
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 159–163
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

159

Graph Enhanced Cross-Domain Text-to-SQL Generation

Siyu Huo
IBM Research, USA
siyu.huo@ibm.com

Tengfei Ma
IBM Research AI, USA
tengfei.ma1@ibm.com

Jie Chen
MIT-IBM Watson AI Lab, USA

chenjie@us.ibm.com

Maria Chang
IBM Research AI, USA
maria.chang@ibm.com

Lingfei Wu
IBM Research AI, USA

wuli@us.ibm.com

Michael Witbrock
University of Auckland

m.witbrock@auckland.ac.nz

Abstract

Semantic parsing is a fundamental problem
in natural language understanding, as it in-
volves the mapping of natural language to
structured forms such as executable queries
or logic-like knowledge representations. Ex-
isting deep learning approaches for seman-
tic parsing have shown promise on a variety
of benchmark data sets, particularly on text-
to-SQL parsing. However, most text-to-SQL
parsers do not generalize to unseen data sets in
different domains. In this paper, we propose
a new cross-domain learning scheme to per-
form text-to-SQL translation and demonstrate
its use on Spider, a large-scale cross-domain
text-to-SQL data set. We improve upon a
state-of-the-art Spider model, SyntaxSQLNet,
by constructing a graph of column names for
all databases and using graph neural networks
to compute their embeddings. The resulting
embeddings offer better cross-domain repre-
sentations and SQL queries, as evidenced by
substantial improvement on the Spider data set
compared to SyntaxSQLNet.

1 Introduction

Text-to-SQL translation is currently one of the
most important tasks in semantic parsing. It
involves mapping natural language sentences to
SQL queries that can be executed on associated
database tables. Most text-to-SQL data sets have
two very important limitations: (1) they mostly
contain only very simple SQL queries, and (2)
they use the same databases (and often identical
SQL queries) for training and testing. Finegan-
Dollak et al. (2018) demonstrated that text-to-SQL
parsers that perform well on existing benchmarks
do not generalize well to unseen SQL queries, as
measured by experiments on modified data sets
where no two identical SQL queries appear in both
the training and testing sets. The Spider data set
(Yu et al., 2018c) was developed to address these

limitations by including a large number of com-
plex programs, databases with multiple tables, and
by ensuring that the SQL queries and databases
that appear in the training set do not also appear in
the testing set. In this way, Spider can be used as a
better measure of a model’s ability to produce un-
seen complex programs and to generalize to new
domains.

The Spider data set has led to the development
of complex, cross-domain semantic parsers, such
as SyntaxSQLNet (Yu et al., 2018b). In prior
work, cross-domain semantic parsing referred to
the ability to generalize among different logi-
cal forms (Su and Yan, 2017). For the text-to-
SQL task, however, cross-domain semantic pars-
ing refers to the ability to generalize across dif-
ferent queries and databases. Very recently, Syn-
taxSQLNet (Yu et al., 2018b) was proposed to
solve this task by introducing a SQL-specific syn-
tax tree-based decoder, with a SQL generation
path history and table-aware column attention en-
coder. For better cross-domain performance, it
employs a data augmentation method to generate
more diverse training examples across databases.
However, creating this augmented data is expen-
sive and time-consuming. It requires grouping the
SQL patterns and then manually editing the se-
lected SQL patterns and their corresponding lists
of questions.

In this paper, we propose a new approach to en-
hance cross-domain learning in text-to-SQL sys-
tems. In most existing systems, selecting entries
from available databases is one of the most im-
portant components. When experimenting with
baselines, Yu et al. (2018c) observed that most of
the component matching errors (that is, compo-
nents of the predicted SQL query do not match
those of the gold query) were caused by errors
in column prediction. A good representation of
the columns in the databases should lead to accu-

160

rate matching between queries and columns. Our
idea is to connect all tables and databases across
domains via shared column names, so that the
column name representation can use information
across domains for better generalization. We im-
plement this idea by constructing a database graph
and using a graph neural network to encode the
columns. In this way, we obtain higher quality
column embeddings, which lead to more accurate
column matching and better SQL generation.

2 Related Work

Many semantic parsers have been developed to
translate natural language text into structured,
symbolic forms, including abstract meaning rep-
resentation (Lyu and Titov, 2018), executable pro-
grams (e.g. Python, Lisp, Bash) (Allamanis et al.,
2015; Rabinovich et al., 2017; Yin and Neubig,
2017; Liang et al., 2017; Lin et al., 2018), and
SQL queries (Dong and Lapata, 2018; Yu et al.,
2018b,a; Xu et al., 2017).

For text-to-SQL parsing, the work most closely
related to ours is SyntaxSQLNet (Yu et al., 2018b),
which is the state-of-the-art approach for the Spi-
der data set (Yu et al., 2018c). SyntaxSQLNet
extends prior text-to-SQL models, such as SQL-
Net (Xu et al., 2017) and TypeSQL (Yu et al.,
2018a), by encoding both local information from
column names and global information from ta-
ble names. The primary difference between Syn-
taxSQLNet and our work is that we use a novel
column embedding technique that additionally in-
cludes a graph of the tables, connected through
shared column names.

3 Problem Formulation

We focus on the cross-domain SQL generation
task within the Spider data set (Yu et al., 2018c).
Spider consists of 10,181 questions and 5,693
unique complex SQL queries on 200 databases
with multiple tables, covering 138 different do-
mains.

Specifically, in the data set each natural lan-
guage query Q is associated with a corresponding
SQL query S and a database DB. The database
contains multiple tables T , and each table contains
multiple columns C. The task of SQL genera-
tion is to generate S given only Q and DB. For
cross-domain learning, the databases for training
and testing are separate, so that one can test the

generalization ability of the models to unseen do-
mains.

4 Method

Our model is based on the framework of Syn-
taxSQLNet (Yu et al., 2018b) but extends it with
our approach for generating column embeddings.
We first briefly introduce the SyntaxSQLNet sys-
tem, and then present the proposed graph-based
column embedding method.

4.1 Background of SyntaxSQLNet

For the SQL generation task, one is given a natural
language sentence and a database and is asked to
generate the corresponding SQL query. Therefore,
one may use an encoder to encode the sentence
and table columns in the database and use a de-
coder to generate the SQL query. In SyntaxSQL-
Net, the sentence is encoded by a bi-directional
LSTM (BiLSTM), while each column in the table
is encoded by using a simple scheme called table-
aware column representation. The scheme takes
the list of words in the table name and the column
name, as well as the type information of the col-
umn, as input to a BiLSTM and outputs the final
state as the column representation. This approach
incorporates both the global table information and
the local column information.

To better leverage SQL structures, SyntaxSQL-
Net uses an SQL specific tree-based decoder
with SQL path histories. It decomposes the de-
coder into a set of recursive modules: IUEN,
KW, COL, OP, AGG, Root/Terminal, AND/OR,
DESC/ASC/LIMIT, and HAVING. Each module
deals with different SQL components. For ex-
ample, the KW module predicts keywords from
WHERE, GROUP BY and ORDER BY, and the
COL module predicts columns. For details of the
other modules, see (Yu et al., 2018b). In this work,
we focus on improving the COL module.

The recursive modules in SyntaxSQLNet are
combined to form the whole generation process.
Specifically, when the decoder generates the SQL
query, it first determines which module to invoke,
and then uses that module to predict the next SQL
token. For each module, the input encoding goes
through an attention computation, before being
used to make the prediction of the next token. For
example, in the COL module, the prediction is
computed by the using following equations:

161

Table 1: Example Databases

Database Table Name Column Names

department store
customers customer id customer name customer address

customer orders order id customer id order date
coffee shop shop shop id address num of staff

P num
COL = P

(
Wnum

1 Hnum
Q/COL

> +Wnum
2 Hnum

HS/COL
>
)

P val
COL = P

(
Wval

1 Hval
Q/COL

>
+Wval

2 Hval
HS/COL

>

+ Wval
3 HCOL

>
)
,

where “num” means the number of columns, “val”
means the index(es) of the column(s), “Q” means
question, “HS” means path history, “COL” means
column, P(U) = softmax(V tanh(U)) is a
probability distribution given score U and param-
eter V, the W’s are learnable parameters, and
the H1/2’s are conditional embeddings defined as
H1/2 = softmax(H1WH>

2)H1.

4.2 Database Graph Construction
4.2.1 Motivation
For a good accuracy of the final SQL genera-
tion, every module needs to perform well. How-
ever, the COL module is a significant bottleneck
of the system. When reproducing the results from
SyntaxSQLNet, we find that its accuracy is only
slightly above 50%, while other modules gener-
ally achieve 90%. SyntaxSQLNet gains gener-
alizability across domains through encoding both
global and local information by simply using all
the words from the table name, column name, and
column data type. There are two problems with
this approach. First, no explicit ordering exists
for these words; hence, the use of BiLSTM to en-
code them seems less justified. Second, although it
adds the global information from table names for
better column name embedding, the table names
are completely independent of other tables and
databases, and therefore it incorporates little infor-
mation from other domains.

Our idea is to use a graph to connect the column
names across all tables and databases and compute
representations of them by using a graph neural
network. In this way, the information of different
domains is passed to each other, so that one can
learn a better column embedding that generalizes
across domains.

Our approach is relevant to those that use neural
networks for domain adaptation; see, e.g., Pareja
et al. (2019) who adapt the graph neural network
model for data at different time steps. However,
our approach is conceptually different from these
methods, because we do not map the tasks to a
new domain but rather, learn a better representa-
tion of the table elements through leveraging all
domain information. Another related work that
also uses GNN for sementic parsing is the very re-
cently published Bogin et al. (2019), but the graph
therein is an abstraction of the database schema,
as opposed to being a tool for producing column
representations as in our work.

4.2.2 Graph Construction
We construct a graph to connect all column names
across tables and databases. To encode more infor-
mation, we also include the table names and col-
umn data types as additional nodes in the graph.
In order to obtain more connections and reduce
unseen phrases, we split the names into words,
so that different tables and databases share more
nodes. Specifically, our database graph is con-
structed as follows:

1. Every column name is separated into a set of
words and the words are used as nodes in the
graph.

2. Within each table, we connect all word nodes
to each other.

3. For each table, we include the words of table
name as additional nodes, and connect them
with all column name words in that table.

4. Different tables and databases are thus con-
nected through shared words.

5. We also add column data types as additional
nodes and connect them with corresponding
column name words.

In Table 1 and Figure 1 respectively, we show
an example of the databases and the graph con-

162

Figure 1: An example of the constructed graph for
databases in Table 1. Orange nodes are words in the
table names and blue nodes are words in the column
names. For simplicity, column data types are not in-
cluded in this example.

structed for them. Clearly, in the graph, two differ-
ent databases are connected through shared words,
such as id and address.

4.2.3 Graph Encoding
We encode the nodes in the graph by using a 2-
layer graph convolutional network (GCN) (Kipf
and Welling, 2016). After we obtain the node
embeddings for all nodes, for every table col-
umn we combine the embeddings of the words
of the corresponding table name, column name,
and column data type to get the overall repre-
sentation of the column. We call this approach
subgraph pooling. In details, assume that we
have a table name TN , column name words
C1, C2, C3, and column data type TP . We first
use the pre-trained GloVe vectors (Pennington
et al., 2014) to initialize the embedding of each
node: ETN , EC1 , EC2 , EC3 , ETP . With the graph
convolutional network, we obtain corresponding
embedding vectors GTN , GC1 , GC2 , GC3 , GTP .
For subgraph pooling, we first concatenate the
original GloVe vectors and the newly learned
embedding vectors, then do averaging over all
nodes for this column, and finally map it to
another lower-dimensional space: H(∗) =
Wh[Meanω(E(ω)||G(ω))], where || denotes con-
catenation, ω ∈ TN,C1, C2, C3, TP and Wh is
a learnable parameter. Afterwards, we replace the
BiLSTM encoding in SyntaxSQLNet by H(∗) and
continue the SyntaxSQLNet decoding process.

5 Experiments

5.1 Experimental Setting

We use the Spider data set and follow the set-
ting of Yu et al. (2018c). The data set is split

into 7,000/1,034/2,147 train/development/test ex-
amples, and the databases are correspondingly
split into 146/40/20 for train/development/test.
The models are evaluated by exact matching accu-
racy with the provided test script Yu et al. (2018c).
Since we made no changes to the modules other
than COL, we do not compare the component
matching accuracy as in Yu et al. (2018b). Instead,
we include the accuracy of the COL module as an
additional metric to better interpret the effects of
the proposed graph encoding method.

For GCN (Kipf and Welling, 2016), we used
the inductive version. That is, in the training
phase we only construct the graph from the train-
ing databases, but for testing we connect the
test databases with the training ones and use the
learned GCN parameters for embedding computa-
tion.

5.2 Results

Method Matching acc. COL acc.
Seq2seq+attention 1.8% NA

SQLNet 10.9% NA
SyntaxSQLNet 18.9% 53.5%

SyntaxSQLNet +
Data Augmentation 24.8% 61.9%

GNN-SQL 22.0% 57.0%

Table 2: Comparison of different methods with respect
to final exact matching accuracy and COL module ac-
curacy on development set. The results of SyntaxSQL-
Net were run by ourselves using the provided system.

From the table we see that the COL module
accuracy is 3.5% higher than that in SyntaxSQL-
Net, without performing any modification to other
modules. The final accuracy is also 3.1% higher
than SyntaxSQLNet without data augmentation.
Although our final matching accuracy is lower
than the data augmented SyntaxSQLNet (22.0%
vs 24.8%), we have demonstrated the usefulness
of the improved COL module and the potential for
reducing the need and effort of labeling additional
augmented data.

6 Conclusion

In this paper we propose a new graph-based
method for cross-domain text-to-SQL genera-
tion. As opposed to data augmentation in Syn-
taxSQLNet, we construct a graph to connect all

163

columns across tables and databases, yielding bet-
ter generalizablity of the column representation
and SQL generation. Experimental results on Spi-
der demonstrates the superiority of our method
over SyntaxSQLNet without data augmentation.

References
Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and

Yi Wei. 2015. Bimodal modelling of source code
and natural language. In International Conference
on Machine Learning, pages 2123–2132.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Representing schema structure with graph neural
networks for text-to-sql parsing. In ACL.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 731–742.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improv-
ing text-to-sql evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. In 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
pages 23–33. Association for Computational Lin-
guistics (ACL).

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC-2018).

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei
Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim
Kaler, and Charles E. Leiserson. 2019. EvolveGCN:
Evolving graph convolutional networks for dynamic
graphs. Preprint arXiv:1902.10191.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1139–1149.

Yu Su and Xifeng Yan. 2017. Cross-domain seman-
tic parsing via paraphrasing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1235–1246.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 588–594.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domain text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1653–1663.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018c. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

