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2 Université Paris Saclay
3 INRIA Paris
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Abstract

We present an approach to correct noisy User
Generated Content (UGC) in French aiming
to produce a pre-processing pipeline to im-
prove Machine Translation for this kind of non-
canonical corpora. Our approach leverages
the fact that some errors are due to confusion
induced by words with similar pronunciation
which can be corrected using a phonetic look-
up table to produce normalization candidates.
We rely on a character-based neural model
phonetizer to produce IPA pronunciations of
words and a similarity metric based on the IPA
representation of words that allow us to iden-
tify words with similar pronunciation. These
potential corrections are then encoded in a lat-
tice and ranked using a language model to out-
put the most probable corrected phrase. Com-
pared to other phonetizers, our method boosts
a Transformer-based machine translation
system on UGC.

1 Introduction

In this work we aim to improve the translation qual-
ity of User-Generated Content (UGC). This kind
of content generally contains many characters rep-
etitions, typographic errors, contractions, jargon
or non-canonical syntactic constructions, resulting
in a typically high number of Out-of-Vocabulary
words (OOVs), which, in turn, significantly de-
creases MT quality and can introduce noisy arte-
facts in the output due to rare tokens. Hereby, we
propose a normalization pipeline that leverages on
the existence of UGC specific noise due to the mis-
use of words or OOV contractions that have a simi-
lar pronunciation to those of the expected correct to-
kens. This method works without any supervision
on noisy UGC corpora, but exploits phonetic sim-
ilarity to propose normalization token candidates.
To explore the capacities of our system, we first
assess the performance of our normalizer and then

conduct a series of MT experiments to determine
if our method improves the translation quality of
some Phrase-Based Statistical Machine Translation
(PBSMT) and Neural Machine Translation (NMT)
baselines. Our results show that including a phone-
tization step in conjunction with a Transformer
architecture (Vaswani et al., 2017) can improve
machine translation over UGC with a minimum
impact on in-domain translations. This suggests
that phonetic normalization can be a promising re-
search avenue for MT and automatic correction of
UGC.

Our contribution in this paper is threefold:

• we propose a pre-processing pipeline to nor-
malize UGC and improve MT quality;

• by quantifying the corrections made by our
normalizer in our UGC corpora, we assess
the presence of noise due to phonetic writing
and demonstrate that this knowledge can be
potentially exploited to produce corrections
of UGC without any annotated data;

• we explore the performance improvement that
can be achieved in machine translation by us-
ing a phonetic similarity heuristic to propose
different normalization candidates.

2 Related Work

Several works have focused on using lattices to
model uncertain inputs or potential processing er-
rors that occur in the early stage of the pipeline.
For instance, Su et al. (2017) proposed lat2seq,
an extension of seq2seq models (Sutskever et al.,
2014) able to encode several possible input possi-
bilities by conditioning their GRU output to sev-
eral predecessors’ paths. The main issue with this
model is that it is unable to predict the score of
choosing a certain path by using future scores, i.e,
by considering words that come after the current
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token to be potentially normalized. Sperber et al.
(2017) introduced a model based on Tree-LSTMs
(Tai et al., 2015), to correct outputs of an Automatic
Speech Recognition (ASR) system. On the other
hand, Le et al. (2008) use lattices composed of writ-
ten subword units to improve recognition rate on
ASR.

However, none of the aforementioned works
have focused on processing noisy UGC corpora
and they do not consider our main hypotheses of
using phonetizers to recover correct tokens. They
aim to correct known tokens such that a neural
language model chooses the best output when an
uncertain input is present (typically words with sim-
ilar pronunciation from an ASR output). Instead,
our approach calculates the phonetization of the
source token and candidates are proposed based on
their phonetic similarity to it, where this original
observation can be a potential OOV.

On the same trend, (Qin et al., 2012) com-
bined several ASR systems to improve detection of
OOVs. More recently, van der Goot and van No-
ord (2018) achieved state-of-the-art performance
on dependency parsing of UGC using lattices.

Closely related to our work, Baranes (2015) ex-
plored several normalization techniques on French
UGC. In particular, to recover from typographical
errors, they considered a rule-based system, SxPipe
(Sagot and Boullier, 2008), that produced lattices
encoding OOVs alternative spelling and used a lan-
guage model to select the best correction.

Several works have explored different ap-
proaches to normalize noisy UGC in various lan-
guages. For instance, Stymne (2011) use Approx-
imate String Matching, an algorithm based on a
weighted Levenshtein edit distance to generate
lattices containing alternative spelling of OOVs.
Wang and Ng (2013) employ a Conditional Ran-
dom Field and a beam-search decoding approach
to address missing punctuation and words in Chi-
nese and English social media text. More recently,
Watson et al. (2018) proposed a neural sequence-to-
sequence embedding enhancing FastText (Bo-
janowski et al., 2017) representations with word-
level information, which achieved state-of-the-art
on the QALB Arabic normalization task (Mohit
et al., 2014).

3 Phonetic Correction Model

To automatically process phonetic writing and map
UGC to their correct spelling, we propose a sim-

ple model based on finding, for each token of the
sentence, words with similar pronunciations and
selecting the best spelling alternative, using a lan-
guage model. More precisely, we propose a four-
step process:

1. for each word of the input sentence, we au-
tomatically generate its pronunciation. We
consider all words in the input sentence as
misspelled tokens are not necessarily OOVs
(e.g. “j’ai manger” — literally “I have eat” —
which must be corrected to “j’ai mangé” — “I
have eaten”, the French words “manger” and
“mangé” having both the same pronunciation
/mÃ.ge/);

2. using these phonetic representations, we look,
for each word w of the input sentence, to every
word in the training vocabulary with a pronun-
ciation “similar” to w according to an ad-hoc
metric we discuss below;

3. we represent each input sentence by a lattice
of n + 1 nodes (where n is the number of
words in the sentence) in which the edge be-
tween the i-th and (i+ 1)-th nodes is labeled
with the i-th word of the sentence. Alternative
spellings can then be encoded by adding an
edge between the i-th and (i + 1)-th nodes
labeled by a possible correction of the i-th
word. Figure 1 gives an example of such a
lattice. In these lattices, a path between the
initial and final nodes represents a (possible)
normalization of the input sentence.

4. using a language model, we compute the prob-
ability to observe each alternative spelling of
the sentence (note that, by construction, the
input sentence is also contained in the lattice)
and find the most probable path (and there-
fore potential normalization) of the input sen-
tence. Note that finding the most probable
path in a lattice can be done with a complex-
ity proportional to the size of the sentence
even if the lattice encodes a number of paths
that grows exponentially with the sentence
size (Mohri, 2002). In our experiments we
used the OpenGRM (Roark et al., 2012) and
OpenFST (Allauzen et al., 2007) frameworks
that provide a very efficient implementation
to score a lattice with a language model.

This process can be seen as a naive spellchecker, in
which we only consider a reduced set of variations,
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tailored to the specificities of UGC texts. We will
now detail the first two steps discussed above.

Generating the pronunciation of the input
words To predict the pronunciation of an in-
put word, i.e. its representation in the Inter-
national Phonetic Alphabet (IPA), we use the
gtp-seq2seq python library1 to implement a
grapheme-to-phoneme conversion tool that relies
on a Transformer model (Vaswani et al., 2017).
We use a 3 layers model with 256 hidden units
that is trained on a pronunciation dictionary auto-
matically extracted from Wiktionary (see Sec-
tion 4.1 for a description of our datasets). This
vanilla model achieves a word-level accuracy of
94.6%, that is to say it is able to find the exact cor-
rect phonetization of almost 95% of the words of
our test set.

We also consider, as a baseline, the pronuncia-
tion generated by the Espeak program.2 that uses
a formant synthesis method to produce phonetiza-
tions based on acoustic parameters.

Finding words with similar pronunciation In
order to generate alternatives spelling for each in-
put word, we look, in our pronunciation dictio-
nary,3 for alternate candidates based on phonetic
similarity. We define the phonetic similarity of
two words as the edit distance between their IPA
representations, all edit operations being weighted
depending on the articulatory features of the sounds
involved. To compute the phonetic similarity we
used the implementation (and weights) provided
by the PanPhon library (Mortensen et al., 2016).

To avoid an explosion of the number of alter-
natives we consider, we have applied a threshold
on the phonetic distance and consider only homo-
phones, i.e. alternatives that have the exact same
pronunciation as the original word.4

To account for peculiarities of French orthog-
raphy we also systematically consider alternative
spellings in which diacritics (acute, grave and cir-
cumflex accents) for the letter “e” (which is the
only one that changes the pronunciation for differ-
ent accentuation in French) were added wherever

1https://github.com/cmusphinx/
g2p-seq2seq

2espeak.sourceforge.net
3see § 4.1 for the description of the data we used
4We have explored using several values for this parameter

but in this work only the most conservative distance (0) is
used since higher values add too much candidates and rapidly
decreases performance due to the number of ambiguities.

possible. Indeed, users often tend to ‘forget’ dia-
critics when writing online and this kind of spelling
error results in phonetic distances that can be large
(e.g. the pronunciation of bebe and bébé is very
different).

We ultimately only keep as candidates those that
are present in the train corpus of Section 4.3 to
filter out OOV, and nonexistent words.

4 Datasets

In this section, we present the different corpora
used in this work. We will first describe the dataset
used to train our phonetic normalizer; then, in §4.2,
the UGC corpora used both to measure the perfor-
mance of our normalization step and evaluate the
impact of phonetic spelling on machine translation.
Finally, in § 4.3 we introduce the (canonical) paral-
lel corpora we used to train our MT system. All our
experiments are made on French UGC corpora.5

Some statistics describing these corpora are listed
in Table 1.

4.1 Pronunciation Dictionary
To train our Grapheme-to-Phoneme model we use
a dictionary mapping words to their pronuncia-
tion (given by their IPA representation). To the
best of our knowledge, there is no free pronunci-
ation dictionary for French. In our experiments,
we have considered a pronunciation dictionary au-
tomatically extracted from Wiktionary dumps
building on the fact that, at least for French, pro-
nunciation information are identified using special
templates, which makes their extraction straightfor-
ward (Pécheux et al., 2016).6

The dictionary extracted from the French
Wiktionary contains 1,571,090 words. We
trained our G2P phonetizer on 1,200,000 exam-
ples, leaving the rest to evaluate its performance.
When looking for words with similar pronuncia-
tion (§3), we consider only the word that appear
in our parallel training data (described in §4.3) to
speed up the search. After filtering, our dictionary
contained pronunciation information for roughly
82K French words.

4.2 UGC Corpora
The Parallel Cr#pbank corpus The Parallel
Cr#pbank, introduced in (Rosales Núñez et al.,

5Applying our work to other languages is straightforward
and left to future work.

6Our French pronunciation dictionary will be made avail-
able upon publication.

https://github.com/cmusphinx/g2p-seq2seq
https://github.com/cmusphinx/g2p-seq2seq
espeak.sourceforge.net
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Figure 1: Example of lattice for a segment of a Cr#pbank UGC sample.

Corpus #sentences #tokens ASL TTR

train set
WMT 2.2M 64.2M 29.7 0.20
Small 9.2M 57.7M 6.73 0.18
Large 34M 1.19B 6.86 0.25

test set
OpenSubTest 11,000 66,148 6.01 0.23
NeswTest 3,003 68,155 22.70 0.23

Corpus #sentences #tokens ASL TTR

UGC test set
Cr#pbank 777 13,680 17.60 0.32
MTNT 1,022 20,169 19.70 0.34

UGC blind test set
Cr#pbank 777 12,808 16.48 0.37
MTNT 599 8,176 13.62 0.38

Table 1: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token

Ratio, ASL for average sentence length.

2019), consists of 1,554 comments in French, trans-
lated from an extension of the French Social Me-
dia Bank (Seddah et al., 2012) annotated with the
following linguistic information: Part-of-Speech
tags, surface syntactic representations, as well as
a normalized form whenever necessary. Com-
ments have been translated from French to En-
glish by a native French speaker with near-native
English speaker capabilities. Typographic and
grammar error were corrected in the gold transla-
tions but some of the specificities of UGC were
kept. For instance, idiomatic expressions were
mapped directly to the corresponding ones in En-
glish (e.g. “mdr” (mort de rire, litt. dying of
laughter) has been translated to “lol” and let-
ter repetitions were also kept (e.g. “ouiii” has
been translated to “yesss”). For our experiments,
we have divided the Cr#pbank into two sets
(test and blind) containing 777 comments each.
This corpus can be freely downloaded at https:
//gitlab.inria.fr/seddah/parsiti.

The MTNT corpus We also consider in our ex-
periments, the MTNT corpus (Michel and Neubig,
2018), a multilingual dataset that contains French
sentences collected on Reddit and translated into
English by professional translators. We used their
designated test set and added a blind test set of 599
sentences we sampled from the MTNT validation
set. The Cr#pbank and MTNT corpora both differ
in the domain they consider, their collection date,
and in the way sentences were filtered to ensure
they are sufficiently different from canonical data.

4.3 Canonical Parallel Corpora

To train our MT systems, we use the ‘stan-
dard’ parallel data, namely the Europarl and
NewsCommentaries corpora that are used in
the WMT evaluation campaign (Bojar et al., 2016)
and the OpenSubtitles corpus (Lison et al.,
2018). We will discuss the different training data
configurations for the MT experiments more in de-
tail in Section 5.

We also use the totality of the French part of
these corpora to train a 5-gram language model
with Knesser-Ney smoothing (Ney et al., 1994)
that is used to score possible rewritings of the input
sentence and find the best normalization, as we
have discussed in Section 3.

5 Machine Translation Experiments

To evaluate whether our approach improve the
translation quality of UGC, we have processed all
of our test sets, both UGC and canonical ones with
our phonetic normalization pipeline (Section 3).
The corrected input sentences are then translated
by a phrase-based and NMT systems.7 We evalu-
ate translation quality using SACREBLEU (Post,
2018).

The MT baselines models were trained us-
ing the parallel corpora described in Section 4.3.
We use 3 training data configurations in our ex-
periments: WMT, Small OpenTestand Large

7In our experiments we used Moses (Koehn et al., 2007)
and OpenNMT (Klein et al., 2018).

https://gitlab.inria.fr/seddah/parsiti
https://gitlab.inria.fr/seddah/parsiti


411

PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.5 21.2 22.5† 13.3 15.4 21.2 27.4† 16.3
Small 28.9 27.3 20.4 26.1† 27.5 28.3 26.7 31.4†
Large 30.0 28.6 22.3 27.4† 26.9 28.3 26.6 31.5†

Table 2: BLEU score results for our two benchmark models for the different train-test combinations. None
of the test sets are normalized. The best result for each test set is marked in bold, in-domain scores with a
dag. Crap, News and Open respectively stand for the Cr#pbank, NeswTest and OpenSubTest.

PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.4 20.2 21.9† 13.4 15.0 20.4 26.7† 16.2

Small 28.4 26.2 19.9 26.1† 29.0 28.3 25.7 31.4†

Large 29.0 27.6 21.8 27.4† 28.5 28.2 25.9 31.5†

(a) (G2P) phonetizer.

PBSMT Transformer
Crap MTNT News Open Crap MTNT News Open

WMT 20.4 20.4 21.7† 13.4 14.6 20.7 26.5† 16.1

Small 28.0 26.3 19.8 26.2† 28.5 28.8 25.6 31.4†

Large 28.3 27.7 21.6 27.4† 27.5 28.6 25.8 31.5†

(b) (Espeak) phonetizer.

Table 3: BLEU score results for our three benchmark models on normalized test sets. The best result for
each test set is marked in bold, in-domain scores with a dag.

OpenTest, for which Table 1 reports some statis-
tics. We will denote Small and Large the two
OpenSubtitles training sets used in the MT
experiments. For every model, we tokenize the
training data using byte-pair encoding (Sennrich
et al., 2016) with a 16K vocabulary size.

BLEU scores for our normalized test sets are
reported in Table 3a and Table 3b, for the G2P
and Espeak phonetizers. Results of the unpro-
cessed test sets are reported in Table 2. We present
some UGC examples of positive and negative re-
sults along with their normalization and translation
in Table 6.

6 Results Discussion

We noticed significant improvement in results
for the UGC test corpora when using the
Transformer architecture trained with the
Small OpenTesttraining set. Specifically, a
BLEU score improvement for the Cr#pbank and
MTNT test corpora in Tables 3a and 3b, com-
pared to the baseline translation in Table 2. In-
terestingly, these improvements only hold for
the Transformer model, whereas we consis-
tently obtain a slight decrease of BLEU scores

when the normalized text is translated using the
PBSMT model. Moreover, our trained G2P phone-
tizer achieved the best improvement over the
Cr#pbank corpus, attaining +1.5 BLEU points
compared to the baseline. On the other hand, the
Espeak phonetizer produces the highest trans-
lation improvement on the MTNT corpus (+0.5
BLEU).

Regarding the performance decrease on our
non-UGC test corpora, newstest’14 and
OpenSubtitles, we observe that there is usu-
ally a considerable under-performance on the lat-
ter (-0.65 BLEU averaging over our 6 model
and training set configurations), that is not as no-
ticeable in the former (-0.1 BLEU in the worst
case). This could be explained by the substantially
longer sentences in newstest’14 compared to
OpenSubtitles, which have roughly 6 times
more words in average according to Table 1. When
sentences are longer, the number of possible lattices
paths grow exponentially, thus adding confusion to
our language model decisions that will ultimately
produce the most probable normalization. Such
observation strongly suggests that our normaliz-
ing method performances is somewhat dependent
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Figure 2: Bar plot of the BLEU score for the Cr#pbank test set translation divided in sentences’ length
groups.

on the length of the target sentence that are to be
normalized.

In addition, we display the number of replace-
ments performed by our normalizer over the
Cr#pbank test set for several values of the pho-
netic distance threshold in Figure 3. We can no-
tice that the higher this threshold is, the higher the
number of replacements. In our experience, the
normalization candidates proposed by our method
do not share a close pronunciation for threshold
values above 0.2, thus adding a substantial quantity
of spurious ambiguities.

We have also calculated and proceed to dis-
play the BLEU score of the Cr#pbank corpus
by groups of sentences length in Figure 2 in order
to further investigate why our method enhances the
Transformer MT systems output, whereas this
is not the case for the PBSMT models, as seen in
Table 3. In this way, in Figure 2, we can notice that
the highest improvement caused by our phonetic
normalization pipeline is present in short sentences
(between 1 and 10 words). It is worth noting that
this is the only case where the Transformer
outperforms PBSMT in this Figure. Hence, the
higher overall Transformer BLEU score over
PBSMT is certainly due to a relatively high success-
ful normalization over the shortest sentences of the
Cr#pbank test set. This agrees with the docu-
mented fact that NMT is consistently better than
PBSMT on short sentences (Bentivogli et al., 2016)
and, in this concrete example, it seems that the
Transformer can take advantage of this when
we apply our normalization pipeline. Additionally,
these results could be regarded as evidence support-
ing that our proposed method performs generally

better for short sentences, as observed in Table 3
results’ discussion.

Blind Tests
System MTNT Cr#pbank

Large - PBSMT Raw 29.3 30.5
Large - PBSMT Phon. Norm 26.7 26.9

Small - Transformer Raw 25.0 19.0
Small - Transformer Phon. Norm 24.5 18.3

M&N18 Raw 19.3 13.3
M&N18 UNK rep. Raw 21.9 15.4

Table 4: BLEU score results comparison on the
MTNT and Cr#pbank blind test sets. The G2P
phonetizer has been used for normalization.M&N18

stands for (Michel and Neubig, 2018)’s baseline system.

Furthermore, we have applied our method over
a blind test set of the UGC corpora MTNT and
Cr#pbank. These results are displayed in Table 4,
we also show the performance of the (Michel and
Neubig, 2018)’s baseline system on such test sets.
The translation system is selected as the best for
each of the UGC sets from Table 3. For such test
corpus, we noticed a 0.5 and a 3 BLEU points
decrease for Transformer and PBSMT systems,
respectively, when our normalizer is used over the
MTNT blind test. On the other hand, we obtained a
0.7 BLUE point loss for the Transformer and a
3.6 point drop for PBSMT, both on the Cr#pbank
blind test. These results suggest that, when we do
not tune looking for the best translation system,
and for certain UGC, our approach introduces too
much noise and MT performance can therefore be
detrimentally impacted.
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Normalization a→à sa→ça et→est la→là à→a tous→tout des→de regarder→regardé ils→il prend→prends
Number of app. 87 16 15 13 12 11 8 7 6 6

Table 5: Most frequent normalization replacements on the Cr#pbank test corpus.
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Figure 3: Number of replacement operations of
our normalizer over the Cr#pbank test set. The
quantity of non-homophones normalizations are
displayed as point labels.

7 Qualitative Analysis

We display the most frequent normalization
changes in the Cr#pbank test set, along with their
phonetic distance in Table 5. We notice that the
20 most frequent normalization changes are ho-
mophones, i.e. they have a 0.0 phonetic distance
even when the threshold is set to 0.2.8 Replace-
ments with a phonetic distance of 0.1 to 0.2, appear
at most twice in this test set, except for “apres”
→“après” and “tt” →“td” that appear, respec-
tively, 6 and 4 times.

Table 6 reports some examples of the output of
our method along with their translation before and
after correction.

For Example 6.1, we can notice that our normal-
izer enables the MT system to produce the first
part of the translation (“When I get to the taff ”).
This is a result of correctly changing the French
homophones “arriver”→ “arrivé”, i.e. from the
infinitive to the past form. It is very interesting
to notice that the robustness of the Transformer
using subword units seems to be good enough to
correctly translate the typographical error “ce met
a battre”, thus, the correct proposed normalization
(“se met à battre”) does not impact the MT result
but it certainly does impact the correctness of the

8This is the highest value for which we consider a related
pronunciation, according to our preliminary trials.

French phrase.
Regarding Example 6.2, we can notice that our

normalized proposition significantly improves MT
translation, producing an output closer to the refer-
ence translation, when compared to the raw MT out-
put. The key normalization change is the misused
French token “faite” (pronounced /fEt/) — “does”
in English — by its correct homophone “fête” —
“celebrates” in English —. It is worth noting that
the MT system robustness is once again capable of
correctly translating a phonetic contraction “c” as
the two correct tokens “c’est”.

Example 6.3 shows how semantically different
can be a misused French word due to homophones
confusion. We can observe that the normaliza-
tion replacement “nez” (“nose” in English)→ “né”
(“born” in English), which are French homophones,
drastically changes the meaning of the output trans-
lation. Additionally, the correction “marqué”→

“marquer”9 (changing to correct verb tense) also
causes the translation to be closer to the reference.

Finally, in Example 6 we display some incon-
veniences for our method, where the correct orig-
inal plural “Cartes bancaires ... restrouvés” was
changed to the singular form “Carte bancaire ...
retrouvé”. This is due to the homophonic property
of most French singular and plural pronunciations.
Whenever there is no discriminant token with dif-
ferent pronunciation, such as an irregular verb, the
language model has trouble choosing the correct
final normalized phrase since both plural and sin-
gular propositions are proposed as candidates and
can be indistinctly kept as final normalization since
both forms are correct and theoretically very simi-
lar in their perplexity measure.

8 Conclusions

In this work, we have proposed a pre-processing
method that relies on phonetic similarity to normal-
ize UGC. Our method is able to improve the trans-
lation quality of UGC of a state-of-the-art NMT
system. Conversely, we have performed error anal-
ysis showing that the MT system achieves to cor-
rectly translate phonetic-related errors with its in-
creased robustness. However, it must be noted that

9marked vs mark-INFINITIVE in English.



414

À src arriver au taff, des que j’ouvre le magasin je commence a avoir le vertige mon coeur ce met a battre a
200 et je sens que je vais faire un malaise,

ref once at work, as soon as I open the store I’m starting to feel dizzy my heart starts racing at 200 and I
feel I’m gonna faint,

raw MT I start to get dizzy. My heart starts to beat at 200 and I feel like I’m going to faint.
norm arrivé au taff, dès que j’ouvre le magasin je commence à avoir le vertige mon coeur se met à battre à

200 et je sens que je vais faire un malaise,
norm MT When I get to the taff, as soon as I open the store, I start to get dizzy. My heart starts pounding at 200

and I feel like I’m gonna get dizzy.

Á src c un peu plus que mon ami qui faite son annif,
ref it’s a bit more than a friend to me who celebrate his birthday,
raw MT It’s a little more than my friend doing his birthday,
norm c un peu plus que mon amie qui fête son annif
norm MT It’s a little more than my friend celebrating her birthday,

Â src zlatan est nez pour marqué
ref Zlatan was born to score
raw MT Zlatan’s nose is for marking
norm zlatan est né pour marquer
norm MT Zlatan was born to score

Ã src Cartes bancaires de Zlatan retrouvés dans un taxi... On en parle ou pas WWW44
ref Zlatan’s bank cards found in a cab... we talk about it or not WW44
raw MT Zlatan’s bank cards found in a cab... we talk about it or not WW44
norm Carte bancaire de Zlatan retrouvé dans un taxi... On en parle ou pas WWW44
norm MT Zlatan bank card found in a taxi... we talk about it or not WWW44

Table 6: Examples from our noisy UGC corpus.

we obtained negative results on a blind test evalu-
ation, suggesting that the phonetic normalization
approach introduced more noise than useful cor-
rections on totally unseen data. This highlights
the importance of holding out data so that the real
efficiency of an MT system can be verified. In
addition, we have applied our normalizer to clean
canonical test data and have shown that it slightly
hurts MT quality. Further study is needed to assess
whether our proposed normalization pipeline can
correct phonetic-related errors on UGC for other
languages and other difficult UGC scenarios, such
as video-games chat logs (Martı́nez Alonso et al.,
2016) while maintaining the level of the perfor-
mance on cleanly edited text steady.
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