strong
Transformer baseline. 1

1 Introduction

Neural machine translation (NMT) has made
promising progress in recent years with differ-
ent architectures, ranging from recurrent neu-
ral networks (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015),
convolutional networks (Gehring et al., 2017) and
most recently, self-attention networks (Trans-
former) (Vaswani et al., 2017).

1Our code is available at:
https://github.com/yokusama/transformer-mma

Among the different architectures, the Trans-
former (Vaswani et al., 2017) has recently at-
tracted most attention in neural machine transla-
tion, due to its high parallelization in computa-
tion and improvements in quality. A key point
of its high-performance is the multi-head self-
attention which allows the model to jointly attend
to information from different representation sub-
spaces at different positions. There is a huge gap
(around 1 BLEU score) between the performance
of the Transformer with only one head and eight
heads (Vaswani et al., 2017; Chen et al., 2018).

However, all encoder self-attention heads fully
take global information into account, there is
no explicit mechanism to ensure that differ-
ent attention heads indeed capture different fea-
tures (Li et al., 2018). Concerning the results pre-
sented by some latest researches, the majority
of the encoder self-attention heads, can even be
pruned away without substantially hurting model’s
performance (Voita et al., 2019; Michel et al.,
2019). Moreover, the ability of multi-head self-
attention, in which lacking capacity to capture lo-
cal information (Luong et al., 2015; Yang et al.,
2018; Wu et al., 2019) and sequential informa-
tion (Shaw et al., 2018; Dehghani et al., 2019),
has recently come into question (Tang et al.,
2018).

Motivated by above findings, we attribute the
redundancy arising in encoder self-attention heads
to the using of same global self-attention among
all attention heads. Additionally, it is because of
the redundancy, multi-head self-attention is un-
able to leverage its full capacity for learning dis-
tinct features in different heads. In response, in
this paper, we propose a novel Mixed Multi-Head
Self-Attention (MMA) which can capture distinct
features in different heads explicitly by different
attention function. Concretely, MMA is com-
posed of four attention functions: Global Atten-

206

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: The architecture of Transformer with Mixed Multi-Head Self-Attention

tion which models dependency of arbitrary words
directly. Local Attention, where attention scope
is restricted for exploring local information. For-
ward and Backward Attention which attends to
words from the future and from the past respec-
tively, serving as a function to model sequence or-
der. MMA enables the model to learn distinct rep-
resentations explicitly in different heads and im-
proves the expressive capacity of multi-head self-
attention. Besides, our method is achieved simply
by adding hard masks before calculating attention
weights, the rest is the same as the original Trans-
former. Hence our method does not introduce ad-
ditional parameters and does not affect the training
efficiency.

The primary contributions of this work can be
summarized as follows:

• We propose a novel Mixed Multi-Head Self-
Attention (MMA) that extracts different as-
pects of features in different attention heads.

• Experimental results on two language pairs
demonstrate that the proposed model consis-
tently outperforms the vanilla Transformer in
BLEU scores. Qualitative analysis shows our
MMA can make better use of word order in-
formation and the improvement in translating
relatively long sentence is especially signifi-
cant.

2 Transformer Architecture

In this section, we briefly describe the Transformer
architecture (Vaswani et al., 2017) which includes

an encoder and a decoder. The Transformer aims
to model a source sentence x to a target sentence
y by minimizing the negative log likelihood of the
target words.

The encoder consists of N identical layers, each
layers has two sublayers with residual connec-
tion (He et al., 2016). The first is a multi-head
self-attention layer and the second is a position
wise fully connected feed-forward network layer:

H̃ l = LN(H l−1 + MA(Ql−1,K l−1, V l−1)) (1)

H l = LN(H̃ l + FFN(H̃ l)) (2)

where Ql−1, K l−1, V l−1 come from the output
of the previous encoder layer H l−1. LN(·) and
FFN(·) represent layer normalization (Ba et al.,
2016) and feed-forward networks.

The multi-head attention MA(·) linearly project
the queries, keys and values h times for different
representation of Q, K, V , and computes scaled
dot-product attention (Luong et al., 2015) ATT(·)
for each representation. Then these are concate-
nated and once again projected, the final atten-
tional context is calculated as follows:

headh = ATT(QWQ
h ,KWK

h , V W V
h) (3)

MA = Concat(headh)WO (4)

where WQ
h , WK

h and W V
h are parameter matri-

ces to transform hidden state into different repre-
sentation subspaces and WO is output projection.

207

ATT(·) is computed by:

ei =
QiK

⊤
√

d
(5)

ATT(Q,K, V) = Softmax(ei)V (6)

where ei is the i-th energy and d is the dimension
of hidden state.

The decoder is also composed of N identical
layers and it contains a third sublayer, which per-
forms attention over the output of the encoder be-
tween the self-attention sublayer and feed-forward
network sublayer.

3 Proposed Architecture

Our proposed approach is mainly motivated by
the fact that redundancy has occurred in multi-
heads (Voita et al., 2019; Michel et al., 2019),
which limits the capacity of multi-head self-
attention. As each self-attention layer has a same
global receptive field, this can not guarantee that
every head has learned useful features in different
subspaces through the same attention function.

To tackle the problem mentioned above, besides
global information, we also model local and se-
quential information for multi-head self-attention
by applying local attention, forward attention and
backward attention respectively. We refer to it
as Mixed Multi-head Self-Attention (MMA), as
shown in Figure 1. This is achieved by adding hard
mask to each attention head. In this way, Eq.(3) is
redefined as:

ATT(Q,K, V) = Softmax(ei + Mi)V (7)

Since attention weights are calculated by the soft-
max function, for i-th word, if a mask Mi,j =
−∞ is added to the j-th position, it means that
Softmax(ei,j + Mi,j) = 0 and there is no at-
tention of Qi to Kj . On the contrary, if a mask
Mi,j = 0, it means no change in attention func-
tion and Qi attends to and captures relevant infor-
mation from Kj .

3.1 Global and Local Attention

Global attention and local attention differ in terms
of whether the attention is placed on all posi-
tions or only a few positions. Global atten-
tion is the original attention function in Trans-
former (Vaswani et al., 2017), and it has a global

receptive field which is used to connect with arbi-
trary words directly. Under our framework, we de-
fine the hard mask for global attention as follows:

MG
i,j = 0 (8)

But global attention may be less powerful and
can potentially render it impractical for longer se-
quences (Luong et al., 2015). On the other hand,
self-attention can be enhanced by local attention
which focuses more on restricted scope rather
than the entire context (Wu et al., 2019; Xu et al.,
2019). Based on the above findings, we also de-
fine a local attention which simply employs a hard
mask to restrict the attention scope by:

ML
i,j =

{
0, i − w ≤ j ≤ i + w

−∞, otherwise
(9)

where w is the attention scope which means, for
a given i-th word, it can only attends to the set of
words within the window size [i − w, i + w].

We aim to combine the strengths both of global
attention and local attention. Towards this goal,
we apply global attention and local attention to
two distinct attention heads.

3.2 Forward and Backward Attention
As for RNN-based NMT, bidirectional recurrent
encoder (Schuster and Paliwal, 1997) is the most
commonly used encoder (Bahdanau et al., 2015).
It consists of forward and backward recurrent en-
coding that receive information from both past and
future words. However, the Transformer foregoes
recurrence and completely relies on predefined po-
sition embedding to represent position informa-
tion. Therefore, it has considerable difficulties
in considering relative word order (Shaw et al.,
2018).

In order to enhance the ability of position-
awareness in self-attention, we present an straight-
forward way of modeling sequentiality in the self-
attention by a forward attention which only attends
to words from the future, and a backward atten-
tion which inversely only attends to words from
the past. The masks in forward and backward at-
tention can be formally defined as:

MF
i,j =

{
0, i ≤ j

−∞, otherwise
(10)

MB
i,j =

{
0, i ≥ j

−∞, otherwise
(11)

208

En-Ja Ja-En
Model #Params BLEU ∆ #Params BLEU ∆

Transformer 71M 33.58 – 71M 23.24 –
Transformer MMA + 0 34.39†† + 0.81 + 0 24.16†† + 0.92

Table 1: Evaluation results on WAT17 English⇔Japanese translation task. #Params denotes the number of pa-
rameters and ∆ denotes relative improvement over the Transformer baseline. † † (p < 0.01) indicates statistical
significance different from the Transformer baseline.

Model De-En
Variational Attention (Deng et al., 2018) 33.30
Pervasive Attention (Elbayad et al., 2018) 34.18
Multi-Hop Attention (Iida et al., 2019) 35.13
Dynamic Convolution (Wu et al., 2019) 35.20
RNMT Fine-tuned (Sennrich and Zhang, 2019) 35.27
Transformer (Vaswani et al., 2017) 34.46
Transformer MMA 35.41††

Table 2: Evaluation results on IWSLT14 De-En. ∆ denotes relative improvement over the Transformer baseline.
† † (p < 0.01) indicates statistical significance different from the Transformer baseline.

With the help of forward and backward attention,
we assume that the Transformer can can make bet-
ter use of word order information.

3.3 Mixed Multi-Head Self-Attention

With different heads applied different attention
function and different receptive field, the model
is able to learn different aspects of features. To
fully utilize the different features, we concatenate
all mixed attention heads as in Eq.(4):

MA = Concat(headG, headL, headF , headB)WO

where headG, headL, headF , headB represent
head with global attention, local attention, forward
attention and backward attention respectively.

Our method only adds hard masks before soft-
max function, the rest is the same as the original
model. Hence our method brings increase the pa-
rameters of the Transformer and does not affect
the training efficiency.

4 Experiments

4.1 Datasets

To test the proposed approach, we perform experi-
ments on WAT17 English-Japanese and IWSLT14
German-English translation task with different
amounts of training data.
WAT17 English-Japanese: We use the data from
WAT17 English-Japanese translation task which
created from ASPEC (Nakazawa et al., 2017).

Training, validation and test sets comprise 2M,
1.8K, 1.8K sentence pairs respectively. We adopt
the official 16K vocabularies preprocessed by sen-
tencepiece.2

IWSLT14 German-English: We use the TED
data from the IWSLT14 German-English shared
translation task (Cettolo et al., 2014) which con-
tains 160K training sentences and 7K validation
sentences randomly sampled from the training
data. We test on the concatenation of tst2010,
tst2011, tst2012, tst2013 and dev2010. For this
benchmark, data is lowercased and tokenized with
byte pair encoding (BPE) (Sennrich et al., 2016).

4.2 Setup

Our implementation is built upon open-source
toolkit fairseq3 (Ott et al., 2019). For WAT17
dataset and IWSLT14 dataset, we use the con-
figurations of the Transformer base and small
model respectively. Both of them consist of a
6-layer encoder and 6-layer decoder, the size of
hidden state and word embedding are set to 512.
The dimensionality of inner feed-forward layer
is 2048 for base and 1024 for small model.
The dropout probability is 0.1 and 0.3 for base
and small model. Models are optimized with
Adam (Kingma and Ba, 2014). We use the same
warmup and decay strategy for learning rate as
Vaswani et al. (2017) with 4000 warmup steps.

2https://github.com/google/sentencepiece
3https://github.com/pytorch/fairseq

209

Model De-En ∆ Ja-En ∆

Transformer 34.46 – 23.24 –
- Position Embedding 16.55 – 12.83 –

Transformer MMA 35.41 + 0.95 24.16 + 0.92
- Position Embedding 34.66 + 18.11 23.80 +10.97

Table 3: Results on IWSLT14 De-En and WAT17 Ja-En for effectiveness of learning word order. ”- Position
Embedding” indicates removing positional embedding from Transformer encoder or Transformer MMA encoder.
∆ denotes relative improvement over the counterpart of the Transformer baseline.

During training, we employ label smoothing of
value 0.1 (Szegedy et al., 2016). All models are
trained on a single NVIDIA RTX2080Ti with a
batch size of around 4096 tokens. The base model
are trained for 20 epochs, the small model are
trained for 45 epochs.

The number of heads are 8 for base model and
4 for small model. We replace multi-head self-
attention in the encoder layers by our mixed multi-
head self-attention. For a fair comparison, we ap-
ply each attention function twice in base model.
By doing this, our Transformer MMA have the
same number of parameters as the original Trans-
former.

For evaluation, we use a beam size of 5 for
beam search, translation quality is reported via
BLEU (Papineni et al., 2002) and statistical signif-
icance test is conducted by paired bootstrap resam-
pling method (Koehn, 2004).

4.3 Results
In Table 1 and Table 2, we present the experi-
ment results measured by BLEU on WAT17 and
IWSLT14.

On WAT17 English⇒Japanese (En-Ja) and
Japanese⇒English (Ja-En) translation task, with-
out increasing the number of parameters, our
Transformer MMA outperforms the correspond-
ing baseline 0.81 BLEU score on En-Ja and 0.92
BLEU score on En-Ja.

On IWSLT14 German⇒English (De-En) trans-
lation task, our model achieves 35.41 in terms
of BLEU score, with 0.95 improvement over the
strong Transformer baseline. In order to compare
with existing models, we list out some latest and
related work and our model also achieves consid-
erable improvements over these results.

Overall, our evaluation results show the intro-
duction of MMA consistently improves the trans-
lation quality over the vanilla Transformer, and the
proposed approach is stable across different lan-
guages pairs.

5 Analysis

5.1 Effectiveness of MMA

Neural machine translation must consider the
correlated ordering of words, where order has
a lot of influence on the meaning of a sen-
tence (Khayrallah and Koehn, 2018). In vanilla
Transformer, the position embedding is a de-
terministic function of position and it allows
the model to be aware of the order of the se-
quence (Yang et al., 2019). As shown in Ta-
ble 3, Transformer without position embedding
fails on translation task, resulting in a decrease
of 17.91 BLEU score. With the help of proposed
MMA, the performance is only reduced by 0.75
BLEU score without position embedding, and
18.11 points higher than the Transformer baseline.
The same result holds true for a distant language
pair Japanese-English where word oder is com-
pletely different. When removing position em-
bedding, the Transformer baseline drops to 12.83
BLEU score. However, our model still achieves
23.80 in terms of BLEU score, with 10.97 points
improvement over the Transformer counterpart.

From the cognitive perspective, due to the char-
acter of local attention which only focuses on re-
stricted scope, the local attention head’s depen-
dence on word order information is reduced. In the
forward and backward head, directional informa-
tion is explicitly learned by our forward and back-
ward attention. The above experimental results
confirm our hypothesis that, other than global in-
formation, Transformer MMA takes local and se-
quential information into account when perform-
ing self-attention function, revealing its effective-
ness on utilizing word order information.

5.2 Effect on Sentence Length

Following Bahdanau et al. (2015), we group
source sentences of similar lengths to evaluate the
performance of the proposed Transformer MMA
and vanilla Transformer. We divide our test set

210

Figure 2: Translation results on test sets relative to
source sentence length for IWSLT14 De-En.

into six disjoint groups shown in Figure 2. The
numbers on the X-axis represent source sentences
that are not longer than the corresponding length,
e.g., “(0, 10]” indicates that the length of source
sentences is between 1 and 10.

In all length intervals, Transformer MMA con-
sistently outperforms the Transformer baseline.
Specifically, as the length of the source sentence
increases, so does the increase in the improvement
brought by MMA. One explanation is that when
the length of the sentence is very short, four dif-
ferent attention functions are similar to each other.
But as the length of the sentence increases, more
distinct characteristics can be learned and the per-
formance gap is becoming larger.

Moreover, encoding long sentences usually re-
quires more long-range dependency. Concern-
ing the ability to connect with distant words di-
rectly, global self-attention was speculated that it
is better suited to capture long-range dependency.
However, as noted in (Tang et al., 2018), afore-
said hypothesis is not empirically correct and self-
attention does have trouble handling long sen-
tences. In case of our Transformer MMA, with
the exist of other attention functions served as aux-
iliary feature extractors, we think that the Trans-
former has more capacity for modeling longer sen-
tences.

5.3 Ablation Study
For ablation study, the primary question is whether
the Transformer benefits from the integration of
different attention equally. To do evaluate the im-
pact of various attention functions, we keep global
self-attention head unchanged, and next we re-
place other heads with different attention function.

Model De-En ∆

Transformer 34.46 –
+ Local Attention 35.05 + 0.59
+ Forward Attention 34.83 + 0.37
+ Backward Attention 35.13 + 0.67
+ MMA 35.41 + 0.95

Table 4: Results of ablation experiments on IWSLT14
De-En. ∆ denotes relative improvement over baseline.

Model De-En ∆

Transformer 34.46 –
+ MMA (w = 1) 35.41 +0.95
+ MMA (w = 2) 35.31 + 0.85
+ MMA (w = 3) 35.35 + 0.89
+ MMA (w = 4) 35.22 + 0.76

Table 5: Results of different attention scope on
IWSLT14 De-En. ∆ denotes relative improvement
over baseline.

The results are listed in Table 4. Compared with
the Transformer baseline, all integration methods
that incorporate other attention function improve
the performance of translation, from 0.37 to 0.67
BLEU score. And we can see that Transformer
MMA performs best across all variants with the
improvement of 0.95 BLEU score.

Furthermore, we investigate the effect of atten-
tion scope in our Transformer MMA, as illustrated
in Table 5. As the number of attention scope
progressively increases, there is no absolute trend
in performance. However it is worth noting that
when the attention scope is relatively small, the
overall performance is better. Specifically, when
the size of attention scope is 1, our Transformer
MMA achieves the best result. One possible rea-
son is that, in the case where there are already
global features captured by global attention, the
smaller the attention scope, the more local features
can be learned by local attention.

5.4 Attention Visualization

To further explore the behavior of our Transformer
MMA, we observe the distribution of encoder at-
tention weights in our models and show an exam-
ple of Japanese sentence as plotted in Figure 3.

The first discovery is that we find the word over-
looks itself on the first layer in the global atten-
tion head. This contrasts with the results from
Raganato and Tiedemann (2018). They find that,
on the first layer of original Transformer, more en-

211

Figure 3: Visualization of the attention weights of Japanese sentence “これらは腰椎装具装用または運動制
限により全症例軽快した。” (meaning “These persons were improved in all cases by wearing lumbar braces
or limiting exercises”). The deeper blue color refers to larger attention weights.

coder self-attention heads focus on the word it-
self. This change is in line with our assumption
that, due to the existence of other attention heads,
global attention head can focus more on capturing
global information.

The second discovery is that, on the upper lay-
ers, forward and backward attention heads move
the attention more on distant words. This suggests
forward and backward attention is able to serve
as a complement to capturing long-range depen-
dency.

6 Related Work

In the field of neural machine translation, the
two most used attention mechanisms are addi-
tive attention (Bahdanau et al., 2015) and dot at-
tention (Luong et al., 2015). Based on the latter,
Vaswani et al. (2017) proposed a multi-head self-
attention, that is not only highly parallelizable but
also with better performance.

However, self-attention, which employs nei-
ther recurrence nor convolution, has great
difficulty in incorporating position informa-
tion (Vaswani et al., 2017). To tackle this prob-
lem, Shaw et al. (2018) presented an extension
that can be used to incorporate relative position
information for sequence. And Shen et al. (2018)
tried to encode the temporal order and introduced
a directional self-attention which only composes
of directional order. On the other hand, although

with a global receptive field, the ability of self-
attention recently came into question (Tang et al.,
2018). And modeling localness, either restricting
context sizes (Yang et al., 2018; Wu et al., 2019;
Child et al., 2019) or balancing the contribution of
local and global information (Xu et al., 2019), has
been shown to be able to improve the expressive-
ness of self-attention. In contrast to these studies,
we aim to improve the self-attention in a system-
atic and multifaceted perspective, rather than just
paying attention to one specific characteristic.

Compared to a conventional NMT model with
only a single head, multi-head is assumed to have a
stronger ability to extract different features in dif-
ferent subspaces. However, there are no explicit
mechanism that make them distinct (Voita et al.,
2019; Michel et al., 2019). Li et al. (2018) had
shown that using a disagreement regularization to
encourage different attention heads to have dif-
ferent behaviors can improve the performance of
multi-head attention. Iida et al. (2019) proposed a
multi-hop attention where the second-hop serves
as a head gate function to normalize the atten-
tional context of each head. Not only limited in the
field of neural machine translation, Strubell et al.
(2018) combined multi-head self-attention with
multi-task learning, this led to a promising result
for semantic role labeling. Similar to the above
studies, we also attempt to model diversity for
multi-head attention. In this work, we apply dif-

212

ferent attention function to capture different as-
pects of features in multiple heads directly, which
is more intuitive and explicit.

7 Conclusion

In this work, we improve the self-attention net-
works by modeling multi-head attention to learn
different aspects of feature through different at-
tention function. Experimental results on WAT17
English-Japanese and IWSLT14 German-English
translation tasks demonstrate that our proposed
model outperforms the Transformer baseline as
well as some latest and related models. Our analy-
sis further shows our Transformer MMA can make
better use of word order information and the im-
provement in translating longer sentences is espe-
cially significant. Moreover, we perform ablation
study to compare different architectures. To ex-
plore the behavior of our proposed model, we vi-
sualize the attention distribution and confirm the
diversity among multiple heads in MMA.

In the future, we plan to apply our method on
other sequence to sequence learning tasks, such as
text summarization.

References
Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

2016. Layer normalization. ArXiv.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th IWSLT evaluation campaign, IWSLT 2014.
In IWSLT.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In ACL,
pages 76–86.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. ArXiv.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP, pages
1724–1734.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and
Alexander Rush. 2018. Latent alignment and varia-
tional attention. In NIPS.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2018. Pervasive attention: 2D convolutional neural
networks for sequence-to-sequence prediction. In
CoNLL, pages 97–107.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In ICML.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. CVPR.

Shohei Iida, Ryuichiro Kimura, Hongyi Cui, Po-Hsuan
Hung, Takehito Utsuro, and Masaaki Nagata. 2019.
Attention over heads: A multi-hop attention for neu-
ral machine translation. In ACL: Student Research
Workshop, pages 217–222.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In ACL: Workshop on Neural Machine
Translation and Generation, pages 74–83.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP, pages
388–395.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R.
Lyu, and Tong Zhang. 2018. Multi-head attention
with disagreement regularization. In EMNLP, pages
2897–2903.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP, pages
1412–1421.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? ArXiv.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Hideto Kazawa,
Yusuke Oda, Graham Neubig, and Sadao Kurohashi.
2017. Overview of the 4th workshop on Asian trans-
lation. In WAT.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL, pages
48–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

213

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 287–297.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL, pages 1715–1725.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-
resource neural machine translation: A case study.
In ACL, pages 211–221.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In NAACL, pages 464–468.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. In AAAI.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In EMNLP, pages 5027–5038.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In CVPR.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? a targeted eval-
uation of neural machine translation architectures.
In EMNLP, pages 4263–4272.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In ACL, pages 5797–
5808.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In ICLR.

Mingzhou Xu, Derek F. Wong, Baosong Yang, Yue
Zhang, and Lidia S. Chao. 2019. Leveraging local
and global patterns for self-attention networks. In
ACL, pages 3069–3075.

Baosong Yang, Zhaopeng Tu, Derek F. Wong, Fan-
dong Meng, Lidia S. Chao, and Tong Zhang. 2018.
Modeling localness for self-attention networks. In
EMNLP, pages 4449–4458.

Baosong Yang, Longyue Wang, Derek F. Wong,
Lidia S. Chao, and Zhaopeng Tu. 2019. Assessing
the ability of self-attention networks to learn word
order. In ACL, pages 3635–3644.

214

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 215–220
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Paraphrasing with Large Language Models

Sam Witteveen
Red Dragon AI

sam@reddragon.ai

Martin Andrews
Red Dragon AI

martin@reddragon.ai

Abstract

Recently, large language models such as GPT-
2 have shown themselves to be extremely
adept at text generation and have also been
able to achieve high-quality results in many
downstream NLP tasks such as text classifica-
tion, sentiment analysis and question answer-
ing with the aid of fine-tuning. We present
a useful technique for using a large language
model to perform the task of paraphrasing on
a variety of texts and subjects. Our approach
is demonstrated to be capable of generating
paraphrases not only at a sentence level but
also for longer spans of text such as paragraphs
without needing to break the text into smaller
chunks.

1 Introduction

Paraphrase generation is an NLP task that has mul-
tiple uses in content creation, question answering,
translation, and data augmentation. It is a task
that has been attempted for many decades using
statistical and rules-based approaches (McKeown,
1979; Meteer and Shaked, 1988).

We propose a system that generates paraphrased
examples in an autoregressive fashion using a neu-
ral network, without the need for techniques such
as top-k word selection or beam search.

We demonstrate that by using large language
models we are able to produce not only para-
phrases that are longer and of a higher quality than
previous work, but can also paraphrase text be-
yond the individual sentence-level (i.e. full para-
graphs at a time).

The large language models we use implement
the encoder-decoder structure of the transformer
architecture (Vaswani et al., 2017) which has been
shown to learn different representations of lan-
guage at each level of its encoding (Devlin et al.,
2019). The power of language models like GPT-2
(Radford et al., 2019) and BERT allows them to

develop useful representations of language which
can be used far beyond just generation of the next
word (Rothe et al., 2019). In our experiments,
we have observed that the models have representa-
tions of syntax and grammar, allowing them to be
fine-tuned for the task of paraphrase generation.

2 Related Work

Paraphrase generation has attracted a number of
different NLP approaches. These have included
rule-based approaches (McKeown, 1979; Meteer
and Shaked, 1988) and data-driven methods (Mad-
nani and Dorr, 2010), with recently the most com-
mon approach being that the task is treated as a
language translation task (Bannard and Callison-
Burch, 2005; Barzilay and McKeown, 2001; Pang
et al., 2003) - often performed using a bilin-
gual corpus pivoting back and forth (Madnani and
Dorr, 2010; Prakash et al., 2016; Mallinson et al.,
2017). Other methods proposed include more
recently the use of Deep Reinforcement Learn-
ing (Li et al., 2018) , supervised learning using
sequence-to-sequence models (Gupta et al., 2018;
Prakash et al., 2016) and unsupervised approaches
(Bowman et al., 2016; Roy and Grangier, 2019).

3 Methodology

In this section, we define the task, present our im-
plementation, describe our evaluation protocol and
the paraphrase datasets used.

Paraphrase generation can be described as gen-
erating a phrase which is semantically as close as
possible to the original while being rewritten in
new words and phrases.

3.1 Large Language Model training

Training language models has become a popular
way of creating models suited for Transfer Learn-
ing in the field of NLP. (Howard and Ruder, 2018;

215

https://www.aclweb.org/anthology/D19-56%2d

USE ROUGE-L BLEU
In: A prisoner can asphyxiate himself in 90 seconds and, after

eight minutes or so, he will be brain dead.
Out: In 90 seconds, a prisoner can asphyxiate himself and be brain

dead after eight minutes or so.
0.9326 0.4706 0.4730

In: The restaurant is a carved-off space up a couple of stairs to one
side, dominated by faux bare-brick columns, faux-wood floors
and an air of foetid despondency.

Out: It is a carved-off space, up a couple of flights of stairs, to
the other side of the restaurant, dominated by fake bare-brick
columns, fake wood floors and an air of foetid despondency.

0.8954 0.5000 0.5348

In: I signed a bill that made the problem worse, and I want to admit
it, he said.

Out: He signed a bill that made the problem worse and he wants to
admit it.

0.8363 0.4667 0.5299

In: It said the damage to the wing provided a pathway for hot
gasses to penetrate the ship’s thermal armor during Columbia’s
ill-fated reentry.

Out: The document says the damage to the wing provided a pathway
for hot gases to penetrate Columbia’s thermal armour during its
fatal re-entry.

0.9190 0.4545 0.5445

Table 1: Examples of GPT-2 generated paraphrased sentences with scores for each pair

Peters et al., 2018; Radford et al., 2018; Dong
et al., 2019). While these models are initially
trained in a semi-supervised manner to predict the
next word or words in a sequence, they can be fine-
tuned and used for a variety of downstream NLP
tasks such as text classification, sentiment analy-
sis, tagging, and entity extraction.

More recently, large language models using
transformer architectures are achieving state of the
art results for many of these tasks while using less
supervised data than previously needed.

One example of these large language models
that has proven to be very good at text generation
is GPT-2. It makes use of a transformer architec-
ture and comes in various sizes up to 1.5 billion
parameters. In these experiments, we have taken a
pre-trained version of the GPT-2 model trained in
a semi-supervised fashion on the WebText dataset
(Radford et al., 2019) of over 8 million documents
with 40 GB of text in total.

3.2 Fine-tuning for Task

We take the GPT-2 model and fine-tune it on a
supervised dataset of pre-made paraphrase exam-
ples. These examples are fed into the model as
original phrase / paraphrase pairs, separated by a
specific identifying sequence (such as ”>>>>”).

This training is done for a small number of
epochs to give the model just enough examples of
what the task is asking from the model : The goal
being to avoid overfitting the model on the new
data, while giving it sufficient exposure to the task
to enable it to learn the general pattern expected.

While we experimented with TPUs for the fine-
tuning, in the end we were able to reproduce the
same results on a single K-80 GPU with around
90 minutes of training.

Once the model is fine-tuned, we find that it can
also produce similar paraphrase training examples
if sampled from with no conditional input. To give
an indication of training progress, these ’naive’
paraphrases are sampled on a periodic basis dur-
ing the training.

After fine-tuning on this dataset, we are then
able to feed in any original phrase followed by the
unique token and have the model generate para-
phrases on demand.

3.3 Candidate Generation and Selection

After the model is trained, we then sample from
the model using previously unseen sentences as
conditional input. This conditional input allows
us to generate multiple candidate sentences for the
single original sentence.

While the quality of the paraphrases is some-
what variable, by generating multiple outputs and
then scoring them, we can select just the best qual-
ity paraphrases based on a number of criteria that
serve to filter our output down to a set of satisfac-
tory results.

First, we obtain a similarity score between the
generated paraphrase and the original sentence by
using the Universal Sentence Encoder (USE) (Cer
et al., 2018) to make a 512 dimensional sentence
embedding for each output sentence and then com-
pare them to the embedding of the original sen-
tence via the cosine similarity measure.

As a second step, we measure the ROUGE-
L (Lin, 2004) score of the candidate paraphrases
against the original sentence and eliminate candi-
dates with a ROUGE-L score of above 0.7 . This
prevents candidates that are too close to the orig-
inal sentence being chosen. After testing both
cutoff scores for ROUGE-L and BLEU (Papineni
et al., 2002), ROUGE-L has shown to be more use-
ful at finding candidates that are more unique in
comparison to the original sentence.

By choosing samples with sufficiently low
ROUGE-L scores but as high a similarity as pos-
sible, we end up with an output that is semanti-
cally similar to the original phrase but has a unique
word order when compared to the original phrase.

3.4 Datasets
We fine-tuned multiple versions of the model on
several different datasets : 2 datasets of sentences
and their matching paraphrases; and 1 dataset of
paragraphs with matching paraphrases :

1. The MSR Paraphrase Identification dataset
(Dolan et al., 2004) which consists of just
over 4,000 examples of original sentences
with a matching paraphrased sentence in its
train set.

2. An original dataset of 10,000 sentences from
online news articles along with matching
paraphrases that were human-generated.

3. A further original dataset of paragraphs with
corresponding paraphrased paragraphs from
various entertainment, news, and food ar-
ticles found online, where the paraphrases
were human-generated.

We fine-tuned 3 versions of the GPT-2 model,
one corresponding to each dataset, and then made
predictions using the same system outlined above.

By calculating USE, ROUGE-L and BLEU
scores for each dataset we are able to quantify the
quality of human-generated paraphrases and then
use that as a comparison for the models generated
sentences (see Table 2).

Dataset USE R-L BLEU
MSR train 0.8462 0.4315 0.4593
MSR test 0.8415 0.4202 0.4966
News dataset 0.8948 0.4686 0.5648
Paragraphs dataset 0.9208 0.4966 0.5762

Table 2: Average USE, ROUGE-L, BLEU Scores of
the datasets

4 Experiments

We implemented the system described above us-
ing GPT-2 and trained it on the different datasets
for various lengths of training.

To evaluate the output of the model, we ran-
domly selected sentences from sources such as
Wikipedia, news sites and entertainment sites with
no matching paraphrase to use as the conditional
input to the model.

5 Results and Scoring

When comparing our generated sentences with the
average scores of the original datasets, we can see
that that they compare favorably.

As discussed earlier, we assessed the semantic
similarity of the sentence meanings using Univer-
sal Sentence Encoder (Cer et al., 2018) and com-
pared them to the average USE score from the
datasets that were trained on. This showed that
the system can generate paraphrases which are se-
mantically on par with the human-generated ones
in each of the datasets.

We also compared the ROUGE-L (Lin, 2004)
scores of the generated samples with the aver-
age values for the datasets which were human-
generated. This again shows that our phrases are
coherent and on par with human-generated para-
phrases.

When we further compared the results of unfil-
tered examples generated by the model (Table 3)
we observe that when the USE score is below 0.85
we see clear deterioration in the semantic similar-
ity quality of the paraphrased versions.

We also observe that if the USE score is too
close to 1.0 then the ROUGE-L score also rises
and the generated examples are too similar in word

216

While the quality of the paraphrases is some-
what variable, by generating multiple outputs and
then scoring them, we can select just the best qual-
ity paraphrases based on a number of criteria that
serve to filter our output down to a set of satisfac-
tory results.

First, we obtain a similarity score between the
generated paraphrase and the original sentence by
using the Universal Sentence Encoder (USE) (Cer
et al., 2018) to make a 512 dimensional sentence
embedding for each output sentence and then com-
pare them to the embedding of the original sen-
tence via the cosine similarity measure.

As a second step, we measure the ROUGE-
L (Lin, 2004) score of the candidate paraphrases
against the original sentence and eliminate candi-
dates with a ROUGE-L score of above 0.7 . This
prevents candidates that are too close to the orig-
inal sentence being chosen. After testing both
cutoff scores for ROUGE-L and BLEU (Papineni
et al., 2002), ROUGE-L has shown to be more use-
ful at finding candidates that are more unique in
comparison to the original sentence.

By choosing samples with sufficiently low
ROUGE-L scores but as high a similarity as pos-
sible, we end up with an output that is semanti-
cally similar to the original phrase but has a unique
word order when compared to the original phrase.

3.4 Datasets
We fine-tuned multiple versions of the model on
several different datasets : 2 datasets of sentences
and their matching paraphrases; and 1 dataset of
paragraphs with matching paraphrases :

1. The MSR Paraphrase Identification dataset
(Dolan et al., 2004) which consists of just
over 4,000 examples of original sentences
with a matching paraphrased sentence in its
train set.

2. An original dataset of 10,000 sentences from
online news articles along with matching
paraphrases that were human-generated.

3. A further original dataset of paragraphs with
corresponding paraphrased paragraphs from
various entertainment, news, and food ar-
ticles found online, where the paraphrases
were human-generated.

We fine-tuned 3 versions of the GPT-2 model,
one corresponding to each dataset, and then made
predictions using the same system outlined above.

By calculating USE, ROUGE-L and BLEU
scores for each dataset we are able to quantify the
quality of human-generated paraphrases and then
use that as a comparison for the models generated
sentences (see Table 2).

Dataset USE R-L BLEU
MSR train 0.8462 0.4315 0.4593
MSR test 0.8415 0.4202 0.4966
News dataset 0.8948 0.4686 0.5648
Paragraphs dataset 0.9208 0.4966 0.5762

Table 2: Average USE, ROUGE-L, BLEU Scores of
the datasets

4 Experiments

We implemented the system described above us-
ing GPT-2 and trained it on the different datasets
for various lengths of training.

To evaluate the output of the model, we ran-
domly selected sentences from sources such as
Wikipedia, news sites and entertainment sites with
no matching paraphrase to use as the conditional
input to the model.

5 Results and Scoring

When comparing our generated sentences with the
average scores of the original datasets, we can see
that that they compare favorably.

As discussed earlier, we assessed the semantic
similarity of the sentence meanings using Univer-
sal Sentence Encoder (Cer et al., 2018) and com-
pared them to the average USE score from the
datasets that were trained on. This showed that
the system can generate paraphrases which are se-
mantically on par with the human-generated ones
in each of the datasets.

We also compared the ROUGE-L (Lin, 2004)
scores of the generated samples with the aver-
age values for the datasets which were human-
generated. This again shows that our phrases are
coherent and on par with human-generated para-
phrases.

When we further compared the results of unfil-
tered examples generated by the model (Table 3)
we observe that when the USE score is below 0.85
we see clear deterioration in the semantic similar-
ity quality of the paraphrased versions.

We also observe that if the USE score is too
close to 1.0 then the ROUGE-L score also rises
and the generated examples are too similar in word

USE R-L
In: A prisoner can asphyxiate himself in 90 seconds and, after eight minutes or

so, he will be brain dead.
Out 1: After 8 minutes, a brain fart will subdue the sufferer. 0.524 0.0
Out 2: After 8 minutes, he will be brain-dead and his heart will stop. 0.565 0.138
Out 3: A brain aneurysm can asphyxiate itself in 90 seconds and, after eight min-

utes, it will be dead.
0.721 0.412

Out 4: After eight minutes, a brain anesthetist can asphyxiate a prisoner in 90 sec-
onds and for several minutes after that.

0.758 0.167

Out 5: A brain-dead prisoner canasphyxiate himself in 90 seconds and then out
loud after eight minutes.

0.809 0.312

Out 6: At asphyxiation, the prisoner canasphyxiate himself in 90 seconds and, after
8 minutes, he will be brain dead.

0.884 0.514

Out 7: After eight minutes, a prisoner can asphyxiate himself in 90 seconds and,
after that, he will be brain dead.

0.884 0.514

Out 8*: In 90 seconds, a prisoner can asphyxiate himself and be brain dead
after eight minutes or so

0.932 0.473

Out 9: A prisoner can asphyxiate himself in 90 seconds and, after eight minutes,
he will be brain dead.

0.972 0.824

Table 3: Showing Candidates Selection and Scoring - *Selected Sentence

and phrase selection to the original sentence to be
useful paraphrases.

This technique can be performed not only at
sentence-level but also to generate paragraph-level
paraphrases. Comparing USE and ROUGE-L
scores of the generated paragraphs we see they are
again on par with the human generated examples
from our paragraph dataset (samples are given in
the Supplemental Materials).

Due to the pre-training of the Language Model,
the model is able to generalize to and generate
paraphrases for types of content it has never seen
during the fine-tuning phase.

6 Discussion

The technique outlined in this paper shows the ap-
plicability of large language models to the para-
phrasing task. It also highlights that there is still
much to be learnt about further applications of
large language models, and also the approaches
used to fine-tune and use them for applications.

Most of the results from models such as GPT-
2 have focused on the quality of text genera-
tion rather than quantitative methods for measur-
ing and improving the quality of text created, to
make it more consistent and usable. We pro-
pose the scoring and filtering of candidates using
techniques such as we have shown with USE and
ROUGE-L, may be a useful technique not just for

paraphrasing but other text generation tasks.
The ability of our technique to work with long

spans of text also gives it an advantage over prior
work which used rule-based and other statistical
approaches which performed best on shorter spans
of text.

Our experiments show that pre-training of GPT-
2 on such a large amount of data in the WebText
dataset allows it to ’understand’ the syntax and to
a degree the grammar of English allowing it to
be able to quickly learn the task of paraphrasing
through fine-tuning training on a small set of para-
phrasing examples.

7 Future Work

Extrapolating from the paraphrasing results into
more generalizable ideas, we hope to investigate
the extent by which the representations learned in
the different layers of the transformer network cor-
respond to different parts of the linguistic hierar-
chy. One possible approach to doing this would be
to trace a set of ’markers’ through the transformer
networks existing attention mechanism, in parallel
to the text which gives rise to that structure.

In addition, the ability of the networks to learn
tasks within the span of a single context frame in-
dicates the possibility of an inherent bias towards
meta-(or one-shot) learning. These will be the
subject of further work.

217

USE R-L
In: A prisoner can asphyxiate himself in 90 seconds and, after eight minutes or

so, he will be brain dead.
Out 1: After 8 minutes, a brain fart will subdue the sufferer. 0.524 0.0
Out 2: After 8 minutes, he will be brain-dead and his heart will stop. 0.565 0.138
Out 3: A brain aneurysm can asphyxiate itself in 90 seconds and, after eight min-

utes, it will be dead.
0.721 0.412

Out 4: After eight minutes, a brain anesthetist can asphyxiate a prisoner in 90 sec-
onds and for several minutes after that.

0.758 0.167

Out 5: A brain-dead prisoner canasphyxiate himself in 90 seconds and then out
loud after eight minutes.

0.809 0.312

Out 6: At asphyxiation, the prisoner canasphyxiate himself in 90 seconds and, after
8 minutes, he will be brain dead.

0.884 0.514

Out 7: After eight minutes, a prisoner can asphyxiate himself in 90 seconds and,
after that, he will be brain dead.

0.884 0.514

Out 8*: In 90 seconds, a prisoner can asphyxiate himself and be brain dead
after eight minutes or so

0.932 0.473

Out 9: A prisoner can asphyxiate himself in 90 seconds and, after eight minutes,
he will be brain dead.

0.972 0.824

Table 3: Showing Candidates Selection and Scoring - *Selected Sentence

and phrase selection to the original sentence to be
useful paraphrases.

This technique can be performed not only at
sentence-level but also to generate paragraph-level
paraphrases. Comparing USE and ROUGE-L
scores of the generated paragraphs we see they are
again on par with the human generated examples
from our paragraph dataset (samples are given in
the Supplemental Materials).

Due to the pre-training of the Language Model,
the model is able to generalize to and generate
paraphrases for types of content it has never seen
during the fine-tuning phase.

6 Discussion

The technique outlined in this paper shows the ap-
plicability of large language models to the para-
phrasing task. It also highlights that there is still
much to be learnt about further applications of
large language models, and also the approaches
used to fine-tune and use them for applications.

Most of the results from models such as GPT-
2 have focused on the quality of text genera-
tion rather than quantitative methods for measur-
ing and improving the quality of text created, to
make it more consistent and usable. We pro-
pose the scoring and filtering of candidates using
techniques such as we have shown with USE and
ROUGE-L, may be a useful technique not just for

paraphrasing but other text generation tasks.
The ability of our technique to work with long

spans of text also gives it an advantage over prior
work which used rule-based and other statistical
approaches which performed best on shorter spans
of text.

Our experiments show that pre-training of GPT-
2 on such a large amount of data in the WebText
dataset allows it to ’understand’ the syntax and to
a degree the grammar of English allowing it to
be able to quickly learn the task of paraphrasing
through fine-tuning training on a small set of para-
phrasing examples.

7 Future Work

Extrapolating from the paraphrasing results into
more generalizable ideas, we hope to investigate
the extent by which the representations learned in
the different layers of the transformer network cor-
respond to different parts of the linguistic hierar-
chy. One possible approach to doing this would be
to trace a set of ’markers’ through the transformer
networks existing attention mechanism, in parallel
to the text which gives rise to that structure.

In addition, the ability of the networks to learn
tasks within the span of a single context frame in-
dicates the possibility of an inherent bias towards
meta-(or one-shot) learning. These will be the
subject of further work.

218

Acknowledgments

We would like to thank Google for access to the
TFRC TPU program which was used in training
and fine-tuning models for this paper.

References
Colin J. Bannard and Chris Callison-Burch. 2005.

Paraphrasing with bilingual parallel corpora. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL05),
pages 597–604, Ann Arbor, Michigan. Association
for Computational Linguistics.

Regina Barzilay and Kathleen McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th Annual Meeting on Association
for Computational Linguistics, ACL ’01, pages 50–
57, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21, Berlin, Germany. Association for
Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. ArXiv,
abs/1803.11175.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan, Chris Quirk, and Chris Brockett.
2004. Unsupervised construction of large para-
phrase corpora: Exploiting massively parallel news
sources. In COLING.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. CoRR, abs/1905.03197.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase generation with deep reinforce-
ment learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3865–3878.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In ACL 2004, pages
74–81, Barcelona, Spain. Association for Computa-
tional Linguistics.

Nitin Madnani and Bonnie J. Dorr. 2010. Generat-
ing phrasal and sentential paraphrases: A survey
of data-driven methods. Computational Linguistics,
36:341–387.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881–893.

Kathleen McKeown. 1979. Paraphrasing using given
and new information in a question-answer system.
In 17th Annual Meeting of the Association for Com-
putational Linguistics, pages 67–72.

Marie Meteer and Varda Shaked. 1988. Strategies for
effective paraphrasing. In Coling Budapest 1988
Volume 2: International Conference on Computa-
tional Linguistics.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations:
Extracting paraphrases and generating new sen-
tences. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 181–188.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. pages 2227–2237, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek V.
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. CoRR, abs/1610.03098.

219

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2019. Leveraging pre-trained checkpoints for se-
quence generation tasks. CoRR, abs/1907.12461.

Aurko Roy and David Grangier. 2019. Unsuper-
vised paraphrasing without translation. ArXiv,
abs/1905.12752.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

220

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 221–230
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Interrogating the Explanatory Power of Attention in Neural Machine
Translation

Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar
Simon Fraser University
8888 University Drive
Burnaby, BC, Canada

{pooya moradi, nkambhat, anoop}@sfu.ca

Abstract

Attention models have become a crucial com-
ponent in neural machine translation (NMT).
They are often implicitly or explicitly used to
justify the model’s decision in generating a
specific token but it has not yet been rigor-
ously established to what extent attention is
a reliable source of information in NMT. To
evaluate the explanatory power of attention for
NMT, we examine the possibility of yielding
the same prediction but with counterfactual at-
tention models that modify crucial aspects of
the trained attention model. Using these coun-
terfactual attention mechanisms we assess the
extent to which they still preserve the genera-
tion of function and content words in the trans-
lation process. Compared to a state of the art
attention model, our counterfactual attention
models produce 68% of function words and
21% of content words in our German-English
dataset. Our experiments demonstrate that at-
tention models by themselves cannot reliably
explain the decisions made by a NMT model.
1

1 Introduction

One shortcoming of neural machine translation
(NMT), and neural models in general, is that it is
often difficult for humans to comprehend the rea-
sons why the model is making predictions (Feng
et al., 2018; Ghorbani et al., 2019). The main
cause of such a difficulty is that in neural mod-
els, information is implicitly represented by real-
valued vectors, and conceptual interpretation of
these vectors remains a challenge. Why do we
want neural models to be interpretable? In order
to debug a neural model during the error analy-
sis process in research experiments, it is neces-
sary to know how much each part of the model is

1The source code to reproduce the experiments is
available at: https://github.com/sfu-natlang/
attention_explanation

contributing to the error in the prediction. Being
able to interpret the deficiencies of a model is also
crucial to further improve upon it. This requires
an explainable understanding of the internals of
the model, including how certain concepts are be-
ing modeled or represented. Therefore developing
methods to interpret and understand neural models
is an important research goal.

Visualizing and interpreting neural models has
been extensively studied in computer vision (Si-
monyan et al., 2013; Bach et al., 2015; Zeiler and
Fergus, 2014; Montavon et al., 2017), and more
recently in natural language processing (NLP)
(Karpathy et al., 2015; Li et al., 2016a; Strobelt
et al., 2017, 2018). Recently, the integration of at-
tention mechanism (Bahdanau et al., 2014) with
an NMT sequence to sequence model (Sutskever
et al., 2014) has led to significant improvements
in translation quality especially for longer sen-
tence lengths. The attention mechanism provides
a weighted average over the information from the
source encodings to be used at each translation
step. These weights are often regarded as a mea-
sure of importance, and are implicitly or explicitly
used as an explanation for the model’s decision.
However it has not yet been established to what
extent such explanations are reliable.

The example in Figure 1 shows a model trans-
lating the German sentence “und wir wollen dieses
material für alle verfügbar machen.” (and we
want to make this material accessible to every-
one.). At the time that the model is translating
“verfügbar” to “accessible”, it is mostly attending
to “verfügbar” (left heatmap). It is tempting to
conclude that “verfügbar” having the most atten-
tion is why the model is generating the token “ac-
cessible”. However, we manipulate the attention
weights such that the “verfügbar” receives no at-
tention and “alle” is given the most attention (right
heatmap). We observe that in the second case, the

221

https://www.aclweb.org/anthology/D19-56%2d

und wir wollen dieses material für verfügbar machen .

and we want to make

this material to be
Model

current state

of translation

accessible

attention
output

alle und wir wollen dieses material für verfügbar machen .

and we want to make

this material to be
Model

current state

of translation

accessible

attention
output

alle

Figure 1: Two distinct attention weights yielding the same prediction. The model is translating the source word
“verfügbar” to “accessible”. In the left attention heatmap, the focus of the attention is on the word “verfügbar”.
However, in the right heatmap, “verfügbar” is not attended to at all and “alle” has received the most attention.

model makes the same decision again and outputs
“accessible”. This example shows that using at-
tention weights to reason about the model’s pre-
dictions can be misleading, as these two heatmaps
convey different explanations.

There are relatively few previous studies on in-
vestigating the power of attention mechanism in
rationalizing a model’s predictions in NLP (Jain
and Wallace, 2019; Serrano and Smith, 2019) and
they all target text classification tasks where atten-
tion is over the input document. Their findings do
not generalize easily to NMT due to the difference
in how the decoder works in the translation task
which produces a sequence rather than a class la-
bel. NMT is a sequence-to-sequence (Seq2Seq)
task, which is different from text classification.
Also, the size of the output space is quite limited
in text classification, whereas in NMT, it is equal
to the vocabulary size of the target language that
can be very large. Furthermore, different neural
architectures (e.g., presence of an encoder and de-
coder in NMT), require different analysis and in-
terpretations. To the best of our knowledge there is
no existing work on addressing the question of in-
terpretability of attention models for the machine
translation task.

To investigate if the explanation implied by at-
tention weights faithfully justifies why a model
produced its output, we study to what extent it
is possible to yield the same prediction by us-
ing counterfactual attention weights that suggest
a contradictory explanation. The intuition behind
this approach is that multiple contradictory jus-
tifications should not exist for a decision. To
be specific, in the setting of an encoder-decoder
model (Sec 2), we propose several counterfactual
attention weighting methods that suggest differ-
ent explanations compared to the original attention
weights (Sec 3) and analyze their performance in

preserving the generation of function2 and content
words (Sec 4). Function words (e.g., a, the, is)
have little lexical meaning in contrast to content
words and thus we are curious whether explana-
tory power of the attention mechanism differs for
generation of these two groups of words.

2 Encoder-Decoder Model with
Attention Mechanism

Given a training sentence pair (x, y) where x =
[x1, x2, ..., xm] is a sentence in the source lan-
guage and y = [y1, y2, ..., yn] is its correspond-
ing translation in the target language, the encoder,
which is a recurrent neural network (RNN), runs
over the source sentence to calculate the contextu-
alized representation of the source words. Here,
we use a bidirectional encoder, and concatenate
the forward and backward hidden states to build
the final representation.

−→
ht =

−−→
fenc(xt,

−−→
ht−1)

←−
ht =

←−−
fenc(xt,

←−−
ht+1)

ht = [
−→
ht ,
←−
ht]

(1)

Then the decoder starts to generate output to-
kens using the following probability distribution:

p(yt|y<t, x) = softmax(gdec(st, ct))

with gdec being a transformation function that
produces a vocabulary-sized vector, and st is the
hidden unit of the decoder’s RNN updated as:

st = fdec(yt−1, st−1, ct−1)

2The reference for function words (we added new func-
tion words including the EOS token to this) can be found at:
semanticsimilarity.files.wordpress.com/
2013/08/jim-oshea-fwlist-277.pdf

222

where fdec is a RNN. Here ct is the context vec-
tor calculated by attention mechanisms:

ct =

m∑

i=1

αtihi

where αt is the normalized attention weights
over the source context:

αti =
ea(st,hi)

∑
j ea(st,hj)

Here, a is a scoring function that determines
the contribution of each source context vector to
the final context vector. Implementation of a de-
pends on the choice of the attention method. In
this work, we use general attention (Luong et al.,
2015) as the scoring function:

a(st, hi) = s⊤
t Wahi

3 Approach

Given a trained NMT model M , a test sentence
x with y being its translation generated by M at
the decoding step t in which αt is the attention
vector, attending to the source word at position
mt = argmaxi αt[i] or k-best attended-to words
in the source are often implicitly or explicitly re-
garded as a justification for the model’s prediction
at the time step t.

A vital criteria for such a justification is that one
should not be able to find a contradictory expla-
nation for the model’s decision. More precisely,
if at the time of inference, it is possible to ma-
nipulate the original attention weights to consti-
tute an alternative attention vector α′

t, such that
argmaxi α

′
t[i] 6= mt and the decision of the model

is preserved, then these weights cannot be used
for justification as they are contradictory. Thus,
we are interested in assessing for what percentage
of the words in the translation, counterfactual at-
tention weights exist. These percentages can shed
light on the reliability of the attention weights as
a potential explanation. Note that at the inference
time we manipulate attention vector for each out-
put token separately and in isolation to make sure
the output tokens at time steps t + 1 and after will
not be affected by the change at time step t. This
means that our output translations are unaffected
by our counterfactual attention models which are
purely for the examination of how attention might
explain the model’s decision.

The main task here is to find a counterfactual
attention vector if it exists at all. An exhaustive
search approach in which every possible attention
vector is examined is computationally intractable
and unlikely to provide much insight. Instead we
experiment with a few specific counterfactual at-
tention weighting methods that we think provide
the most insight. It is important to note that in this
case, the calculated percentage of the preserved
words will be a lower-bound estimation for the
true percentage. As a result, the explanation of-
fered by attention weights are more unreliable than
what we’ll find. We experiment with the following
attention methods to create counterfactual atten-
tion weights:

• RandomPermute (Jain and Wallace, 2019):
We set α′

t = random permute(αt) such
that argmaxi α

′
t[i] 6= mt.

• Uniform: In this method, α′
t = 1

m
~1. Here,

m is the length of the source sentence.

• ZeroOutMax: A simple approach to create
a counterfactual attention vector is to remove
the maximum attention weight. So we set
a(st, hmt) = −∞.

We also experiment with four additional atten-
tion methods where our motivation is not finding
counterfactual attention weights, but to improve
our understanding of how attention weights influ-
ence the model’s prediction:

• ZeroOut: In what conditions does the de-
coder overlook the information provided by
attention mechanism? To answer this ques-
tion, we set all attention weights to zero at
inference time (attention is still used while
training the model).

• LastEncoderState: Here, we only use
the final hidden state of the encoder as the
context vector to be used in the decoder. Note
that this is different from seq2seq without at-
tention in which final hidden state of the en-
coder is used to initialize the decoder. When
the focus is on the final hidden state of the
encoder in the original attention weights, this
method does not produce a counterfactual at-
tention vector, which is why we don’t intend
to use this method to create a contradictory
explanation, but rather to gain more insight
into the sensitivity of the model to attention
weights.

223

• OnlyMax: In this and the following method,
the source hidden state with the maximum
attention still receives the highest attention,
and so these two methods do not output
counterfactual attention vectors. However
we are curious to what extent other attention
weights are required to preserve the model’s
output. Note that the weights produced by
these methods can be counted as contra-
dictory when multiple attention weights are
used for justifying predictions. Because al-
though the most attended source context is
not changed, the relative ranking of the rest
of the source context in terms of attention
weights is changed. However, these kinds
of justifications are mostly discussed in text
classification. In this specific method we only
keep the most attended source hidden state:
α′

t[mt]=1.

• KeepMaxUniformOthers: Here, we set
α′

t[mt] = αt[mt], but for all other positions
α′

t[i] = (1−α′
t[mt])/m. This is to investigate

if using other source hidden states uniformly
has any added benefit.

4 Experiments

4.1 Data
In this work we use the German-English dataset
from IWSLT20143. We concatenate dev2010,
dev2012, tst2010, tst2011 and tst2012 to be used
as the test data. Data is tokenized using Moses
(Koehn et al., 2007).

4.2 Model Details
OpenNMT (Klein et al., 2017) is used for our
Seq2Seq implementation. We use Long Short-
Term Memory (LSTM) as RNN units. Each
LSTM unit has 2 layers, and the dimension size
for LSTM units and word embeddings is set to
500. The model is trained using Adam trainer with
learning rate 0.001 for 50000 steps using early
stopping. Vocabulary size for both the source and
target language is set to 50000. Sentences longer
that 50 tokens are pruned.

5 Results

Table 1 shows the percentage of function and con-
tent words generated by the trained model. As ex-
pected, the majority of the generated tokens are

3https://sites.google.com/site/
iwsltevaluation2014/

function words. We discuss our findings in more
detail in the subsequent subsections.

Number of tokens (+EOS) 139465
Percentage of function words 68%
Percentage of content words 32%

Table 1: Percentage of function and content words in
the generated translation.

Method % for FWs % for CWs
1 RandomPermute 33% 6%
2 Uniform 53% 11%
3 ZeroOutMax 52% 15%
4 Aggregate(1+2+3) 68% 21%
5 ZeroOut 9% 0%
6 LastEncoderState 20% 2%
7 OnlyMax 71% 83%
8 KeepMaxUniformOthers 86% 86%

Table 2: Percentage of the preserved function and content
words in the proposed attention methods: Trying out all the
methods to find a counterfactual attention vector maximizes
the chance of success. We use methods in row 5-8 only to
shed light on the sensitivity of the model’s output to pertur-
bation in attention weight. They are not necessarily counted
as counterfactual attention methods. Higher preservation rate
stands for better performance.

5.1 Effectiveness of the proposed
counterfactual attention methods

Table 2 shows the percentage of function and
content words for which counterfactual attention
weights were found using the proposed attention
methods. The Uniform method (row 2) is the
most effective method to create counterfactual at-
tention weights for function words. However, for
content words, the ZeroOutMax method (row 3)
is the most successful method.

From Table 2, we also derive that
RandomPermute is not as effective as the
Uniform and ZeroOutMax methods. Our
justification is that in the RandomPermute
method, it is highly probable that the context
vector is biased toward a random source hidden
state. Such bias can lead to misleading noise in
the context vector. However, there isn’t such a
bias in the Uniform or ZeroOutMax methods.

To maximize the chance of finding a counter-
factual attention, for each output token, we try out
all the proposed methods to check if we can find a
counterfactual attention (row 4). As evident from
Table 2, this approach greatly increases the chance
of finding a counterfactual attention. Note that as
previously stated, these percentages are a lower-
bound for the true percentage.

224

5.2 Function words are more easily
generated compared to content words

An important observation in Table 2 is that the
proposed methods are considerably more effective
in preserving function words compared to con-
tent words. The production of function words
rely more on the target context, in contrast to con-
tent words which rely more on the source context.
Accordingly, perturbation in the original attention
weights likely has significantly more impact on
diminishing content words compared to function
words.

This ties well with the main idea behind con-
text gates in which the influence of source con-
text and target context is controlled dynamically
(Tu et al., 2017). Since the generation of func-
tion words relies more on the target context, one
may wonder to what extent attention is needed for
preserving function words? To answer this ques-
tion, we completely zero out the attention using
ZeroOut. Row 5 shows that only 9% of function
words were preserved in this method.

Moreover it can be seen that the model could
not preserve any content word when this method
is employed. Interestingly, we found that the pre-
served function words in this method were all oc-
currences of “,”. Apparently the decoder’s lan-
guage model is so strong in predicting “,” without
attention. This finding suggests that a basic repre-
sentation of the source context is still necessary to
preserve function words.

5.3 Highlighting top preserved tokens

An important question that may arise is whether
each attention method tends to preserve a spe-
cific group of words. To address this question, we
listed the top preserved function words and con-
tent words for all the proposed methods. We ob-
served that they mostly preserve the same group
of words but with different percentages. As a re-
sult, we only list the top preserved tokens for the
aggregate method.

Table 3 contains the top 20 content words sorted
by the number of times they were preserved. It
is interesting to note that for many of these fre-
quent tokens, more than half of their total occur-
rences are preserved without focusing on their cor-
responding translation in the source sentence (e.g.,
“going”, “know”, “thing”, etc).

In Table 4, we sort such tokens based on their
coverage, which is the percentage of their total

Token # preserved Coverage
going 310 70%
people 237 46%
know 219 62%
world 215 67%
like 189 47%

think 176 50%
way 162 68%
get 160 53%

thing 147 79%
things 142 56%
time 139 54%
see 137 51%

years 136 64%
make 126 49%
little 113 55%
just 109 29%

really 93 37%
bit 92 88%

said 89 59%
got 86 59%

Table 3: Top 20 content words preserved by the aggre-
gate method sorted by the number of times they were
preserved.

Token Coverage Total
bit 88% 105

course 87% 91
thank 83% 89
thing 79% 186
fact 78% 74
half 78% 27
own 75% 75
ones 73% 30
states 73% 30

difference 71% 21
going 70% 444
turns 69% 26
way 68% 237
able 67% 85

world 67% 323
doing 66% 103
planet 65% 37
years 64% 212
know 62% 353
united 62% 21

Table 4: Top 20 content words preserved by the aggre-
gate method sorted by percentage of their total occur-
rences that are preserved (coverage).

225

occurrences that are not affected when a counter-
facual attention is applied4. We repeat the same
process for function words (Table 5 and Table 6).

As evident from Table 5, we have successfully
yielded the same token in 94% of the occurrences
of the EOS token but with a contradictory expla-
nation. This can be explained by the previous find-
ings suggesting special hidden units keep track
of translation length (Shi et al., 2016). As a re-
sult, EOS token is generated upon receiving signal
from these units rather than using attention. This
indicates that attention weights are highly unreli-
able for explaining the generation of EOS tokens.
This is worth noting because early generation of
the EOS token is often a major reason of the under-
translation problem in NMT (Kuang et al., 2018).
Thus, attention weights should not be used to de-
bug early generation of EOS, and that some other
underlying influence in the network (Ding et al.,
2017) might be responsible for the model’s deci-
sion in this case.

5.4 Last encoder hidden state is a poor
representation of the source context in
the attentional model

The last encoder state in a non-attentional model
is passed to the decoder as the representation
of the source context (Cho et al., 2014) al-
though the accuracy of this representation has
been shown to degrade as sentence length in-
creases (Bahdanau et al., 2014). We experiment
with the LastEncoderState method to inves-
tigate how well the last encoder state can be rep-
resentative of the source context in the attentional
setting, and if exclusively attending to it can be
used as a counterfactual attention.

Row 6 in Table 2 shows that there is a signifi-
cant gap between the LastEncoderState and
the counterfactual methods proposed in Table 2.
A possible explanation for this result is that in
the presence of attention mechanism, the model
is trained to distribute the source-side information
among the encoder states to be easier to select the
relevant parts of the information with respect to
the decoding state. Consequently, the last encoder
state does no longer capture the whole informa-
tion.

4We consider only the tokens that have appeared more
than 20 times. The reason is that there are many preserved
words that have appeared only once (coverage=1) and it is
not clear if the coverage remains the same when frequency
increases.

Token # preserved Coverage
, 7329 85%

EOS 6364 94%
the 5210 82%
. 3947 60%

of 3003 87%
to 2923 86%

and 2639 67%
a 2187 65%

that 1936 69%
i 1737 76%

's 1732 95%
you 1501 72%
it 1497 72%
is 1496 88%
in 1364 64%
we 1246 64%

they 624 69%
" 620 81%
have 613 70%
be 582 91%

't 580 96%
're 542 86%

this 541 42%
so 531 57%
are 526 77%
was 514 66%
do 433 77%

about 417 65%
what 415 61%
can 400 54%

Table 5: Top 30 function words preserved by the aggre-
gate method sorted by the number of times they were
preserved.

If we look at Table 7, we can see that the most
covered functions words, are the words that usu-
ally appear at the end of the sentence (e.g., “EOS”,
“.”, “?”, “!”). This is because most of the con-
text captured by the last encoder state is centered
around the last part of the sentence in which these
tokens appear.

5.5 Attention of non-maximum source
hidden states

Row 7 shows that a majority of output tokens
can be preserved even when the model attends
to a single source hidden state. Row 8 shows
that when other source hidden states are uniformly
combined, although the ratio of unaffected content
words has increased by 3%, ratio of unaffected

226

Token Coverage Total
't 96% 602
's 95% 1819

EOS 94% 6748
be 91% 641
is 88% 1707
of 87% 3450
to 86% 3383

're 86% 631
, 85% 8582

'm 84% 311
been 82% 233
lot 82% 148
the 82% 6386

" 81% 770
are 77% 679
do 77% 565
i 76% 2290

who 73% 300
it 72% 2089

you 72% 2099
have 70% 876
up 70% 235

they 69% 904
that 69% 2812
well 67% 153
and 67% 3922
was 66% 774
were 65% 240
same 65% 154

a 65% 3369

Table 6: Top 30 function words preserved by the aggre-
gate method sorted by coverage.

function words has increased by 15%. This again
underlines the importance of the basic representa-
tion of the source context for generation of func-
tion words.

5.6 Summary

Our findings can be summarized as follows:

• It is possible to generate 68% of function
words and 21% of content words with a coun-
terfactual attention indicating unreliability of
using attention weights as explanation.

• The generation of function words relies more
on the target context, whereas the generation
of content words relies more on the source
context. This results in a higher likelihood of

Token Coverage Total
EOS 99% 6748

. 98% 6526
? 88% 589

't 86% 602
! 68% 22

" 60% 770
's 24% 1819

; 24% 63
are 18% 679
is 18% 1707

Table 7: Top 10 unaffected function words in the
LastEncoderState method.

generation of preserved function words com-
pared to that of preserved content words.

• Generation of EOS tokens cannot be reliably
explained by using attention weights. In-
stead, this depends on the length of the tar-
get translation which is implicitly pursued by
special hidden units. As a result, EOS token
is emitted upon receiving a signal from these
units rather than information from attention.

• The last encoder state is a poor representation
of the source sentence and cannot be effec-
tively used as the source context vector.

• It is possible to generate 86% of tokens by
only using the source hidden state with the
maximum attention and using other source
hidden states uniformly suggesting that it
may not be necessary to assign highly tuned
weights to each source hidden state.

6 Related Work

Relevance-based interpretation is a common tech-
nique in analyzing predictions in neural models.
In this method, inputs of a predictor are assigned
a scalar value quantifying the importance of that
particular input on the final decision. Saliency
methods use the gradient of the inputs to define
importance (Li et al., 2016a; Ghaeini et al., 2018;
Ding et al., 2019). Layer-wise relevance propa-
gation that assigns relevance to neurons based on
their contribution to activation of higher-layer neu-
rons is also investigated in NLP (Arras et al., 2016;
Ding et al., 2017; Arras et al., 2017). Another
method to measure relevance is by removing the
input, and tracking the difference in in network’s

227

output (Li et al., 2016b). While these methods fo-
cus on explaining a model’s decision, Shi et al.
(2016); Kádár et al. (2017); Calvillo and Crocker
(2018) investigate how a particular concept is rep-
resented in the network.

Analyzing and interpreting the attention mech-
anism in NLP (Koehn and Knowles, 2017; Ghader
and Monz, 2017; Tang and Nivre, 2018; Clark
et al., 2019; Vig and Belinkov, 2019) is another
direction that has drawn major interest. Although
attention weights have been implicitly or explic-
itly used to explain a model’s decisions, the re-
liability of this approach is not proven. Several
attempts have been made to investigate the reli-
ability of this approach for explaining a models’
decision in NLP (Serrano and Smith, 2019; Baan
et al., 2019; Jain et al., 2019; Jain and Wallace,
2019), and also in information retrieval (Jain and
Madhyastha, 2019).

Our work was inspired by Jain and Wallace
(2019). However, in this work we have focused on
similar issues in neural machine translation which
is has different challenges compared to text clas-
sification in terms of objective and architecture.
Moreover, our paper studies the effect of different
counterfactual attention methods.

7 Conclusion

Using attention weights to justify a model’s pre-
diction is tempting and seems intuitive at the first
glance. It is, however, not clear whether attention
can be employed for such purposes. There might
exist alternative attention weights resulting in the
same decision by the model but promoting differ-
ent contradictory explanation.

We propose several attention methods to create
counterfactual attention weights from the original
weights, and we measure to what extent these new
contradictory weights can yield the same output
as the original one. We find that in many cases,
an output token can be generated even though a
counterfactual attention is fed to the decoder. This
implies that using attention weights to rationalize
a model’s decision is not a reliable approach.

8 Future Work

In the future, we intend to study the extent to
which attention weights correlate with importance
measured by gradient-based methods. While we
have separated function and content words in this
work, we would like to extend our findings to other

categories such as parts of speech (POS) or out-of-
vocabulary (OOV) words. Another logical investi-
gation for future would be to address interpretabil-
ity of copy mechanism in NMT (Gu et al., 2016).
Proving the correlation between attention and the
model predictions in more sophisticated attention
models such as Transformer (Vaswani et al., 2017)
is also worth exploring.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. The research was also
partially supported by the Natural Sciences and
Engineering Research Council of Canada grants
NSERC RGPIN-2018-06437 and RGPAS-2018-
522574 and a Department of National Defence
(DND) and NSERC grant DGDND-2018-00025
to the second author.

References
Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. 2016.
Explaining predictions of non-linear classifiers in
NLP. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 1–7,
Berlin, Germany. Association for Computational
Linguistics.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 159–168, Copenhagen, Den-
mark. Association for Computational Linguistics.

Joris Baan, Maartje ter Hoeve, Marlies van der Wees,
Anne Schuth, and Maarten de Rijke. 2019. Do
transformer attention heads provide transparency
in abstractive summarization? arXiv preprint
arXiv:1907.00570.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 10(7):1–46.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jesús Calvillo and Matthew Crocker. 2018. Lan-
guage production dynamics with recurrent neural
networks. In Proceedings of the Eight Workshop
on Cognitive Aspects of Computational Language
Learning and Processing, pages 17–26, Melbourne.
Association for Computational Linguistics.

228

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar. Association for Computa-
tional Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does
BERT look at? an analysis of BERT’s atten-
tion. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 276–286, Florence, Italy.
Association for Computational Linguistics.

Shuoyang Ding, Hainan Xu, and Philipp Koehn. 2019.
Saliency-driven word alignment interpretation for
neural machine translation. In Proceedings of the
Fourth Conference on Machine Translation, pages
1–12, Florence, Italy. Association for Computa-
tional Linguistics.

Yanzhuo Ding, Yang Liu, Huanbo Luan, and
Maosong Sun. 2017. Visualizing and understand-
ing neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1150–1159, Vancouver, Canada. As-
sociation for Computational Linguistics.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3719–3728, Brussels, Belgium. Association
for Computational Linguistics.

Hamidreza Ghader and Christof Monz. 2017. What
does attention in neural machine translation pay
attention to? In Proceedings of the Eighth
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 30–39,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Reza Ghaeini, Xiaoli Fern, and Prasad Tadepalli. 2018.
Interpreting recurrent and attention-based neural
models: a case study on natural language infer-
ence. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4952–4957, Brussels, Belgium. Association
for Computational Linguistics.

Amirata Ghorbani, Abubakar Abid, and James Zou.
2019. Interpretation of neural networks is fragile. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3681–3688.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings

of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1631–1640, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Rishabh Jain and Pranava Madhyastha. 2019. Model
explanations under calibration. arXiv preprint
arXiv:1906.07622.

Sarthak Jain, Ramin Mohammadi, and Byron C. Wal-
lace. 2019. An analysis of attention over clinical
notes for predictive tasks. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 15–21, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Atten-
tion is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of ACL 2017, System
Demonstrations, pages 67–72, Vancouver, Canada.
Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Re-
public. Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. In
Proceedings of the First Workshop on Neural
Machine Translation, pages 28–39, Vancouver. As-
sociation for Computational Linguistics.

Shaohui Kuang, Junhui Li, António Branco, Wei-
hua Luo, and Deyi Xiong. 2018. Attention fo-
cusing for neural machine translation by bridging
source and target embeddings. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1767–1776, Melbourne, Australia.
Association for Computational Linguistics.

229

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, Califor-
nia. Association for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, Lisbon,
Portugal. Association for Computational Linguis-
tics.

Grégoire Montavon, Sebastian Lapuschkin, Alexan-
der Binder, Wojciech Samek, and Klaus-Robert
Müller. 2017. Explaining nonlinear classification
decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 2931–2951, Florence, Italy. As-
sociation for Computational Linguistics.

Xing Shi, Kevin Knight, and Deniz Yuret. 2016.
Why neural translations are the right length. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2278–2282, Austin, Texas. Association for Compu-
tational Linguistics.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018. S eq 2s eq-v is: A visual
debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer
graphics, 25(1):353–363.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2017. Lstmvis: A
tool for visual analysis of hidden state dynamics
in recurrent neural networks. IEEE transactions
on visualization and computer graphics, 24(1):667–
676.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Rico Tang, Gongbo andSennrich and Joakim Nivre.
2018. An analysis of attention mechanisms: The

case of word sense disambiguation in neural ma-
chine translation. In Proceedings of the Third
Conference on Machine Translation: Research
Papers, pages 26–35, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu,
and Hang Li. 2017. Context gates for neural ma-
chine translation. Transactions of the Association
for Computational Linguistics, 5:87–99.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Matthew D Zeiler and Rob Fergus. 2014. Visualiz-
ing and understanding convolutional networks. In
European conference on computer vision, pages
818–833. Springer.

230

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 231–240
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Auto-Sizing the Transformer Network:
Improving Speed, Efficiency, and Performance

for Low-Resource Machine Translation

Kenton Murray Jeffery Kinnison Toan Q. Nguyen Walter Scheirer David Chiang
Department of Computer Science and Engineering

University of Notre Dame
{kmurray4, jkinniso, tnguye28, walter.scheirer, dchiang}@nd.edu

Abstract

Neural sequence-to-sequence models, particu-
larly the Transformer, are the state of the art in
machine translation. Yet these neural networks
are very sensitive to architecture and hyper-
parameter settings. Optimizing these settings
by grid or random search is computationally
expensive because it requires many training
runs. In this paper, we incorporate architecture
search into a single training run through auto-
sizing, which uses regularization to delete neu-
rons in a network over the course of training.
On very low-resource language pairs, we show
that auto-sizing can improve BLEU scores by
up to 3.9 points while removing one-third of
the parameters from the model.

1 Introduction

Encoder-decoder based neural network models are
the state-of-the-art in machine translation. How-
ever, these models are very dependent on selecting
optimal hyperparameters and architectures. This
problem is exacerbated in very low-resource data
settings where the potential to overfit is high. Un-
fortunately, these searches are computationally ex-
pensive. For instance, Britz et al. (2017) used over
250,000 GPU hours to compare various recurrent
neural network based encoders and decoders for
machine translation. Strubell et al. (2019) demon-
strated the neural architecture search for a large
NLP model emits over four times the carbon diox-
ide relative to a car over its entire lifetime.

Unfortunately, optimal settings are highly de-
pendent on both the model and the task, which
means that this process must be repeated often.
As a case in point, the Transformer architecture
has become the best performing encoder-decoder
model for machine translation (Vaswani et al.,
2017), displacing RNN-based models (Bahdanau
et al., 2015) along with much conventional wis-
dom about how to train such models. Vaswani

et al. ran experiments varying numerous hyper-
parameters of the Transformer, but only on high-
resource datasets among linguistically similar lan-
guages. Popel and Bojar (2018) explored ways to
train Transformer networks, but only on a high-
resource dataset in one language pair. Less work
has been devoted to finding best practices for
smaller datasets and linguistically divergent lan-
guage pairs.

In this paper, we apply auto-sizing (Murray and
Chiang, 2015), which is a type of architecture
search conducted during training, to the Trans-
former. We show that it is effective on very low-
resource datasets and can reduce model size sig-
nificantly, while being substantially faster than
other architecture search methods. We make three
main contributions.

1. We demonstrate the effectiveness of auto-sizing
on the Transformer network by significantly re-
ducing model size, even though the number of pa-
rameters in the Transformer is orders of magnitude
larger than previous natural language processing
applications of auto-sizing.
2. We demonstrate the effectiveness of auto-sizing
on translation quality in very low-resource set-
tings. On four out of five language pairs, we ob-
tain improvements in BLEU over a recommended
low-resource baseline architecture. Furthermore,
we are able to do so an order of magnitude faster
than random search.
3. We release GPU-enabled implementations of
proximal operators used for auto-sizing. Previous
authors (Boyd et al., 2010; Duchi et al., 2008) have
given efficient algorithms, but they don’t neces-
sarily parallelize well on GPUs. Our variations
are optimized for GPUs and are implemented as
a general toolkit and are released as open-source
software.1

1https://github.com/KentonMurray/ProxGradPytorch

231

https://www.aclweb.org/anthology/D19-56%2d

2 Hyperparameter Search

While the parameters of a neural network are op-
timized by gradient-based training methods, hy-
perparameters are values that are typically fixed
before training begins, such as layer sizes and
learning rates, and can strongly influence the out-
come of training. Hyperparameter optimization
is a search over the possible choices of hyper-
parameters for a neural network, with the objec-
tive of minimizing some cost function (e.g., error,
time to convergence, etc.). Hyperparameters may
be selected using a variety of methods, most of-
ten manual tuning, grid search (Duan and Keerthi,
2005), or random search (Bergstra and Bengio,
2012). Other methods, such as Bayesian optimiza-
tion (Bergstra et al., 2011; Snoek et al., 2012), ge-
netic algorithms (Benardos and Vosniakos, 2007;
Friedrichs and Igel, 2005; Vose et al., 2019), and
hypergradient updates (Maclaurin et al., 2015), at-
tempt to direct the selection process based on the
objective function. All of these methods require
training a large number of networks with different
hyperparameter settings.

In this work, we focus on a type of hyperpa-
rameter optimization called auto-sizing introduced
by Murray and Chiang (2015) which only requires
training one network once. Auto-sizing focuses on
driving groups of weights in a parameter tensor to
zero through regularization. Murray and Chiang
(2015) focused on the narrow case of two hidden
layers in a feed-forward neural network with a rec-
tified linear unit activation. In this work, we look
at the broader case of all of the non-embedding pa-
rameter matrices in the encoder and decoder of the
Transformer network.

3 GPU Optimized Proximal Gradient
Descent

Murray and Chiang (2015) train a neural network
while using a regularizer to prune units from the
network, minimizing:

L = −
∑

f , e in data

log P(e | f ; W) + λR(‖W‖),

where W are the parameters of the model and R is a
regularizer. For simplicity, assume that the param-
eters form a single matrix W of weights. Murray

Algorithm 1 Parallel `∞ proximal step
Require: Vector v with n elements
Ensure: Decrease the largest absolute value in v

until the total decrease is ηλ
1: vi ← |vi|
2: sort v in decreasing order
3: δi ← vi − vi+1, δn ← vn

4: ci ←
i∑

i′=1

i′δi′ . prefix sum

5: bi = 1
i (clip[ci−1,ci](ηλ) − ci−1)

6: pi =

n∑

i′=i

bi′ . suffix sum

7: v← v − p
8: restore order and signs of v

v1
v2

v3

δ1 = b1

δ2

b2

δ3

(a) (b)

Figure 1: Illustration of Algorithm 1. The shaded area,
here with value ηλ = 2, represents how much the `∞
proximal step will remove from a sorted vector.

and Chiang (2015) try two regularizers:

R(W) =
∑

i

∑

j

W2
i j

1
2

(`2,1)

R(W) =
∑

i

max
j
|Wi j| (`∞,1)

The optimization is done using proximal gradi-
ent descent (Parikh and Boyd, 2014), which al-
ternates between stochastic gradient descent steps
and proximal steps:

W ← W − η∇ log P(e | f ; w)

W ← arg min
W′

(
1
2η
‖W −W′‖2 + R(W′)

)

To perform the proximal step for the `∞,1 norm,
they rely on a quickselect-like algorithm that runs
in O(n) time (Duchi et al., 2008). However, this al-
gorithm does not parallelize well. Instead, we use
Algorithm 1, which is similar to that of Quattoni
et al. (2009), on each row of W.

232

The algorithm starts by taking the absolute
value of each entry and sorting the entries in de-
creasing order. Figure 1a shows a histogram of
sorted absolute values of an example v. Intuitively,
the goal of the algorithm is to cut a piece off the
top with area ηλ (in the figure, shaded gray).

We can also imagine the same shape as a stack
of horizontal layers (Figure 1b), each i wide and δi

high, with area iδi; then ci is the cumulative area
of the top i layers. This view makes it easier to
compute where the cutoff should be. Let k be the
index such that ηλ lies between ck−1 and ck. Then
bi = δi for i < k; bk = 1

k (ηλ − ck−1); and bi = 0 for
i > k. In other words, bi is how much height of the
ith layer should be cut off.

Finally, returning to Figure 1b, pi is the amount
by which vi should be decreased (the height of the
gray bars). (The vector p also happens to be the
projection of v onto the `1 ball of radius ηλ.)

Although this algorithm is less efficient than the
quickselect-like algorithm when run in serial, the
sort in line 2 and the cumulative sums in lines 4
and 6 (Ladner and Fischer, 1980) can be paral-
lelized to run in O(log n) passes each.

4 Transformer

The Transformer network, introduced by Vaswani
et al. (2017), is a sequence-to-sequence model in
which both the encoder and the decoder consist
of stacked self-attention layers. Each layer of the
decoder can attend to the previous layer of the de-
coder and the output of the encoder. The multi-
head attention uses two affine transformations, fol-
lowed by a softmax. Additionally, each layer has a
position-wise feed-forward neural network (FFN)
with a hidden layer of rectified linear units:

FFN(x) = W2(max(0,W1x + b1)) + b2.

The hidden layer size (number of columns of W1)
is typically four times the size of the model dimen-
sion. Both the multi-head attention and the feed-
forward neural network have residual connections
that allow information to bypass those layers.

4.1 Auto-sizing Transformer

Though the Transformer has demonstrated re-
markable success on a variety of datasets, it
is highly over-parameterized. For example,
the English-German WMT ’14 Transformer-base
model proposed in Vaswani et al. (2017) has more

Figure 2: Architecture of the Transformer (Vaswani
et al., 2017). We apply the auto-sizing method to the
feed-forward (blue rectangles) and multi-head attention
(orange rectangles) in all n layers of the encoder and
decoder. Note that there are residual connections that
can allow information and gradients to bypass any layer
we are auto-sizing.

than 60M parameters. Whereas early NMT mod-
els such as Sutskever et al. (2014) have most
of their parameters in the embedding layers, the
added complexity of the Transformer, plus parallel
developments reducing vocabulary size (Sennrich
et al., 2016) and sharing embeddings (Press and
Wolf, 2017) has shifted the balance. Nearly 31%
of the English-German Transformer’s parameters
are in the attention layers and 41% in the position-
wise feed-forward layers.

Accordingly, we apply the auto-sizing method
to the Transformer network, and in particular to
the two largest components, the feed-forward lay-
ers and the multi-head attentions (blue and orange
rectangles in Figure 2). A difference from the
work of Murray and Chiang (2015) is that there
are residual connections that allow information to
bypass the layers we are auto-sizing. If the regu-
larizer drives all the neurons in a layer to zero, in-
formation can still pass through. Thus, auto-sizing
can effectively prune out an entire layer.

4.2 Random Search

As an alternative to grid-based searches, random
hyperparameter search has been demonstrated to
be a strong baseline for neural network architec-
ture searches as it can search between grid points
to increase the size of the search space (Bergstra

233

Dataset Size

Ara–Eng 234k
Fra–Eng 235k
Hau–Eng 45k
Tir–Eng 15k

Table 1: Number of parallel sentences in training bi-
texts. The French-English and Arabic-English data is
from the 2017 IWSLT campaign (Mauro et al., 2012).
The much smaller Hausa-English and Tigrinya-English
data is from the LORELEI project.

and Bengio, 2012). In fact, Li and Talwalkar
(2019) recently demonstrated that many architec-
ture search methods do not beat a random baseline.
In practice, randomly searching hyperparameter
domains allows for an intuitive mixture of con-
tinuous and categorical hyperparameters with no
constraints on differentiability (Maclaurin et al.,
2015) or need to cast hyperparameter values into a
single high-dimensional space to predict new val-
ues (Bergstra et al., 2011).

5 Experiments

All of our models are trained using the fairseq im-
plementation of the Transformer (Gehring et al.,
2017).2 Our GPU-optimized, proximal gradient
algorithms are implemented in PyTorch and are
publicly available.3 For the random hyperparame-
ter search experiments, we use SHADHO,4 which
defines the hyperparameter tree, generates from
it, and manages distributed resources (Kinnison
et al., 2018). Our SHADHO driver file and modi-
fications to fairseq are also publicly available.5

5.1 Settings

We looked at four different low-resource language
pairs, running experiments in five directions:
Arabic-English, English-Arabic, French-English,
Hausa-English, and Tigrinya-English. The Ara-
bic and French data comes from the IWSLT
2017 Evaluation Campaign (Mauro et al., 2012).
The Hausa and Tigrinya data were provided by
the LORELEI project with custom train/dev/test
splits. For all languages, we tokenized and true-
cased the data using scripts from Moses (Koehn
et al., 2007). For the Arabic systems, we translit-

2https://github.com/pytorch/fairseq
3https://github.com/KentonMurray/ProxGradPytorch
4https://github.com/jeffkinnison/shadho
5https://bitbucket.org/KentonMurray/fairseq autosizing

erated the data using the Buckwalter translitera-
tion scheme. All of our systems were run us-
ing subword units (BPE) with 16,000 merge op-
erations on concatenated source and target train-
ing data (Sennrich and Haddow, 2016). We clip
norms at 0.1, use label smoothed cross-entropy
with value 0.1, and an early stopping criterion
when the learning rate is smaller than 10−5. All of
our experiments were done using the Adam opti-
mizer (Kingma and Ba, 2015), a learning rate of
10−4, and dropout of 0.1. At test time, we de-
coded using a beam of 5 with length normalization
(Boulanger-Lewandowski et al., 2013) and evalu-
ate using case-sensitive, detokenized BLEU (Pap-
ineni et al., 2002).

5.1.1 Baseline
The originally proposed Transformer model is too
large for our data size – the model will overfit the
training data. Instead, we use the recommended
settings in fairseq for IWSLT German-English as
a baseline since two out of our four language pairs
are also from IWSLT. This architecture has 6 lay-
ers in both the encoder and decoder, each with 4
attention heads. Our model dimension is dmodel =

512, and our FFN dimension is 1024.

5.1.2 Auto-sizing parameters
Auto-sizing is implemented as two different types
of group regularizers, `2,1 and `∞,1. We apply
the regularizers to the feed-forward network and
multi-head attention in each layer of the encoder
and decoder. We experiment across a range of reg-
ularization coefficient values, λ, that control how
large the regularization proximal gradient step will
be. We note that different regularization coeffi-
cient values are suited for different types or reg-
ularizers. Additionally, all of our experiments use
the same batch size, which is also related to λ.

5.1.3 Random search parameters
As originally proposed, the Transformer network
has 6 encoder layers, all identical, and 6 de-
coder layers, also identical. For our random
search experiments, we sample the number of at-
tention heads from {4, 8, 16} and the model dimen-
sion (dmodel) from {128, 256, 512, 1024, 2048}. Di-
verging from most implementations of the Trans-
former, we do not require the same number of en-
coder and decoder layers, but instead sample each
from {2, 4, 6, 8}. Within a layer, we also sample
the size of the feed-forward network (FFN), vary-

234

ing our samples over {512, 1024, 2048}. This too
differs from most Transformer implementations,
which have identical layer hyperparameters.

5.2 Auto-sizing vs. Random Search
Table 2 compares the performance of random
search with auto-sizing across, BLEU scores,
model size, and training times. The baseline sys-
tem, the recommended IWSLT setting in fairseq,
has almost 40 million parameters. Auto-sizing
the feed-forward network sub-components in each
layer of this baseline model with `2,1 = 10.0 or
`∞,1 = 100.0 removes almost one-third of the to-
tal parameters from the model. For Hausa-English
and Tigrinya-English, this also results in substan-
tial BLEU score gains, while only slightly hurt-
ing performance for French-English. The BLEU
scores for random search beats the baseline for all
language pairs, but auto-sizing still performs best
on Tigrinya-English – even with 72 different, ran-
dom hyperparameter configurations.

Auto-sizing trains in a similar amount of time to
the baseline system, whereas the cumulative train-
ing time for all of the models in random search
is substantially slower. Furthermore, for Tigrinya-
English and French-English, random search found
models that were almost 10 and 5 times larger re-
spectively than the auto-sized models.

5.3 Training times
One of the biggest downsides of searching over
architectures using a random search process is that
it is very time and resource expensive. Contrary to
that, auto-sizing relies on only training one model.

Auto-sizing relies on a proximal gradient step
after a standard gradient descent step. However,
the addition of these steps for our two group reg-
ularizers does not significantly impact training
times. Table 3 shows the total training time for
both `2,1 = 0.1 and `∞,1 = 0.5. Even with the
extra proximal step, auto-sizing using `2,1 actually
converges faster on two of the five language pairs.
Note that these times are for smaller regularization
coefficients. Larger coefficients will cause more
values to go to zero, which will make the model
converge faster.

5.4 Auto-sizing Sub-Components
As seen above, on very low-resource data, auto-
sizing is able to quickly learn smaller, yet better,
models than the recommended low-resource trans-
former architecture. Here, we look at the impact

of applying auto-sizing to various sub-components
of the Transformer network. In section 3, fol-
lowing the work of Murray and Chiang (2015),
auto-sizing is described as intelligently applying
a group regularizer to our objective function. The
relative weight, or regularization coefficient, is a
hyperparameter defined as λ. In this section, we
also look at the impact of varying the strength of
this regularization coefficient.

Tables 4 and 5 demonstrate the impact of
varying the regularization coefficient strength has
on BLEU scores and model size across various
model sub-components. Recall that each layer of
the Transformer network has multi-head attention
sub-components and a feed-forward network sub-
component. We denote experiments only apply-
ing auto-sizing to feed-forward network as “FFN”.
We also experiment with auto-sizing the multi-
head attention in conjunction with the FFN, which
we denote “All”. A regularization coefficient of
0.0 refers to the baseline model without any auto-
sizing. Columns which contain percentages re-
fer to the number of rows in a PyTorch parameter
that auto-sizing was applied to, that were entirely
driven to zero. In effect, neurons deleted from the
model. Note that individual values in a row may
be zero, but if even a single value remains, infor-
mation can continue to flow through this and it is
not counted as deleted. Furthermore, percentages
refer only to the parameters that auto-sizing was
applied to, not the entire model. As such, with
the prevalence of residual connections, a value of
100% does not mean the entire model was deleted,
but merely specific parameter matrices. More spe-
cific experimental conditions are described below.

5.4.1 FFN matrices and multi-head attention
Rows corresponding to “All” in tables 4 and 5 look
at the impact of varying the strength of both the
`∞,1 and `2,1 regularizers across all learned pa-
rameters in the encoder and decoders (multi-head
and feed-forward network parameters). Using `∞,1
regularization (table 5), auto-sizing beats the base-
line BLEU scores on three language pairs: Hau–
Eng, Tir–Eng, Fra–Eng. However, BLEU score
improvements only occur on smaller regulariza-
tion coefficients that do not delete model portions.

Looking at `2,1 regularization across all learned
parameters of both the encoder and decoder
(“Enc+Dec All” in table 4), auto-sizing beats the
baseline on four of the five language pairs (all ex-
cept Eng–Ara). Again, BLEU gains are on smaller

235

Language Pair Search Strategy BLEU Model Size Training Time

Tir–Eng

Standard Baseline 3.6 39.6M 1.2k
Random Search 6.7 240.4M 43.7k
Auto-sizing `∞,1 7.5 27.1M 2.1k
Auto-sizing `2,1 7.4 27.1M 1.2k

Hau–Eng

Standard Baseline 13.9 39.6M 4.2k
Random Search 17.2 15.4M 87.0k
Auto-sizing `∞,1 15.0 27.1M 7.6k
Auto-sizing `2,1 14.8 27.1M 3.5k

Fra–Eng

Standard Baseline 35.0 39.6M 11.3k
Random Search 35.3 121.2M 116.0k
Auto-sizing `∞,1 34.3 27.1M 28.8k
Auto-sizing `2,1 33.5 27.1M 11.5k

Table 2: Comparison of BLEU scores, model size, and training time on Tigrinya-English, Hausa-English, and
French-English. Model size is the total number of parameters. Training time is measured in seconds. Baseline is
the recommended low-resource architecture in fairseq. Random search represents the best model found from
72 (Tigrinya), 40 (Hausa), and 10 (French) different randomly generated architecture hyperparameters. Both
auto-sizing methods, on both languages, start with the exact same initialization and number of parameters as
the baseline, but converge to much smaller models across all language pairs. On the very low-resource languages
of Hausa and Tigrinya auto-sizing finds models with better BLEU scores. Random search is eventually able to find
better models on French and Hausa, but is an order of magnitude slower.

Language Pair Baseline `2,1 `∞,1

Fra–Eng 11.3k 11.5k 28.8k
Ara–Eng 15.1k 16.6k 40.8k
Eng–Ara 16.6k 11.0k 21.9k
Hau–Eng 4.2k 3.5k 7.6k
Tir–Eng 1.2k 1.2k 2.1k

Table 3: Overall training times in seconds on a Nvidia
GeForce GTX 1080Ti GPU for small regularization
values. Note that high regularization values will delete
too many values and cause training to end sooner. In
general, `2,1 regularization does not appreciably slow
down training, but `∞,1 can be twice as slow. Per epoch,
roughly the same ratios in training times hold.

regularization coefficients, and stronger regulariz-
ers that delete parts of the model hurt translation
quality. Multi-head attention is an integral portion
of the Transformer model and auto-sizing this gen-
erally leads to performance hits.

5.4.2 FFN matrices

As the multi-head attention is a key part of the
Transformer, we also looked at auto-sizing just the
feed-forward sub-component in each layer of the
encoder and decoder. Rows deonted by “FFN” in
tables 4 and 5 look at applying auto-sizing to all

of the feed-forward network sub-components of
the Transformer, but not to the multi-head atten-
tion. With `∞,1 regularization, we see BLEU im-
provements on four of the five language pairs. For
both Hausa-English and Tigrinya-English, we see
improvements even after deleting all of the feed-
forward networks in all layers. Again, the resid-
ual connections allow information to flow around
these sub-components. Using `2,1 regularization,
we see BLEU improvements on three of the lan-
guage pairs. Hausa-English and Tigrinya-English
maintain a BLEU gain even when deleting all of
the feed-forward networks.

Auto-sizing only the feed-forward sub-
component, and not the multi-head attention part,
results in better BLEU scores, even when deleting
all of the feed-forward network components.
Impressively, this is with a model that has fully
one-third fewer parameters in the encoder and
decoder layers. This is beneficial for faster
inference times and smaller disk space.

5.4.3 Encoder vs. Decoder
In table 4, experiments on Hau-Eng look at the im-
pact of auto-sizing either the encoder or the de-
coder separately. Applying a strong enough regu-
larizer to delete portions of the model (`2,1 ≥ 1.0)
only to the decoder (“Decoder All” and “Decoder

236

`2,1 coefficient
Model Portion 0.0 0.1 0.25 0.5 1.0 10.0

Hau–Eng

Encoder All 13.9 16.0 17.1 17.4 15.3 89% 16.4 100%
Encoder FFN 15.4 15.1 16.3 15.9 100% 16.7 100%
Decoder All 12.6 16.1 16.2 13.0 3% 0.0 63%
Decoder FFN 11.8 14.7 14.4 11.7 79% 13.1 100%
Enc+Dec All 15.8 17.4 17.8 12.5 61% 0.0 100%
Enc+Dec FFN 14.7 15.3 14.2 12.8 86% 14.8 100%

Tir–Eng
Encoder All 3.6 3.3 4.7 5.3 7.2 8.4 100%
Enc+Dec All 3.8 4.0 6.5 7.0 0.0 100%
Enc+Dec FFN 4.0 4.2 3.3 5.1 7.4 100%

Fra–Eng
Encoder All 35.0 35.7 34.5 34.1 33.6 97% 32.8 100%
Enc+Dec All 35.2 33.1 29.8 23% 24.2 73% 0.3 100%
Enc+Dec FFN 35.6 35.0 34.2 15% 34.2 98% 33.5 100%

Ara–Eng
Enc+Dec All 27.9 28.0 24.7 1% 20.9 20% 14.3 72% 0.3 100%
Enc+Dec FFN 26.9 26.7 1% 25.5 23% 25.9 97% 25.7 100%

Eng–Ara
Enc+Dec All 9.4 8.7 7.5 5.8 23% 3.7 73% 0.0 100%
Enc+Dec FFN 8.6 8.3 3% 8.3 22% 7.9 93% 8.0 100%

Table 4: BLEU scores and percentage of parameter rows deleted by auto-sizing on various sub-components of the
model, across varying strengths of `2,1 regularization. 0.0 refers to the baseline without any regularizer. Blank
spaces mean less than 1% of parameters were deleted. In the two very low-resource language pairs (Hausa-English
and Tigrinya-English), deleting large portions of the encoder can actually help performance. However, deleting
the decoder hurts performance.

`∞,1
0.0 0.1 0.25 0.5 1.0 10.0 100.0

Hau–Eng
Enc+Dec All 13.9 15.5 14.7 16.0 16.7 14.9 4% 1.5 100%
Enc+Dec FFN 13.4 14.3 14.1 12.9 15.3 0% 15.0 100%

Tir–Eng
Enc+Dec All 3.6 4.6 3.4 3.4 3.7 7.4 0% 2.4 100%
Enc+Dec FFN 3.6 3.8 3.9 3.6 4.7 0% 7.5 100%

Fra–Eng
Enc+Dec All 35.0 35.2 35.4 34.9 35.3 26.3 13% 1.7 100%
Enc+Dec FFN 34.8 35.5 35.4 35.0 34.1 0% 34.3 100%

Ara–Eng
Enc+Dec All 27.9 27.3 27.5 27.6 26.9 18.5 22% 0.6 100%
Enc+Dec FFN 27.8 27.2 28.3 27.6 25.4 0% 25.4 100%

Eng–Ara
Enc+Dec All 9.4 9.1 8.3 8.4 8.7 5.2 25% 0.6 100%
Enc+Dec FFN 8.8 9.2 9.0 8.9 8.2 0% 8.3 100%

Table 5: BLEU scores and percentage of model deleted using auto-sizing with various l∞,1 regularization strengths.
On the very low-resource language pairs of Hausa-English and Tigrinya-English, auto-sizing the feed-forward
networks of the encoder and decoder can improve BLEU scores.

237

FFN”) results in a BLEU score drop. However, ap-
plying auto-sizing to only the encoder (“Encoder
All” and “Encoder FFN”) yields a BLEU gain
while creating a smaller model. Intuitively, this
makes sense as the decoder is closer to the out-
put of the network and requires more modeling ex-
pressivity.

In addition to Hau–Eng, table 4 also con-
tains experiments looking at auto-sizing all sub-
components of all encoder layers of Tir–Eng and
Fra–Eng. For all three language pairs, a small reg-
ularization coefficient for the `2,1 regularizer ap-
plied to the encoder increases BLEU scores. How-
ever, no rows are driven to zero and the model size
remains the same. Consistent with Hau–Eng, us-
ing a larger regularization coefficient drives all of
the encoder’s weights to all zeros. For the smaller
Hau–Eng and Tir–Eng datasets, this actually re-
sults in BLEU gains over the baseline system. Sur-
prisingly, even on the Fra–Eng dataset, which has
more than 15x as much data as Tir–Eng, the per-
formance hit of deleting the entire encoder was
only 2 BLEU points.

Recall from Figure 2 that there are residual
connections that allow information and gradients
to flow around both the multi-head attention and
feed-forward portions of the model. Here, we have
the case that all layers of the encoder have been
completely deleted. However, the decoder still at-
tends over the source word and positional embed-
dings due to the residual connections. We hypoth-
esize that for these smaller datasets that there are
too many parameters in the baseline model and
over-fitting is an issue.

5.5 Random Search plus Auto-sizing

Above, we have demonstrated that auto-sizing is
able to learn smaller models, faster than random
search, often with higher BLEU scores. To com-
pare whether the two architecture search algo-
rithms (random and auto-sizing) can be used in
conjunction, we also looked at applying both `2,1
and `∞,1 regularization techniques to the FFN net-
works in all encoder and decoder layers during
random search. In addition, this looks at how ro-
bust the auto-sizing method is to different initial
conditions.

For a given set of hyperparameters generated
by the random search process, we initialize three
identical models and train a baseline as well as one
with each regularizer (`2,1 = 1.0 and `∞,1 = 10.0).

none `2,1 `∞,1

Hau–Eng 17.2 16.6 17.8
Tir–Eng 6.7 7.9 7.6
Fra–Eng 35.4 34.7 34.1
Ara–Eng 27.6 25.6 25.9
Eng–Ara 9.0 7.6 8.4

Table 6: Test BLEU scores for the models with the best
dev perplexity found using random search over num-
ber of layers and size of layers. Regularization values
of `2,1 = 1.0 and `∞,1 = 10.0 were chosen based on ta-
bles 4 and 5 as they encouraged neurons to be deleted.
For the very low-resource language pairs, auto-sizing
helped in conjunction with random search.

We trained 216 Tir–Eng models (3 · 72 hyper-
parameter config.), 120 Hau–Eng, 45 Ara–Eng,
45 Eng–Ara, and 30 Fra–Eng models. Using the
model with the best dev perplexity found during
training, table 6 shows the test BLEU scores for
each of the five language pairs. For the very low-
resource language pairs of Hau–Eng and Tir–Eng,
auto-sizing is able to find the best BLEU scores.

6 Conclusion

In this paper, we have demonstrated the effective-
ness of auto-sizing on the Transformer network.
On very low-resource datasets, auto-sizing was
able to improve BLEU scores by up to 3.9 points
while simultaneously deleting one-third of the pa-
rameters in the encoder and decoder layers. This
was accomplished while being significantly faster
than other search methods.

Additionally, we demonstrated how to apply
proximal gradient methods efficiently using a
GPU. Previous work on optimizing proximal gra-
dient algorithms serious impacts speed perfor-
mance when the computations are moved off of a
CPU and parallelized. Leveraging sorting and pre-
fix summation, we reformulated these methods to
be GPU efficient.

Overall, this paper has demonstrated the effi-
cacy of auto-sizing on a natural language process-
ing application with orders of magnitude more pa-
rameters than previous work. With a focus on
speedy architecture search and an emphasis on op-
timized GPU algorithms, auto-sizing is able to im-
prove machine translation on very low-resource
language pairs without being resource or time-
consuming.

238

Acknowledgements

This research was supported in part by Univer-
sity of Southern California, subcontract 67108176
under DARPA contract HR0011-15-C-0115. We
would like to thank Justin DeBenedetto for help-
ful comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

P. G. Benardos and G.-C. Vosniakos. 2007. Optimiz-
ing feedforward artificial neural network architec-
ture. Engineering Applications of Artificial Intelli-
gence, 20:365–382.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In Advances in Neural Information
Processing Systems, pages 2546–2554.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. 2013. Audio chord recognition with
recurrent neural networks. In Proc. International
Society for Music Information Retrieval, pages 335–
340.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. 2010. Distributed optimiza-
tion and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends
in Machine learning, 3(1):1–122.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc Le. 2017. Massive exploration of neural ma-
chine translation architectures. In Proc. EMNLP,
pages 1442–1451.

Kai-Bo Duan and S. Sathiya Keerthi. 2005. Which
is the best multiclass SVM method? An empirical
study. In International Workshop on Multiple Clas-
sifier Systems, pages 278–285.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and
Tushar Chandra. 2008. Efficient projections onto
the `1-ball for learning in high dimensions. In Proc.
ICML, pages 272–279.

Frauke Friedrichs and Christian Igel. 2005. Evolution-
ary tuning of multiple SVM parameters. Neurocom-
puting, 64:107–117.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In Proc. ICML.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proc.
ICLR.

Jeffery Kinnison, Nathaniel Kremer-Herman, Douglas
Thain, and Walter Scheirer. 2018. Shadho: Mas-
sively scalable hardware-aware distributed hyperpa-
rameter optimization. In Proc. IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 738–747.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc.
ACL: Demos, pages 177–180.

Richard E. Ladner and Michael J. Fischer. 1980. Par-
allel prefix computation. J. ACM, 27(4):831–838.

Liam Li and Ameet Talwalkar. 2019. Random search
and reproducibility for neural architecture search.

Dougal Maclaurin, David Duvenaud, and Ryan Adams.
2015. Gradient-based hyperparameter optimization
through reversible learning. In Proc. ICML, pages
2113–2122.

Cettolo Mauro, Girardi Christian, and Federico Mar-
cello. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proc. EAMT, pages 261–268.

Kenton Murray and David Chiang. 2015. Auto-sizing
neural networks: With applications to n-gram lan-
guage models. In Proc. EMNLP.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311–318.

Neal Parikh and Stephen Boyd. 2014. Proximal al-
gorithms. Foundations and Trends in Optimization,
1(3):123–231.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the Transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Ofir Press and Lior Wolf. 2017. Using the output
embedding to improve language models. In Proc.
EACL: Volume 2, Short Papers, pages 157–163.

Ariadna Quattoni, Xavier Carreras, Michael Collins,
and Trevor Darrell. 2009. An efficient projection for
l1,∞ regularization. In Proc. ICML, pages 857–864.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proc. First Conference on Machine Translation:
Volume 1, Research Papers, volume 1, pages 83–91.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. ACL, pages 1715–1725.

239

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Infor-
mation Processing Systems, pages 2951–2959.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proc. ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Aaron Vose, Jacob Balma, Alex Heye, Alessandro
Rigazzi, Charles Siegel, Diana Moise, Benjamin
Robbins, and Rangan Sukumar. 2019. Recombina-
tion of artificial neural networks. arXiv:1901.03900.

240

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 241–248
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Learning to Generate Word- and Phrase-Embeddings
for Efficient Phrase-Based Neural Machine Translation

Chan Young Park Yulia Tsvetkov
Language Technologies Institute

Carnegie Mellon University
{chanyoun,ytsvetko}@cs.cmu.edu

Abstract

Neural machine translation (NMT) often fails
in one-to-many translation, e.g., in the trans-
lation of multi-word expressions, compounds,
and collocations. To improve the translation
of phrases, phrase-based NMT systems have
been proposed; these typically combine word-
based NMT with external phrase dictionaries
or with phrase tables from phrase-based sta-
tistical MT systems. These solutions intro-
duce a significant overhead of additional re-
sources and computational costs. In this pa-
per, we introduce a phrase-based NMT model
built upon continuous-output NMT, in which
the decoder generates embeddings of words
or phrases. The model uses a fertility mod-
ule, which guides the decoder to generate em-
beddings of sequences of varying lengths. We
show that our model learns to translate phrases
better, performing on par with state of the art
phrase-based NMT. Since our model does not
resort to softmax computation over a huge vo-
cabulary of phrases, its training time is about
112x faster than the baseline.

1 Introduction

Despite the successes of neural machine transla-
tion (Wu et al., 2016; Vaswani et al., 2017; Ahmed
et al., 2018), state of the art NMT systems are
still challenged by translation of typologically di-
vergent language pairs, especially when languages
are morphologically rich (Burlot and Yvon, 2017).
One of the reasons lies in increased sparsity of
word types, which leads to the demand for (of-
ten unavailable) significantly larger training cor-
pora (Koehn and Knowles, 2017). Another rea-
son is an implicit assumption of sequence to se-
quence (seq2seq) models that input sequences are
translated into a target language word-by-word or
subword-by-subword (Sennrich et al., 2016).

This is not the case for typologically diver-
gent language pairs, for example when translat-

ing into English from agglutinative languages with
high rates of morphemes per word (e.g., Turk-
ish and Quechua) or languages with productive
compounding processes like German or Finnish
(Matthews et al., 2016). Another ubiquitous
source of one-to-many correspondences is a trans-
lation of idiomatic phrases and multi-word expres-
sions (Rikters and Bojar, 2017).

While outperformed by NMT overall, transla-
tion models in traditional statistical phrase-based
approaches (Koehn, 2009, SMT) provide an in-
ventory of phrase translations, which can be used
to address the above challenges. To combine the
benefits of NMT and phrase-based SMT, phrase-
based NMT systems have been proposed (Huang
et al., 2017; Lample et al., 2018) which combine
word-based NMT with external phrase memories
(Tang et al., 2016; Dahlmann et al., 2017). How-
ever, prior approaches to phrase-based NMT in-
troduced a significant overhead of additional re-
sources and computation.

We introduce a phrase-based continuous-output
NMT (PCoNMT) model built upon continuous-
output NMT (Kumar and Tsvetkov, 2019), in
which the decoder generates embeddings of words
or phrases (§2). The model extracts phrases in
the target language from one-to-many word align-
ments and pre-computes word and phrase embed-
dings which constitute the output space of our
model (§2.2). A fertility module guides the de-
coder, providing the probability of generating a
word or a phrase at each time step (§2.3). Experi-
mental results show that the proposed model out-
performs the conventional attention-based NMT
systems (Bahdanau et al., 2014) by up to 4.8
BLEU, and the baseline continuous-output mod-
els by up to 1.6 BLEU, and beat the state-of-the-
art phrase-based NMT system in translation from
German and Turkish into English.

Since our model does not resort to softmax

241

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: Phrase-based neural machine translation architectures generate word- and phrase embeddings at each
step of decoding. The PCoNMT models are guided by on the fertility prediction and the attention.

computation over a huge vocabulary, it also main-
tains the computational efficiency of continuous-
output NMT, even with additional ngram embed-
ding tables, and is faster than the state-of-the-art
baseline by 112x (§3), making our models energy-
efficient (Strubell et al., 2019).

The key contributions of our work are twofold:
(1) we develop a phrase-based NMT model that
outperforms existing baselines and better trans-
lates phrases, while (2) maintaining the computa-
tional efficiency of NMT end-to-end approaches.1

2 Phrase-based Continuous-output NMT

2.1 Embedding output layer
Kumar and Tsvetkov (2019) introduced
continuous-output machine translation (CoNMT)
which replaces the softmax layer in the con-
ventional seq2seq models with a continuous
embeddings layer. The model predicts the embed-
ding of the target word instead of its probability.
It is trained to maximize the von Mises-Fisher
(vMF) probability density of the pretrained target-
language embeddings given the embeddings
predicted by the model at every step; at inference
time, predicted embedding is compared to the
embeddings in the pre-trained embedding table,
and the closest embedding is selected as an output
word. While maintaining the translation quality of
traditional seq2seq approaches, CoNMT approach
alleviates the computational bottleneck of the
softmax layer: it is substantially more efficient to
train and the models are more compact, without
limiting the output vocabulary size.

1Our code and data are available at https://github.
com/chan0park/PCoNMT

Extending the CoNMT approach, we pro-
pose phrase-based continuous-output NMT
(PCoNMT). As depicted in Figure 1, we augment
the original model with (1) additional embedding
tables for phrases, and (2) a fertility module that
guides the choice of embedding table to look-up
in (described in §2.3). Having additional large
embedding tables, which significantly increase
the vocabulary size, could be a considerable
overhead to a word-based model with the softmax
layer. However, since we generate embeddings
in the final layer and do not resort to the softmax
computation, our models maintain the compu-
tational efficiency of continuous-output models
(§3) during the training time. At inference time,
the only overhead incurred by our model is
getting another set of vMF scores for the phrase
embedding table for each output step. This is
almost negligible compared to the computation of
the entire network.

In addition to efficiency benefits, since the
PCoNMT approach enables us to pre-compute
embeddings of less frequent phrases and phrases
that do not have a literal translation, e.g., multi-
word expressions, it facilitates better translations
specifically where the translation is notoriously
challenging for NMT.

2.2 Output embedding tables

To construct embedding tables for target-language
phrases, we first extract the list of output phrases
from parallel corpora. Following Tang et al.
(2016), in this work, we focus on one-to-many
word alignments in the training corpus. Con-
sider as an example translation of German com-

242

s1

e1

s2 …

Decoder

o1

y1

Attn

sword

y1

gen
∑

α1

< s >

Word Table

Phrase Table
s1

x1 x3x2

h3h2h1 …
… Encoder

xn

hn

λe,3λe,2λe,1 λe,n

Encoder Fertilities

…

Fertility Prediction

λd,word

λd,phrasesphrase

Figure 2: The detailed architecture of our model which consist of three components (encoder, fertility module,
and decoder), described in §2. Given an input sentence {x1, x2 . . . xn}, our model generates the output sentence
{y1, y2 . . . ym}, where yi corresponds to words or phrases, e.g. quality of life. At each step, the decoder generates
an embedding ei, then the fertility module guides it to generate a word or a phrase, via the word- or phrase-
embedding table, respectively.

pounds to English, e.g., Lebensqualität in German
is translated as quality of life. We extract all such
one-to-many word alignments from the parallel
corpora using Fastalign (Dyer et al., 2013). There
are several standard approaches to extract mean-
ingful phrases from a monolingual corpus, such
as using scores like pointwise mutual information
(PMI) (Mikolov et al., 2013). However, for our
model, we utilize word-alignment results to con-
struct a phrase list since we are particularly inter-
ested in multi-word translation cases. Note that
with this approach, phrases in target-side embed-
ding tables can be different depending on which
language pair and which corpus are being used.

After extracting all noisy one-to-many align-
ments from the parallel corpus, we filter our phrase
list in order to keep only the useful phrases and to
remove potential erroneous phrases coming from
alignment errors. We filter according to the fol-
lowing heuristics: (1) a phrase should appear at
least twice in the parallel corpus; (2) it should not
contain any punctuation; (3) PMI of the phrase
should be positive; (4) a bigram phrase should not
repeat the same word; and (5) the phrase should
not contain only stopwords.

We train embeddings for the resulting list of
words and phrases as follows. First, we preprocess
the target language’s large monolingual corpus to
concatenate words to match the longest phrase in
the extracted phrase list. For example, the sen-

tence ‘I went to a graduate school’ will be con-
verted into ‘I went to a graduate school’ if we
have went to and graduate school in our phrase
list. This concatenated corpus is then used to train
fastText (Peters et al., 2018) embeddings for both
phrases and words simultaneously. We use fast-
Text because it encodes subword-level informa-
tion which may provide a signal about each word
in a phrase. From this training, we obtain both the
word- and phrase-tables, which are of the same di-
mension.

2.3 Fertility module

We introduce a fertility module, similar to the fer-
tility concept in SMT (Brown et al., 1993). The
fertility indicates how many target words each
source word should produce in the output. The
SMT models keep the fertility probabilities over
fertility count, typically from zero to four, and use
it to produce probability over words. We integrate
this fertility concept into our PCoNMT model.

Our fertility module predicts the fertility proba-
bility φe = [φe0, ..., φeN], where φei indicates the
scalar probability of the source word at position
e being translated into i words. This is predicted
based on the word embedding and encoder’s out-
put of the word: φe = FFNN(xe;he). FFNN
is the feed-forward neural network, and (xe;he)
denotes the concatenation of xe and he, which
are embedding and encoder’s hidden state of eth

243

source word, respectively. The dimension of fer-
tility vector φ, N , can be arbitrarily large, but in
this paper we explore two different variants; the
first one is Fertility4 where each dimension cor-
responds to zero to three words to produce re-
spectively (N ∈ {0, 1, 2, 3}), and the second one
is Fertility2 which simplifies the fertility predic-
tion into binary classification by setting N=1 as a
cut-off point, i.e., whether the model should gen-
erate a word (N ≤ 1) or a phrase (N > 1).
Therefore, φe becomes a four-dimensional vec-
tor of [φe0, φe1, φe2, φe3] for Fertility4, and two-
dimensional vector of [

∑1
n=0 φen,

∑∞
n=2 φen] for

Fertility2.
At decoding time, we combine this fertility

probability of each source word and the attention
to guide the decoder to generate a phrase or a
word. To get the probability of producing a word
λd,word for timestep d, we use attention given to
each source word as a weight to its fertility proba-
bility and sum over the entire source sentence:

λd,word =

{∑
e ad,e (φe0 + φe1) (dim = 4)∑
e ad,e [φe]0 (dim = 2)

λd,phrase = 1− λd,word,

where ad,e is a scalar value of attention assigned
for source word e at timestep d and [φe]0 is the
0th element of φe, which basically is the same as
(φe0 + φe1) in Fertility4. We use this λd,word and
λd,phrase to weight the scores in word table and in
phrase table, respectively:

sword = λd,word · Score(ed, Tword)
sphrase = λd,phrase · Score(ed, Tphrase)

yd = argmax(sword; sphrase),

where sword is a vector of scores for word in the
word embedding table Tword, and Score is a score
function to measure how similar the predicted em-
bedding ed and the embeddings in T . For the
Score function, we use vMF as proposed in Ku-
mar and Tsvetkov (2019). Finally, we get an out-
put, yd for the timestep d by doing argmax over
weighted scores from both word and phrase tables.

2.4 Model Training
The training of PCoNMT model is achieved by
two separate steps. First, we only train the seq2seq
modules as CoNMT does. We use vMF loss to op-
timize the embedding prediction. Once we find the
optimal parameters for the CoNMT components,

IWSLT IWSLTMWT

Attn 23.83 -
NPMT 27.27 -
CoNMT 27.07 24.98

PCoNMT 28.69 28.89
+Fertility4 28.04 24.93
+Fertility2 28.29 25.12

Table 1: Evaluation results (BLEU) on IWSLT 2014
De–En task.

WMT WMTMWT

NPMT 3.58 -
CoNMT 7.44 7.67

PCoNMT 8.87 7.70
+Fertility4 8.12 8.53
+Fertility2 8.39 8.61

Table 2: Evaluation results (BLEU) on WMT 2017 Tr–
En task.

we freeze those parameters, and separately train
parameters of the fertility module.2 During the
preprocessing, we extract the actual fertility value
for each source word using the word-alignment
model and the filtered phrase list, then set it as a
gold label for the fertility prediction training.

3 Experiments

In this section, we evaluate our model in terms
of translation quality and training efficiency. We
used IWSLT 2014 dataset for De–En machine
translation task, following the same preprocess-
ing and splits as in Ranzato et al. (2016). For
the Tr–En task, we used WMT 17 train and test
dataset (Bojar et al., 2018). The training cor-
pora size for IWSLT 2014 and WMT 17 is about
153K and 200K sentences, respectively. All re-
sults are reported with case-sensitive BLEU-4 (Pa-
pineni et al., 2002). In addition to the two of-
ficial datasets, we subset the given test sets to
sentences that actually contain multi-word transla-
tion (MWT) cases by running the word-alignment
model. The size of extracted MWT subsets for
IWSLT 2014 and WMT 17 are 335 (5%) and 116

2Although we have omitted the results due to space, we
also have tried jointly training the fertility prediction and
translation in a multi-task learning setting. However, the
joint-learning has consistently hurt the translation quality.

244

speed ↓
(samples/sec)

convergence ↑
(epochs)

total time ↑
(hours)

NPMT 15.4 40 110
CoNMT 256.0 6 1.00
PCoNMT 261.0 6 0.98

Table 3: Training efficiency results on IWSLT 2014
De–En dataset.

(4%), respectively. Also note that following Ku-
mar and Tsvetkov (2019), in this paper, we only
used greedy decoding.

We compared our proposed model with three
baselines: (1) Attn: Standard attention-based
NMT model as in Wiseman and Rush (2016);
(2) CoNMT: RNN-based Continuous-output
NMT systems (Kumar and Tsvetkov, 2019);
(3) NPMT: The state of the art phrase-based NMT
model proposed by Huang et al. (2017). For
NPMT, we ran its released code with the same pre-
processed data we are using without changing any
hyperparameters they set.3 For both De–En and
Tr–En CoNMT models, we used the best hyperpa-
rameter settings reported by Kumar and Tsvetkov
(2019) for De–En. For our model, PCoNMT, we
only changed the batch size from the original set-
ting in CoNMT and chose other additional param-
eters based on the performance on the validation
set.

Although we use recurrent architectures in
this paper to make our findings comparable to
prior work that uses the same setting, we be-
lieve using multi-layer self-attention mechanism
(Vaswani et al., 2017) as a base of our model
has further potential to improve the performance.
Even with Transformers, the conventional token-
by-token generation scheme will be still prone to
mistakes in multi-word generations. Therefore,
explicitly handling the phrase generation as we
propose is likely to be helpful, which we leave it
as future work.

Translation quality De–En and Tr–En transla-
tion results are summarized in Tables 1 and 2.
PCoNMT significantly outperforms both the con-
ventional attention-based model (by >4 BLEU)
and its base CoNMT model (by 1.6 BLEU), and
also performs better than NPMT (by 1.4 BLEU).
The fertility module is shown to be relatively

3The number we got from the experiment is different from
the one reported in the original paper, which possibly is root-
ing from slightly different preprocessing steps.

Class
De–En Tr–En

Tot. P R F-1 Tot. P R F-1

N ≤ 1 97% 0.97 0.96 0.97 97% 0.97 0.95 0.96
N > 1 3% 0.33 0.28 0.31 3% 0.17 0.1 0.13

Table 4: The Precision, Recall, and F1 evaluation re-
sults on the fertility prediction of Fertility2. ”Tot.” is
the percentage for the number of occurrences of each
label in the gold label.

Class
De–En Tr–En

Total P R F-1 Total P R F-1

N = 0 10% 0.59 0.09 0.15 14% 0.56 0.30 0.39
N = 1 86% 0.88 0.95 0.91 83% 0.86 0.91 0.89
N = 2 4% 0.27 0.35 0.31 3% 0.12 0.19 0.14
N = 3 0% 0.16 0.14 0.15 0% 0 0 0

Table 5: The Precision, Recall, and F1 evaluation re-
sults on the fertility prediction of Fertility4. ”Tot.” is
the percentage for the number of occurrences of each
label in the gold label.

more helpful in Tr–En task, while showing less
impact in De–En task. We also observed that
Fertility2 consistently generates better transla-
tions than Fertility4. On the more difficult MWT
subset containing multi-word phrases, PCoNMT
obtains large absolute gains in BLEU, confirming
their effectiveness in phrase translations. Exam-
ples of translations are shown in Table 7.

Computational efficiency We report the train-
ing efficiency of models in three metrics: speed,
number of training epochs till convergence, and
total training time. All results were measured on
the same machine with the same batch size. The
machine was a single-node local machine with
NVIDIA GTX 1080 Ti. During the training, no
other process was executed except for the training
for the fair comparison.

Table 3 shows that CoNMT and PCoNMT can
process 28 times faster than NPMT, and converge
six times faster, i.e., reducing the entire training
time by 112x. Somewhat surprisingly, PCoNMT
further accelerates the CoNMT as it can reduce
the timestep needed for a sample by generating
phrases. This result proves that additional phrase
embeddings of PCoNMT has little impact on com-
putational efficiency while training.

Fertility Prediction Evaluation The fertility
prediction can have a significant impact on the
translation as it guides the decoder to decide when
to generate phrases and when to generate words.
We evaluate the prediction results on the test set

245

with the gold label obtained from the word align-
ment model in Table 5 and Table 4.

In both datasets, we observe that the data is
highly skewed toward word-level classes as most
translations are word-to-word generation. This re-
sults in Fertility4 not to predict N = 3 classes
at all in the Tr–En dataset. The comparison be-
tween Table 5 and Table 4 shows that the Fertility2
has slighly higher F-1 score than Fertility4 in both
datasets. It implies that aggregating the classes
into two made the prediction task easier for the
model, which thus led to the improved translation
quality shown in the previous results.

Analysis on Generated Phrases Table 6
presents further analysis of the generated phrases.
We first see in which category of phrases our
model performs well compared to the baseline,
CoNMT, to know from where the improvement of
our model is coming. As for the phrase categories,
we consider three categories, compound nouns
(CNs, e.g., thought experiment), verb phrases
(VPs, e.g., grow apart), and collocations (COs,
e.g., at risk). We randomly sampled a hundred
generated phrases from the De–En test set, and
manually annotate the category of phrases and
whether it is the correct translation. We also look
at the output of CoNMT baseline for the same test
samples, and also annotate if the sampled phrases
are well translated in the CoNMT output.

The results in Table 6 show that the most fre-
quently generated phrases are collocations (56%)
followed by verb phrases (28%) and compound
nouns (16%). Among the entire sampled phrases,
64 percent of phrases were correct in PCoNMT
output while CoNMT had 50 percent of them cor-
rect. Specifically, our model significantly outper-
formed the baseline in compound word generation
cases while performs worse in verb phrases gen-
eration. By looking into the instances of wrong
verb phrase generation, we found that a significant
amount of those errors are related to the tense of
the verb.

4 Related Work

Multi-word Expressions for NMT There have
been several studies that incorporate multi-word
phrases into supervised NMT (Tang et al., 2016;
Wang et al., 2017; Dahlmann et al., 2017). Most
approaches rely on pre-defined phrase dictionar-
ies obtained from methods such as phrase-based
Stastitical MT (Koehn et al., 2003) or word-

Category Total PCoNMT CoNMT

CNs 16% 0.63 0.25
VPs 28% 0.5 0.57
COs 56% 0.71 0.54

Sum 100% 0.64 0.50

Table 6: Percentages of categories of randomly sam-
pled 100 phrases generated by PCoNMT on IWSLT
2014 De–En test set and the accuracy of PCoNMT and
CoNMT phrase translations, respectively.

alignment. Tang et al. (2016) use a method that
combines phrase probability and word probabil-
ity obtained from a softmax layer enabling the
decoder to decide to switch between phrase gen-
eration and word generation based on context.
Dahlmann et al. (2017) use a separate SMT model
to generate phrases along with an NMT model.
Wang et al. (2017) proposed a similar approach
to have an SMT model run in parallel, where an
additional module decide whether to use a phrase
generator from the SMT model or the neural de-
coder.

Recent works have also explored using an ad-
ditional RNN to compute phrase generation prob-
abilities. Huang et al. (2017) proposed Neu-
ral Phrase MT (NPMT) that is built upon Sleep-
WAke Network (SWAN), a segmentation-based
sequence modeling technique, which automati-
cally discovers phrases given the data and appends
the special symbol $ to the source and target data.
The model gets these segmented word/phrase se-
quences as input and keeps two levels of RNNs
to encode and decode phrases. NPMT established
state of the art results for phrase-based NMT, but
at a price of significant computational overhead.

The main differences between previous studies
and our work are: (1) we do not rely on SMT
model and adapt in an end-to-end manner only re-
quiring some preprocessing using word-alignment
models; and (2) we use phrase embedding ta-
bles to represent phrases instead of keeping exter-
nal phrase memory and its generation probability.
By using the phrase embeddings along with the
continuous-output layer, we significantly reduce
the computational complexity and propose an ap-
proach to overcome the phrase generation bottle-
neck.

Fertility in MT Fertility (Brown et al., 1993)
has been a core component in phrase-based SMT

246

German src und Sie sollten auch an Dinge wie Lebensqualität denken
English ref and you also want to think about things like quality of life
Baseline CoNMT and you should think of things like life
PCoNMT and you should think of things like quality of life .
German src wer ein Gehirn hat , ist gefährdet .
English ref everyone with a brain is at risk .
Baseline CoNMT who has a brain is risk .
PCoNMT who has a brain is at risk .
German src ich stecke voller Widersprüche .
English ref I am full of contradictions .
Baseline CoNMT I ’m put .
PCoNMT I ’m full of contradictions

Table 7: Translation output examples from CoNMT and PCoNMT systems.

models (Koehn et al., 2003). Fertility gives the
likelihood of each source word of being translated
into n words. Fertility helps in deciding which
phrases should be stored in the phrase tables. Tu
et al. (2016) revisited fertility to model coverage
in NMT to address the issue of under-translation.
They used a fertility vector to express how many
words should be generated per source word and a
coverage vector to keep track of words translated
so far. We use a very similar concept in this work
but the fertility module is introduced with a pur-
pose to guide the decoder to switch over generat-
ing phrases and words.

5 Conclusion

We proposed PCoNMT, a phrase-based NMT sys-
tem built upon continuous-output NMT models.
We also introduced a fertility module that guides
the decoder by providing the probabilities of gen-
erating a phrase and a word by leveraging the
attention mechanism. Our experimental results
showed that our model outperforms the state of
the art phrase NMT systems, and also speeds up
the computation by 112x.

Acknowledgments

We gratefully acknowledge Sachin Kumar and our
anonymous reviewers for the helpful feedback.
This material is based upon work supported by
NSF grant IIS1812327 and an Amazon MLRA
award.

References
Karim Ahmed, Nitish Shirish Keskar, and Richard

Socher. 2018. Weighted transformer network for
machine translation. In Proc. ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Philipp Koehn, and
Christof Monz. 2018. Findings of the 2018 confer-
ence on machine translation (wmt18). In Proceed-
ings of the Third Conference on Machine Transla-
tion: Shared Task Papers, pages 272–303.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Franck Burlot and François Yvon. 2017. Evaluating
the morphological competence of machine transla-
tion systems. In Proc. of WMT, pages 43–55.

Leonard Dahlmann, Evgeny Matusov, Pavel
Petrushkov, and Shahram Khadivi. 2017. Neu-
ral machine translation leveraging phrase-based
models in a hybrid search. In Proc. of EMNLP.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proc. of NAACL.

Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong
Zhou, and Li Deng. 2017. Towards neural phrase-
based machine translation. In Proc. of ICLR.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proc. of
WNGT.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1, NAACL ’03, pages 48–54, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Sachin Kumar and Yulia Tsvetkov. 2019. Von mises-
fisher loss for training sequence to sequence models
with continuous outputs. In Proc. of ICLR.

247

Guillaume Lample, Myle Ott, Alexis Conneau, and Lu-
dovic Denoyer. 2018. Phrase-based & neural unsu-
pervised machine translation. In Proc. of EMNLP,
pages 5039–5049.

Austin Matthews, Eva Schlinger, Alon Lavie, and Chris
Dyer. 2016. Synthesizing compound words for ma-
chine translation. In Proc. of ACL, pages 1085–
1094.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. of ACL,
pages 311–318.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks.

Matss Rikters and Ondej Bojar. 2017. Paying attention
to multi-word expressions in neural machine trans-
lation. In Proc. of Machine Translation Summit.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proc. of ACL.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li,
and Philip LH Yu. 2016. Neural machine transla-
tion with external phrase memory. arXiv preprint
arXiv:1606.01792.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 76–85.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xing Wang, Zhaopeng Tu, Deyi Xiong, and Min
Zhang. 2017. Translating phrases in neural machine
translation. In Proc. of EMNLP, pages 1421–1431.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1296–1306.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

248

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 249–255
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Transformer and seq2seq model for Paraphrase Generation

Elozino Egonmwan and Yllias Chali
University of Lethbridge
Lethbridge, AB, Canada

{elozino.egonmwan, yllias.chali}@uleth.ca

Abstract

Paraphrase generation aims to improve the
clarity of a sentence by using different word-
ing that convey similar meaning. For better
quality of generated paraphrases, we propose
a framework that combines the effectiveness
of two models – transformer and sequence-to-
sequence (seq2seq). We design a two-layer
stack of encoders. The first layer is a trans-
former model containing 6 stacked identical
layers with multi-head self-attention, while the
second-layer is a seq2seq model with gated re-
current units (GRU-RNN). The transformer en-
coder layer learns to capture long-term depen-
dencies, together with syntactic and semantic
properties of the input sentence. This rich vec-
tor representation learned by the transformer
serves as input to the GRU-RNN encoder re-
sponsible for producing the state vector for de-
coding. Experimental results on two datasets-
QUORA and MSCOCO using our framework,
produces a new benchmark for paraphrase
generation.

1 Introduction

Paraphrasing is a key abstraction technique used
in Natural Language Processing (NLP). While ca-
pable of generating novel words, it also learns
to compress or remove unnecessary words along
the way. Thus, gainfully lending itself to ab-
stractive summarization (Chen and Bansal, 2018;
Gehrmann et al., 2018) and question generation
(Song et al., 2018) for machine reading compre-
hension (MRC) (Dong et al., 2017). Paraphrases
can also be used as simpler alternatives to input
sentences for machine translation (MT) (Callison-
Burch et al., 2006) as well as evaluation of nat-
ural language generation (NLG) texts (Apidianaki
et al., 2018).

Existing methods for generating paraphrases,
fall in one of these broad categories – rule-based
(McKeown, 1983), seq2seq (Prakash et al., 2016),

reinforcement learning (Li et al., 2018), deep gen-
erative models (Iyyer et al., 2018) and a varied
combination (Gupta et al., 2018; Mallinson et al.,
2017) of the later three.

In this paper, we propose a novel framework
for paraphrase generation that utilizes the trans-
former model of Vaswani et al. (2017) and seq2seq
model of Sutskever et al. (2014) specifically GRU

(Cho et al., 2014). The multi-head self attention of
the transformer complements the seq2seq model
with its ability to learn long-range dependencies in
the input sequence. Also the individual attention
heads in the transformer model mimics behavior
related to the syntactic and semantic structure of
the sentence (Vaswani et al., 2017, 2018) which is
key in paraphrase generation. Furthermore, we use
GRU to obtain a fixed-size state vector for decod-
ing into variable length sequences, given the more
qualitative learned vector representations from the
transformer.

The main contributions of this work are:

• We propose a novel framework for the task of
paraphrase generation that produces quality
paraphrases of its source sentence.

• For in-depth analysis of our results, in addi-
tion to using BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) which are word-overlap
based, we further evaluate our model us-
ing qualitative metrics such as Embedding
Average Cosine Similarity (EACS), Greedy
Matching Score (GMS) from Sharma et al.
(2017) and METEOR (Banerjee and Lavie,
2005), with stronger correlation with human
reference.

2 Task Definition

Given an input sentence S = (s1, ..., sn) with n
words, the task is to generate an alternative output

249

https://www.aclweb.org/anthology/D19-56%2d

S: What are the dumbest questions ever asked
on Quora?
G: what is the stupidest question on quora?
R: What is the most stupid question asked on
Quora?
S: How can I lose fat without doing any aero-
bic physical activity
G: how can i lose weight without exercise?
R: How can I lose weight in a month without
doing exercise?
S: How did Donald Trump won the 2016 USA
presidential election?
G: how did donald trump win the 2016 presi-
dential
R: How did Donald Trump become presi-
dent?

Table 1: Examples of our generated paraphrases on
the QUORA sampled test set, where S, G, R repre-
sents Source, Generated and Reference sentences re-
spectively.

sentence Y = (y1, ..., ym) | ∃ym 6∈ S with m
words that conveys similar semantics as S, where
preferably, m < n but not necessarily.

3 Method

In this section, we present our framework for para-
phrase generation. It follows the popular encode-
decode paradigm, but with two stacked layers of
encoders. The first encoding layer is a trans-
former encoder, while the second encoding layer
is a GRU-RNN encoder. The paraphrase of a given
sentence is generated by a GRU-RNN decoder.

3.1 Stacked Encoders

3.1.1 Encoder – TRANSFORMER

We use the transformer-encoder as sort of a pre-
training module of our input sentence. The goal
is to learn richer representation of the input vector
that better handles long-term dependencies as well
as captures syntactic and semantic properties be-
fore obtaining a fixed-state representation for de-
coding into the desired output sentence. The trans-
former contains 6 stacked identical layers mainly
driven by self-attention implemented by Vaswani
et al. (2017, 2018).

3.1.2 Encoder – GRU-RNN

Our architecture uses a single layer uni-directional
GRU-RNN whose input is the output of the trans-

S: Three dimensional rendering of a kitchen area
with various appliances.
G: a series of photographs of a kitchen
R: A series of photographs of a tiny model
kitchen
S: a young boy in a soccer uniform kicking a ball
G: a young boy kicking a soccer ball
R: A young boy kicking a soccer ball on a green
field.
S: The dog is wearing a Santa Claus hat.
G: a dog poses with santa hat
R: A dog poses while wearing a santa hat.
S: the people are sampling wine at a wine tasting.
G: a group of people wine tasting.
R: Group of people tasting wine next to some
barrels.

Table 2: Examples of our generated paraphrases on
the MSCOCO sampled test set, where S, G, R repre-
sents Source, Generated and Reference sentences re-
spectively.

former. The GRU-RNN encoder (Chung et al.,
2014; Cho et al., 2014) produces fixed-state vector
representation of the transformed input sequence
using the following equations:

z = σ(xtU
z + st−1W z) (1)

r = σ(xtU
r + st−1W r) (2)

h = tanh(xtU
h + (st−1 � r)W h) (3)

st = (1− z)� h+ z � st−1 (4)

where r and z are the reset and update gates re-
spectively,W and U are the network’s parameters,
st is the hidden state vector at timestep t, xt is the
input vector and � represents the Hadamard prod-
uct.

3.2 Decoder – GRU-RNN

The fixed-state vector representation produced by
the GRU-RNN encoder is used as initial state for
the decoder. At each time step, the decoder re-
ceives the previously generated word, yt−1 and
hidden state st−1 at time step t−1. The output
word, yt at each time step, is a softmax probability
of the vector in equation 3 over the set of vocabu-
lary words, V .

250

50K
MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 17.4 22.2 - - -
RbM-SL (Li et al., 2018) 35.81 28.12 - - -

TRANS (ours) 35.56 33.89 27.53 79.72 62.91
SEQ (ours) 34.88 32.10 29.91 78.66 61.45

TRANSEQ (ours) 37.06 33.73 30.89 80.81 63.63
TRANSEQ + beam (size=6) (ours) 37.12 33.68 30.72 81.03 63.50

100K
MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 22.90 25.50 - - -
RbM-SL (Li et al., 2018) 43.54 32.84 - - -

TRANS (ours) 37.46 36.04 29.73 80.61 64.81
SEQ (ours) 36.98 34.71 32.06 79.65 63.49

TRANSEQ (ours) 38.75 35.84 33.23 81.50 65.52
TRANSEQ + beam (size=6) (ours) 38.77 35.86 33.07 81.64 65.42

150K
MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 38.30 33.60 - - -
TRANS (ours) 39.00 38.68 32.05 81.90 65.27

SEQ (ours) 38.50 36.89 34.35 80.95 64.13
TRANSEQ (ours) 40.36 38.49 35.84 82.84 65.99

TRANSEQ + beam (size=6) (ours) 39.82 38.48 35.40 82.48 65.54

Table 3: Performance of our model against various models on the QUORA dataset with 50k,100k,150k training
examples. R-L refers to the ROUGE-L F1 score with 95% confidence interval

4 Experiments

We describe baselines, our implementation set-
tings, datasets and evaluation of our proposed
model.

4.1 Baselines

We compare our model with very recent models
(Gupta et al., 2018; Li et al., 2018; Prakash et al.,
2016) including the current state-of-the-art (Gupta
et al., 2018) in the field. To further highlight the
gain of stacking 2 encoders we use each compo-
nent – Transformer (TRANS) and seq2seq (SEQ)
as baselines.

• VAE-SVG-EQ (Gupta et al., 2018): This is
the current state-of-the-art in the field, with
a variational autoencoder as its main compo-
nent.

• RbM-SL (Li et al., 2018): Different from
the encoder-decoder framework, this is
a generator-evaluator framework, with the
evaluator trained by reinforcement learning.

• Residual LSTM (Prakash et al., 2016): This
implements stacked residual long short term
memory networks (LSTM).

• TRANS: Encoder-decoder framework as de-
scribed in Section 3 but with a single trans-
former encoder layer.

• SEQ: Encoder-decoder framework as de-
scribed in Section 3 but with a single GRU-
RNN encoder layer.

4.2 Implementation

We used pre-trained 300-dimensional gloV e1

word-embeddings (Pennington et al., 2014) as the
distributed representation of our input sentences.
We set the maximum sentence length to 15 and 10
respectively for our input and target sentences fol-
lowing the statistics of our dataset.

For the transformer encoder, we used the
transformer base hyperparameter setting from

1https://nlp.stanford.edu/projects/
glove/

251

MODEL BLEU METEOR R-L EACS GMS
Residual LSTM (Prakash et al., 2016) 37.0 27.0 - - -

VAE-SVG-EQ (Gupta et al., 2018) 41.7 31.0 - - -
TRANS (ours) 41.8 38.5 33.4 79.6 70.3

SEQ (ours) 40.7 36.9 35.8 78.9 70.0
TRANSEQ (ours) 43.4 38.3 37.4 80.5 71.1

TRANSEQ + beam (size=10) (ours) 44.5 40.0 38.4 81.9 71.3

Table 4: Performance of our model against various models on the MSCOCO dataset. R-L refers to the ROUGE-L
F1 score with 95% confidence interval

the tensor2tensor library (Vaswani et al., 2018)2,
but set the hidden size to 300. We set dropout to
0.0 and 0.7 for MSCOCO and QUORA datasets re-
spectively. We used a large dropout for QUORA

because the model tends to over-fit to the training
set. Both the GRU-RNN encoder and decoder con-
tain 300 hidden units.

We pre-process our datasets, and do not use the
pre-processed/tokenized versions of the datasets
from tensor2tensor library. Our target vocabulary
is a set of approximately 15,000 words. It con-
tains words in our target training and test sets that
occur at least twice. Using this subset of vocabu-
lary words as opposed to over 320,000 vocabulary
words contained in gloV e improves both training
time and performance of the model.

We train and evaluate our model after each
epoch with a fixed learning rate of 0.0005, and
stop training when the validation loss does not
decrease after 5 epochs. The model learns
to minimize the seq2seq loss implemented in
tensorflow API3 with AdamOptimizer.
We use greedy-decoding during training and vali-
dation and set the maximum number of iterations
to 5 times the target sentence length. For test-
ing/inference we use beam-search decoding.

4.3 Datasets

We evaluate our model on two standard datasets
for paraphrase generation – QUORA4 and
MSCOCO (Lin et al., 2014) as described in Gupta
et al. (2018) and used similar settings. The
QUORA dataset contains over 120k examples
with a 80k and 40k split on the training and
test sets respectively. As seen in Tables 1 and

2https://github.com/tensorflow/
tensor2tensor

3https://www.tensorflow.org/api_docs/
python/tf/contrib/seq2seq/sequence_loss

4https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

2, while the QUORA dataset contains question
pairs, MSCOCO contains free form texts which
are human annotations of images. Subjective
observation of the MSCOCO dataset reveals that
most of its paraphrase pairs contain more novel
words as well as syntactic manipulations than
the QUORA pairs making it a more interesting
paraphrase generation corpora. We split the
QUORA dataset to 50k, 100k and 150k training
samples and 4k testing samples in order to align
with baseline models for comparative purposes.

4.4 Evaluation
For quantitative analysis of our model, we use
popular automatic metrics such as BLEU, ROUGE,
METEOR. Since BLEU and ROUGE both mea-
sure n − gram word-overlap with difference in
brevity penalty, we report just the ROUGE-L value.
We also use 2 additional recent metrics – GMS

and EACS by (Sharma et al., 2017)5 that measure
the similarity between the reference and generated
paraphrases based on the cosine similarity of their
embeddings on word and sentence levels respec-
tively.

4.5 Result Analysis
Tables 3 and 4 report scores of our model on both
datasets. Our model pushes the benchmark on all
evaluation metrics compared against current pub-
lished top models evaluated on the same datasets.
Since several words could connote similar mean-
ing, it is more logical to evaluate with metrics that
match with embedding vectors capable of measur-
ing this similarity. Hence we also report GMS and
EACS scores as a basis of comparison for future
work in this direction.

Besides quantitative values, Tables 1 and 2
show that our paraphrases are well formed, ab-
stractive (e.g dumbest – stupidest, dog is wearing

5https://github.com/Maluuba/nlg-eval

252

– dog poses), capable of performing syntactic ma-
nipulations (e.g in a soccer uniform kicking a ball
– kicking a soccer ball) and compression. Some of
our paraphrased sentences even have more brevity
than the reference, and still remain very meaning-
ful.

5 Related Work

Our baseline models – VAE-SVG-EQ (Gupta et al.,
2018) and RbM-SL (Li et al., 2018) are both
deep learning models. While the former uses a
variational-autoencoder and is capable of generat-
ing multiple paraphrases of a given sentence, the
later uses deep reinforcement learning. In tune,
with part of our approach, ie, seq2seq, there exists
ample models with interesting variants – residual
LSTM (Prakash et al., 2016), bi-directional GRU

with attention and special decoding tweaks (Cao
et al., 2017), attention from the perspective of se-
mantic parsing (Su and Yan, 2017).

MT has been greatly used to generate para-
phrases (Quirk et al., 2004; Zhao et al., 2008) due
to the availability of large corpora. While much
earlier works have explored the use of manually
drafted rules (Hassan et al., 2007; Kozlowski et al.,
2003).

Similar to our model architecture, Chen et al.
(2018) combined transformers and RNN-based en-
coders for MT. Zhao et al. (2018) recently used the
transformer model for paraphrasing on different
datasets. We experimented using solely a trans-
former but got better results with TRANSEQ. To
the best of our knowledge, our work is the first
to cross-breed the transformer and seq2seq for the
task of paraphrase generation.

6 Conclusions

We proposed a novel framework, TRANSEQ that
combines the efficiency of a transformer and
seq2seq model and improves the current state-of-
the-art on the QUORA and MSCOCO paraphras-
ing datasets. Besides quantitative results, we pre-
sented examples that highlight the syntactic and
semantic quality of our generated paraphrases.

In the future, it will be interesting to apply this
framework for the task of abstractive text summa-
rization and other NLG-related problems.

Acknowledgments

We would like to thank the anonymous review-
ers for their useful comments. The research re-

ported in this paper was conducted at the Univer-
sity of Lethbridge and supported by Alberta Inno-
vates and Alberta Education.

References
Marianna Apidianaki, Guillaume Wisniewski, Anne

Cocos, and Chris Callison-Burch. 2018. Automated
paraphrase lattice creation for hyter machine trans-
lation evaluation. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
480–485.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine transla-
tion using paraphrases. In Proceedings of the main
conference on Human Language Technology Con-
ference of the North American Chapter of the Asso-
ciation of Computational Linguistics, pages 17–24.
Association for Computational Linguistics.

Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li.
2017. Joint copying and restricted generation for
paraphrase. In Thirty-First AAAI Conference on Ar-
tificial Intelligence.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
et al. 2018. The best of both worlds: Combining
recent advances in neural machine translation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 76–86.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 675–686.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question

253

answering. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 875–886.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098–4109.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Samer Hassan, Andras Csomai, Carmen Banea, Ravi
Sinha, and Rada Mihalcea. 2007. Unt: Subfinder:
Combining knowledge sources for automatic lex-
ical substitution. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 410–413.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885.

Raymond Kozlowski, Kathleen F McCoy, and K Vijay-
Shanker. 2003. Generation of single-sentence para-
phrases from predicate/argument structure using
lexico-grammatical resources. In Proceedings of the
second international workshop on Paraphrasing-
Volume 16, pages 1–8. Association for Computa-
tional Linguistics.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase generation with deep reinforce-
ment learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3865–3878.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881–893.

Kathleen R McKeown. 1983. Paraphrasing questions
using given and new information. Computational
Linguistics, 9(1):1–10.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji
Farri. 2016. Neural paraphrase generation with
stacked residual lstm networks. arXiv preprint
arXiv:1610.03098.

Chris Quirk, Chris Brockett, and William Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 142–149.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsuper-
vised metrics in task-oriented dialogue for evalu-
ating natural language generation. arXiv preprint
arXiv:1706.09799.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context infor-
mation for natural question generation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Short Papers), pages 569–574.

Yu Su and Xifeng Yan. 2017. Cross-domain seman-
tic parsing via paraphrasing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1235–1246.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, et al. 2018. Tensor2tensor for neural machine
translation. In Proceedings of the 13th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Papers), volume 1,
pages 193–199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

254

Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018. Integrating trans-
former and paraphrase rules for sentence simplifi-
cation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3164–3173, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and
Sheng Li. 2008. Combining multiple resources to
improve smt-based paraphrasing model. In Pro-
ceedings of ACL-08: HLT, pages 1021–1029.

255

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 256–261
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Monash University’s Submissions to the WNGT 2019 Document
Translation Task

Sameen Maruf and Gholamreza Haffari
Faculty of Information Technology, Monash University, Australia

{firstname.lastname}@monash.edu

Abstract

We describe the work of Monash University
for the shared task of Rotowire document
translation organised by the 3rd Workshop on
Neural Generation and Translation (WNGT
2019). We submitted systems for both di-
rections of the English-German language pair.
Our main focus is on employing an estab-
lished document-level neural machine transla-
tion model for this task. We achieve a BLEU
score of 39.83 (41.46 BLEU per WNGT eval-
uation) for En-De and 45.06 (47.39 BLEU per
WNGT evaluation) for De-En translation di-
rections on the Rotowire test set. All exper-
iments conducted in the process are also de-
scribed.

1 Introduction

This paper describes the work of Monash Uni-
versity for the shared task of Rotowire document
translation organised by the 3rd Workshop on
Neural Generation and Translation (WNGT 2019).
Despite the boom of work on document-level ma-
chine translation in the past two years, we have
witnessed a lack of the application of the proposed
approaches to MT shared tasks. Thus, our main
focus in this work is on employing an established
document-level neural machine translation model
for this task.

We first explore a strong sentence-level base-
line, trained on large-scale parallel data made
available by WMT 2019 for their news transla-
tion task.1 We use this system as the initialisation
of the document-level models, first proposed by
Maruf et al. (2019), making use of the complete
document (both past and future sentences) as the
conditioning context when translating a sentence.
Given the task of translating Rotowire basketball
articles, we leverage the document-delimited data

1http://www.statmt.org/wmt19/
translation-task.html

provided by the organisers of WMT 2019 to train
the document-level models. Due to resource con-
straints, we do not use any monolingual data nor
any sort of pre-trained embeddings for training the
baseline or our document-level models. We en-
semble 3 independent runs of all models using
two strategies of ensemble decoding. We have
conducted experiments for both directions of the
English-German language pair. Our submissions
achieve a BLEU score of 39.83 (41.46 BLEU per
WNGT evaluation) for En→De and 45.06 (47.39
BLEU per WNGT evaluation) for De→En trans-
lation directions on the Rotowire test set (Hayashi
et al., 2019).

2 Sentence-level Model

As in the original paper, our document-level mod-
els are based on the state-of-the-art Transformer
architecture (Vaswani et al., 2017). In the remain-
der of this section, we will describe how we pre-
pare the data to train our sentence-level model and
the training setup.

2.1 Data Preparation
To train our sentence-level model, we want to use
the maximum allowable high-quality data from the
English-German news task in WMT 2019. This
would produce a fair baseline for comparing with
our document-level models. Upon considering the
task of translating basketball-related articles, we
have decided to utilise parallel data from Europarl
v9, Common Crawl, News Commentary v14 and
the Rapid corpus.2

Before proceeding to the pre-processing, we re-
move repetitive sentences3 from Rapid corpus oc-
curring at the start and end of the documents.

2Given the limited time and resources at our disposal, we
did not use the ParaCrawl corpus.

3“European Commission - Announcement”, “Related
Links”, “Audiovisual material”, etc.

256

https://www.aclweb.org/anthology/D19-56%2d

Corpus #Sentence-Pairs
Europarl v9 1.79M
Common Crawl 2.37M
News Commentary v14 0.33M
Rapid 1.46M
Rotowire 3247

Table 1: Sentence-parallel training corpora statistics.

From all corpora, we also remove sentences with
length greater than 75 tokens after tokenisation.4,5

Table 1 summarises the number of sentences of
each corpus in the pre-processed sentence-parallel
dataset. We further apply truecasing using Moses
(Koehn et al., 2007) followed by joint byte-pair
encoding (BPE) with 50K merge operations (Sen-
nrich et al., 2016).

2.2 Model and Training
We use the DyNet toolkit (Neubig et al., 2017)
for all of our experiments; the implementation
of the sentence-level system is in DyNet, namely
Transformer-DyNet.6 Our experiments are run on
a single V100 GPU, so we use a rather small mini-
batch size of 900 tokens. Furthermore, we have
filtered sentences with length greater than 85 to-
kens to fit the computation graph in GPU memory.
The hyper-parameter settings are the same as in
the Transformer-base model except the number of
layers which is set to 4. We also employ all four
types of dropouts as in the original Transformer
with a rate of 0.1. We use the default Adam opti-
miser (Kingma and Ba, 2014) with an initial learn-
ing rate of 0.0001 and employ early stopping.

3 Document-level Models

The motivation behind our participation in the
shared task is to test the document-level MT mod-
els (Maruf et al., 2019) on real world tasks. Here
we will briefly describe the models, data pre-
processing and training/decoding setup.

3.1 Model Description
There are two ways to incorporate context into
the sentence-level model: (i) integrate monolin-
gual context into the encoder, or (ii) integrate
the bilingual context into the decoder. For both,

4The threshold was carefully chosen based upon the max-
imum length of sentences in the Rotowire training set so that
we do not remove any of the sentences from the shared task
corpus.

5Tokenisation script was provided by WNGT organisers.
6https://github.com/duyvuleo/

Transformer-DyNet

the document-level context representation is com-
bined with the deep representation of either the
source or target word (output from the last layer
of the Transformer) using a gating mechanism (Tu
et al., 2018).

The document-level context representation is
itself computed in two ways: (i) a single-level
flat attention over all sentences in the document-
context, or (ii) a hierarchical attention which has
the ability to identify the key sentences in the
document-context and then attend to the key words
within those sentences. For the former, we use
a soft attention over the sentences, while for the
latter we use a sparse attention over the sentences
and a soft or sparse attention over the words in the
sentences. For more details of how the document-
level context representations are computed, we re-
fer the reader to the original paper (Maruf et al.,
2019).

3.2 Data Preparation

Since our document-level model requires doc-
ument boundaries, we are unable to use the
sentence-parallel corpus as is. Out of all the
WMT19 corpora, News Commentary and Rapid
corpus are document delimited.7 The Rotowire
dataset also has document boundaries provided.
Thus, we decided to combine these three corpora
to construct the document-parallel training cor-
pus.8 Furthermore, we remove documents from
this document-parallel corpus which have sen-
tence lengths greater than 75 (after tokenisation).
We also remove short documents with number of
sentences less than 5, and long documents with
number of sentences greater than 145. The filtered
document-parallel corpus comprises 49K docu-
ments making up approximately 1.36M sentence-
pairs. The corpus is then truecased using the
truecaser model trained on the sentence-level cor-
pus followed by BPE. Since we filtered out sen-
tences with lengths greater than 85 while train-
ing the baseline, we also filter those from the
document-level corpus. However, removing indi-
vidual sentences from documents could introduce
noise in the training process, hence we remove en-
tire such documents. Finally, we use 48K doc-

7Europarl v9 also had document boundaries but these re-
sulted in very long documents and thus we decided against
using it for the document-level training.

8The training corpus used for training the document-level
models is a subset of the training corpus used for training the
baseline sentence-level model.

257

Figure 1: Ensemble decoding.

uments comprising 1.21M sentences for training
our document-level models.

3.3 Training
We use a stage-wise method to train the variants of
the document-context NMT model. We pre-train
the sentence-level model described in the previ-
ous section and then use it to compute the mono-
lingual and the bilingual context representations.
These are then used to compute the document-
level context representation in our models. The
pre-trained sentence-level model is also used to
initialise our document-level model and is further
fine-tuned alongwith training the document-level
model in the second stage. Here we also employ
all four types of dropouts9 but with a higher rate
of 0.2 to avoid overfitting. Since the documents
on average have lengths much shorter than 900 to-
kens, we update the model parameters after pro-
cessing 5 documents instead of a single document.

3.4 Decoding
For the models using the source monolingual con-
text, we do an initial pass over the source doc-
uments to compute the initial context representa-
tions, which are then used by the document-level
model to perform a greedy decoding to obtain the
target translations. For the models using the bilin-
gual context, we need an initial bilingual context
which is computed by generating initial transla-
tions from the sentence-level NMT model. This
is followed by a second pass of decoding, where
the translation for each sentence is updated us-
ing the document-context NMT model while fix-
ing the translations of the other sentences. This
is what we refer to as two-pass iterative decoding

9input dropout - dropout applied to the sum of token em-
beddings and position encodings, residual dropout - dropout
applied to the output of each sublayer before adding to the
sublayer input, relu dropout - dropout applied to the inner
layer output after ReLU activation in each feed-forward sub-
layer, and attentiondropout - dropout applied to attention
weight in each attention sublayer

Figure 2: Ensemble-Avg decoding.

(Maruf and Haffari, 2018). It should also be men-
tioned that since decoding is a computationally ex-
pensive process, we perform greedy decoding in
both passes.

4 Experimental Evaluation

4.1 Setup
We have 3 independent runs of the sentence-level
Transformer architecture. For each of these runs,
we train the variants of the document-level mod-
els: (i) the flat attention over sentences in the con-
text, and (ii) the hierarchical attention with sparse
attention over sentences and soft/sparse attention
over words in the sentences, using the two types
of context. Results are reported on the Rotowire
test set for the single best model obtained through
early stopping on the Rotowire development set.

We also decode the test set with an ensemble
of the systems for the 3 independent runs. This is
done in two ways:

• Ensemble. This is the traditional way of
ensembling where the different models are
combined by averaging the target probabil-
ity distributions when computing the softmax
(Figure 1).

• Ensemble-Avg. Apart from combining the
probability distributions at the softmax level,
we also average the context representations
from each run, i.e., we use the same initial
context representations for the different runs
of a document-level model (Figure 2).

For evaluation, BLEU (Papineni et al., 2002)
is reported on the detruecased translations (with
original tokenisation) and is calculated using the
MultEval toolkit (Clark et al., 2011).

4.2 English→German
It can be seen from Table 2 that for all runs, the
document-level models outperform the sentence-
level baseline trained with 4 times the data. The

258

Integration into Encoder Integration into Decoder
System Transformer Attention H-Attention H-Attention Attention H-Attention H-Attention

soft sparse-soft sparse-sparse soft sparse-soft sparse-sparse
Run 1 34.70 37.93 38.28 37.07 38.23 38.13 38.43
Run 2 34.45 38.40 38.72 38.27 37.42 38.20 39.02
Run 3 33.15 37.43 38.64 38.25 38.64 38.65 37.97
Ensemble 36.10 39.36 39.83 39.28 39.33 39.51 39.71
Ensemble-Avg 36.10 39.25 39.79 39.22 39.42 39.54 39.71

Table 2: BLEU scores for the Transformer vs. variants of our document-level NMT model for English→German.
bold: Best performance.

Integration into Encoder Integration into Decoder
System Transformer Attention H-Attention H-Attention Attention H-Attention H-Attention

soft sparse-soft sparse-sparse soft sparse-soft sparse-sparse
Run 1 37.75 42.58 43.47 42.58 44.42 44.30 42.96
Run 2 37.86 43.27 42.37 43.81 43.47 43.42 44.05
Run 3 37.35 43.75 44.08 44.11 43.53 44.16 43.81
Ensemble 39.33 44.23 44.52 44.56 44.94 45.06 44.66
Ensemble-Avg 39.33 43.66 43.85 43.96 44.83 44.99 44.62

Table 3: BLEU scores for the Transformer vs. variants of our document-level NMT model for German→English.
bold: Best performance.

hierarchical attention model with soft attention
over words is the best when using monolingual
context (atleast +3.58 BLEU for all runs), while
the hierarchical attention model with sparse atten-
tion over the words is the best in majority cases
when using the bilingual context (atleast +3.73
BLEU for all runs). Among the two types of
context, the bilingual context yields better BLEU
scores in majority cases.

For traditional ensemble decoding, we get upto
+3.73 BLEU improvement for our best hierarchi-
cal attention model over the sentence-level model.
For ensemble-avg decoding, we see improvements
almost equivalent to ensemble decoding. When it
comes to speed, there is negligible difference be-
tween the two approaches.

4.3 German→English

From Table 3, we see that the document-level
models again outperform the sentence-level Trans-
former baseline for all runs by a wider margin
than for English→German. For the monolin-
gual context, the hierarchical attention model with
sparse attention over words is the best in majority
cases (atleast +5.95 BLEU), while for the bilin-
gual context, there does not seem to be a clear win-
ner (atleast +6.19 BLEU). Again, using the bilin-

gual context yields better performance than using
monolingual context in terms of BLEU.

For ensemble decoding, we get upto +5.73
BLEU improvement for our best hierarchical at-
tention model when using the bilingual context
over the sentence-level baseline. However, for
the ensemble-avg decoding, we see the perfor-
mance decrease in comparison to simple ensem-
ble counterparts when using the monolingual con-
text. The context representations that we aver-
aged for the ensemble-avg decoding were coming
from independent models (not checkpoints from
the same model) and we believe this to be the rea-
son we observe either deteriorating performance
or no improvements for the ensemble-avg decod-
ing in comparison to the ensemble decoding.

4.4 Analysis

Figure 3 illustrates the attention matrices10 for an
example German sentence as inferred by the flat
and hierarchical attention models. The sentence-
level attention component of the hierarchical at-
tention model (Figure 3b) appears to be more dis-
tributed than its counterpart in the flat attention
model (Figure 3a). For the word ‘Sie’ in the Ger-

10For this analysis, the attention weights are an average
over heads of per-head attention weights.

259

(a) Flat Attention over Sentences (b) Attention over sentences for the Hierarchical Attention

(c) Scaled Attention over words for the Hierarchical Attention

Figure 3: Attention maps for the Flat Attention and Hierarchical Attention (sparse-sparse) models for a source
sentence and source-side context (all in German). The current German sentence (position 22) has been masked.

man sentence, Figure 3c shows the scaled word-
level attention map (scaled with the sentence-level
attention weights) for the top three sentences, as
observed in Figure 3b. Sie is an ambiguous pro-
noun in German and can be translated to she, they
(sie) and even you in the polite form (Sie). It is
even more ambiguous when used at the start of the
sentence since the capitalisation removes this dis-
tinction. It can be seen from Figure 3c that the
words given the highest attention weights while
encoding this word are mostly other mentions of
the same pronoun (Sie, sie). It should also be men-
tioned that in the 12-th sentence, both occurrences
of the pronoun ‘sie’ also translate to ‘they’ as in
the current sentence.

4.5 Submissions

We have submitted our best ensemble models,
one for each translation direction, as reported in
Tables 2 and 3, for the official evaluation. As
mentioned before, we computed BLEU scores via
MultEval toolkit on tokenised and cased Rotowire
test set. Table 4 shows the scores as provided by
the WNGT organisers. Surprisingly, the scores

Lang. Pair Our Scores WNGT Scores
En→De 39.83 41.46
De→En 45.06 47.39

Table 4: BLEU scores for submitted systems.

have increased further. We have been interested
in exploring the effectiveness of NMT under con-
strained resource conditions, i.e., without back-
translation on large monolingual data and pre-
trained contextualised embeddings. We believe
these enhancements could further improve upon
the reported results.

Acknowledgments

The authors are grateful to the anonymous re-
viewers for their helpful comments and to Philip
Arthur for discussion. This work was supported
by the Multi-modal Australian ScienceS Imag-
ing and Visualisation Environment (MASSIVE)
(www.massive.org.au). G. H. is supported
by a Google Faculty Research Award.

260

References
Jonathan H. Clark, Chris Dyer, Alon Lavie, and

Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for op-
timizer instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies (Short
Papers), pages 176–181. Association for Computa-
tional Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics.

Sameen Maruf and Gholamreza Haffari. 2018. Docu-
ment context neural machine translation with mem-
ory networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Sameen Maruf, André F. T. Martins, and Gholamreza
Haffari. 2019. Selective attention for context-aware
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3092–3102, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong
Zhang. 2018. Learning to remember translation his-
tory with a continuous cache. Transactions of the
Association for Computational Linguistics (TACL),
6:407–420.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

261

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 262–267
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

SYSTRAN @ WNGT 2019: DGT Task

Li Gong, Josep Crego, Jean Senellart
SYSTRAN / 5 rue Feydeau, 75002 Paris, France

firstname.lastname@systrangroup.com

Abstract
This paper describes SYSTRAN participation
to the Document-level Generation and Trans-
lation (DGT) Shared Task of the 3rd Workshop
on Neural Generation and Translation (WNGT
2019). We participate for the first time using
a Transformer network enhanced with modi-
fied input embeddings and optimising an addi-
tional objective function that considers content
selection. The network takes in structured data
of basketball games and outputs a summary of
the game in natural language.

1 Introduction

Data-to-text generation is an important task in
natural language generation (NLG). It refers to
the task of automatically producing a descriptive
text from non-linguistic structured data (tables,
database records, spreadsheets, etc.). Table 1 illus-
trates an example of data-to-text NLG, with statis-
tics of a NBA basketball game (top) and the corre-
sponding game summary (bottom).

Different from other NLG tasks (e.g., machine
translation), data-to-text generation faces several
additional challenges: First, data-to-text genera-
tion models have to select the content before gen-
erating text. In machine translation, the source
and target sentences are semantically equivalent to
each other, whereas in data-to-text generation, the
model initially selects appropriate content from
the input data to secondly generate fluent sen-
tences that incorporate the selected content; Sec-
ond, the training data in data-to-text generation
task is often very limited. Unlike machine trans-
lation, where training data consist of translated
sentence pairs, data-to-text generation models are
trained from examples composed of structured
data and its corresponding descriptive summary,
which are much harder to produce.

In this paper, we tackle both challenges previ-
ously discussed. We introduce a new data-to-text

generation model which jointly learns content se-
lection and text generation. In addition, we present
two data augmentation methods that further boost
performance of the NLG system.

2 Data Resources

We use the official data set made available for the
WNGT 2019 DGT task (Hayashi et al., 2019). It
consists of the the ROTOWIRE dataset (Wiseman
et al., 2017), a dataset of NBA basketball game
summaries, paired with their corresponding box-
and line-score tables. Table 1 illustrates an ex-
ample of the dataset. In the box-score table, each
team has at most 13 players and each player is de-
scribed by 23 types of values. In the line-score ta-
ble, each team has 15 different types of values. As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The
ROTOWIRE dataset contains 4, 853 summaries in
total, in which 3, 398 summaries are for training,
727 for validation and 728 for test. In addition,
the next monolingual resources were considered
usable in all tracks:

• Any monolingual data allowable by the
WMT 2019 English-German news task,

• Pre-trained word/subword/character embed-
dings (e.g., GloVe, fastText),

• Pre-trained contextualized embeddings (e.g.,
ELMo, BERT),

• Pre-trained language models (e.g., GPT-2).

3 Data-to-Text Transformer Model

In this section, we present how we adapt the Trans-
former model for the data-to-text generation tasks.
First, the input embedding of Transformer encoder
is replaced by our record embedding to better in-
corporate the record information. Second, a new

262

https://www.aclweb.org/anthology/D19-56%2d

TEAM-NAME WIN LOSS PTS AST ...
Cavaliers 51 28 90 25 ...
Celtics 37 42 99 30 ...

NAME POS PTS FGM FGA CITY ...
LeBron James F 14 5 14 Cleveland ...
Kevin Love F 19 6 12 Cleveland ...
Kyrie Irving N/A N/A N/A N/A Cleveland ...
Brandon Bass F 12 6 8 Boston ...
Avery Bradley G 15 7 12 Boston ...
Marcus Smart G 19 7 10 Boston ...
...

POS: position, PTS: points, FGM: Player field goals
made; FGA: Player field goals attempted; AST: assists;
CITY: player team city.

The Boston Celtics (37-42) defeated the Cleveland Cavaliers (51-28) 99-90
on Friday in Cleveland. With the Cavaliers solidified as the No.2 seed for
the Eastern Conference playoffs , they did not try particularly hard to win this
game, starting with sitting Kyrie Irving (hip) to make sure he stays healthy.
Regardless, the Celtics took advantage, picking up a huge victory as they fight
to stay in the playoffs. Marcus Smart led the way scoring for Boston, posting
19 points on 7-of-10 shooting in 34 minutes. Avery Bradley was close behind,
scoring 15 points (7-12 FG) in 31 minutes. The Celtics starting frontcourt of
Tyler Zeller and Brandon Bass combined to score 25 points and grab 11
rebounds. Boston’s final starter, Evan Turner, struggled shooting the ball and
only scored four points, but still managed to dish out 13 assists and grab six
rebounds. Isaiah Thomas, as he has done so well since joining the Celtics,
provided solid production off the bench, scoring 17 points (4-12 FG, 2-6 3Pt)
in 23 minutes. ...

Table 1: Example of data-records (left) and document summary (right) from the ROTOWIRE dataset. Entities and
values corresponding to data-records are boldfaced.

learning objective is added into our model to im-
prove its content-oriented performance.

3.1 Record Embedding
The input of data-to-text model encoder is a se-
quence of records. Each record is a tuple of four
features (Entity, Type, Value, Info). Inspired by
previous work (Yang et al., 2016; Wiseman et al.,
2017; Puduppully et al., 2019), we embed features
into vectors, and use the concatenation of feature
embeddings as the embedding of record.

ri = [ri,1; ri,2; ri,3; ri,4] (1)

where ri ∈ Rdim is the ith record embedding in
the input sequence and ri,j ∈ R

dim
4 is the jth fea-

ture embedding in ri.
Since there is no order relationship within the

records, the positional embedding of the Trans-
former encoder is removed.

3.2 Content Selection Modeling
Besides record embedding, we also add a new
learning objective into the Transformer model.

As presented before, we need to select the con-
tent from the input records before generating the
output summary. Some records are generally im-
portant no mater the game context, such as the
team name record and team score record, whereas
the importance of some other records depend on
the game context. For example, a player having
the highest points in the game is more likely to
be mentioned in the game summary. Within the
Transformer architecture, the self-attention mech-
anism can generate the latent representation for
each record by jointly conditioning on all other
records in the input dataset. A binary prediction

layer is added on top of the Transformer encoder
output (as shown in Figure 1) to predict whether
or not one record will be mentioned in the target
summary.

The architecture of our data-to-text Transformer
model is shown in Figure 1. As presented be-
fore, the encoder takes the record embedding as
input and generates the latent representation for
each record in the input sequence. The output of
encoder is then used to predict the importance of
each record and also serves as the context of the
decoder. The decoder of our model is the same as
the original Transformer model in machine trans-
lation. It predicts the next word conditioned on
the encoder output and the previous tokens in the
summary sequence.

In content selection modeling, the input record
sequences together with its label sequences are
used to optimize the encoder by minimizing the
cross-entorpy loss. In language generation train-
ing, the encoder and decoder are trained together
to maximize the log-likelihood of the training
data. The two learning objectives are trained al-
ternatively.

4 Data Augmentation Methods

In data-to-text generation task, the model needs to
not only generate fluent text, but also generate text
which is coherent with the input records. Several
content-oriented evaluation metrics are proposed
in (Wiseman et al., 2017) to evaluate such cohe-
sion, including the precision of record generation
and the recall rate with respect to the records in
gold summary.

In this section, we present two data augmenta-
tion methods: synthetic data generation and train-

263

Transformer
Encoder

rJ
<latexit sha1_base64="JBdZO07IximDjYGIGbzvj4OxBGM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSg+rd9Uplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8pvo23</latexit>

r1
<latexit sha1_base64="w+fMBncFYKx0kEKsDtLgWG6j6to=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAD2o2e</latexit>

r2
<latexit sha1_base64="qRYq8+LBOBKrAYqfcugvOTPcEds=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAFXo2f</latexit>

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>

Pred_layer

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

0/1
<latexit sha1_base64="TLXKA4mwwbXo2dx+G5FnabsZdt0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwT33eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14l1UqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBWT40s</latexit>

Transformer
Decoder

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

yT
<latexit sha1_base64="JJSaiNpL04FogISMGU77Y0OBc24=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOdtEs3m7C7EULpT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYLEE/okPJQ86osdJj1m/0S2W34s5BVomXkzLkqPdLX71BzNIIpWGCat313MT4E6oMZwKnxV6qMaFsTIfYtVTSCLU/mZ86JedWGZAwVrakIXP198SERlpnUWA7I2pGetmbif953dSEN/6EyyQ1KNliUZgKYmIy+5sMuEJmRGYJZYrbWwkbUUWZsekUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMhPMMrvDnCeXHenY9F65qTz5zAHzifP0OQjcg=</latexit>

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>

Softmax

. . .
<latexit sha1_base64="D8NZwhGRc3SadH+lq9NyH2X2S6M=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJIq6LHoxWMF0xbaUDbbTbt0swm7L0IJ/Q1ePCji1R/kzX/jts1BWwcWhpk37HsTplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k9wYJmn6l6tbcOcgq8QpShQLNfuXL5lgWc4VMUmO6nptikFONgkk+Lfcyw1PKxnTIu5YqGnMT5PNlp+TcKgMSJdo+hWSu/k7kNDZmEod2MqY4MsveTPzP62YY3QS5UGmGXLHFR1EmCSZkdjkZCM0ZyokllGlhdyVsRDVlaPsp2xK85ZNXSate8y5r9YerauO2qKMEp3AGF+DBNTTgHprgAwMBz/AKb45yXpx352MxuuYUmRP4A+fzB/K2jsY=</latexit>y1

<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

<eos>
<latexit sha1_base64="xDzQvAFdLmBTev1IjeBitAarx+g=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQQ8iQS8eI5gHJGuYnfQmQ2YfzPSqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3ebEUGm3728otLa+sruXXCxubW9s7xd29ho4SxaHOIxmplsc0SBFCHQVKaMUKWOBJaHrD64nffAClRRTe4SgGN2D9UPiCMzTSfQfhCRHTC4j05bhbLNllewq6SJyMlEiGWrf41elFPAkgRC6Z1m3HjtFNmULBJYwLnURDzPiQ9aFtaMgC0G46vXpMj4zSo36kTIVIp+rviZQFWo8Cz3QGDAd63puI/3ntBP1zNxVhnCCEfLbITyTFiE4ioD2hgKMcGcK4EuZWygdMMY4mqIIJwZl/eZE0KmXnpFy5PS1Vr7I48uSAHJJj4pAzUiU3pEbqhBNFnskrebMerRfr3fqYteasbGaf/IH1+QPyi5LM</latexit>

<bos>
<latexit sha1_base64="8AaeR7MZfhElgpaTf2flakQjM2E=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQQ8iRS8eK9gPaNeSTbNtaDZZklm1LP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXhALbsB1v53c0vLK6lp+vbCxubW9U9zdaxiVaMrqVAmlWwExTHDJ6sBBsFasGYkCwZrB8HriNx+YNlzJOxjFzI9IX/KQUwJWuu8AewKA9CJQ5nLcLZbcsjsFXiReRkooQ61b/Or0FE0iJoEKYkzbc2PwU6KBU8HGhU5iWEzokPRZ21JJImb8dHr1GB9ZpYdDpW1JwFP190RKImNGUWA7IwIDM+9NxP+8dgLhuZ9yGSfAJJ0tChOBQeFJBLjHNaMgRpYQqrm9FdMB0YSCDapgQ/DmX14kjUrZOylXbk9L1assjjw6QIfoGHnoDFXRDaqhOqJIo2f0it6cR+fFeXc+Zq05J5vZR3/gfP4A7fOSyQ==</latexit>

Figure 1: Model Architecture

ing data selection. Each of them has different im-
pacts on the content-oriented evaluation results.

4.1 Synthetic Data Generation

In order to improve the cohesion between the in-
put records and output summary, we need more
data to enhance the encoder-decoder attention of
the decoder. Here we introduce a method to gen-
erate synthetic training data.

We first randomly change the values of records
and the changed record set (s′) is then used to gen-
erate automatic summary (t′) by a trained data-to-
text system. The synthetic data pairs (s′, t′) are
then used to improve such system.

In order to keep the data cohesion in the table,
the change is constrained with the following rules:

• only numeric values are changed. Non-
numeric values such as the position of a
player or the city name of a team are kept the
same.

• after the change, the team scores should not
violate the win/loss relation

• the changed values should stay in the normal
range of its value type. It should not bigger
than its maximum value or smaller than its
minimum value through all games.

Our data generation technique doubles the amount
of training data available for learning.

4.2 Training Data Selection

A deficiency of data-to-text NLG systems is the
poor coverage of relations produced in the gener-
ated summaries. In order to increase the coverage,
a simple solution consists of learning to produce
a larger number of relations. Here, we present a

Figure 2: relation count distribution in training data.

straightforward method to bias our model to out-
put more relations by means of fine-tuning on the
training examples containing a greater number of
relations.

We use an information extraction (IE) system
to extract the number of relations of each train-
ing summary. Then, we select for fine-tuning our
baseline model the subset of training data in which
each summary contains at least N relations. In
this work, we take advantage of the IE system1

provided by (Puduppully et al., 2019), and the dis-
tribution of the number of relations in the training
summary is illustrated in Figure 2.

5 Experimental Setup

5.1 Data and Preprocessing

We run the experiments with the ROTOWIRE

dataset (Wiseman et al., 2017), a dataset of NBA
basketball game summaries, paired with their cor-
responding box- and line-score tables. Table 1 il-
lustrates an example of the dataset. In the box-
score table, each team has at most 13 players and
each player is described by 23 types of values.
In the line-score table, each team has 15 differ-
ent types of values. In addition, the date of each
game is converted into the day of the week (such
as “Saturday”) as an additional record. In the pre-
processing step, the input box- and line-score ta-
bles are converted into a fix-length sequence of
records. Each sequence contains 629 records.2 As
for the associate summaries, the average length is
337 tokens, and the vocabulary size is 11.3K. The

1The model is publicly available at https://github.
com/ratishsp/data2text-plan-py

2In the 629 records, 598 records are for players, 30
records for teams and 1 record for the date.

264

ROTOWIRE dataset contains 4853 summaries in
total, in which 3398 summaries are for training,
727 for validation and 728 for test.

In content selection modelling, we need the la-
bels of input records to indicate which records in
the input will be mentioned in the output sum-
mary. Here we use a very simple method to gener-
ate such labels. First, we label the entity records3.
An entity record is labeled as 1 if its value is men-
tioned in the associated summary, otherwise it is
labeled as 0. Second, for each player or team men-
tioned in the summary, the rest of its values in the
table are labeled as 1 if they occur in the same sen-
tence in the summary.

5.2 Evaluation metrics

The model output is evaluated with BLEU (Pa-
pineni et al., 2002) as well as several content-
oriented metrics proposed by (Wiseman et al.,
2017) including three following aspects:

• Relation Generation (RG) evaluates the num-
ber of extracted relations in automatic sum-
maries and their correctness (precision) w.r.t
the input record dataset;

• Content Selection (CS) evaluates the preci-
sion and recall rate of extracted relations in
automatic summaries w.r.t that in the gold
summaries;

• Content Ordering (CO) evaluates the normal-
ized Damerau-Levenshtein Distance (Brill
and Moore, 2000) between the sequence of
extracted relations in automatic summaries
and that in the gold summaries.

All these content-oriented metrics are based on
an IE system which extracts record relations from
summaries. For the purpose of comparison, we
directly use the publicly available IE system of
(Puduppully et al., 2019) to evaluate our models.

5.3 Training Details

In all experiments, we use our model with 1 en-
coder layer and 6 decoder layers, 512 hidden
units (hence, the record feature embedding size
is 128, see Section 3), 8 heads, GELU activa-
tions (Hendrycks and Gimpel, 2016), a dropout
rate of 0.1 and learned positional embedding for

3Record whose Value feature is an entity (see Section ??),
for example: “LeBron James|NAME|LeBron James|H/W”.
The labeling is according to the Value feature

Model
RG CS CO

BLEU
P% P% R% DLD%

GOLD 23.32 94.77 100 100 100 100
TEMPL 54.29 99.92 26.61 59.16 14.42 8.51
WS-2017 23.95 75.10 28.11 35.86 15.33 14.57
NCP-2019 33.88 87.51 33.52 51.21 18.57 16.19
DATA-TRANS 23.31 79.81 36.90 43.06 22.75 20.60
+DATA GEN 22.59 82.49 39.48 42.84 23.32 19.76
+DATA SEL 26.94 79.54 35.27 47.49 22.22 19.97
+BOTH 24.24 80.52 37.33 44.66 23.04 20.22

Table 2: Automatic evaluation on ROTOWIRE devel-
opment set using relation generation (RG) count (#)
and precision (P%), content selection (CS) precision
(P%) and recall (R%), content ordering (CO) in nor-
malized Damerau-Levenshtein distance (DLD%), and
BLEU.

the decoder. The model is trained with the Adam
optimizer (Kingma and Ba, 2014), learning rate is
fixed to 10−4 and batch size is 6. As for inference,
we use beam size 4 for all experiments, and the
maximum decoding length is 600.

We implement all our models in Pytorch, and
train them on 1 GTX 1080 GPU.

6 Results

The results of our model on the development
set are summarized in Table 2. GOLD repre-
sents the evaluation result on the gold summary.
The RG precision rate is 94.77%, indicating that
the IE system for evaluation is not perfect but
has very high precision. After that, results of
three contrast systems are reported, where TEMPL

and WS-2017 are the updated results4 of Wise-
man et al. (2017) models. TEMPL is template-
based generator model which generates a sum-
mary consisting of 8 sentences: a general de-
scription sentence about the teams playing in the
game, 6 player-specific sentences and a conclusion
sentence. WS-2017 reports an encoder-decoder
model with conditional copy mechanism. NCP-
2019 is the best system configuration (NCP+CC)
reported in (Puduppully et al., 2019) which is a
neural content planning model enhanced with con-
ditional copy mechanism. As for our model, re-
sults with four configurations are reported.

DATA-TRANS represents our data-to-text
Transformer model (as illustrated in Figure 1)
without any data augmentation. Comparing to
NCP-2019, our model performs 3.4% higher
on content selection precision, 4.2% higher on

4Here we all use the IE system of (Puduppully et al., 2019)
which is improved from the original IE system of (Wiseman
et al., 2017)

265

content ordering metric and 4.4 points higher
on BLEU. Our model performs better on the
CO metric, we attribute this improvement to that
our model generates nearly the same number of
relations as the gold summary which reduces
the edit distance between the two sequences of
relations. However, our model is 7.7% lower on
RG precision. And on the CS recall rate, our
model is 8.2% lower than NCP-2019. This is
probably due to the fact that NCP-2019 generates
much more records than our model (33.88 vs.
23.31) which could result higher coverage on the
relations in gold summary.

Comparing to TEMPL and WS-2017, our
model is much better on BLEU and CS precision.
Our model generates nearly the same number of
relations as WS-2017, but with 7.2% higher on
recall rate and 7.4% higher on CO metric.

By synthetic data generation (+DATA GEN), we
generate synthetic table records as described in se-
cion 4.1. These synthetic table records are then
used as input to the DATA-TRANS model to gener-
ate summaries. All training table records are used
to generate synthetic data. The synthetic data is
then combined with the original training data to
fine-tune the DATA-TRANS model. From Table 2,
we can see that the RG and CS precisions are both
improved by 2.7% and 2.6% respectively. There is
no significant change on others metrics. The CO
metric is slightly improved due to higher RG and
CS precisions. The CS recall rate is slightly de-
graded with the number of extracted relations.

By training data selection (+DATA SEL), we se-
lect the data whose summary contains the num-
ber of relations N >= 16 as the new training
data. The result training data size is 2242 (original
size: 3398). It is then used to fine-tune the DATA-
TRANS model. As shown in Table 2, as expected,
the model after fine-tuning generates more rela-
tions in the output summaries. The average num-
ber of relations in the output summaries increases
from 23.31 to 26.94. Respectively, the CS recall is
increased from 43.06% to 47.49%. However, the
CS precision is slightly degraded by 1.6%.

Finally, we combine both of the data augmen-
tation methods (+BOTH). Synthetic data genera-
tion improves the RG and CS precisions. Train-
ing data selection improves the CS recall rate by
making the model generate more relations. To
combine the two methods, we choose to fine-tune
the +DATA GEN model with the selected train-

Model
RG CS CO

BLEU
P% P% R% DLD%

TEMPL 54.23 99.94 26.99 58.16 14.92 8.46
WS-2017 23.72 74.80 29.49 36.18 15.42 14.19
NCP-2019 34.28 87.47 34.18 51.22 18.58 16.50
DATA-TRANS 24.12 79.17 36.48 42.74 22.40 20.16
+DATA GEN 24.01 83.89 38.98 42.85 23.02 19.48
+DATA SEL 27.47 80.70 35.33 46.25 21.87 20.03
+BOTH 24.80 81.08 37.10 43.78 22.51 20.14

Table 3: Automatic evaluation on ROTOWIRE test set.

ing data of +DATA SEL (so this configuration is
actually +DATA GEN+DATA SEL). As shown in
Table 2, all content-oriented evaluation metrics
are improved compared to DATA-TRANS but not
as much as each single of the data augmentation
method. This configuration is like a trade-off be-
tween the two data augmentation configurations.

Results on the test set are reported in Table 3.
They follow the same pattern as those found on
the development set. Our DATA-TRANS model
outperforms all other contrast systems on BLEU,
CS precision and content ordering metrics. The
synthetic data generation method helps to improve
the RG and CS precisions. The training data se-
lection method improves the CS recall by mak-
ing the model generate more relations. Combining
these two data augmentation methods, all content-
oriented evaluation results are improved compared
to DATA-TRANS. However, there is no significant
change on BLEU.

7 Conclusions

We present an enhanced Transformer-based data-
to-text generation model for the WNGT2019 En-
glish NLG task. Experimental results have shown
that our enhanced transformer model outperforms
current state-of-the-art system on BLEU, content
selection precision and content ordering metics.
In addition, we proposed two data augmentation
methods, each of them improves different content-
oriented evaluation metrics.

References
Eric Brill and Robert C Moore. 2000. An improved er-

ror model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, pages 286–293.
Association for Computational Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and

266

translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2016. Reference-aware language models.
arXiv preprint arXiv:1611.01628.

267

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 268–272
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

University of Edinburgh’s Submission to the Document-level Generation
and Translation Shared Task

Ratish Puduppully ∗ and Jonathan Mallinson ∗ and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

r.puduppully@sms.ed.ac.uk J.Mallinson@ed.ac.uk mlap@inf.ed.ac.uk

Abstract

The University of Edinburgh participated
in all six tracks: NLG, MT, and MT+NLG
with both English and German as tar-
geted languages. For the NLG track,
we submitted a multilingual system based
on the Content Selection and Planning
model of Puduppully et al. (2019). For
the MT track, we submitted Transformer-
based Neural Machine Translation mod-
els, where out-of-domain parallel data was
augmented with in-domain data extracted
from monolingual corpora. Our MT+NLG
systems disregard the structured input data
and instead rely exclusively on the source
summaries.

1 Track 1/2: Natural Language
Generation

The Natural Language Generation (NLG) track re-
volved around systems that take structured data in
the form of tabular data from a basketball game
as input, and generate a summary of this game in
the target language. We entered one multilingual
system which outputs summaries in both English
and German. A multilingual model allows us to
overcome the limited amount of German training
data.

We adopted the content selection and planning
approach of Puduppully et al. (2019), made ex-
tensions to the model and parameterized the de-
coder with a language tag, indicating the target
language. The training was done using the full
ROTOWIRE English dataset and the ROTOWIRE

English-German dataset. We first explain the ap-
proach of Puduppully et al. (2019), describe the

∗Ratish worked on Tracks 1/2 and Jonathan on Tracks
3/4/5/6.

extensions to their model and show how language
tags can be added to the decoder to indicate the
target language.

1.1 The Content Selection and Planning
Approach of Puduppully et al. (2019)

Puduppully et al. (2019) model p(y|r) as the
joint probability of text y and content plan z,
given input r. They further decompose p(y, z|r)
into p(z|r), a content selection and planning
phase, and p(y|r, z), a text generation phase:

p(y|r) =
∑

z

p(y, z|r) =
∑

z

p(z|r)p(y|r, z)

Given input records, probability p(z|r) is modeled
using Pointer Networks (Vinyals et al., 2015). The
probability of output text y conditioned on previ-
ously generated content plan z and input table r is
modeled as follows:

p(y|r, z) =
|y|∏

t=1

p(yt|y<t, z, r)

where y<t = y1 . . . yt−1. They use an encoder-
decoder architecture with an attention mechanism
to compute p(y|r, z). The architecture is shown in
Figure 1.

The content plan z is encoded into {ek}|z|k=1

using a bidirectional LSTM. Because the con-
tent plan is a sequence of input records, they
directly feed the corresponding content selected
record vectors {rcsj }

|r|
j=1 as input to the LSTM

units, which share the record encoder with the first
stage. For details of the content selection stage,
please refer Puduppully et al. (2019).

The text decoder is also based on a recurrent
neural network with LSTM units. The decoder is
initialized with the hidden states of the final step
in the encoder. At decoding step t, the input of
the LSTM unit is the embedding of the previously

268

https://www.aclweb.org/anthology/D19-56%2d

𝑟1 𝑟2 𝑟3 𝑟4 … 𝑟|𝑟| 𝐸𝑂𝑆

𝒉3 𝒅4𝒉4𝒉1 𝒉2

𝒓𝒔 𝒓𝟑
𝒄𝒔 𝒓|𝒓|

𝒄𝒔 𝒓𝟏
𝒄𝒔

𝒓𝟑
𝒄𝒔 𝒓|𝒓|

𝒄𝒔 𝒓𝟏
𝒄𝒔

𝒆1 𝒆2 𝒆3

𝒅2 𝒅4
𝒅1𝒅4 𝒅3

𝑦3 𝑦2 𝑦1 𝑆𝑂𝑆

𝑦3 𝑦2 𝑦1

Plan

Attention

𝒓𝟏
𝒄𝒔 𝒓𝟐

𝒄𝒔 𝒓𝟑
𝒄𝒔 𝒓𝟒

𝒄𝒔 … 𝒓|𝒓|
𝒄𝒔

𝒓𝒆

𝒅𝟒
𝒂𝒕𝒕

𝑝𝑔𝑒𝑛(𝑦4|𝑟, 𝑧, 𝑦<4)

𝑝𝑐𝑜𝑝𝑦(𝑦4|𝑟, 𝑧, 𝑦<4)
Text

Generation

Content Plan

Encoding

Content

Selection &

Planning

Encoder Decoder Vector Content Selection Gate

𝑝(𝑧|𝑟)

𝑝(𝑦|𝑟, 𝑧)

Figure 1: Generation model with content selection and planning. The text is generated conditioned on
the input content plan. At any time step, output token is generated from vocabulary or copied from the
content plan.

predicted word yt−1. Let dt be the hidden state of
the t-th LSTM unit. The probability of predicting
yt from the output vocabulary is computed via:

βt,k ∝ exp(dᵀ
tWbek) (1)

qt =
∑

k

βt,kek

dattt = tanh(Wd[dt;qt])

pgen(yt|y<t, z, r)=softmaxyt(Wyd
att
t + by) (2)

where
∑

k βt,k = 1, Wb ∈ Rn×n,Wd ∈
Rn×2n,Wy ∈ Rn×|Vy |,by ∈ R|Vy | are parame-
ters, and |Vy| is the output vocabulary size.

They further augment the decoder with a copy
mechanism, allowing the ability to copy words di-
rectly from the value portions of records in the
content plan (i.e., {zk}|z|k=1). They experimented
with joint (Gu et al., 2016) and conditional copy
methods (Gulcehre et al., 2016). Specifically, they
introduce a variable ut ∈ {0, 1} for each time step
to indicate whether the predicted token yt is copied
(ut = 1) or not (ut = 0). The probability of gen-
erating yt is computed by:

p(yt|y<t, z, r) =
∑

ut∈{0,1}
p(yt, ut|y<t, z, r)

where ut is marginalized out.

1.2 Copying from Table and Plan
We extended the copy mechanism further such that
ut can take three values: yt is generated from the

vocabulary (ut = 0), yt is copied from the content
plan (ut = 1) and yt is copied from the table (ut =
2).

Conditional Copy The variable ut is first com-
puted as a switch gate, and then is used to obtain
the output probability:

p(ut|y<t, z, r) = softmax(wu · dattt + bu)

αt,j ∝ exp(dt
ᵀWcr

cs
j) (3)

p(yt, ut|y<t, z, r) =

p(ut|y<t, z, r)
∑

yt←zk βt,k ut = 1

p(ut|y<t, z, r)
∑

k βt,k
∑

yt←rj
,j∈γk

αt,j ut = 2

p(ut|y<t, z, r)pgen(yt|y<t, z, r) ut = 0

where
∑

j∈γk αt,j = 1. yt ← zk indicates
that yt can be copied from zk, yt ← rj indi-
cates that yt can be copied from rj . γk indi-
cates records in table corresponding to the kth
record in plan, for example: if k is ‘PTS’ value
of player Jeff Teague, then γk corresponds to all
the records for the entity Jeff Teague in the ta-
ble including ‘PTS’, ‘REB’, ‘NAME1’, ‘NAME2’
etc. βt,k and pgen(yt|y<t, z, r) are computed as in
Equations (1)–(2), and wu ∈ R3×n, bu ∈ R3 are
parameters.

269

𝑟1 𝑟2 𝑟3 𝑟4 … 𝑟|𝑟| 𝐸𝑂𝑆

𝒉3 𝒅4𝒉4𝒉1 𝒉2

𝒓𝒔 𝒓𝟑
𝒄𝒔 𝒓|𝒓|

𝒄𝒔 𝒓𝟏
𝒄𝒔

𝒓𝟑
𝒄𝒔 𝒓|𝒓|

𝒄𝒔 𝒓𝟏
𝒄𝒔

𝒆1 𝒆2 𝒆3

𝒅2 𝒅4
𝒅1𝒅4 𝒅3

𝑦3 𝑦2 𝑦1 𝑆𝑂𝑆

𝑦3 𝑦2 𝑦1

Plan

Attention

Data

Attention

𝒓𝟏
𝒄𝒔 𝒓𝟐

𝒄𝒔 𝒓𝟑
𝒄𝒔 𝒓𝟒

𝒄𝒔 … 𝒓|𝒓|
𝒄𝒔

𝒓𝒆

𝒅𝟒
𝒂𝒕𝒕

𝑝𝑔𝑒𝑛(𝑦4|𝑟, 𝑧, 𝑦<4)

𝑝𝑐𝑜𝑝𝑦(𝑦4|𝑟, 𝑧, 𝑦<4)
Text

Generation

Content Plan

Encoding

Content

Selection &

Planning

Encoder Decoder Vector Content Selection Gate

𝑝(𝑧|𝑟)

𝑝(𝑦|𝑟, 𝑧)

Figure 2: Generation model with content selection and planning and attention over table and content
plan. The text is generated conditioned on the content plan and the table. At any time step, output token
is generated from vocabulary, copied from the content plan or copied from input table.

1.3 Attending to the Table and Content Plan
The output text is generated by attending to both
the content plan and the input table (See Figure 2.)

δt,j ∝ exp(dᵀ
tWcr

CS
j) (4)

st =
∑

j

δt,jr
CS
j

dattt = tanh(Wd[dt;qt; st])

pgen(yt|y<t, z, r)=softmaxyt(Wyd
att
t + by) (5)

where
∑

j δt,j = 1, Wc ∈ Rn×n,Wd ∈
Rn×3n,Wy ∈ Rn×|Vy |,by ∈ R|Vy | are parame-
ters, and |Vy| is the output vocabulary size.

1.4 Feature for Team Points and Ranking of
Player Points

Upon inspection of the ROTOWIRE game sum-
maries in the development set, we observed that
the summaries often describe the statistics of the
winning team followed by the statistics of the los-
ing team. The highest ranked players of either
team are also often described in sequence in the
summaries. Currently, we rely on the word em-
beddings of the team and player points to help
the model disambiguate the winning from the los-
ing team and to learn the relative performances of
the players. We hypothesize that explicitly provid-
ing information about the relative performance of
players and teams should make the learning easier.

We thus experimented with a feature for the
winning/losing team and the ranking of player

points within a team. Specifically, we added a bi-
nary feature for team records: win for each record
in the winning team, loss for each record in the
losing team. We further rank players in a team
on the basis of their points and we add a feature
indicating their rank in the team. For instance,
Kyle Lowry scored the highest number of points
in the home team and we add feature hometeam-0
to each of his records. Player Jahlil Okafor was
the second highest scorer in the visiting team and
we add the feature visteam-1 to each of his records
and so on.

1.5 Training a Single Multilingual Model

We trained a single model for English and German
data-to-text with a common BPE (Sennrich et al.,
2015b) vocabulary of 2000 symbols for the output
summaries. Player names and values of records
in summaries were not BPEd. The target text was
prefixed with token indicating the language of out-
put ‘EN’ or ‘DE’. During inference, we forced the
model to generate output in the desired language.

1.6 Dataset

We made use of the full ROTOWIRE English
dataset of Wiseman et al. (2017) and the German
dataset provided as part of the shared task. The
statistics of the dataset are given in Table 1.

270

Train Dev Test
English 3398 727 728
German 242 240 241

Table 1: Count of examples in Training, Devel-
opment and Test sections of English and German
dataset.

Model
RG CS CO

BLEU
P% P% R% DLD%

EN 91.41 30.91 64.13 21.72 17.01
DE 70.23 23.40 41.83 16.08 10.95

Table 2: Automatic evaluation for track 1/2 on
the ROTOWIRE test set using record generation
(RG) precision, content selection (CS) precision
and recall, content ordering (CO) in normalized
Damerau-Levenshtein distance, and BLEU.

1.7 Results

Table 2 shows our results for English and German
datasets on the Test set as provided by the shared
task organizers.

2 Track 3/4 : Machine Translation

The Machine Translation (MT) track revolves ar-
round systems that translate source summaries to
the target language. Our submission takes advan-
tage of existing state-of-the-art techniques in ma-
chine translation, including (1) transformer net-
works (Vaswani et al., 2017). (2) subword units
(Sennrich et al., 2015b) and (3) the inclusion
of in-domain monolingual data used via back-
translation (Sennrich et al., 2015a).

For our submission, we focus on finding in-
domain basketball summary data from within
general-purpose monolingual datasets. We de-
velop several heuristics allowing us to extract mil-
lions of in-domain monolingual sentences, which
are then back-translated and included within the
training data. This additional monolingual data
improves bleu scores between 5 and 7 points.

2.1 Data

The translation models were trained on both the
ROTOWIRE English-German and all WMT19 par-
allel training data. A summary of the training data
can be found in table 3. For ease of comparison
to the NLG task, tokenization was done using the
tokenizer provided by the shared task organizers.
BPE was employed with a joint BPE subword vo-
cabulary of 50k.

Dataset Size
Europarl v9 18.39
Common Crawl corpus 24.00
News Commentary v14 3.38
Document-split Rapid corpus 14.01
Wikititles 13.05
ParaCrawl 162.64
ROTOWIRE EN-DE 0.033
Total 235.47

Table 3: Size (number of parallel training sen-
tences) in 100,000 of the EN-DE training data.

2.1.1 In-Domain Parallel Data
Table 3 highlights the extremely limited amount of
in-domain parallel training data used; ROTOWIRE

English-German makes up only 0.001% the paral-
lel training data. To ensure our translation system
produces in-domain translation, we supplemented
the parallel data with in-domain monolingual data.
We used back-translation to translate clean mono-
lingual data from the target language to the source
language.

Finding in-domain data for basketball is not
trivial, as there are no explicit basketball WMT19
monolingual training sets. Therefore, we ex-
tracted in-domain basketball data from the avail-
able general-purpose monolingual datasets.

We considered all documents within the News
Crawl 2007-2018 dataset and included all sen-
tences which appeared within a document where
any of the following conditions were met: (1)
Contains a player’s name, as taken from the RO-
TOWIRE English-German training data; (2) Con-
tains two team names; (3) the title contains the
word NBA. For German, 1.1 million monolingual
target sentences were collected, and for English,
4.32 million monolingual target sentences. These
sentences were then back-translated via sampling
(Edunov et al., 2018) and used to augment the par-
allel training data.

2.2 Model Description

For our submissions, we used the Transformer
model as implemented within OpenNMT-py
(Klein et al., 2017). Transformers are state-of-the-
art NMT approaches which rely on multi-headed
attention applied to both the source and target sen-
tences. All experiments are performed with 6
encoder-decoder layers, with an embedding layer
of size 512, a feed-forward layer size of 2048, and

271

EN-DE DE-EN
Monolingual 34.44 40.72
Parallel 28.65 33.48

Table 4: Track 3-6: ROTOWIRE dev set results,
showing BLEU without monolingual data Parallel
and with monolingual data Monolingual.

Model
RG CS CO

BLEU
P% P% R% DLD%

EN-DE 81.01 77.32 78.49 62.21 36.85
DE-EN 91.40 78.99 63.04 51.73 41.15

Table 5: Automatic evaluation for track 3-6 on
the ROTOWIRE test set using record generation
(RG) precision, content selection (CS) precision
and recall, content ordering (CO) in normalized
Damerau-Levenshtein distance, and BLEU.

8 attentional heads. We set the batch size to 4096
tokens and maximum sentence length to 100 BPE
subwords. Dropout and label smoothing were also
both set to 0.1. All other settings were set their
default values as specified in OpenNMT-py. De-
coding was performed with a beam size of ~15,
length penalty averaging, and the decoder was
constrained to block repeating 4-grams. Model
selection was done using the BLEU score on the
development set.

2.3 Results

Results on the development set in Table 4 show
that the inclusion of monolingual data leads to
a significant increase in bleu (between 5 and 7
points). Table 5 shows test set results for both En-
glish and German target languages. The results
were provided by the shared task organizers.

3 Track 5/6: MT + NLG

The MT + NLG track combines the previous
tracks, models take in as input both the structured
data and the summary in the source language and
produce a summary in the target language as out-
put. We chose to disregard the structured data and
instead exclusively use the source summary, trans-
lating it to the target language. As such this sub-
mission to this track is a replication of our MT
submission with results shown in Table 5.

References
Sergey Edunov, Myle Ott, Michael Auli, and David

Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 140–
149.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proc. ACL.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263.

272

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 273–279
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Naver Labs Europe’s Systems for the
Document-Level Generation and Translation Task at WNGT 2019

Fahimeh Saleh∗

Monash University
fahimeh.saleh@monash.edu

Alexandre Bérard
Naver Labs Europe

first.last@naverlabs.com

Ioan Calapodescu

Laurent Besacier
Université Grenoble-Alpes

laurent.besacier@univ-grenoble-alpes.fr

Abstract

Recently, neural models led to significant im-
provements in both machine translation (MT)
and natural language generation tasks (NLG).
However, generation of long descriptive sum-
maries conditioned on structured data remains
an open challenge. Likewise, MT that goes
beyond sentence-level context is still an open
issue (e.g., document-level MT or MT with
metadata). To address these challenges, we
propose to leverage data from both tasks and
do transfer learning between MT, NLG, and
MT with source-side metadata (MT+NLG).
First, we train document-based MT systems
with large amounts of parallel data. Then, we
adapt these models to pure NLG and MT+NLG
tasks by fine-tuning with smaller amounts of
domain-specific data. This end-to-end NLG
approach, without data selection and planning,
outperforms the previous state of the art on the
Rotowire NLG task. We participated to the
“Document Generation and Translation” task
at WNGT 2019, and ranked first in all tracks.

1 Introduction

Neural Machine Translation (NMT) and Neural
Language Generation (NLG) are the top lines of
the recent advances in Natural Language Process-
ing. Although state-of-the-art NMT systems have
reported impressive performance on several lan-
guages, there are still many challenges in this field
especially when context is considered. Currently,
the majority of NMT models translate sentences
independently, without access to a larger context
(e.g., other sentences from the same document or
structured information). Additionally, despite im-
provements in text generation, generating long de-
scriptive summaries conditioned on structured data
is still an open challenge (e.g., table records). Ex-

∗This work was done while the author was visiting at
Naver Labs Europe.

isting models lack accuracy, coherence, or ade-
quacy to source material (Wiseman et al., 2017).

The two aspects which are mostly addressed
in data-to-text generation techniques are identi-
fying the most important information from input
data, and verbalizing data as a coherent docu-
ment: “What to talk about and how?” (Mei et al.,
2016). These two challenges have been addressed
separately as different modules in pipeline sys-
tems (McKeown, 1985; Reiter and Dale, 2000) or
in an end-to-end manner with PCFGs or SMT-
like approaches (Mooney and Wong, 2007; Angeli
et al., 2010; Konstas and Lapata, 2013), or more
recently, with neural generation models (Wiseman
et al., 2017; Lebret et al., 2016; Mei et al., 2016).
In spite of generating fluent text, end-to-end neu-
ral generation models perform weakly in terms of
best content selection (Wiseman et al., 2017). Re-
cently, Puduppully et al. (2019) trained an end-
to-end data-to-document generation model on the
Rotowire dataset (English summaries of basketball
games with structured data).1 They aimed to over-
come the shortcomings of end-to-end neural NLG
models by explicitly modeling content selection
and planning in their architecture.

We suggest in this paper to leverage the data
from both MT and NLG tasks with transfer learn-
ing. As both tasks have the same target (e.g.,
English-language stories), they can share the same
decoder. The same encoder can also be used for
NLG and MT if the NLG metadata is encoded as
a text sequence. We first train domain-adapted
document-level NMT models on large amounts of
parallel data. Then we fine-tune these models on
small amounts of NLG data, transitioning from
MT to NLG. We show that separate data selec-
tion and ordering steps are not necessary if NLG
model is trained at document level and is given

1https://github.com/harvardnlp/
boxscore-data

273

https://www.aclweb.org/anthology/D19-56%2d

Corpus Lang(s) Split Docs Sents

DGT EN-DE
train 242 3247
valid 240 3321
test 241 3248

Rotowire EN
train 3398 45.5k
valid 727 9.9k
test 728 10.0k

WMT19-sent EN-DE train – 28.5M
WMT19-doc 68.4k 3.63M

News-crawl EN train 14.6M 420M
DE 25.1M 534M

Table 1: Statistics of the allowed resources. The En-
glish sides of DGT-train, valid and test are respectively
subsets of Rotowire-train, valid and test. More mono-
lingual data is available, but we only used Rotowire and
News-crawl.

enough information. We propose a compact way to
encode the data available in the original database,
and enrich it with some extra facts that can be eas-
ily inferred with a minimal knowledge of the task.
We also show that NLG models trained with this
data capture document-level structure and can se-
lect and order information by themselves.

2 Document-Level Generation and
Translation Task

The goal of the Document-Level Generation and
Translation (DGT) task is to generate summaries
of basketball games, in two languages (English
and German), by using either structured data about
the game, a game summary in the other language,
or a combination of both. The task features 3
tracks, times 2 target languages (English or Ger-
man): NLG (Data to Text), MT (Text to Text) and
MT+NLG (Text + Data to Text). The data and
evaluation are document-level, encouraging par-
ticipants to generate full documents, rather than
sentence-based outputs. Table 1 describes the al-
lowed parallel and monolingual corpora.

3 Our MT and NLG Approaches

All our models (MT, NLG, MT+NLG) are based
on Transformer Big (Vaswani et al., 2017). Details
for each track are given in the following sections.

3.1 Machine Translation Track
For the MT track, we followed these steps:

1. Train sent-level MT models on all the WMT19
parallel data (doc and sent) plus DGT-train.

2. Back-translate (BT) the German and English
News-crawl by sampling (Edunov et al., 2018).

3. Re-train sentence-level MT models on a con-
catenation of the WMT19 parallel data, DGT-
train and BT. The later was split into 20 parts,
one part for each training epoch. This is almost
equivalent to oversampling the non-BT data by
20 and doing a single epoch of training.

4. Fine-tune the best sentence-level checkpoint
(according to valid perplexity) on document-
level data. Like Junczys-Dowmunt (2019), we
truncated the WMT documents into sequences
of maximum 1100 BPE tokens. We also aggre-
gated random sentences from WMT-sent into
documents, and upsampled the DGT-train data.
Contrary to Junczys-Dowmunt (2019), we do
not use any sentence separator or document
boundary tags.

5. Fine-tune the best doc-level checkpoint on
DGT-train plus back-translated Rotowire-train
and Rotowire-valid.

We describe the pre-processing and hyperpa-
rameters in Section 4. In steps (1) and (3), we train
for at most 20 epochs, with early stopping based
on newstest2014 perplexity. In step (4), we train
for at most 5 additional epochs, with early stopping
according to DGT-valid perplexity (doc-level). In
the last step, we train for 100 epochs, with BLEU
evaluation on DGT-valid every 10 epochs. We also
compute the BLEU score of the best checkpoint
according to DGT-valid perplexity, and keep the
checkpoint with highest BLEU.

The models in step (5) overfit very quickly,
reaching their best valid perplexity after only 1 or 2
epochs. For DE-EN, we found that the best DGT-
valid BLEU was achieved anywhere between 10
and 100 epochs (sometimes with a high valid per-
plexity). For EN-DE, perplexity and BLEU cor-
related better, and the best checkpoint according
to both scores was generally the same. The same
observations apply when fine-tuning on NLG or
MT+NLG data in the next sections.

Like Berard et al. (2019), all our MT models
use corpus tags: each source sentence starts with a
special token which identifies the corpus it comes
from (e.g., Paracrawl, Rotowire, News-crawl). At
test time, we use the DGT tag.

One thing to note, is that document-level decod-
ing is much slower than its sentence-level counter-
part.2 The goal of this document-level fine-tuning

2On a single V100, sent-level DGT-valid takes 1 minute to
translate, while doc-level DGT-valid takes 6 minutes.

274

was not to increase translation quality, but to allow
us to use the same model for MT and NLG, which
is easier to do at the document level.

3.2 Natural Language Generation Track
Original metadata consists of one JSON document
per game, containing information about teams and
their players. We first generate compact represen-
tations of this metadata as text sequences. Then,
we fine-tune our doc-level MT models (from step
4) on the NLG task by using this representation
on the source side and full stories on the target
side. We train on a concatenation of DGT-train,
Rotowire-train and Rotowire-valid. We filter the
later to remove games that are also in DGT-valid.
Our metadata has the following structure:
1. Date of the game as text.
2. Home team information (winner/loser tag, team name and

city, points in the game, season wins and losses and team-
level scores) and information about its next game (date,
home/visitor tag, other team’s name), inferred from the
other JSON documents in Rotowire-train.

3. Visiting team information and details on its next game.
4. N best players of the home team (player name, followed

by all his non-zero scores in a fixed order and his start-
ing position). Players are sorted by points first, then by
rebounds and assists.

5. N best players of the visiting team.

To help the models identify useful information,
we use a combination of special tokens and posi-
tional information. For instance, the home team
is always first, but a <WINNER> tag precedes the
winning team and its players. We ignore all-zero
statistics, but always use the same position for each
type of score (e.g., points, then rebounds, then as-
sists) and special tokens to help identify them (e.g.,
<PTS> 16 and <REB> 8). We try to limit the num-
ber of tags to keep the sequences short (e.g., made
and attempted free throws and percentage: <FT> 3
5 60). An example of metadata representation is
shown in Table 2.

3.3 MT+NLG Track
For the MT+NLG track, we concatenate the MT
source with the NLG data. We use the same meta-
data encoding method as in the NLG track and we
fine-tune our doc-level MT models (from step 4).
We also randomly mask tokens in the MT source
(by replacing them with a <MASK> token), with
20% or 50% chance (with one different sampling
per epoch). The goal is to force the model to use
the metadata because of missing information in the
source. At test time, we do not mask any token.

4 Experiments
4.1 Data Pre-processing
We filter the WMT19-sent parallel corpus with
langid.py (Lui and Baldwin, 2012) and remove
sentences of more than 175 tokens or with a
length ratio greater than 1.5. Then, we apply
the official DGT tokenizer (based on NLTK’s
word_tokenize) to the non-tokenized text (ev-
erything but DGT and Rotowire).

We apply BPE segmentation (Sennrich et al.,
2016) with a joined SentencePiece-like model
(Kudo and Richardson, 2018), with 32k merge
operations, obtained on WMT + DGT-train (En-
glish + German). The vocabulary threshold is set
to 100 and inline casing is applied (Berard et al.,
2019). We employ the same joined BPE model
and Fairseq dictionary for all models. The meta-
data is translated into the source language of the
MT model used for initialization,3 and segmented
into BPE (except for the special tokens) to allow
transfer between MT and NLG. Then, we add a
corpus tag to each source sequence, which spec-
ifies its origin (Rotowire, News-crawl, etc.)

Like Junczys-Dowmunt (2019), we split
WMT19 documents that are too long into shorter
documents (maximum 1100 BPE tokens). We also
transform the sent-level WMT19 data into doc-
level data by shuffling the corpus and grouping
consecutive sentences into documents of random
length. Finally, we upsample the doc-level data
(WMT19 and DGT) by 8 times its original size
(in terms of sent count). We do so by sampling
random spans of consecutive sentences until
reaching the desired size.

The DGT and Rotowire data is already tok-
enized and does not need filtering nor truncating.
We segment it into BPE units and add corpus tags.

4.2 Settings
All the models are Transformer Big (Vaswani et al.,
2017), implemented in Fairseq (Ott et al., 2018).
We use the same hyper-parameters as Ott et al.
(2018), with Adam and an inverse square root
schedule with warmup (maximum LR 0.0005). We
apply dropout and label smoothing with a rate of
0.1. The source and target embeddings are shared
and tied with the last layer. We train with half-
precision floats on 8 V100 GPUs, with at most
3500 tokens per batch and delayed updates of 10

3Only week days, months and player positions need to be
translated.

275

Metadata <DATE> Freitag Februar 2017 <WINNER> Oklahoma City Thunder <PTS> 114 <WINS> 29 <LOSSES> 22 <REB> 47 <AST> 21 <TO> 20 <FG> 38
80 48 <FG3> 13 26 50 <FT> 25 33 76 <NEXT> Sonntag Februar 2017 <HOME> Portland Trail Blazers <LOSER> Memphis Grizzlies <PTS>
102 <WINS> 30 <LOSSES> 22 <REB> 29 <AST> 21 <TO> 12 <FG> 40 83 48 <FG3> 3 19 16 <FT> 19 22 86 <NEXT> Samstag Februar 2017
<VIS> Minnesota Timberwolves <WINNER> <PLAYER> Russell Westbrook <PTS> 38 <REB> 13 <AST> 12 <STL> 3 <PF> 2 <FG> 8 20 40 <FG3>
5 7 71 <FT> 17 17 100 <POS> Guard <PLAYER> Steven Adams <PTS> 16 <REB> 12 <AST> 2 <STL> 1 <BLK> 2 <PF> 4 <FG> 7 13 54 <FT>
2 6 33 <POS> Center <PLAYER> Joffrey Lauvergne <PTS> 16 <REB> 8 <AST> 2 <PF> 3 <FG> 6 7 86 <FG3> 3 4 75 <FT> 1 2 50 <POS>
Bank <LOSER> <PLAYER> Marc Gasol <PTS> 31 <REB> 4 <AST> 8 <STL> 2 <BLK> 1 <PF> 4 <FG> 14 24 58 <FG3> 0 4 0 <FT> 3 3 100 <POS>
Center <PLAYER> Mike Conley <PTS> 18 <REB> 1 <AST> 2 <STL> 3 <FG> 7 16 44 <FG3> 1 5 20 <FT> 3 5 60 <POS> Guard <PLAYER> Zach
Randolph <PTS> 16 <REB> 10 <AST> 3 <STL> 1 <PF> 4 <FG> 6 14 43 <FG3> 0 1 0 <FT> 4 4 100 <POS> Bank

Reference story The Oklahoma City Thunder defeated the visiting Memphis Grizzlies 114 - 102 , at Chesapeake Energy Arena on Friday evening . The Grizzlies led by four after three
quarters , but then Russell Westbrook went absolutely ballistic in the fourth quarter , scoring 19 points in the quarter , including 15 points straight and unanswered , to
take his team from down 102 - 99 to the final score of 114 - 102 . This snaps the Grizzlies three-game win streak , while Westbrook added to his ridiculous triple-double
count , as he notched his 25th of the season . The Thunder (29 - 22) only scored 21 points in the first quarter , before outscoring the Grizz by 12 in the second , to
take an eight-point lead into half time . They were then outscored by 12 in the third , and entered the fourth down by four . The Thunder outscored the Grizz by 14
in the fourth , behind Russell Westbrook and his takeover .Westbrook finished with 38 points , 13 rebounds , 12 assists and three steals to lead his squad to a big win .
Westbrook also matched a career-best as he went 17-of-17 from the foul line . Three other players scored in double digits for the Thunder , including Steven Adams and
Joffrey Lauvergne , who pitched in 16 points each . The Thunder go on to visit Portland on Sunday . Meanwhile , the Grizzlies (30 - 22) saw their win streak come
to an end as they went scoreless in the last 2:50 as they were stifled by an overwhelming push of energy and intensity from the Thunder and their home crowd . Marc
Gasol finished with a team-high 31 points , to go along with eight assists , four rebounds , two steals and one block , in 42 minutes . Zach Randolph came up big in 29
minutes off the bench , with 16 points and 10 rebounds , while Mike Conley chipped in 18 points , three steals and two assists . Chandler Parsons added 12 points on
3-of-6 shooting , in 25 minutes . The Grizzlies will have to put this one in the past , as they go right back in action on Saturday , when they visit Minnesota to take on
the Timberwolves .

Generated story The Oklahoma City Thunder defeated the Memphis Grizzlies , 114 - 102 , at Chesapeake Energy Arena on Friday . Despite there being just five ties and six lead
changes in this game , it was close throughout . In fact , neither team led by more than 12 points , as the nine-point final margin was one of the largest leads of the game
. Oklahoma City actually won this game , despite being out shot from the field , from three-point range and from the free-throw line . Rebounding was the decisive
statistic , with the Thunder winning that battle , 47 - 29 . They also dominated the assist-to-turnover ratio , recording 10 more assists and committing three less turnovers
. The Grizzlies (30 - 22) have now lost three of their last four games , as they continue to fall down the standings . Marc Gasol did all he could for Memphis , as he
led the team with 31 points , four rebounds , eight assists and two steals . Mike Conley finished second on the team , totaling 18 points , two assists and three steals
. Mike Conley finished second on the team , amassing 18 points and three steals . Zach Randolph was huge off the bench , providing 16 points , 10 rebounds and
three assists . The Grizzlies will be off until Saturday , when they play the Minnesota Timberwolves on the road for their next game . The Thunder (29 - 22) have
rode Russell Westbrook ’s triple-double train all year and they got another one here . Westbrook collected 38 points , 13 rebounds , 12 assists and three steals . Steven
Adams recorded a double-double , amassing 16 points and 12 rebounds . Joffrey Lauvergne was a nice spark off the bench , providing 16 points and eight rebounds .
The Thunder will look to keep rolling on Sunday against the Portland Trail Blazers .

Table 2: Metadata: our metadata encoding. Reference story: story #48 from DGT-valid. Generated story:
output of the English NLG model (3-player). Green: text based on facts from the metadata. Blue: correct facts
which are not explicitly in the metadata. Red: hallucinations or incorrect facts. Orange: repetitions.

Track Target Constrained Valid Test
NLG

EN
no 23.5 20.5

MT yes 60.2 58.2
MT no 64.2 62.2
MT+NLG yes 64.4 62.2
NLG

DE
no 16.9 16.1

MT yes 49.8 48.0
MT+NLG yes 49.4 48.2

Table 3: Doc-level BLEU scores on the DGT valid and
test sets of our submitted models in all tracks.

batches. When fine-tuning on DGT-train or Ro-
towire + DGT-train (Step 5 of the MT track, or
NLG/MT+NLG fine-tuning), we use a fixed learn-
ing rate schedule (Adam with 0.00005 LR) and a
much smaller batch size (1500 tokens on a sin-
gle GPU without delayed updates). We train for
100 epochs, compute DGT-valid perplexity at each
epoch, and DGT-valid BLEU every 10 epochs.

4.3 BLEU evaluation
Submitted models. For each track, we selected
the best models according to their BLEU score on
DGT-valid. The scores are shown in Table 3, and
a description of the submitted models is given in
Table 4. We compute BLEU using SacreBLEU
with its tokenization set to none,4 as the model
outputs and references are already tokenized with
NLTK. Hayashi et al. (2019) give the full results of

4SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.none+version.1.3.1

the task: the scores of the other participants, and
values of other metrics (e.g., ROUGE). Our NLG
models are “unconstrained” because the WMT19
parallel data, which we used for pre-training, was
not allowed in this track. Similarly, we do two sub-
missions for DE-EN MT: one constrained, where
we fine-tuned the doc-level MT model on DGT-
train only, and one unconstrained, where we also
used back-translated Rotowire-train and valid. All
the MT and MT+NLG models are ensembles of
5 fine-tuning runs. Cascading the English NLG
model with the ensemble of EN-DE MT models
gives a BLEU score of 14.9 on DGT-test, slightly
lower than the end-to-end German NLG model
(16.1). We see that in the same data conditions
(unconstrained mode), the MT+NLG models are
not better than the pure MT models. Furthermore,
we evaluated the MT+NLG models with MT-only
source, and found only a slight decrease of ≈ 0.3
BLEU, which confirms our suspicion that the NLG
information is mostly ignored.

NMT analysis. Table 5 shows the BLEU scores
of our MT models at different stages of training
(sent-level, doc-level, fine-tuned), and compares
them against one of the top contestants of the
WMT19 news translation task (Ng et al., 2019).

English NLG analysis. Table 6 shows a 5.7
BLEU improvement on Rotowire-test by our En-
glish NLG model compared to the previous state

276

Track N best players Details
NLG (EN) 4 Rotowire BT + DGT-train + tags
NLG (DE) 6 Rotowire BT + DGT-train + tags

MT (DE-EN) N/A

Unconstrained: Rotowire BT +
DGT-train + tags + ensemble
Constrained: DGT-train only +
ensemble

MT (EN-DE) N/A DGT-train only + ensemble

MT+NLG (EN) 3 Rotowire BT + DGT-train + 20%
text masking + tags + ensemble

MT+NLG (DE) 3 Rotowire BT + DGT-train +
tags + ensemble

Table 4: Description of our submissions.

Model Target Valid Test News 2019
FAIR 2019

EN
48.5 47.7 41.0

Sent-level 55.6 54.2 40.9
Doc-level 56.5 55.0 38.5
Fine-tuned 61.7 59.6 21.7
FAIR 2019

DE
37.5 37.0 40.8

Sent-level 47.3 46.7 42.9
Doc-level 48.2 47.5 41.6
Fine-tuned 48.0 46.7 41.3

Table 5: BLEU scores of the MT models at different
stages of training, and comparison with the state of the
art. Scores on DGT-valid and DGT-test are doc-level,
while News 2019 is sent-level (and so is decoding).
On the latter, we used the DGT corpus tag for DE-EN,
and the Paracrawl tag for EN-DE (we chose the tags
with best BLEU on newstest2014). Scores by the “fine-
tuned” models are averaged over 5 runs.

of the art. Figure 1 shows the DGT-valid BLEU
scores of our English NLG models when varying
the number of players selected in the metadata. We
see that there is a sweet spot at 4, but surprisingly,
increasing the number of players up to 8 does not
degrade BLEU significantly. We hypothesize that
because the players are sorted from best to worst,
the models learn to ignore the last players.

From Table 7, we see that sorting players helps,
but only slightly. Using only team-level informa-
tion, and no information about players gives worse
but still decent BLEU scores.

Week day, player position or team-level ag-
gregated scores can be removed without hurting
BLEU. However, information about next games

Model Rotowire test
Wiseman et al. (2017) 14.5

Puduppully et al. (2019) 16.5
Ours (4-player) 22.2

Table 6: English NLG comparison against state-of-the-
art on Rotowire-test. BLEU of submitted NLG (EN)
model, averaged over 3 runs. Because Rotowire tok-
enization is slightly different, we apply a set of fixes to
the model outputs (e.g., 1-of-3 → 1 - of - 3).

0 1 2 3 4 5 6 7 8
Maximum players per team

20

21

22

23

D
G

T-
va

lid
 B

LE
U

Figure 1: DGT-valid BLEU (by the best checkpoint) de-
pending on the maximum number of selected players
for the English NLG track.

Model Valid Test
Baseline (3 players, sorted) 22.7 20.4
No player 20.1 18.8
All players, sorted 22.7 20.9
All players, shuffled 22.0 20.0
(1) No next game 22.0 19.9
(2) No week day 22.2 20.5
(3) No player position 22.6 20.5
(4) No team-level sums 22.5 20.5
(5) Remove most tags 22.6 20.8
(1) to (5) 21.3 19.7

Table 7: English NLG ablation study, starting from a
3 best player baseline (the submitted NLG model has 4
players). BLEU averages over 3 runs. Standard devia-
tion ranges between 0.1 and 0.4.

seems useful. Interestingly, relying on position
only and removing most tags (e.g., <PTS>, <FT>)
seems to be fine. In this case, we also print all-zero
stats, for the position of each statistic to be consis-
tent across players and games.

Train-test overlap on Rotowire. We found a
significant overlap between Rotowire train and
test: 222 out of 728 Rotowire-test games are also in
Rotowire-train (68/241 for DGT-test). The corre-
sponding stories are always different but bear many
similarities (some sentences are completely identi-
cal). Rotowire-train gets 24.2 BLEU when evalu-
ated against Rotowire-test (subset of 222 stories).
This gives us an estimate of human-level perfor-
mance on this task. Our submitted NLG model
gets 21.8 on the same subset. This overlap may
cause an artificial increase in BLEU, that would
unfairly favor overfitted models. Indeed, when fil-
tering Rotowire-train to remove games that were
also in DGT test, we found a slight decrease in
BLEU (19.8 instead of 20.4).

277

Stadium name (+)

REF: The Golden State Warriors (56 - 6) defeated the Orlando Magic (27 - 35) 119 - 113
at Oracle Arena on Monday .
NLG: The Golden State Warriors (56 - 6) defeated the Orlando Magic (27 - 35) 119 - 113
on Monday at Oracle Arena .

Team alias (+)
REF: The Heat held the Sixers to 38 percent shooting and blocked 14 shots in the win .
NLG: The Sixers shot just 38 percent from the field and 32 percent from the three-point line ,
while the Heat shot 44 percent from the floor and a meager 28 percent from deep .

Double-doubles or
triple-doubles (+)

REF: Kevin Love ’s 29-point , 13-rebound double-double led the way for the Cavs , who ’d
rested Kyrie Irving on Tuesday .
NLG: Love led the way for Cleveland with a 29-point , 13-rebound double-double that also
included three assists and two steals .

Player injuries (-) NLG: The Timberwolves (28 - 44) checked in to Saturday ’s contest with an injury-riddled
frontcourt , as Ricky Rubio (knee) and Karl-Anthony Towns (ankle) were sidelined .

Ranking (-) NLG: The Heat (10 - 22) fell to 10 - 22 and remain in last place in the Eastern Conference ’s
Southeast Division .

Season-level
player stats (-)

NLG: It was a season-high in points for Thomas , who ’s now averaging 17 points per game
on the season

Table 8: Correctly predicted information that is not explicitly in the metadata (+), or hallucinations (-).

4.4 Qualitative evaluation

As shown in Table 2, the NLG model (3-
player) has several good properties besides coher-
ent document-level generation and the ability to
“copy” metadata. It has learned generic informa-
tion about the teams and players. As such, it can
generate relevant information which is absent from
metadata (see Table 8). For example, the model
correctly predicts the name of the stadium where
the game was played. This implies that it knows
which team is hosting (this information is encoded
implicitly by the position of the team in the data),
and what is the stadium of this team’s city (not in
the metadata). Other facts that are absent from the
metadata, and predicted correctly nonetheless, are
team aliases (e.g., the Sixers) and player nicknames
(e.g., the Greek Freak). The model can also gen-
erate other surface forms for the team names (e.g.,
the other Cavalier).

The NLG model can infer some information
from the structured data, like double-digit scores,
“double-doubles” (e.g., when a player has more
than 10 points and 10 assists) and “triple-doubles”.
On the other hand, some numerical facts are in-
accurate (e.g., score differences or comparisons).
Some facts which are not present in the structured
data, like player injuries, season-level player statis-
tics, current ranking of a team, or timing infor-
mation are hallucinated. We believe that most of
these hallucinations could be avoided by adding
the missing facts to the structured data. More
rarely, model duplicates a piece of information.

Another of its flaws is a poor generalization to
new names (team, city or player). This can quickly

be observed by replacing a team name by a fictional
one in the metadata. In this case, the model almost
always reverts to an existing team. This may be
due to overfitting, as earlier checkpoints seem to
handle unknown team names better, even though
they give lower BLEU. This generalization prop-
erty could be assessed by doing a new train/test
split, that does not share the same teams.

5 Conclusion
We participated in the 3 tracks of the DGT task:
MT, NLG and MT+NLG. Our systems rely heav-
ily on transfer learning, from document-level MT
(high-resource task) to document-level NLG (low-
resource task). Our submitted systems ranked first
in all tracks.

For the MT task, the usual domain adaptation
techniques performed well. The MT+NLG mod-
els did not show any significant improvement over
pure MT. The MT models are already very good
and probably do not need the extra context (which
is generally encoded in the source-language sum-
mary already). Finally, our NLG models, boot-
strapped from the MT models, do fluent and co-
herent text generation and are even able to in-
fer some facts that are not explicitly encoded in
the structured data. Some of their current limi-
tations (mostly hallucinations) could be solved by
adding extra information (e.g., injured players, cur-
rent team rank, number of consecutive wins, etc.)

Our aggressive fine-tuning allowed us to spe-
cialize MT models into NLG models, but it will
be interesting to study whether a single model can
solve both tasks at once (i.e., with multi-task learn-
ing), possibly in both languages.

278

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

Simple Domain-Independent Probabilistic Approach
to Generation. In EMNLP.

Alexandre Berard, Calapodescu Ioan, and Claude
Roux. 2019. NAVER LABS Europe’s Systems for
the WMT19 Machine Translation Robustness Task.
In WMT - Shared Task Paper.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding Back-Translation at
Scale. In EMNLP.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the Third Workshop on Neural Genera-
tion and Translation. In Proceedings of the Third
Workshop on Neural Generation and Translation
(WNGT).

Marcin Junczys-Dowmunt. 2019. Microsoft Transla-
tor at WMT 2019: Towards Large-Scale Document-
Level Neural Machine Translation. In WMT - Shared
Task Papers.

Ioannis Konstas and Mirella Lapata. 2013. A Global
Model for Concept-to-Text Generation.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In EMNLP.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural Text Generation from Structured Data with
Application to the Biography Domain. In EMNLP.

Marco Lui and Timothy Baldwin. 2012. Langid.Py: An
Off-the-shelf Language Identification Tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
ACL.

Kathleen R. McKeown. 1985. Text Generation: Using
Discourse Strategies and Focus Constraints to Gen-
erate Natural Language Text. Cambridge University
Press.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. What to talk about and how? Selective Gener-
ation using LSTMs with Coarse-to-Fine Alignment.
In NAACL-HLT.

Raymond J Mooney and Yuk Wah Wong. 2007. Gen-
eration by Inverting a Semantic Parser that Uses Sta-
tistical Machine Translation. In NAACL-HLT.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 News Translation Task Submission.
In WMT - Shared Task Papers.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling Neural Machine Translation. In
WMT.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-Text Generation with Content Selection and
Planning. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NIPS.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in Data-to-Document Generation.
In EMNLP.

279

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 280–288
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

From Research to Production and Back:
Ludicrously Fast Neural Machine Translation

Young Jin Kim†∗ Marcin Junczys-Dowmunt†∗
Hany Hassan† Alham Fikri Aji‡ Kenneth Heafield†‡

Roman Grundkiewicz†‡ Nikolay Bogoychev‡

†Microsoft, 1 Microsoft Way, Redmond, WA 98121, USA
{youki,marcinjd,hanyh}@microsoft.com

‡University of Edinburgh, Edinburgh, Scotland, EU
{a.fikri,kheafiel,rgrundkie,n.bogoych}@ed.ac.uk

Abstract
This paper describes the submissions of the
“Marian” team to the WNGT 2019 efficiency
shared task. Taking our dominating submis-
sions to the previous edition of the shared
task as a starting point, we develop improved
teacher-student training via multi-agent dual-
learning and noisy backward-forward trans-
lation for Transformer-based student models.
For efficient CPU-based decoding, we pro-
pose pre-packed 8-bit matrix products, im-
proved batched decoding, cache-friendly stu-
dent architectures with parameter sharing
and light-weight RNN-based decoder architec-
tures. GPU-based decoding benefits from the
same architecture changes, from pervasive 16-
bit inference and concurrent streams. These
modifications together with profiler-based C++
code optimization allow us to push the Pareto
frontier established during the 2018 edition to-
wards 24x (CPU) and 14x (GPU) faster mod-
els at comparable or higher BLEU values. Our
fastest CPU model is more than 4x faster than
last year’s fastest submission at more than 3
points higher BLEU. Our fastest GPU model
at 1.5 seconds translation time is slightly faster
than last year’s fastest RNN-based submis-
sions, but outperforms them by more than 4
BLEU and 10 BLEU points respectively.

1 Introduction

This paper describes the submissions of the “Mar-
ian” team to the Workshop on Neural Generation
and Translation (WNGT 2019) efficiency shared
task (Hayashi et al., 2019). The goal of the task is
to build NMT systems on CPUs and GPUs placed
on the Pareto Frontier of efficiency and accuracy.

Marian (Junczys-Dowmunt et al., 2018a) is an
efficient neural machine translation (NMT) toolkit
written in pure C++ based on dynamic computa-
tional graphs.1 Marian is a research tool which can
∗First authors with equal contribution.
1https://github.com/marian-nmt/marian

be used to define state-of-the-art systems that at
the same time can produce truly deployment-ready
models across different devices. This is accom-
plished within a single execution engine that does
not require specialized, inference-only decoders.
Our submissions to last year’s edition of the same
shared task defined the Pareto frontiers for trans-
lation quality versus CPU-based and GPU-based
decoding speed (Junczys-Dowmunt et al., 2018b).

The title of this paper refers to beneficial co-
development of our shared task submissions and
our in-productions systems at Microsoft. The im-
provements from our submission to last year’s edi-
tion of the shared task (Junczys-Dowmunt et al.,
2018b) enabled fast CPU-based decoding with
light-weight Transformer models and were a first
step towards deploying them in Microsoft’s online
translation services. Subsequent improvements
resulted in a successful launch of Marian as the
Microsoft Translator training and inference tool
(Microsoft-Translator). Our submissions to this
year’s edition start out with the currently deployed
student model architectures as they are used for Mi-
crosoft online-translation systems and explore bet-
ter teacher-student training and faster CPU-bound
inference for the needs of the shared task. These
innovations are finding their way back into our pro-
duction systems at the time of writing.

We improve all aspects of our submissions from
last year. Better teachers trained via multi-agent
dual learning provide higher quality training data
for student models. Better teacher-student training
via noisy backward-forward translation minimizes
the gap between teacher and student and allows to
strongly reduce student size via parameter sharing
and fewer decoder layers. At the same time, we are
able to shift the need for smaller architectures to
decoding with low-precision inference (8-bit on the
CPU, 16-bit on the GPU). Similar to last year, we
do not let the BLEU score drop below 26 points.

280

https://www.aclweb.org/anthology/D19-56%2d

2 Better teacher-student training

Extending our submission from last year (Junczys-
Dowmunt et al., 2018b), we train four forward (en-
de) and four inverse (de-en) teacher models accord-
ing to the Transformer-big configuration (model
size 1024, filter size 4096, 6 blocks, file size 813
MiB) from Vaswani et al. (2017). We think of a
teacher as the set of all models that have been used
to create the artificial training data.

Unless stated differently, our student is a single
model that follows the Transformer-base configu-
ration (model size 512, filter size 2048, 6 blocks)
with modifications. See Section 3 for details. For
all models, we use the same vocabulary of 32,000
subwords, computed with SentencePiece (Kudo
and Richardson, 2018). The training data is pro-
vided by the shared task organizers and restricted
to about 4 Million sentences from the WMT news
translation task for English-German. Use of other
data is not permitted.

We again implement the interpolated sequence-
level knowledge distillation method proposed by
Kim and Rush (2016): The teacher ensemble is
used to forward-translate the training data and
collect 8-best lists for each sentence. Choosing
the best translation for each sentence based on
sentence-level BLEU compared to the original tar-
get, we create a synthetic target data. The student
is trained on the original source and this synthetic
forward translated target.

Table 1 contains BLEU scores of the teacher
ensemble (T) and a student model distilled from
this teacher (Student← T). The gap is 2.4 BLEU.

2.1 Knowledge distillation with noisy
backward-forward translation

In our experience, student training benefits from
forward-translated data that was not seen during
teacher training. Since we do not have access
to additional monolingual source data, we gener-
ate noisy back-translated sentences (Edunov et al.,
2018), one set per inverse teacher model. Noisy
sentences are generated by sampling from the out-
put softmax distribution via added Gumbel noise.
We then use the forward (en-de) teacher ensemble
to translate the sampled English sentences into Ger-
man and choose the best output from the 8-best list
measured against the original target. This increases
the training corpus 5-fold. Training on this new
data reduces the gap to the teacher to 1.3 BLEU; a
single teacher model is only 0.4 BLEU better.

System BLEU

Teacher (T) 28.9
Single teacher model 28.0

Student without teacher 25.9
Student← T 26.5
Student← T with 4×NBFT 27.6

Teacher with MADL (T-MADL) 29.8
Single teacher model 29.2

Student← T-MADL 26.9
Student← T-MADL with 4×NBFT 28.3

Table 1: Effects of noisy backward-forward translation
(NBFT) and Multi-Agent Dual Learning on teacher-
student training (newstest2014)

It seems unusual to feed our student with de-
graded training data, but the goal is to closely
mimic the teacher. Since the forward translations
are correct outputs of the teacher over noised inputs,
the space of probed translations that would not be
available to the student otherwise is increased. The
role of choosing the best translation from the 8-best
list should be investigated in the future.

2.2 Multi-Agent Dual Learning

Apart from closing the gap between teacher and
student, we can try to improve the teacher and hope
the student follows. We adapt Multi-Agent Dual
Learning (MADL) by Wang et al. (2019) for this
purpose. MADL requires additional monolingual
data which we cannot supply. Instead, using the
teacher-ensembles for each direction, we generate
synthetic German and English corpora from the
training data (without noise). We again select the
best translations from the generated 8-best lists and
join (original English - original German), (original
English - synthetic German) and (synthetic English
- original German) data sets into new training data
for four new teacher models.

Individual teacher models improve by about
1.2 BLEU and an ensemble of four new teach-
ers by 0.9 BLEU (Table 1). We repeat the inter-
polated knowledge-distillation procedure with the
new teacher. The student model (T← T-MADL)
improves only slightly when trained without the
noisy input data (+0.4 BLEU), but by a large mar-
gin with noisy forward-backward translation. The
gap between the new teacher and its student re-
mains at 1.5 BLEU, but a student outperforms a
single teacher without MADL (28.3 vs 28.0).

281

0

200

400

600

800

1,000

227

345

434 453
533

650

845
922

982

113 100
140 154

204
147

279
351 351

W
or

ds
pe

rs
ec

on
d

Base
AAN

W
NM

T18 SRU
SSRU

SSRU-T
ied

M
KL

32
-bi

t

FBGEM
M
8-b

it

SIM
D

&

Profi
lin

g Batc
h

pru
nin

g

26.0

27.0

28.0

29.0
28.5

28.3 28.4 28.5
28.3 28.3 28.2 28.2 28.2

B
L

E
U

BLEU batch 32 batch 1

(a) Performance on a single CPU core and thread for newstest2014 on AWS m5.large, dedicated instance

0

10,000

20,000

30,000

9,124

13,990 14,308 14,607 14,675

17,987

22,484

26,789

178 198 207 221 220 212 249 217

W
or

ds
pe

rs
ec

on
d

Base
AAN

W
NM

T18 SRU
SSRU

SSRU-T
ied

Perv
asi

ve

FP16
Profi

lin
g

Con
cu

rre
nt

str
ea

ms Batc
h

pru
nin

g

26.0

27.0

28.0

29.0

N
ot

fin
is

he
d

at
su

bm
is

si
on28.5 28.4 28.4

28.6
28.3 28.3 28.3 28.3

B
L

E
U

BLEU batch 512 batch 1

(b) Performance on a NVidia Volta 100 GPU for newstest2014 on AWS p3.x2large

Figure 1: BLEU scores versus words per second with different student architectures and optimizations on CPU and
GPU. Results left of the dotted black line are for different architectures with Marian v1.7 as it was released before
the shared task. Results right of the dotted black line are recently implemented runtime optimizations applied to
“SSRU-Tied”. These optimizations will be available with Marian v1.9.

3 Faster student architectures

As mentioned before, our student architecture is a
variant of the Transformer-base configuration from
Vaswani et al. (2017) with a model size of 512, fil-
ter size of 2048 and six blocks of layers in encoder
and decoder. Our encoder is always a Transformer
encoder with self-attention, our decoder differs in
choice of auto-regression mechanisms and parame-
ter tying. In this section, we do not change dimen-
sions or number of blocks. Other dimensions and
model depths are discussed in Section 6.

Figure 1 provides an overview about the evolu-
tion of student architectures explored for the previ-
ous shared task, as Microsoft in-production models

and as candidate submissions for the current edition
of the shared task. All student variants have been
trained with the best teacher-student procedure
from the previous section; the example model used
there was SSRU-Tied (bold in Figure. 1) which is
also the Microsoft Translator in-production model.

We discuss the influence of self-regression mech-
anisms in Section 3.1 and parameter tying in
Section 3.2. Architecture-indepedent but device-
specific optimizations for the CPU are detailed in
Section 4 and for the GPU in Section 5. More
general optimizations are outlined in Section 4.2.
Performance has been measured with Marian v1.7,
measurements are self-reported by Marian.

282

3.1 SSRU instead of self-attention or AAN
In previous work (Junczys-Dowmunt et al., 2018b)
and later experiments, we found that replacing the
self-attention mechanims in Transformer decoders
with an Average Attention Network (Zhang et al.,
2018) or modern RNN variants does not affect stu-
dent quality while resulting in faster decoding on
GPU and CPU. This is mainly caused by reducing
the decoder complexity from O(n2) to O(n) over
the number of output tokens n. In Figure 1 we
see how switching from a vanilla Transformer-base
variant to a student with AAN improves speed on
both devices, but more so on the GPU.

While we had good results for AANs in Junczys-
Dowmunt et al. (2018b), we feel somewhat uneasy
about the flat element-wise average used to accu-
mulate over inputs. RNNs share the linear com-
putational complexity of the AAN over input size
during decoding2, but can learn a more complex
accumulation function. A particularly interesting
RNN variant is the SRU (Simple Recurrent Unit)
proposed earlier than AANs by Lei et al. (2017)3.
This RNN variant has no matrix multiplication in
its recurrent step and is (at decode-time) surpris-
ingly similar to the AAN if we think of the forget-
gate as an adaptive exponential average:

f t = σ(Wtxt + bf)

rt = σ(Wrxt + br)

ct = f t � ct−1 + (1− f t)�Wxt

ht = rt � tanh(ct) + (1− rt)� xt

where the cell-state ct−1 is elementwise-
interpolated via forget-gate f t with its transformed
input x̃t to form the new cell-state ct. The original
formulation adds an output reset-gate rt to act as
a learnable skip connection for the input xt and
tanh(ct).

In the Transformer, every block g(·) is fol-
lowed by an additive skip connection and a layer-
normalization operation (Ba et al., 2016):

ht = α� LN(g(xt) + xt) + β

where α and β are trainable scale and bias vectors.
2AANs parallelize better during training since the aver-

age can be computed non-recurrently, however for the small
student models the increase in training time is negligible.

3We are describing the SRU based on V1 of the preprint
on Arxiv from September 2017. Subsequent updates and pub-
lications seem to have changed the implementation, resulting
in more complex variants, e.g. Lei et al. (2018). We imple-
mented the SRU at time of publication of V1 and missed the
updates, but our variant seems to work just fine.

Given that this construction fulfills a similar role
to the reset-gate in the original SRU formulation,
we drop the reset-gate rt and replace the tanh non-
linearity with a ReLU operation4 to arrive at our
Simpler Simple Recurrent Unit (SSRU):

f t = σ(Wtxt + bf)

ct = f t � ct−1 + (1− f t)�Wxt

ht = α� LN(ReLU(ct) + xt) + β

which replaces the self-attention block in the trans-
former decoder. This variant saves another matrix
multiplication and does not seem to suffer from
any performance degradation for student models5

compared to self-attention, AANs, traditional RNN
variants, or the original SRU. In Figure 1a we can
see how switching from Base to AAN to SRU
and finally to SSRU does not affect BLEU much
(within 0.2 per cent) and is actually highest for the
SSRU. Speed on CPU increases significantly, both
for batch size 32 and 1. On the GPU (Figure 1b)
there are small improvements.

3.2 Tied decoder layers
Work on the Universal Transformer (Dehghani
et al., 2019) has shown the effectiveness of depth-
wise recurrence in Transformer models — i.e. the
same parameters are being reused for every corre-
sponding layer across Transformer blocks without
quality loss. This is remarkable by itself, but there
is also a potential for efficient CPU-bound com-
putations. Although the repeated application of
the same parameter set across different layers does
not reduce the total number of floating point op-
erations6 that need to be performed compared to
using different parameters per layer, it reduces the
parameter size of the decoder layers six-fold and
improves CPU cache-locality.

We tie all layers in the decoder (not the encoder)
and probably manage to keep the entire set of de-
coder parameters in L2-cache during translation.
Moving from SSRU to SSRU-Tied in Figure 1a,
we see a 1.39x speed up and a small drop of 0.2
BLEU. The GPU is largely unaffected since cache-
locality is less of an issue here.

4The transformer uses ReLU non-linearities everywhere.
5It seems however that student-sized models trained from

scratch behave worse when using either SRU or SSRU com-
pared to all the alternatives. There is however no differ-
ence between the SRU and SSRU which seems to confirm
that the reset-gate rt can be dropped when the additive skip-
connection is already present.

6It does when projections of the encoder into decoder space
for purpose of applying cross-attention can be cached.

283

Optimization Batch 1 Batch 32

mixed 32/16-bit 1.38 (1.00) 0.82 (1.00)
8-bit FBGEMM 1.89 (1.36) 1.30 (1.58)
SIMD & Profiling 2.39 (1.72) 1.42 (1.73)
Batch pruning 2.39 (1.72) 1.51 (1.84)

Table 2: Relative speed-up for new CPU-bound op-
timizations compared to float32 MKL baseline and
WNMT2018 mixed precision inference (in parenthe-
ses) for same SSRU-Tied student model.

4 Optimizing for the CPU

All CPU-bound results in Figure 1a have been com-
puted with a setup from our WNMT2018 submis-
sion (Junczys-Dowmunt et al., 2018b). On batch-
level, a shortlist selects the 75 most common target
words and up to 75 most probable translations per
input-batch word. This set of words is used to cre-
ate an output vocabulary matrix over a couple of
hundred words instead of 32,000 which reduces the
computational load with no loss in quality (com-
pare with GPU-bound BLEU scores in Figure 1b).

For systems left of the dotted black line, matrix
multiplication is executed with mixed 32-bit (In-
tel’s MKL library) and 16-bit (own implementation
based on Devlin (2017)) kernels. All systems right
of the dotted line, are the same model as “SSRU-
Tied” without re-training, but executed with dif-
ferent runtime optimizations. In this section we
discuss new runtime optimizations which will be
available in Marian v1.9.

4.1 8-bit matrix multiplication with packing

The AWS m5.large target platform for CPU-bound
decoding is equipped with an Intel Xeon Platinum
8175 CPU. This CPU supports 8-bit integer instruc-
tions with AVX-512 (Advanced Vector eXtensions-
512) which can be used to accelerate deep neural
network models (Wu et al., 2016; Rodriguez et al.,
2018; Bhandare et al., 2019). With the open source
FBGEMM library, we integrated 8-bit quantization
and matrix multiplication routines with AVX-512
SIMD instructions into our code.

To fully benefit from the faster computation of
matrix products in 8-bit, we chose to pre-quantize
and pre-pack all parameter matrices offline, except
for the embeddings matrix, then save them to a
model file. Activations computed during inference
are quantized on-the-fly. Matrix products with the
short-listed output layer or with non-parameter ma-
trices are executed in 32-bit with MKL.

Quantization. Among the quantization methods
offered by FBGEMM, we see the best results when
quantizing each column of the weight matrix sepa-
rately with different scales and offsets per column
which have to be provided to the FBGEMM API.

As reported by Lin et al. (2016); Bhandare et al.
(2019) and confirmed by our own observations, the
distribution of floating point values per column in
a weight matrix seems to follow a normal distri-
bution. We compute the average x̄j and standard
deviation σj per column j and quantize with sat-
uration into the range (x̄j − 7σj , x̄j + 7σj). We
determined the factor 7 empirically, testing BLEU
for values from 1 to 10. This prevents outliers in
the weight matrix from distorting the resolution of
the quantized values. We seem to lose no more
than 0.3 BLEU due to quantization for some mod-
els, and only 0.1 BLEU for SSRU-Tied in a base
configuration. By comparison, when quantizing to
minimum-maximum values in columns, we lose up
to 4.0 BLEU for certain models. See the FBGEMM
blog (FBGEMM) for more details on quantization.

Packing. We mentioned in Section 3.2 how the
repeated application of the same parameters across
layers helps L2-cache locality. Packing allows us
to also benefit from the CPU’s L1-cache and vec-
tor registers by changing the layout of the input
matrices for a GEMM operation. The FBGEMM
API explicitly exposes the packing operation as
well as matrix multiplication on pre-quantized and
pre-packed matrices.

In Table 2 we see a respectable speed-up against
a pure MKL float32 version and our mixed 32/16-
bit inference (in parentheses). The speed-up is
more impressive in the case of batch-size 1 which
is our deployment scenario, but the large batch
which we use for the shared task benefits as well.

4.2 Other optimizations

Speed improvements in one part of the code often
expose bottlenecks in other places, as these now
take up a larger fraction of the time during profiling.
We found that element-wise kernels did not vector-
ize properly and fixed that; we replaced expensive
C++ shared-pointers with light-weight non-locking
smart-pointers for all small objects and changed
the access pattern to model configuration options;
we improved our beam-search algorithm to remove
finished batch-entries dynamically. The combined
speed-up (Table 2) from these optimizations further
improves on top of the “fancier” methods.

284

5 Optimizing for the GPU

We use the same models for our GPU-bound ex-
periments as for CPU decoding. Different than
for our experiments on the CPU, we see in Fig-
ure 1b that the most influential architecture change
is the replacement of decoder self-attention with
complexity O(n2) with any other auto-regressive
layer with complexity O(n). There are small speed
improvements as we move to layers with smaller
amounts of FLOPS, but the parallelization inside
the GPU nearly hides these changes. As mentioned
before, layer-tying barely affects the speed while
there was significant improvement on the CPU. We
gain a lot more from the model-independent run-
time optimizations described next.

Pervasive FP16 inference. On NVidia Volta 100
GPUs with at least CUDA 9.2 it is straightforward
to activate FP16 matrix multiplication with very
small modifications to the code. All other oper-
ations are executed in 32-bit floating point while
inputs to the matrix product are rounded on-the-fly.
Outputs are accumulated in 32-bit floats. We used
this for our GPU submissions last year.

This year we extended Marian to perform per-
vasive FP16 inference, i.e. parameters are directly
stored in 16-bit floats and all operations stay in 16-
bit. The matrix product does not need to convert to
16-bit before or to 32-bit after execution. Improve-
ments in speed stem from operations other than
the matrix product and from faster memory access
and copying. In Figure 1b, we see a respectable
speed improvement for large batches and no loss
in BLEU. Interestingly, there is no speed-up for
batch-size 1.

Profiling. GPU decoding also benefits strongly
from the profiler-based optimizations mentioned in
Section 4.2. In a situation where the translation of a
full WMT test sets can be performed in one or two
second, the time spent during the construction or
destruction of millions of book-keeper objects like
hypotheses or beams starts to matter a lot. The gain
here is larger than for the pervasive FP16 inference.
Unfortunately we did not finish the GPU version of
the batch-pruning algorithm in time for the shared-
task or this description.7 With the large batches we
could expect additional improvements.

7The beam search algorithm in the FP16 branch had di-
verged from the CPU branch and there was no good way to
quickly apply the new beam search version to GPU decoding.
This will be done in Marian v1.9.

Concurrent streams. We found that the power-
ful Volta 100 GPU was not fully saturated even
when decoding with large batch sizes. Hence, we
send multiple batches at once to the same GPU
using two CPU threads. The CUDA scheduler as-
signs different default streams to each CPU thread
and we get similar benefits from streams as if these
were assigned explicitly. Going beyond two threads
does not seem to help. In the case of decoding with
batch size 1 it’s actually detrimental. We hypothe-
size that our GPU decoding is not as efficient as it
could be and unnecessarily exchanges information
between GPU and CPU. This happens in shorter
and more frequent intervals for batch-size 1.

6 Submissions and discussion

6.1 Submissions

We submit four CPU students and three GPU sys-
tems, summarized in Table 3. We report model con-
figurations, architectures, dimensions, depth, num-
ber of parameters, file sizes in MiB for CPU and
GPU, translation speed in words per second and
BLEU for newstest2014, omitting newstest2015.
Time has been measured by the shared-task organiz-
ers on AWS m5.large (CPU) and p3.x2large (GPU)
instances.

Until this moment, we kept model dimensions
and decoder depth constant while optimizing a
configuration that corresponds to the Microsoft in-
production models (bold row in Table 3). For the
final shared task submissions, we vary model di-
mensions and — similar to Senellart et al. (2018)
— decoder depth in order to explore the trade-offs
between quality and speed on the Pareto frontier.

We train a shallower base-configuration “(1)
Base” with two tied decoder layers and small loss in
BLEU compared to the 6-layer version. The speed-
up is significant on both device types. To cover
higher-quality models, we add a “(2) Large” config-
uration with improved BLEU but slower translation
speed. As in the previous year, we do not submit
models below 26 BLEU, but due to the improved
teacher-student training, we can cut down model
size drastically before that threshold is reached.
We are seeing respectable BLEU scores for our
“(3) Small” and “(4) Tiny” configurations at im-
pressive word-per-second rates, 2,668 and 3,597
respectively. Compared to last year’s fastest CPU-
bound submission (Senellart et al., 2018), these
are more than three and four times faster at over 3
points higher BLEU.

285

100 1,000 10,000

26.0

27.0

28.0

358 (2)

982 (0)1,197 (1)

2,668 (3)

3,597 (4)

4141

230

473

669

8.7×
24.0×

5.2×

5.6×

5.4×

Words per second (log scale)

B
L

E
U

2019 CPU (v1.9)
2018 CPU (v1.4)

10,000 100,000

27,371 (2)

48,426 (1)48,426 (1)

1,973

7,073

11,045

13.8×

6.8×

4.4×

Words per second (log scale)

2019 GPU (v1.9)
2018 GPU (v1.4)

Figure 2: Relative speed improvements for fastest Marian models of comparable or better quality than submis-
sions to WNMT2018 on newstest2014. Numbers in parentheses next to words-per-second values correspond to
numbered submissions in Table 3. We also include our unsubmitted in-production model (0).

File size [MiB] Words per second
Configuration Auto-reg. Emb. FFN Depth Params. CPU GPU CPU GPU BLEU

Teacher×8 Self-Att. 1024 4096 6 1673.3 M – – 29.8

Base Self-Att. 512 2048 6 60.6 M – – 28.5
Base SSRU 512 2048 6 57.4 M – – 28.5
(0) Base SSRU 512 2048 6 tied 39.0 M – 982 26,789 28.2

(1) Base†‡ SSRU 512 2048 2 tied 39.0 M 85 75 1,197 48,246 28.0
(2) Large†‡ SSRU 1024 3072 6 tied 108.4 M 199 207 358 27,371 28.6
(3) Small† SSRU 256 2048 3 tied 17.6 M 41 34 2,668 – 27.0
(4) Tiny† SSRU 256 1536 1 15.7 M 39 31 3,597 – 26.4
(5) Base 4-bit‡ SSRU 512 2048 2 tied 39.0 M – 19 – 23,532 27.5

Table 3: Configuration of student models and submissions. Models marked with † were submitted to the CPU
track, with ‡ to the GPU track. Speed and BLEU for submissions as reported by the shared-task organizers.

The file sizes reported in Table 3 refer to pre-
packed 8-bit models with 32-bit embeddings for
the CPU, and to models stored in FP16 for the GPU.
As a separate experiment, we also applied 4-bit log-
arithmic quantization to further reduce the model
size (Aji and Heafield, 2019) for a GPU model: “(5)
Base 4-bit”. This model is quantized in the form
of s · 2k where s is an optimized scale factor. We
do not quantize biases. After initial quantization,
we finetune the model to recover from the loss of
quality. However, compression is only done on the
model level. Therefore in this experiment, we only
aim to improve the efficiency in terms of model
size. We compressed the model size 8x smaller
compared to 32-bit floating-point model, with a 0.5
drop to 27.5 BLEU. By quantizing the base model,
we gained smaller model size (19 MiB) and better
BLEU compared to the Tiny model (31 MiB).

6.2 Results and discussion

Unfortunately, in this edition of the efficiency
shared task, we competed mostly against ourselves;
one other team participated in the GPU track (see
Figure 3), no other in the CPU track. Hence, we
concentrate on improvements against our own his-
toric results. Based on Figure 2, we can claim that
the Marian 2019 team has left the Marian 2018
team in the dust. We connected each of our past
submissions with one of our current submissions
via a speed-up arrow if the current submission is
the fastest model to have at least equal BLEU. The
connected models are not necessarily similar in
terms of size or architecture. By combining im-
proved knowledge distillation methods with more
efficient models and more optimized code, we were
able to push the Pareto frontier towards 4.4 to 24.0
times faster translation systems at improved BLEU.

286

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

2019: Marian CPU

2019: Marian GPU

2019: others GPU

2018: others GPU

2018: others CPU

2018: Marian GPU

2018: Marian CPU

Million translated source tokens per USD

B
L

E
U

2019 CPU systems
2019 GPU systems
2018 CPU systems
2018 GPU systems

Figure 3: Pareto frontier for cost-effectiveness vs BLEU for all submissions (ours and other participants) from
2018 and 2019 on newstest2014 as reported by the organizers. We omit the weak baselines.

In Junczys-Dowmunt et al. (2018b), we com-
pared the cost-effectiveness of GPU and CPU de-
coding in terms of millions of words translated per
USD based on AWS instance costs. We updated
the costs to reflect current prices, 0.096 USD and
3.06 USD per hour for CPU and GPU instances
respectively, and visualized the results for all partic-
ipants from both shared tasks — WNMT2018 and
WNGT2019 — in Figure 3. Compared to last year
where CPU and GPU decoding were similarly cost-
effective at similar BLEU, we are starting to see a
trend that highly-efficient CPU decoding is about to
out-compete GPU-bound decoding in terms of cost-
effectiveness according to the AWS price model.

If run on the GPU, the smaller models from our
fastest CPU-track submissions would not improve
speed-wise over our fastest GPU-track submis-
sions; they would just achieve lower BLEU scores
at similar speed. Our mid-sized student model al-
ready translates a WMT test set in ca. 1.5 seconds,
the smaller models cannot improve over that for

these short test sets. Furthermore, these are cost-
effectiveness scores reported within settings of the
shared task which favors (maybe unrealistically)
bulk and batched translation. At Microsoft Transla-
tor, our preferred scenario is translation with batch-
size 1 for low latency.

Going back to Figure 1 and comparing speed
for batch-size 1 alone, we are seeing that a single
CPU core with our highly optimized CPU mod-
els is faster than a Volta 100 GPU with the same
models. This may of course be an artifact of under-
optimized GPU performance in Marian, but on
the other hand, we do not see any other partici-
pant in the shared task with more efficient GPU
decoding algorithms. There is also the unexplored
question of multi-core CPU decoding, where the
current shared-task setup — again somewhat unre-
alistically — allows only single-thread CPU-bound
submissions. Improvements here might go a long
way in term of better cost-effectiveness on the CPU
compared to the GPU.

287

Acknowledgments
The authors would like to thank Shufang Xie from Microsoft
Research Asia for his help with the MADL training procedure.
Co-authors from the University of Edinburgh would like to
acknowledge:

This work was supported by funding from the Euro-
pean Union’s Horizon 2020 research and innovation

programme under grant agreements No 825303 (Bergamot).
It was performed using resources provided by the Cam-

bridge Service for Data Driven Discovery (CSD3) operated
by the University of Cambridge Research Computing Service
(http://www.csd3.cam.ac.uk/), provided by Dell EMC and In-
tel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/P020259/1), and
DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

References
Alham Fikri Aji and Kenneth Heafield. 2019. Neural machine

translation with 4-bit precision and beyond.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer Normalization. In NIPS 2016 Deep Learning
Symposium, Barcelona, Spain.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek
Menon, Sun Choi, Kushal Datta, and Vikram Saletore.
2019. Efficient 8-bit quantization of transformer neu-
ral machine language translation model. arXiv preprint
arXiv:1906.00532.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob
Uszkoreit, and Lukasz Kaiser. 2019. Universal trans-
formers. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019.

Jacob Devlin. 2017. Sharp models on dull hardware: Fast
and accurate neural machine translation decoding on
the CPU. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages
2820–2825, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David Grang-
ier. 2018. Understanding back-translation at scale.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 489–500,
Brussels, Belgium. Association for Computational Linguis-
tics.

FBGEMM. Open-sourcing FBGEMM for state-of-the-art
server-side inference [online].

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Con-
stas, Andrew Finch, Minh-Thang Luong, Graham Neubig,
and Katsuhito Sudoh. 2019. Findings of the third workshop
on neural generation and translation. In Proceedings of the
Third Workshop on Neural Generation and Translation.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz
Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann,
Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay
Bogoychev, et al. 2018a. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System
Demonstrations, pages 116–121.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang,
Roman Grundkiewicz, and Anthony Aue. 2018b. Mar-
ian: Cost-effective high-quality neural machine translation
in C++. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 129–135.

Yoon Kim and Alexander M Rush. 2016. Sequence-level
knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1317–1327.

Taku Kudo and John Richardson. 2018. Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66–
71.

Tao Lei, Yu Zhang, and Yoav Artzi. 2017. Training RNNs as
fast as CNNs. CoRR, abs/1709.02755.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi.
2018. Simple recurrent units for highly parallelizable
recurrence. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages
4470–4481, Brussels, Belgium. Association for Computa-
tional Linguistics.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016.
Fixed point quantization of deep convolutional networks.
In International Conference on Machine Learning, pages
2849–2858.

Microsoft-Translator. Neural machine translation enabling
human parity innovations in the cloud [online].

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko,
Young Jin Kim, Haihao Shen, and Barukh Ziv. 2018. Lower
numerical precision deep learning inference and training.
Intel White Paper.

Jean Senellart, Dakun Zhang, Bo Wang, Guillaume Klein,
Jean-Pierre Ramatchandirin, Josep Crego, and Alexander
Rush. 2018. OpenNMT system description for WNMT
2018: 800 words/sec on a single-core CPU. In Proceedings
of the 2nd Workshop on Neural Machine Translation and
Generation, pages 122–128, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin,
ChengXiang Zhai, and Tie-Yan Liu. 2019. Multi-agent
dual learning. In International Conference on Learning
Representations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s
neural machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention net-
work. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1789–1798, Melbourne, Australia.
Association for Computational Linguistics.

288

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 289–296
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Selecting, Planning, and Rewriting: A Modular Approach for
Data-to-Document Generation and Translation

Lesly Miculicich∗† Marc Marone ∗‡
Hany Hassan‡

† Idiap Research Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
lmiculicich@idiap.ch

‡Microsoft, 1 Microsoft Way, Redmond, WA 98121, USA
{v-mamaro,hanyh}microsoft.com

Abstract
In this paper, we report our system submis-
sions to all 6 tracks of the WNGT 2019
shared task on Document-Level Generation
and Translation. The objective is to generate a
textual document from either structured data:
generation task, or a document in a different
language: translation task. For the translation
task, we focused on adapting a large scale sys-
tem trained on WMT data by fine tuning it on
the RotoWire data. For the generation task, we
participated with two systems based on a se-
lection and planning model followed by (a) a
simple language model generation, and (b) a
GPT-2 pre-trained language model approach.
The selection and planning module chooses a
subset of table records in order, and the lan-
guage models produce text given such a sub-
set.

1 Introduction

Data-to-text generation focuses on generating nat-
ural text from structured inputs such as table
records. Traditional data-to-text systems used a
pipelined approach for data selection followed by
planning and text generation. Recently, End-to-
End neural generation systems have been pro-
posed such as (Wiseman et al., 2017). While such
systems generate more fluent output, they are not
faithful to the facts in the structured data.

One of the difficulties of the generation task is
that the models have to learn two different aspects:
“what to say” (i.e. selecting relevant information)
and “how to say it” (i.e. generating the actual text
based on these facts). We believe that available
data-sets are too small for allowing current neu-
ral network models, based on encoder-decoder ar-
chitectures, to capture the complexity of the prob-
lem. Recently, (Puduppully et al., 2019) proposed
an end-to-end system that explicitly models a con-
tent selection and planning module separated from

∗Equal contribution. Work done while interning at Mi-
crosoft

the text generation, showing improvements with
respect to previous end-to-end systems (Wiseman
et al., 2017). We adopt this approach and divide
our model into two parts noted as: content selec-
tion and planning, and text generation. This di-
vision helps the system to produce more coher-
ent document structure. One drawback of this
approach is the limitation of the language model
generation coverage. We tackle this limitation
by adopting pre-trained language models such as
OpenAI’s GPT-2 (Radford et al., 2019). Following
the shared task guidelines (Hayashi et al., 2019),
we evaluate our models using an information ex-
traction (IE) system.

2 Translation Tasks

We submitted translation results for both di-
rections: English-to-German and German-to-
English. Our models are based on the trans-
former architecture trained with multi-agent dual
learning (MADL) (Xia et al., 2019). This system
uses the transformer big configuration (modelsize
1024, filter size 4096, 6 blocks for each encoder
and decoder) from (Vaswani et al., 2017), using
dropout of 0.2. It is trained with 3 primary trans-
lations models and 3 dual translation models (for
details refer to (Xia et al., 2019)). The base mod-
els were trained with 20M filtered sentence-pairs
from WMT 2019 shared translation task (Bojar
et al., 2019), plus 120M English, and 120M Ger-
man monolingual sentences from Newscrawl (Bo-
jar et al., 2019). The vocabulary is shared and
composed of word segments obtained by applying
the BPE algorithm with 35K merge operations.

We fine-tuned the base models with 3K
sentence-pairs of the Rotowire English-German
parallel data. We use batches of 4096 tokens and
optimize with different learning rates. The best re-
sult was obtained with learning rate of 10−5 for
both directions. Additionally, for the German-
to-English translation task, we back-translate the

289

https://www.aclweb.org/anthology/D19-56%2d

monolingual Rotowire English corpus. For this
purpose, the documents were split into sentences1

to obtain 45K English sentences in total, then we
use the MADL model which was fine-tuned with
parallel Rotowire data to obtain their respective
German translations. Finally, we fine-tune the
MADL system again using the concatenation of
original parallel sentences and the back-translated
corpus. Since we do not have an in-domain mono-
lingual German corpus, we ensemble 3 replicas
of the fine-tuned MADL models trained with 10,
20, and 30% dropout for the English-German task.
Additionally, we back-translate 1M monolingual
sentences from Newscrawl which were selected
based on their similarity to Rotowire data follow-
ing (Moore and Lewis, 2010). However, this did
not lead to any further improvements in the sys-
tems.

All translation systems used text summaries
only. We did not use the additional data tables in
the submitted results for the MT + NLG track. In
our experiments, we find that adding the structured
data did not lead to improvements over the base-
line systems.

2.1 Results

Table 1 shows the results of our systems for both
directions measured with sacre-BLEU. Fine tun-
ing with Rotowire parallel data brings an improve-
ment of 7.9 BLEU points for English-to-German
and 9.3 for German-to-English in the test set.
Further improvement of 1.9 BLEU points is ob-
tained with back-translation of monolingual Ro-
towire data for the latter direction. The dropout
ensemble adds a very small gain of 0.2 BLEU. We
found that selected data from Newscrawl does not
add any significant improvement.

We also evaluate our German-to-English system
with the content oriented metrics provided by the
organizers of the shared-task. Table 2 shows the
values for development and test sets. We show
the results measured with the ground-truth trans-
lation for comparison. The content generation
(RG) of the best system reaches two percentage
points higher than the ground-truth. The transla-
tion model produces fewer referring expressions,
and morphological variations than the ground-
truth to refer to entities, which makes it easier
for the information extraction tools to recognize
them. The Content selection (CS) reaches high

1https://github.com/neulab/DGT

EN→ DE DE→ EN
MADL 39.99 48.71
+ RW parallel 47.90 57.99
+ RW monolingual ? – 59.94
+ Ensemble ? 48.09 –

Table 1: Machine translation results measured with
sacre-BLEU and task-specific tokenization1. ? denotes
a late entry, not in the official evaluation.

precision (92%) and recall (93%), and the content
order (CO) score is 89. Further manual analysis
indicates that the main issues are the translation of
textual numbers, and the morphological variation
of entities.

3 Generation Task

One of the difficulties of the data-to-document
generation task, as formulated by (Wiseman et al.,
2017), is that the models have to learn to select a
relatively small portion of table records and their
order for generating text. We argue that the size
of available data-sets for training (i.e. Rotowire
with 3.4K samples) is too small for allowing the
network to capture the complexity of the task. In
consequence, following (Puduppully et al., 2019;
Moryossef et al., 2019), we divide the work in
two parts : (a) content selection and planning, and
(b) text generation. The idea is to introduce a di-
rect signal to the system i.e. adding a loss function
that guides an orderly selection of records, allevi-
ating the work of the text generator.

Our system is based on (Puduppully et al.,
2019) with two main differences. First, we use
a transformer network for encoding each record in
relation to other records, instead of a more com-
plex gated approach as previous work. Second, we
share the vocabularies of record values and sum-
mary text, thus the final estimated distribution for
prediction over the whole vocabulary is summed
instead of concatenated. Figure 1 shows the archi-
tecture of the model. In the following, we describe
each component in detail:

3.1 Content selection and Planning

Given a set of records r = r1, r2, ..., rM , the ob-
jective is to select a subset of them in the correct
order r̃ ∈ r. We use an encoder-decoder architec-
ture to model this problem. Similar to (Wiseman
et al., 2017), we create embeddings of each fea-
ture record (e.g. value, key, etc.) and concatenate

290

Dev Test
RG (P%/#) CS (P%/R%) CO RG (P%/#) CS (P%/R%) CO

Ground truth 92.0 (23.1) 100 / 100 100 92.3 (22.6) 100 / 100 100
MADL 90.4 (19.2) 90.6 / 78.8 74.4 91.7 (19.3) 89.6 / 77.1 75.1
+ RW parallel + RW mono. 94.4 (24.2) 93.6 / 93.8 89.9 94.1 (23.3) 92.6 / 93.1 89.1

Table 2: Content evaluation of the German-to-English translation models on test and dev-sets from parallel Ro-
towire using the IE models of (Puduppully et al., 2019). RG:Content generation, CS: Content selection, CO:
Content order.

Figure 1: Content selection and generation

them. Then, we encode them using a transformer
network. The transformer self-attention allows
the network to capture the relationships among
records and estimate their relative salience. How-
ever, we do not use positional embeddings as the
records do not have a sequential nature. The de-
coder is a recurrent pointer network which predicts
one record r̃t at each time-step based on previous
predictions as follows:

r̃t = softmax(ĥ1, ..., ĥM) (1)

ĥi = f(hi, st) (2)

st = g(st−1, r̃t−1) (3)

where f is a non-linear function, g is an auto-
regressive network (i.e. LSTM, transformer) and
hi is the encoded state of the record ri using the
transformer. When using LSTM, the initial state is
the average of the encoder output h. We optimize
this sub-network with a cross-entropy loss Lselect,
and the ground truth targets are extracted follow-
ing (Puduppully et al., 2019).

3.2 Text Generation
The text generator is also an encoder-decoder net-
work. The encoder is a bi-directional LSTM or

transformer that receives a set of record as input.
During training the input are the ground truth tar-
gets r̃gold, and during decoding the predictions of
the content selection and planning r̃.

The decoder has two parts: a text decoder and
a copy module that uses a copy mechanism to di-
rectly predict encoded records. We share the vo-
cabulary of the copy-decoder and the record fea-
ture value of the encoder so the probability distri-
butions of generating and copying are summed for
each shared word, similar to (See et al., 2017). The
embeddings of all record features are shared for
both content selection, and text generation. The
optimization is performed with a cross-entropy
loss Lgen for the generation, and a binary cross-
entropy loss Lcopy for the copy module.

3.3 Joint regularized training (End-to-end)

We train the content selector and text generator
in a joint manner by adding their losses L =
Lselect + Lgen + Lcopy. This can be seen as a
regularization process where the loss of one net-
work regularizes the other. We observe that the
performance of the separately trained networks are
worse than the jointly trained ones. The input

291

P R F1 DL
Single Baseline 41 68 51 0.76
Single CSP 43 67 52 0.75
Joint Baseline + TG 45 62 52 0.75
Joint CSP + TG 46 71 56 0.70

Table 3: Evaluation of Content Selection and Plan-
ning (CSP) module, with and without joint training
with the Text Generator (TG). Baseline: (Puduppully
et al., 2019). P: precision, R: recall, DL: Damerau-
Levenshtein distance.

Figure 2: Augmenting data by swapping the target val-
ues of each document at different percentage rates. In
each case, we doubled the training set.

for the text generator is ground truth during train-
ing. At decoding time, we perform 2 consecutive
beam search of 5 beams, the first one for the con-
tent selection, and the second for generating text.
We tuned the architecture using the development
set. We evaluated different configurations of trans-
formers and LSTMs, from 1 to 2 layers, with di-
mensions of 252 and 512, and dropout from 0.1
to 0.3. The best results are obtained using LSTMs
decoders with 512 size dimension for all hidden
layers and embeddings, each encoder and decoder
has 2 layers, and we use dropout of 0.3. We also
used data augmentations by swapping values in of
the target at a range of 10, 20, and 30 percent of
the values in each sample. Finally, we train the
network with batches of 5 document samples, and
updated the parameters each 20 batches. We use
Adam optimizer at an initial learning rate of 10−3.

3.4 Results
We test the content selection and planning mod-
ule by comparing the output subset of records with
the ground-truth records (i.e. the records extracted
from the summary text with the IE tools). We
use F1 and Damerau-Levenshtein (DL), the later
to evaluate the correct order of records. The work-
shop metrics are not used here because the inde-
pendently trained models do not output text. Re-

sults in Table 3 show that our model outperforms
the baseline (Puduppully et al., 2019), and the joint
training helps to further improve over the single
models. Figure 2 shows the F1 scores while aug-
menting data by varying the percentage of swaps
in the target training set. Adding samples with 5%
of random swaps in each sample document helps
both single and jointly trained models. Finally, Ta-
ble 4 shows the evaluation results of the final joint
system with the workshop metrics.

During a qualitative evaluation, we noticed that
the content selection and planning module learns
to output the most common sequence of records
in the training data. In general, the sequence of
records depends on the style of the commentator
(e.g. describing first match results and then im-
portant player’s scores). Our system mismatches
less common styles, which affects the scoring of
testing and development that contain different dis-
tribution of record sequences.

4 Generation with Pretrained LM

We experiment with using pretrained language
models to enhance coverage and fluency of the text
generation, since the amount of training data avail-
able for the generation the task is relatively small.
In particular, we use a pretrained PyTorch imple-
mentation2 of the GPT-2 (Radford et al., 2019)
language model. The original GPT-2 description
showed that this large scale language model ad-
ditionally learned to complete other tasks such as
summarization and translation. For example, the
language model can be used for summarization,
by providing an input document concatenated with
the string TL;DR: and the output is the gener-
ated summary. Inspired by these results, we pro-
pose our summary rewrite model. Our model is a
two phases approach: the first is the content selec-
tion model proposed in 3.1, the second is a GPT2-
based generation module. Based on the output of
the content selection module, our model provides
a rough summary as input to GPT-2 model which
generates the desired summary.

The baseline results in (Wiseman et al.,
2017) show that simple templates are very ef-
fective at conveying information from the data
tables. We use similar templates to gener-
ate a rough summary that is used as input in
our rewrite model. The model takes input

2https://github.com/huggingface/
pytorch-transformers

292

Data to EN Data to DE
BLEU RG CS (P/R) CO BLEU RG CS (P/R) CO

End-to-end 15.03 93.38 32.34 / 58.04 18.52 11.66 80.30 27.89 / 48.96 16.43
GPT-50 15.17 94.35 33.84 / 53.82 19.26 11.84 82.79 34.23 / 42.32 16.93
GPT-90 13.03 88.70 32.81 / 50.64 17.34 10.43 75.05 30.97 / 41.48 16.27

Table 4: Generation results of our submitted systems as reported by the shared task organizers (Hayashi et al.,
2019). RG: Relation Generation precision, CS: Content Selection (precision/recall), CO: Content Ordering.

of the form template summary <R> gold
summary, which is used to fine-tune the pre-
trained GPT-2 model. The templates consist of
simple sentences involving a single record from
the dataset, such as the number of points scored
by a player. At training time we generate tem-
plates from the ground truth records following
(Puduppully et al., 2019). At test time, we use
the content selection module to select appropriate
records. This effectively replaces the original gen-
erator network with the GPT-2 model, using text
as an intermediate encoding. See Appendix sec-
tions A.1 and A.2 for a full example.

4.1 Decoding
Recently, (Holtzman et al., 2019) suggested that
top-k token sampling (as used in the original GPT-
2 results) is not ideal for generating realistic text
from likelihood trained language models. They
instead propose Nucleus Sampling or top-p sam-
pling, which samples tokens from the top p portion
of the output distribution. We experiment with
several values of p and find that this provides an
effective way to control generation quality. Our
submitted models (GPT-50 and GPT-90) sample
from the top 50% and 90% of the output distribu-
tion when decoding.

4.2 Results
We find that the template rewriting approach is
competitive with the end-to-end trained models in
terms of content metrics (Table 4), and subjec-
tively appears to create natural sounding genera-
tions.

For lower values of p in top-p sampling, we find
that the model remains more true to the templates,
tending to create short summaries that do not de-
viate much from the input facts. For larger values
of p, where decoding is allowed to sample from
more of the distribution, the output tends be longer
but may deviate from the facts. We also note that
when regenerating summaries for high values of
p (with a different random seed), there are signif-

icant changes to the text but not to the facts re-
flected in the summary. See Appendix sections
A.4 and A.5 for examples of generations at var-
ious p values. For both settings we observe oc-
casional mistakes such as repetitions, suggesting
that our values for p should have been tuned more
carefully.

For the German generation track, we apply our
model described in 2 to the English generations,
since we did not have a GPT-2 scale language
model for German.

5 Discussion and Conclusion

For the translation task we experimented with a
simple fine tuning approach for a large scale sys-
tem trained on general domain data. It proved very
effective to fine tune a pre-trained system using
RotoWire data. Our analysis indicates that the re-
maining problems are more related to number for-
matting which is a more generic issue for NMT
systems and not a domain specific problem.

The generation task proved to be more chal-
lenging. Mainly generating faithful, accurate and
fluent summaries can be a quite challenging task
given the discrepancies between the provided data
and the desired summaries. Our analysis indicates
that there is a mismatch between the gold selec-
tion plan and the system output. The system out-
puts the most common sequence of facts whereas
the gold presents more variety of fact sequences
due to different writing styles. This issue should
be further studied in future.

Utilizing large scale pre-trained LMs (such as
GPT-2) is a very promising direction, since it de-
couples the dependency of selection and genera-
tion resources. Our current approach of feeding
the template-based input to GPT2 is quite simple
and efficient. We would like to investigate more
principled methods of doing this in the future.

293

6 Acknowledgment

We would like to thank Tao Qin and his team at
MSRA for providing the MADL translation base-
line systems.

References
Ondřej Bojar, Rajen Chatterjee, Christian Feder-

mann, Mark Fishel, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Matt Post,
Marco Turchi, and Karin Verspoor. 2019. Proceed-
ings of the fourth conference on machine translation
(volume 2: Shared task papers, day 1). Florence,
Italy. Association for Computational Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degen-
eration. arXiv preprint arXiv:1904.09751.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden. Association for
Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6908–
6915.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Di He, Weicong
Chen, Yang Fan, Linyuan Gong, Yichong Leng,
Renqian Luo, Yiren Wang, Lijun Wu, Jinhua Zhu,
Tao Qin, and Tie-Yan Liu. 2019. Microsoft research
asia’s systems for WMT19. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), Florence, Italy. As-
sociation for Computational Linguistics.

294

A Rewrite Model

Below are example generations from our models,
with some highlighted comparisons. “...” indi-
cates text omitted for brevity.

Each configuration correctly introduces the
teams. However, note that the stadium differs.
The End-to-end model claims that the game took
place at the United Center. The GPT models
claim that the game took place at the Air Canada
Cent(er|re), the correct stadium for the home team
(the Toronto Raptors). In fact, the GPT model uses
what may be a more correct spelling (centre).

All models report player statistics (some ex-
ample sentences are bolded) and game statistics.
There are some occasional mistakes. . Some are
logical (the Raptors won), and others seems to be
related to decoding.

A.1 Gold Template Input

The Raptors are from Toronto. The

Raptors were HOME. The Raptors scored

122 points. The 76ers are from

Philadelphia. The 76ers were AWAY.

The 76ers scored 95 points. ... Robert

Covington scored 20 points. Robert

Covington had 5 rebounds. Robert

Covington had 2 assists. Robert

Covington had 2 steals. Robert

Covington made 7 shots. Robert

Covington had 11 attempts. Jahlil

Okafor scored 15 points. ...

A.2 Gold Summary

The host Toronto Raptors defeated

the Philadelphia 76ers, 122 - 95, at

Air Canada Center on Monday. ... The

Raptors were lights - out shooting, as

they went 55 percent from the field and

68 percent from three - point range.

They also held the Sixers to just 42

percent from the field and dominated

the defensive rebounding, 34 - 26.

Fastbreak points was a huge difference

as well, with Toronto winning that

battle, 21 - 6. ... Robert Covington

had one of his best games of the season

though, tallying 20 points, five

rebounds, two assists and two steals

on 7 - of - 11 shooting. Jahlil Okafor

got the start for Embiid and finished

with 15 points and five rebounds. ...

A.3 End-to-End Summary

The Toronto Raptors defeated the

visiting Philadelphia 76ers 122 - 95

, at United Center on Saturday evening.

The Raptors (11 - 6) came in to Friday’s

contest having lost four of their last

six games, and have now lost five of

their last seven games. They were led

by Terrence Ross, who scored a game -

high 22 points on 8 - of - 11 shooting

from the field and 3 - of - 5 from three

- point range. Kyle Lowry followed

up with 24 points, eight assists and

four rebounds, in 32 minutes. Jonas

Valanciunas recorded a double - double

with 12 points and 11 rebounds, in 22

minutes off the bench. The Raptors

shot 55 percent from the field and

68 percent from long range , while the

76ers shot 55 percent from the field

and 68 percent from behind the arc .

Robert Covington was the high - point

man for the 76ers, with 20 points ,

including 6 - of - 9 from three - point

range. ... The Sixers will look to

bounce back when they visit the New York

Knicks on Monday.

A.4 Top-0.5 Sampling (GPT-50)

The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, at

Air Canada Centre on Saturday. The

Raptors (11 - 6) were able to prevail

despite being outshot, out rebounded

and out - rebounded by the Sixers (7

- 15) in the contest. ... The Raptors

were led by Terrence Ross, who posted

a game - high 22 points on 8 - of - 11

shooting, including 3 - of - 5 from long

range. Kyle Lowry followed up with 24

points, eight assists and four rebounds,

in 32 minutes. Jonas Valanciunas

chipped in 12 points and 11 rebounds, in

22 minutes off the bench. The Raptors

shot a respectable 55 percent from the

field and 68 percent from long range,

but were out - rebounded by the Sixers

by a 52 - 40 margin. Philadelphia

had five players in double figures,

led by Robert Covington, who scored

20 points on 6 - of - 9 shooting from

295

behind the arc. The Sixers will look

to bounce back, as they travel to Boston

to take on the Celtics on Monday. ...

The Raptors will look to extend their

winning streak to four on Monday against

the Orlando Magic.

A.5 Top-0.9 Sampling (GPT-90)
We show summaries from two different seeds for
the least restrictive sampling setting, p = 0.9.
Some details change but most of the content

supported by the data remains the same. Aggre-
gated across the entire set, the information metrics
remain nearly identical. This less restricted model
more frequently outputs hallucinations and sur-
rounding details not supported by the tabular data.

Sample One:
The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, at Air

Canada Centre on Saturday. ... Lowry

added 24 points, eight assists

and four rebounds in 32 minutes.

Jonas Valanciunas scored 12 points

and grabbed 11 rebounds in 22 minutes

as a starter. ...

Sample Two:
The Toronto Raptors defeated the

Philadelphia 76ers, 122 - 95, in

overtime at Air Canada Centre on

Tuesday After a rather lopsided

first quarter, the Raptors came

out flat for the first 40 - plus

minutes of this game. Philadelphia

ended up hanging around for the

final four minutes of regulation , as

Toronto took the lead for good with

16 seconds remaining in regulation.

... In overtime, the Raptors took a

13 - point lead into the locker room

thanks to a clutch 30 - foot field goal

from Terrence Ross with eight seconds

remaining in regulation. ... Kyle

Lowry added 24 points, eight assists

and four rebounds in 32 minutes , while

Jonas Valanciunas added a 12 - point,

11 - rebound double - double in just

22 minutes. ...

296

Proceedings of the 3rd Workshop on Neural Generation and Translation (WNGT 2019), pages 297–301
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Efficiency through Auto-Sizing:
Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task

Kenton Murray Brian DuSell David Chiang
Department of Computer Science and Engineering

University of Notre Dame
{kmurray4,bdusell1,dchiang}@nd.edu

Abstract

This paper describes the Notre Dame Natu-
ral Language Processing Group’s (NDNLP)
submission to the WNGT 2019 shared task
(Hayashi et al., 2019). We investigated the im-
pact of auto-sizing (Murray and Chiang, 2015;
Murray et al., 2019) to the Transformer net-
work (Vaswani et al., 2017) with the goal of
substantially reducing the number of param-
eters in the model. Our method was able to
eliminate more than 25% of the model’s pa-
rameters while suffering a decrease of only 1.1
BLEU.

1 Introduction

The Transformer network (Vaswani et al., 2017)
is a neural sequence-to-sequence model that has
achieved state-of-the-art results in machine trans-
lation. However, Transformer models tend to be
very large, typically consisting of hundreds of mil-
lions of parameters. As the number of parame-
ters directly corresponds to secondary storage re-
quirements and memory consumption during in-
ference, using Transformer networks may be pro-
hibitively expensive in scenarios with constrained
resources. For the 2019 Workshop on Neural Gen-
eration of Text (WNGT) Efficiency shared task
(Hayashi et al., 2019), the Notre Dame Natural
Language Processing (NDNLP) group looked at
a method of inducing sparsity in parameters called
auto-sizing in order to reduce the number of pa-
rameters in the Transformer at the cost of a rela-
tively minimal drop in performance.

Auto-sizing, first introduced by Murray and
Chiang (2015), uses group regularizers to encour-
age parameter sparsity. When applied over neu-
rons, it can delete neurons in a network and shrink
the total number of parameters. A nice advantage
of auto-sizing is that it is independent of model ar-
chitecture; although we apply it to the Transformer

network in this task, it can easily be applied to any
other neural architecture.

NDNLP’s submission to the 2019 WNGT Effi-
ciency shared task uses a standard, recommended
baseline Transformer network. Following Mur-
ray et al. (2019), we investigate the application
of auto-sizing to various portions of the network.
Differing from their work, the shared task used
a significantly larger training dataset from WMT
2014 (Bojar et al., 2014), as well as the goal of
reducing model size even if it impacted transla-
tion performance. Our best system was able to
prune over 25% of the parameters, yet had a BLEU
drop of only 1.1 points. This translates to over 25
million parameters pruned and saves almost 100
megabytes of disk space to store the model.

2 Auto-sizing

Auto-sizing is a method that encourages sparsity
through use of a group regularizer. Whereas the
most common applications of regularization will
act over parameters individually, a group regu-
larizer works over groupings of parameters. For
instance, applying a sparsity inducing regularizer
to a two-dimensional parameter tensor will en-
courage individual values to be driven to 0.0. A
sparsity-inducing group regularizer will act over
defined sub-structures, such as entire rows or
columns, driving the entire groups to zero. De-
pending on model specifications, one row or col-
umn of a tensor in a neural network can corre-
spond to one neuron in the model.

Following the discussion of Murray and Chiang
(2015) and Murray et al. (2019), auto-sizing works
by training a neural network while using a regular-
izer to prune units from the network, minimizing:

L = −
∑

f , e in data

log P(e | f ; W) + λR(‖W‖).

W are the parameters of the model and R is a reg-

297

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: Architecture of the Transformer (Vaswani
et al., 2017). We apply the auto-sizing method to the
feed-forward (blue rectangles) and multi-head attention
(orange rectangles) in all N layers of the encoder and
decoder. Note that there are residual connections that
can allow information and gradients to bypass any layer
we are auto-sizing. Following the robustness recom-
mendations, we instead layer norm before.

ularizer. Here, as with the previous work, we ex-
periment with two regularizers:

R(W) =
∑

i

∑

j

W2
i j

1
2

(`2,1)

R(W) =
∑

i

max
j
|Wi j| (`∞,1)

The optimization is done using proximal gradi-
ent descent (Parikh and Boyd, 2014), which al-
ternates between stochastic gradient descent steps
and proximal steps:

W ← W − η∇ log P(e | f ; w)

W ← arg min
W′

(
1
2η
‖W −W′‖2 + R(W′)

)

3 Auto-sizing the Transformer

The Transformer network (Vaswani et al., 2017) is
a sequence-to-sequence model in which both the

encoder and the decoder consist of stacked self-
attention layers. The multi-head attention uses
two affine transformations, followed by a softmax
layer. Each layer has a position-wise feed-forward
neural network (FFN) with a hidden layer of rec-
tified linear units. Both the multi-head attention
and the feed-forward neural network have residual
connections that allow information to bypass those
layers. In addition, there are also word and posi-
tion embeddings. Figure 1, taken from the original
paper, shows the architecture. NDNLP’s submis-
sion focuses on the N stacked encoder and decoder
layers.

The Transformer has demonstrated remarkable
success on a variety of datasets, but it is highly
over-parameterized. For example, the baseline
Transformer model has more than 98 million pa-
rameters, but the English portion of the training
data in this shared task has only 116 million to-
kens and 816 thousand types. Early NMT mod-
els such as Sutskever et al. (2014) have most of
their parameters in the embedding layers, but the
transformer has a larger percentage of the model in
the actual encoder and decoder layers. Though the
group regularizers of auto-sizing can be applied to
any parameter matrix, here we focus on the pa-
rameter matrices within the encoder and decoder
layers.

We note that there has been some work recently
on shrinking networks through pruning. However,
these differ from auto-sizing as they frequently re-
quire an arbitrary threshold and are not included
during the training process. For instance, See
et al. (2016) prunes networks based off a variety
of thresholds and then retrains a model. Voita
et al. (2019) also look at pruning, but of attention
heads specifically. They do this through a relax-
ation of an `0 regularizer in order to make it dif-
ferentiable. This allows them to not need to use
a proximal step. This method too starts with pre-
trained model and then continues training. Michel
et al. (2019) also look at pruning attention heads
in the transformer. However, they too use thresh-
olding, but only apply it at test time. Auto-sizing
does not require a thresholding value, nor does it
require a pre-trained model.

Of particular interest are the large, position-
wise feed-forward networks in each encoder and
decoder layer:

FFN(x) = W2(max(0,W1x + b1)) + b2.

298

W1

W2

ReLU

Figure 2: Auto-sizing FFN network. For a row in the
parameter matrix W1 that has been driven completely
to 0.0 (shown in white), the corresponding column in
W2 (shown in blue) no longer has any impact on the
model. Both the column and the row can be deleted,
thereby shrinking the model.

W1 and W2 are two large affine transformations
that take inputs from D dimensions to 4D, then
project them back to D again. These layers make
use of rectified linear unit activations, which were
the focus of auto-sizing in the work of Murray and
Chiang (2015). No theory or intuition is given as
to why this value of 4D should be used.

Following (Murray et al., 2019), we apply the
auto-sizing method to the Transformer network,
focusing on the two largest components, the feed-
forward layers and the multi-head attentions (blue
and orange rectangles in Figure 1). Remember
that since there are residual connections allow-
ing information to bypass the layers we are auto-
sizing, information can still flow through the net-
work even if the regularizer drives all the neurons
in a layer to zero – effectively pruning out an entire
layer.

4 Experiments

All of our models are trained using the fairseq im-
plementation of the Transformer (Gehring et al.,
2017).1 For the regularizers used in auto-sizing,
we make use of an open-source, proximal gradient
toolkit implemented in PyTorch2 (Murray et al.,
2019). For each mini-batch update, the stochastic
gradient descent step is handled with a standard
PyTorch forward-backward call. Then the proxi-
mal step is applied to parameter matrices.

4.1 Settings

We used the originally proposed transformer ar-
chitecture – with six encoder and six decoder lay-
ers. Our model dimension was 512 and we used
8 attention heads. The feed-forward network sub-
components were of size 2048. All of our sys-
tems were run using subword units (BPE) with
32,000 merge operations on concatenated source
and target training data (Sennrich and Haddow,
2016). We clip norms at 0.1, use label smoothed
cross-entropy with value 0.1, and an early stop-
ping criterion when the learning rate is smaller
than 10−5. We used the Adam optimizer (Kingma
and Ba, 2015), a learning rate of 10−4, and dropout
of 0.1. Following recommendations in the fairseq
and tensor2tensor (Vaswani et al., 2018) code
bases, we apply layer normalization before a sub-
component as opposed to after. At test time, we
decoded using a beam of 5 with length normal-
ization (Boulanger-Lewandowski et al., 2013) and
evaluate using case-sensitive, tokenized BLEU
(Papineni et al., 2002).

For the auto-sizing experiments, we looked at
both `2,1 and `∞,1 regularizers. We experimented
over a range of regularizer coefficient strengths, λ,
that control how large the proximal gradient step
will be. Similar to Murray and Chiang (2015), but
differing from Alvarez and Salzmann (2016), we
use one value of λ for all parameter matrices in
the network. We note that different regularization
coefficient values are suited for different types or
regularizers. Additionally, all of our experiments
use the same batch size, which is also related to λ.

4.2 Auto-sizing sub-components

We applied auto-sizing to the sub-components of
the encoder and decoder layers, without touching
the word or positional embeddings. Recall from

1https://github.com/pytorch/fairseq
2https://github.com/KentonMurray/ProxGradPytorch

299

System Disk Size Number of Parameters newstest2014 newstest2015
Baseline 375M 98.2M 25.3 27.9

All `2,1 = 0.1 345M 90.2M 21.6 24.1
Encoder `2,1 = 0.1 341M 89.4M 23.2 25.5
Encoder `2,1 = 1.0 327M 85.7M 22.1 24.5

FFN `2,1 = 0.1 326M 85.2M 24.1 26.4
FFN `2,1 = 1.0 279M 73.1M 24.0 26.8

FFN `2,1 = 10.0 279M 73.1M 23.9 26.5
FFN `∞,1 = 100.0 327M 73.1M 23.8 26.0

Table 1: Comparison of BLEU scores and model sizes on newstest2014 and newstest2015. Applying auto-sizing
to the feed-forward neural network sub-components of the transformer resulted in the most amount of pruning
while still maintaining good BLEU scores.

Figure 1, that each layer has multi-head attention
and feed-forward network sub-components. In
turn, each multi-head attention sub-component is
comprised of two parameter matrices. Similarly,
each feed-forward network has two parameter ma-
trices, W1 and W2. We looked at three main exper-
imental configurations:

• All: Auto-sizing is applied to every multi-
head attention and feed-forward network sub-
component in every layer of the encoder and
decoder.

• Encoder: As with All, auto-sizing is applied
to both multi-head attention and feed-forward
network sub-components, but only in the en-
coder layers. The decoder remains the same.

• FFN: Auto-sizing applied only to the feed-
forward network sub-components W1 and
W2, but not to the multi-head portions. This
too is applied to both the encoder and de-
coder.

4.3 Results
Our results are presented in Table 1. The base-
line system has 98.2 million parameters and a
BLEU score of 29.7. It takes up 375 megabytes on
disk. Our systems that applied auto-sizing only to
the feed-forward network sub-components of the
transformer network maintained the best BLEU
scores while also pruning out the most parame-
ters of the model. Overall, our best system used
`2,1 = 1.0 regularization for auto-sizing and left
73.1 million parameters remaining. On disk, the
model takes 279 megabytes to store – roughly
100 megabytes less than the baseline. The perfor-
mance drop compared to the baseline is 1.1 BLEU
points, but the model is over 25% smaller.

Applying auto-sizing to the multi-head atten-
tion and feed-forward network sub-components of
only the encoder also pruned a substantial amount
of parameters. Though this too resulted in a
smaller model on disk, the BLEU scores were
worse than auto-sizing just the feed-forward sub-
components. Auto-sizing the multi-head atten-
tion and feed-forward network sub-components of
both the encoder and decoder actually resulted in
a larger model than the encoder only, but with a
lower BLEU score. Overall, our results suggest
that the attention portion of the transformer net-
work is more important for model performance
than the feed-forward networks in each layer.

5 Conclusion

In this paper, we have investigated the impact of
using auto-sizing on the transformer network of
the 2019 WNGT efficiency task. We were able
to delete more than 25% of the parameters in the
model while only suffering a modest BLEU drop.
In particular, focusing on the parameter matrices
of the feed-forward networks in every layer of the
encoder and decoder yielded the smallest models
that still performed well.

A nice aspect of our proposed method is that
the proximal gradient step of auto-sizing can be
applied to a wide variety of parameter matri-
ces. Whereas for the transformer, the largest im-
pact was on feed-forward networks within a layer,
should a new architecture emerge in the future,
auto-sizing can be easily adapted to the trainable
parameters.

Overall, NDNLP’s submission has shown that
auto-sizing is a flexible framework for pruning pa-
rameters in a large NMT system. With an ag-
gressive regularization scheme, large portions of

300

the model can be deleted with only a modest im-
pact on BLEU scores. This in turn yields a much
smaller model on disk and at run-time.

Acknowledgements

This research was supported in part by University
of Southern California, subcontract 67108176 un-
der DARPA contract HR0011-15-C-0115.

References
Jose M Alvarez and Mathieu Salzmann. 2016. Learn-

ing the number of neurons in deep networks. In Ad-
vances in Neural Information Processing Systems,
pages 2270–2278.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In Pro-
ceedings of the ninth workshop on statistical ma-
chine translation, pages 12–58.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. 2013. Audio chord recognition with
recurrent neural networks. In Proc. International
Society for Music Information Retrieval, pages 335–
340.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In Proc. ICML.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Constas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the Third Workshop
on Neural Generation and Translation.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proc.
ICLR.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in Neural Information Processing Systems.

Kenton Murray and David Chiang. 2015. Auto-sizing
neural networks: With applications to n-gram lan-
guage models. In Proc. EMNLP.

Kenton Murray, Jeffery Kinnison, Toan Q. Nguyen,
Walter Scheirer, and David Chiang. 2019. Auto-
sizing the transformer network: Improving speed,
efficiency, and performance for low-resource ma-
chine translation. In Proceedings of the Third Work-
shop on Neural Generation and Translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL,
pages 311–318.

Neal Parikh and Stephen Boyd. 2014. Proximal al-
gorithms. Foundations and Trends in Optimization,
1(3):123–231.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proc. First Conference on Machine Translation:
Volume 1, Research Papers, volume 1, pages 83–91.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

301

Author Index

Aji, Alham Fikri, 80
Andrews, Martin, 215
Ataman, Duygu, 187

Berard, Alexandre, 168, 273
Besacier, Laurent, 273
Bhat, Gayatri, 199
Birch, Alexandra, 1, 187
Bogoychev, Nikolay, 280
Brockett, Chris, 32
Budzianowski, Paweł, 15

Calapodescu, Ioan, 168, 273
Chali, Yllias, 70, 249
Chan, William, 194
Chiang, David, 231, 297
Cho, Woon Sang, 32
Clinchant, Stephane, 108
Collier, Nigel, 118
Crego, Josep, 148, 262
Cui, Hongyi, 206
Currey, Anna, 99

Di Gangi, Mattia A., 187
Ding, Xiaoan, 44
Dou, Zi-Yi, 59
DuSell, Brian, 297
Dymetman, Marc, 168

Egonmwan, Elozino, 70, 249

Federico, Marcello, 187
Fikri Aji, Alham, 280
Finch, Andrew, 1
Firat, Orhan, 187

Gao, Shuyang, 90
Gimpel, Kevin, 44, 138
GONG, Li, 148, 262
Goyal, Anuj, 90
Grundkiewicz, Roman, 280

Haffari, Gholamreza, 177, 256
Hassan, Hany, 280, 289
Hayashi, Hiroaki, 1
Heafield, Kenneth, 80, 99, 280

Hu, Junjie, 59
Hung, Po-Hsuan, 206

Iida, Shohei, 206
Imamura, Kenji, 23

Jost, Jürgen, 128
Junczys-Dowmunt, Marcin, 280
Jung, Kweon Woo, 108

Kambhatla, Nishant, 221
Kim, Young Jin, 280
Kinnison, Jeffery, 231
Konstas, Ioannis, 1
Kumar, Sachin, 199

Lapata, Mirella, 268
Lee, Sungjin, 32
Li, Lala, 194
Li, Yingzhen, 118
Luong, Minh-Thang, 1

Malandrakis, Nikolaos, 90
Mallinson, Jonathan, 268
Marone, Marc, 289
Maruf, Sameen, 256
Metallinou, Angeliki, 90
Meunier, Jean-Luc, 168
Miculicich, Lesly, 289
Moradi, Pooya, 221
Murray, Kenton, 231, 297

Nagaev, Aleksander, 128
Nagata, Masaaki, 206
Neubig, Graham, 1, 59
Nguyen, Toan Q., 231
Nikoulina, Vassilina, 108, 168

Oda, Yusuke, 1

Pang, Richard Yuanzhe, 138
Park, Chan Young, 241
Pilehvar, Mohammad Taher, 118
Prokhorov, Victor, 118
Puduppully, Ratish, 268

303

Rao, Sudha, 32
Roux, Claude, 168

Saleh, Fahimeh, 273
Sarkar, Anoop, 221
Scheirer, Walter, 231
Schmidt, Florian, 157
Senellart, Jean, 148, 262
Sethi, Abhishek, 90
Shareghi, Ehsan, 118
Shen, Minmin, 90
Shibaev, Viacheslav, 128
Sudoh, Katsuhito, 1
Sumita, Eiichiro, 23

Tikhonov, Alexey, 128
Tsvetkov, Yulia, 199, 241
Tu, Lifu, 44

Utsuro, Takehito, 206

Vulić, Ivan, 15

Wang, Xinyi, 59
Witteveen, Sam, 215

Yamshchikov, Ivan P., 128
Yu, Dong, 44

Zaremoodi, Poorya, 177
Zhang, Yizhe, 32

	Program
	Findings of the Third Workshop on Neural Generation and Translation
	Hello, It's GPT-2 - How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems
	Recycling a Pre-trained BERT Encoder for Neural Machine Translation
	Generating a Common Question from Multiple Documents using Multi-source Encoder-Decoder Models
	Generating Diverse Story Continuations with Controllable Semantics
	Domain Differential Adaptation for Neural Machine Translation
	Transformer-based Model for Single Documents Neural Summarization
	Making Asynchronous Stochastic Gradient Descent Work for Transformers
	Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents
	Zero-Resource Neural Machine Translation with Monolingual Pivot Data
	On the use of BERT for Neural Machine Translation
	On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Generation
	Decomposing Textual Information For Style Transfer
	Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual Transfer
	Enhanced Transformer Model for Data-to-Text Generation
	Generalization in Generation: A closer look at Exposure Bias
	Machine Translation of Restaurant Reviews: New Corpus for Domain Adaptation and Robustness
	Adaptively Scheduled Multitask Learning: The Case of Low-Resource Neural Machine Translation
	On the Importance of Word Boundaries in Character-level Neural Machine Translation
	Big Bidirectional Insertion Representations for Documents
	A Margin-based Loss with Synthetic Negative Samples for Continuous-output Machine Translation
	Mixed Multi-Head Self-Attention for Neural Machine Translation
	Paraphrasing with Large Language Models
	Interrogating the Explanatory Power of Attention in Neural Machine Translation
	Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation
	Learning to Generate Word- and Phrase-Embeddings for Efficient Phrase-Based Neural Machine Translation
	Transformer and seq2seq model for Paraphrase Generation
	Monash University’s Submissions to the WNGT 2019 Document Translation Task
	SYSTRAN @ WNGT 2019: DGT Task
	University of Edinburgh’s submission to the Document-level Generation and Translation Shared Task
	Naver Labs Europe’s Systems for the Document-Level Generation and Translation Task at WNGT 2019
	From Research to Production and Back: Ludicrously Fast Neural Machine Translation
	Selecting, Planning, and Rewriting: A Modular Approach for Data-to-Document Generation and Translation
	Efficiency through Auto-Sizing:Notre Dame NLP’s Submission to the WNGT 2019 Efficiency Task

