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Abstract

The Princeton WordNet is a powerful tool
for studying language and developing nat-
ural language processing algorithms. With
significant work developing it further, one
line considers its extension through aligning
its expert-annotated structure with other lex-
ical resources. In contrast, this work ex-
plores a completely data-driven approach to
network construction, forming a wordnet us-
ing the entirety of the open-source, noisy, user-
annotated dictionary, Wiktionary. Compar-
ing baselines to WordNet, we find compelling
evidence that our network induction process
constructs a network with useful semantic
structure. With thousands of semantically-
linked examples that demonstrate sense usage
from basic lemmas to multiword expressions
(MWEs), we believe this work motivates fu-
ture research.

1 Introduction

Wiktionary is a free and open-source collaborative
dictionary1 (Wikimedia). With the ability for any-
one to add or edit lemmas, definitions, relations,
and examples, Wiktionary has the potential to be
larger and more diverse than any printable dic-
tionary. Wiktionary features a rich set of exam-
ples of sense usage for many of its lemmas which,
when converted to a usable format, supports lan-
guage processing tasks such as sense disambigua-
tion (Meyer and Gurevych, 2010a; Matuschek
and Gurevych, 2013; Miller and Gurevych, 2014)
and MWE identification (Muzny and Zettlemoyer,
2013; Salehi et al., 2014; Hosseini et al., 2016).
With natural alignment to other languages, Wik-
tionary can likewise be used as a resource for ma-
chine translation tasks (Matuschek et al., 2013;
Borin et al., 2014; Göhring, 2014). With these
uses in mind, this work introduces the creation

1https://www.wiktionary.org/

of a network—much like the Princeton Word-
Net (Miller, 1995; Fellbaum, 1998)—that is con-
structed solely from the semi-structured data of
Wiktionary. This relies on the noisy annotations
of the editors of Wiktionary to naturally induce a
network over the entirety of the English portion of
Wiktionary. In doing so, the development of this
work produces:

• an induced network over Wiktionary, en-
riched with semantically linked examples,
forming a directed acyclic graph (DAG);

• an exploration of the task of relationship dis-
ambiguation as a means to induce network
construction; and

• an outline for directions of expansion, includ-
ing increasing precision in disambiguation,
cross-linking example usages, and aligning
English Wiktionary with other languages.

We make our code freely available2, which in-
cludes code to download data, to disambiguate
relationships between lemmas, to construct net-
works from disambiguation output, and to interact
with networks produced through this work.

2 Related work

2.1 WordNet

The Princeton WordNet, or WordNet as it’s more
commonly referred to, is a lexical database orig-
inally created for the English language (Miller,
1995; Fellbaum, 1998). It consists of expert-
annotated data, and has been more or less contin-
ually updated since its creation (Harabagiu et al.,
1999; Miller and Hristea, 2006). WordNet is built
up of synsets, collections of lexical items that all

2 Code will be available at https://github.com/
hunter-heidenreich/lsni-paper

https://www.wiktionary.org/
https://github.com/hunter-heidenreich/lsni-paper
https://github.com/hunter-heidenreich/lsni-paper
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have the same meaning. For each synset, a def-
inition is provided, and for some synsets, usage
examples are also presented. If extracted and at-
tributed properly, the example usages present on
Wiktionary could critically enhance WordNet by
filling gaps. While significant other work has been
done in utilizing Wiktionary to enhance WordNet
for purposes like this (discussed in the next sec-
tions), this work takes a novel step by constructing
a wordnet through entirely computational means,
i.e. under the framing of a machine learning task
based on Wiktionary’s data.

2.2 Wiktionary
Wiktionary is an open-source, Wiki-based, open
content dictionary organized by the WikiMedia
Foundation (Wikimedia). It has a large and active
volunteer editorial community, and from its noisy,
crowd-sourced nature, includes many MWEs, col-
loquial terms, and their example usages, which
could ultimately fill difficult-to-resolve gaps left
in other linguistic resources, such as WordNet.

Thus, Wiktionary has a significant history of ex-
ploration for the enhancement of WordNet, includ-
ing efforts that extend WordNet for better domain
coverage of word senses (Meyer and Gurevych,
2011; Gurevych et al., 2012; Miller and Gurevych,
2014), automatically derive new lemmas (Jurgens
and Pilehvar, 2015; Rusert and Pedersen, 2016),
and develop the creation of multilingual word-
nets (de Melo and Weikum, 2009; Gurevych et al.,
2012; Bond and Foster, 2013). While these works
constitute important steps in the usage of extracted
Wiktionary contents for the development of Word-
Net, none before this effort has attempted to utilize
the entirety of Wiktionary alone for the construc-
tion of such a network.

Most similarly, Wiktionary has been used
in a sense-disambiguated fashion (Meyer and
Gurevych, 2012b) and to construct an ontology
(Meyer and Gurevych, 2012a). Our work does
not create an ontology, but instead attempts to
create a semantic wordnet. In this context, our
work can be viewed as building on notions of
sense-disambiguating Wiktionary to construct a
WordNet-like resource.

2.3 Relation Disambiguation
The task of taking definitions, a semantic relation-
ship, and sub-selecting the definitions that belong
to that relationship is one of critical importance to
our work. Sometimes called sense linking or rela-

tionship anchoring, this task has been previously
explored in the creation of machine-readable dic-
tionaries (Krovetz, 1992), ontology learning (Pan-
tel and Pennacchiotti, 2006, 2008), and German
Wikitionary (Meyer and Gurevych, 2010b).

As mentioned above, Meyer and Gurevych ex-
plore relationship disambiguation in the context
of Wiktionary, motivating a sense-disambiguated
Wiktionary as a powerful resource (Meyer and
Gurevych, 2012a,b). This task is frequently
viewed as a binary classification: Given two linked
lemmas, do these pairs of definitions belong to the
relationship? While easier to model, this fram-
ing can suffer from a combinatorial explosion as
all pairs of definitions must be compared. This
work attempts to model the task differently, dis-
ambiguating all definitions in the context of a re-
lationship and its lemmas.

3 Model

3.1 Framework

This work starts by identifying a set of lemmas,
W , and a set of senses, S. It then proceeds, as-
suming that S forms the vertex set of a Directed
Acyclic Graph (DAG) with edge set E, organizing
S by refinement of specificity. That is, if senses
s, t ∈ S have a link (t, s) ∈ E—to s—then s is
one degree of refinement more specific than t.

Next, we suppose a lemma u ∈ W has relation
∼ (e.g., synonymy) indicated to another lemma
v ∈W . Assuming∼ is recorded from u to v (e.g.,
from u’s page), we call u the source and v the
sink. Working along these lines, the model then
assumes a given indicated relation ∼ is qualified
by a sense s; this semantic equivalence is denoted
u

s∼ v.
Like others (Landauer and Dumais, 1997; Blei

et al., 2003; Bengio et al., 2003), this work as-
sumes senses exist in a latent semantic space. Pro-
cessing a dictionary, one can empirically discover
relationships like u s∼ v and v t∼ w. But for a
larger network structure one must know if s = t—
that is, do s and t refer to the same relationship—
and often neither s nor t are known, explicitly.
Hence, this work sets up approximations of s and
t for comparison. Given a lemma, u ∈ W , sup-
pose a set of definitions, Du, exists and form the
basis for disambiguation of a lemma’s senses. We
then assume that for any d ∈ Du there exists one
or more senses, s ∈ S, such that d =⇒ s, that is,
the definition d conveys the sense s.
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Having assumed a DAG structure for S, this
work denotes specificity of sense by using the for-
malism of a partial order, �, which, for senses
s, t ∈ S having s � t, indicates that the sense s
is comparable to t and more specific. Note that—
as with any partial order—senses can be, and are
often non-comparable.

Intuitively, a given definition d might convey
multiple senses d =⇒ s, t of differing speci-
ficities, s � t. So for a given definition d, the
model’s goal is to find the sense t that is least spe-
cific in being conveyed. Satisfying this goal im-
plies resolving the sense identification function,
f : D → S, for which any lemma u ∈ W and
definition d ∈ Du with d =⇒ s ∈ S, it is as-
sured that s � f(d). Since no direct knowledge of
any s ∈ S is assumed known for any annotated re-
lationship between lemmas, systems must approx-
imate senses according to the available resources,
e.g., definitions or example usages.

3.2 Task development

On Wiktionary, every lemma has its own page.
Each page is commonly broken down into sec-
tions such as languages, etymologies, and parts-
of-speech (POS). Under each POS, a lemma fea-
tures a set of definitions that can be automatically
extracted. An example of the word induce on En-
glish Wiktionary can be seen in Figure 1.

A significant benefit of using Wiktionary as a
resource to build a wordnet lies in the wealth of
examples it offers. Examples come in two fla-
vors: basic usage and usage from reference mate-
rial. Currently, each example is linked to its orig-
ination definition and lemma, however, in future
works, these examples could be segmented and
sense disambiguated, offering new network links
and densely connected example usages.

For each lemma, Wiktionary may offer relation-
ship annotations between lemmas. These relation-
ships span many categories including acronyms,
alternative forms, anagrams, antonyms, com-
pounds, conjugations, derived terms, descendants,
holonyms, hypernyms, hyponyms, meronyms, re-
lated terms, and synonyms. For this work’s pur-
poses, only antonyms and synonyms are consid-
ered, exploiting their more typical structure on
Wiktionary and clear theoretical basis in semantic
equivalence to induce a network. Exploring more
of these relationships is of interest in future work.

Additionally, a minority of annotations present

‘gloss’ labels, which indicate the definitions that
apply to relationships. So from the data there is
some knowledge of exact matching, but due to
their limited, noisy, and crowd-sourced nature, the
labelings may not cover all definitions that belong.

We assume annotations exhibit relationships be-
tween lemmas. Finding one: u

s∼ v, if u is
the source, we assume there exists some defini-
tion d ∈ Du that implies the appropriate sense:
d =⇒ s. This good practice assumption mod-
els editor behavior as a response to exposure to a
particular definition on the source page. Provided
this, an editor won’t necessarily annotate the rela-
tionship on the sink page—even if the sink page
has a definition that implies the sense s. Thus, our
task doesn’t require identification of a definition
on the sink’s page. More precisely, no d ∈ Dv

might exist that implies s (d =⇒ s) for an anno-
tated relationship, u s∼ v.

Altogether, for an annotated relationship the
task aims to identify the sense-conveying subset:

D
u

s∼v = {d ∈ Du ∪Dv | d =⇒ s}

for which at least one definition must be drawn
from Du. Note that the model does not assume
that arbitrary d, d̃ ∈ D

u
s∼v map through the sense

identification function to the same most general
sense. Presently, these details are resolved by a
separate algorithm (developed below), leaving di-
rect modeling of the sense identification function
to future work.3

3.3 Semantic hierarchy induction

This section outlines preliminary work inferring a
semantic hierarchy from pairwise relationships. If
A is the set of relationships, a model’s output, C,
will be a collection of sense-conveying subsets,
D
u

s∼v, in one-to-one correspondence: A ↔ C.
So, for all D ∈ P(C), one has a covering of
(some) senses by pairwise relationships, D

u
s∼v ∈

D.
Under our assumptions, any collection of sense

conveying subsets D ∈ P(C) with non-empty in-
tersection restricts to a set of definitions that must
convey at least one common sense, s′. Notably,
s′ must be at least as general as any qualifying
a particular annotated relationship, i.e., s � s′

for any s (implicitly) defining any D
u

s∼v ∈ D.

3 A major challenge to this approach is the increased com-
plexity required for the development of evaluation data.
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Figure 1: The Verb section of the induce page on English Wiktionary. Definitions are enumerated, with example
usages as sub-elements or drop-down quotations. Relationships for this page are well annotated, with gloss labels
to indicate the definition that prompted annotation.

So this work induces the sense-identification func-
tion, f , through pre-images: for D ∈ P(C), an im-
plicit sense, s, is assumed such that that f−1(s) ⊆⋂

DDu
s∼v. Now, if a covering D′ ⊃ D exists with

non-empty intersection, then its (smaller) intersec-
tion comprises definitions that convey a sense, s′

which is more-general than s. So to precisely re-
solve f through pre-images the model must ‘hole
punch’ the more-general definitions, constructing
the hierarchy by allocating the more general defi-
nitions in the intersection of D′ to the more general
senses:

f−1(t) =

(⋂
D
D
u

s∼v

)
\

( ⋂
D′⊃D

⋂
D′

D
u′

s′∼v′

)
.

This allocates each definition to exactly one im-
plicit sense approximation, t, which is the most
general sense indicated by the definition. Addi-
tionally, all senses then fall under a DAG hierarchy
(excepting the singletons, addressed below) as set
inclusion, D′ ⊃ D defines a partial order. This
deterministic algorithm for hierarchy induction is
presented in Algorithm 1.

Considering the output of a model, C, if d is
not covered by C the model assumes a singleton
sense. These include definitions not selected dur-
ing relationship disambiguation as well as the def-
initions of lemmas that feature no relationship an-
notations. Singletons are then placed in the DAG
at the lowest level, disconnected from all other
senses. Figure 2 visually represents this full se-
mantic hierarchy.

Algorithm 1 Construction of semantic hierarchy
through pairwise collection.
Require: C: Collection of D

u
s∼v

levels← List()
prev ← C
while prev 6= ∅ do
next← List()
defs← ∅
for p, p′ ∈ prev do

if p 6= p′ and p ∩ p′ 6= ∅ then
Append(next, p ∩ p′)
Union(defs, p ∩ p′)

end if
end for
filtered← List()
for p ∈ prev do
Append(filtered, p \ defs)

end for
Append(levels, filtered)
prev ← next

end while
return levels
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Figure 2: A visualization of 3 lemmas intersecting to
create a semantic hierarchy.

4 Evaluation

4.1 Characteristics of Wiktionary data

Data was downloaded from Wiktionary on 1/23/19
using the Wikimedia Rest API4. To evaluate per-
formance, a ‘gold’ dataset was created to com-
pare modeling strategies. In totality, 298,377
synonym and 44,758 antonym links were gener-
ated from Wiktionary. ‘Gold’ links were ran-
domly sampled, selecting 400 synonym and 100
antonym links. For each link, source and sink
lemmas were considered independently. Defini-
tions were included if they could plausibly refer
to the other lemma. This process is supported
by the available examples, testing if one lemma
can replace the other lemma in the example us-
ages. This dataset was constructed in contrast
to other Wiktionary relationship disambiguation
tasks due to the modeling differences and desire
for more synonym- and antonym-specific evalua-
tions (Meyer and Gurevych, 2012a,b).

4.2 Evaluation strategy

This work’s evaluation considers precision, recall,
and variants of the Fβ score (biasing averages of
precision and recall). As there is selection on both
source and sink sides, we consider several averag-
ing schemes. For a final evaluation, each sample
is averaged at the side-level and averaged across
all relationships. Macro-averages compute an un-
weighted average, while micro-averages weight

4 https://en.wikipedia.org/api/rest_v1/

performance based on the number of definitions
involved in the selection process. Intuitively, mi-
cro metrics weight based on size, while macro
metrics ignore size (treating all potential links and
sides as equal).

4.3 Setting up baselines
For baselines, we present two types of models,
which we refer to as return all and vector simi-
larity. The return all baseline model assumes that
for a given relationship link, all definitions be-
long. This is not intended as a model that could
produce a useful network as many definitions and
lemmas would be linked that clearly do not belong
together. This achieves maximum recall at the ex-
pense of precision, demonstrating a base level of
precision that must be exceeded.

The vector similarity baseline model takes
advantage of semantic vector representations
for computing similarity (Bengio et al., 2003;
Mikolov et al., 2013; Pennington et al., 2014;
Joulin et al., 2017). It computes the similarity be-
tween lemmas and definitions, utilizing thresholds
that flag to either retain similarities above (max),
below (min), or with magnitude above the thresh-
old (abs).

Wiktionary features many MWEs and uncom-
mon lemmas requiring use of a vectorization strat-
egy that allows for handling of lemmas not ob-
served in the representation’s training. Thus, Fast-
Text was selected for its ability to represent out-of-
vocabulary lemmas through its bag-of-character n-
gram modeling (Bojanowski et al., 2017). To com-
pute similarity between lemmas and definitions,
this model aggregates word vectors of the individ-
ual tokens present in a definition. Following other
work (Lilleberg et al., 2015; Wu et al., 2018), TF-
IDF weighted averages of word vectors were uti-
lized in a very simple averaging scheme.

Initial results indicated that a simple cosine sim-
ilarity with a linear kernel performed marginally
above the return all baseline5. Thus, kernel tricks
(Cristianini and Shawe-Taylor, 2000) were ex-
plored (to positive effect). The Gaussian kernel
is often recommended as a good initial kernel to
try as a baseline (Schölkopf et al., 1995; Joachims,

5 This is interesting to note, since previous work has found
that word embeddings like GloVe and word2vec contain a
surprising amount of word frequency effects that pollute sim-
ple cosine similarity (Schnabel et al., 2015). This may ex-
plain why vanilla cosine similarity performed poorly with
FastText vectors here and provides more evidence against us-
ing it as the default similarity measure.

https://en.wikipedia.org/api/rest_v1/
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1998). It is formulated using a radial basis func-
tion (RBF), only dependent on a measure of dis-
tance. The Laplacian kernel is a slight variation of
the Gaussian kernel, measuring distance as the L1
distance where the Gaussian measures distance as
L2 distance. Both kernels fall in the RBF category
with a single regularization parameter, γ, and were
used in comparison to cosine similarity.

For these kernels, a grid search over γ was con-
ducted from 10−3 to 103 at steps of powers of 10.
Similarly, similarity comparison thresholds were
considered from −1.0 to 1.0 at steps of 0.05 for
all 3 thresholding schemes (min, max, abs).

When selecting a final model, F1 scores were
not considered as recall scores outweighed preci-
sion under a simple harmonic mean. This resulted
in models with identical performance to the return
all model or worse. Instead, models were consid-
ered against full-precision and F0.1 scores.

4.4 Semantic Structure Correlation

Creating a wordnet solely from Wiktionary’s
noisy, crowd-sourced data begs the question:
Does the generated network structure resemble
the structure present in Princeton’s WordNet? To
get a sense of this, we compare the capacities
of each of these resources as a basis for seman-
tic similarity modeling (using Pearson correlation
(Pearson, 1895)). This work considers three no-
tions of graph-based semantic similarity that are
present in WordNet: path similarity (PS), Lea-
cock Chodorow similarity (LCH) (Leacock and
Chodorow, 1998), and Wu Palmer similarity (WP)
(Wu and Palmer, 1994).

The point of this experiment is not to enforce
a notion that this network should mirror the struc-
ture of WordNet. Given Wiktionary’s size, it likely
possesses a great deal of information not repre-
sented by WordNet (resolved our other experiment
on word similarity, Sec. 5.3). But if there is some
association between the semantic representation
capacities of these two networks we may possi-
bly draw some insight into a more basic question:
“has this model produced some relevant semantic
structure?”

For this experiment, only nouns and verbs are
considered as they are the only POS for which
WordNet defines these metrics. Additionally,
these metrics are defined at the synset level. There
is no direct mapping between synsets in our net-
work and WordNet, therefore, scores are consid-

ered at a lemma level. By computing values of
all pairs of synsets between lemmas, three values
per metric are generated: minimum, maximum,
and average. Additionally, only lemmas that differ
in minimum and maximum similarity are retained,
restricting the experiment to the most polysemous
portions of the networks.

5 Results

5.1 Baseline model performance

Table 1 shows baseline model performance on the
relationship disambiguation task and highlights
model parameters. During evaluation, the Lapla-
cian kernel was found to consistently outperform
the Gaussian kernel. For this reason, this work
presents the scores from the return all baseline and
two variants of the Laplacian kernel model—one
optimized for precision and the other for F0.1.

Note that in the synonym case, max-threshold
selection performed best, while in the antonym
case min- and abs-threshold fared better. This
aligns well with the notion that while synonyms
are semantically similar, antonyms are seman-
tically anti-similar—an interesting consideration
for future model development.

Overall, from the scores in Table 1 one can see
that the vector similarity models improve over the
return all, but that there is much work to be done
to further improve precision and recall.

5.2 Comparison against WordNet

WordNet publishes several statistics6 that one can
use for quantitative comparison with the network
constructed herein. Reviewing the count statis-
tics shows that Wiktionary is an order of magni-
tude larger than WordNet and that Wiktionary fea-
tures 344,789 linked example usages to WordNet’s
68,411.

Polysemy. Table 2 report polysemy statistics.
Despite the difference in creation processes, the
induced networks do not have polysemy averages
drastically different from WordNet.

In comparing the three networks induced, there
is a common theme of increase in polysemy when
shifting from recall to precision. This makes sense
due to the fact that the return all model will merge
all possible lemmas that overlap in relationship an-
notations resulting in lower polysemy statistics,

6 Statistics are taken from WordNet’s website for Word-
Net 3.0, last accessed on 8/11/2019: https://wordnet.
princeton.edu/documentation/wnstats7wn

https://wordnet.princeton.edu/documentation/wnstats7wn
https://wordnet.princeton.edu/documentation/wnstats7wn
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Model
Synonyms Antonyms

Thresh. Recall Precision Thresh. Recall Precision
Macro Micro Macro Micro Macro Micro Macro Micro

Ret. All 1.000 1.000 0.602 0.268 1.000 1.000 0.527 0.280
Precision max0.35 0.433 0.258 0.847 0.541 min−0.35 0.266 0.196 0.820 0.600
F0.1 max0.30 0.535 0.404 0.814 0.532 abs0.25 0.730 0.763 0.619 0.397

Table 1: Model performance with threshold selection. All γ = 0.1, except for antonym precision where γ = 100.

whereas a precision-based model will result in
pair-wise clusters that do not overlap as broadly,
resulting in more complex hierarchies.

Structural differences. Intentionally, the pre-
sented notion of a semantic hierarchy functions
similarly to the hypernym connections within
WordNet. Moving up the semantic hierarchy pro-
duces sense approximations from definitions that
are more general, and moving down the hierarchy
produces more specific senses. However, in the
induced networks, this is a notion applied to every
POS—WordNet only produces these connections
for nouns and verbs. An example taken from the
F0.1 network is that of the adjective good (refer-
ring to Holy) being subsumed by a synset featur-
ing the adjective proper (referring to suitable, ac-
ceptable, and following the established standards).

5.3 Word Similarity

In previous works, WordNet and Wiktionary have
been used to create vector representations of
words. A common method for evaluating the qual-
ity of word vectors is performance on word simi-
larity tasks. Performance on these tasks is evalu-
ated through Spearman’s rank correlation (Spear-
man, 2010) between cosine similarity of vector
representations and human annotations.

Using Explicit Semantic Analysis (ESA), a
technique based on concept vectors, our network
constructs vectors using a word’s tf-idf scores
over concepts, as has been done in prior works
(Gabrilovich and Markovitch, 2007; Zesch et al.,
2008; Meyer and Gurevych, 2012b). We define
our concepts as senses of the F0.1 network and
compute cosine similarity in this representation.

We compare performance against other ESA
methods (Zesch et al., 2008; Meyer and Gurevych,
2012b) on common datasets: Rubenstein and
Goodenough’s 65 noun pairs (1965, RG-65),
Miller and Charles’s 30 noun pairs (1991, MC-
30), Finklestein et. al’s 353 word similarity pairs
(2002, WS-353, split into Fin-153 and Fin-200

due to different annotators), and Yang and Pow-
ers’s 130 verb pairs (2006, YP-130). Our results
are summarized in Table 3.

We also compare F0.1 against latent word vector
representations like word2vec’s continuous bag-
of-words (CBOW) and skip-grams (SG) (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017). These results
are presented in Table 4.

In analyzing these results, the F0.1 network per-
forms well. Against other ESA methods, it is
highly competitive, achieving the highest perfor-
mance in two datasets. When strictly comparing
performance against ESA with WordNet as the
source, it has approximately equal or better per-
formance in all datasets except YP-130. We hy-
pothesize that this is due to a lack of precision in
verb disambiguation, reinforced by the low pol-
ysemy seen above. Additionally, the work from
Zesch et al. (2008) evaluated on subsets of the
data in which all three resources had coverage. In
their work, YP-130 performance is computed for
only 80 of the 130 pairs.

Comparing F0.1 to latent word vectors, it has
the highest performance on noun datasets and is
competitive on WS-353. While not directly com-
parable, it achieves this through 26 million tokens
of structured text in contrast to billions of tokens
of unstructured text that train latent vectors.

5.4 Network Correlation Results

Table 5 displays correlation values between graph-
based semantic similarity metrics of F0.1 and
WordNet. Pairs of 1,009 verb and 1,303 noun lem-
mas were considered. In generating similarities,
disconnected lemma pairs were discarded, produc-
ing 31,373 verb and 16,530 noun pairs. The table
shows that for nouns, the two networks produce
similarity values that are weakly to moderately
correlated, however, verbs produce values that are,
at most, very weakly correlated, if at all.

Due to the fact that F0.1 produced better results
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With Monosemous Words Without Monosemous Words
POS WordNet F0.01 Precision Return All WordNet F0.01 Precision Return All
Noun 1.24 1.17 1.18 1.10 2.79 2.94 2.99 2.66
Verb 2.17 1.20 1.22 1.10 3.57 3.18 3.33 2.78
Adjective 1.18 1.18 1.18 1.10 2.71 2.59 2.62 2.33
Adverb 1.25 1.11 1.12 1.08 2.50 2.34 2.36 2.25

Table 2: Average polysemy statistics.

Dataset RG-65 MC-30 Fin-153 Fin-200 YP-130
F0.1 0.831 0.849 0.723 0.557 0.687
WordNet* (Zesch et al., 2008) 0.82 0.78 0.61 0.56 0.71
Wikipedia* (Zesch et al., 2008) 0.76 0.68 0.70 0.50 0.29
Wiktionary* (Zesch et al., 2008) 0.84 0.84 0.70 0.60 0.65
Wiktionary (Meyer and Gurevych, 2012b) - - - - 0.73

Table 3: Spearman’s rank correlation coefficients on word similarity tasks. Best values are in bold.

Dataset RG-65 MC-30 WS-353
F0.1 0.831 0.849 0.669
FastText - - 0.73
CBOW (6B) 0.682 0.656 0.572
SG (6B) 0.697 0.652 0.628
GloVe (6B) 0.778 0.727 0.658
GloVe (42B) 0.829 0.836 0.759
CBOW (100B) 0.754 0.796 0.684

Table 4: Spearman’s correlation on word similarity
tasks. Best values are in bold. Number of tokens in
training data is featured in parentheses, if reported.
FastText is reported from (Bojanowski et al., 2017),
and all others are from (Pennington et al., 2014).

Noun Verb
PS min 0.266 0.132
PS max 0.495 0.189
PS avg 0.448 0.082
LCH min 0.207 0.120
LCH max 0.384 0.056
LCH avg 0.359 -0.013
WP min 0.116 0.090
WP max 0.219 0.005
WP avg 0.226 -0.025

Table 5: Correlations between F0.1 and WordNet simi-
larity metrics: path similarity (PS), Leacock Chodorow
similarity (LCH), and Wu Palmer similarity (WP).

on noun similarity tasks, we hypothesize that this
indicates better semantic structure for nouns than
for verbs, further emphasizing that a possible lim-
itation of the current baseline produced is its lack

of precision when it comes to polysemous verbs.
However, the positive correlation values seen for
nouns, coupled with noun similarity performance,
offer strong indications that the F0.1 does provide
useful semantic structure that can be further in-
creased through better modeling.

6 Future work

Here, several directions are highlighted along
which we see this work being extended.

Better models. The development of more accu-
rate models for predicting definitions involved in
the pair-wise relations will produce more interest-
ing and useful networks, especially with the mag-
nitude of examples of sense usage. Precision of
verb relations seems to be a critical component of
a better model.

Supervision. Relationship prediction is cur-
rently unsupervised. While it is an interesting task
to model in this fashion, crowd sourcing the an-
notation of this data would be possible through
services like Amazon Mechanical Turk. This
would allow for the potential of exploring su-
pervised models for predicting relationship links,
particularly for relationships like synonymy and
antonymy which are familiar concepts for a broad
community of potential annotators.

WordNet semi-supervision. Another logical
transformation of this task would be to use Word-
Net to inform the induction of a network in a semi-
supervised fashion. There are many ways to go
about this such as using statistics from WordNet
to create a loss function, or using the structure of
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WordNet as a base. As this work aimed to create a
network solely from the data of Wiktionary, these
ideas were not explored. However, using WordNet
in this fashion is one of the directions of greatest
interest for exploration in the future.

Sense usage examples. The examples present
in Wiktionary have only begun to be used in this
work. When examples are pulled, the source def-
inition and lemma are linked. However, these ex-
amples have the potential to be linked to other
senses and lemmas. This would an immense
amount of structured, sense-usage data that could
be used for many machine learning tasks.

Multilingual networks Wiktionary has been
explored as a multilingual resource in previous
works (de Melo and Weikum, 2009; Gurevych
et al., 2012; Meyer and Gurevych, 2012b; Bond
and Foster, 2013) largely due to the natural align-
ment across languages. Extending this approach to
a multilingual setting could prove to be extremely
useful for machine translation, and could allow
low resource languages to benefit from alignment
with other languages that have more annotations.

7 Conclusion

This paper introduced the idea of constructing a
wordnet solely using the data from Wiktionary.
Wiktionary is a powerful resource, featuring mil-
lions of pages that describe lemmas, their senses,
example usages, and the relationships between
them. Previous work has explored aligning re-
sources like this with other networks like the
Princeton WordNet. However, no work has fully
explored the idea of building an entire network
from the ground up using just Wiktionary.

This work explores simple baselines for con-
structing a network from Wiktionary through
antonym and synonym relationships and com-
pares induced networks with WordNet to find sim-
ilar structures and statistics that appear to high-
light strong future directions of particular inter-
est, including but not limited to improving net-
work modeling, linking more semantic exam-
ples, and reinforcing network construction using
expert-annotated networks, like WordNet.

As conducted, this work is an initial step in
transforming Wikitionary from an open-source
dictionary into a powerful tool, dataset, and frame-
work, with the hope of driving and motivating fur-
ther work at endeavors studying languages and de-
veloping language processing systems.
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