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Naver Labs Europe

matthias.galle@naverlabs.com

Abstract

Word embeddings continue to be of great use
for NLP researchers and practitioners due to
their training speed and easiness of use and
distribution. Prior work has shown that the
representation of those words can be improved
by the use of semantic knowledge-bases. In
this paper we propose a novel way of com-
bining those knowledge-bases while the lexi-
cal information of co-occurrences of words re-
mains. It is conceptually clear, as it consists
in mapping both distributional and semantic
information into a multi-graph and modifying
existing node embeddings techniques to com-
pute word representations. Our experiments
show improved results compared to vanilla
word embeddings, retrofitting and concatena-
tion techniques using the same information, on
a variety of data-sets of word similarities.

1 Motivation

Word embeddings revolutionized NLP through the
use of lookup dictionaries that provided contin-
uous representations of words. While surpassed
recently by token-based (contextual) embeddings,
word embeddings continue to be popular because
they are faster to train, can be used plug-and-
play by a multitude of machine learning sys-
tems, with storing a database of embeddings for
sole requirement. This makes them particularly
attractive for domain-specific embeddings (e.g.,
privacy policies (Harkous et al., 2018), oil and
gas (Nooralahzadeh et al., 2018) or sentiment
analysis (Sarma et al., 2018).

The most popular word embeddings are trained
purely with a distributional prior: words occurring
in a similar context should have a similar repre-
sentation. It is well known that the quality of word
embeddings can be improved by injecting seman-
tic knowledge in the form of curated databases
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of relationships between words. However, it is
less clear how these two types of knowledge can
be mixed. Existing approaches work mostly by
fine-tuning them afterwards (Mrkšic et al., 2016;
Faruqui et al., 2014) through additional semantic
constraints from lexical databases, such as Word-
Net (Miller, 1995). Although some joint learning
approaches have been proposed, the way that the
semantic knowledge is injected is not straightfor-
ward as the original data-structure is very different
(sequences and graphs).

In this paper we propose to represent the co-
occurrence relationship of words as a graph. Such
a representation opens up natural ways of merg-
ing this lexical graph with the semantic graph
incorporating new edges with different types.
Our experiments show that graph embeddings of
the resulting nodes (words) outperform not only
pure distributional-based embeddings, but also
retrofitted and concatenated ones, on standard
word similarity tasks.

The main contributions of this paper are:

• Combining two types of knowledge into one
structure represented as a multi-graph.

• Tailoring optimization methods from graph
embeddings to include edge types.

• Experimental results showing that they out-
perform existing methods on a standard word
similarity task. The gap is higher when less
lexical training data is available.

2 Related Work

Continuous embeddings of words rely on two rep-
resentations per word w: one considering it as to-
ken (~vw), and another one considering it as context
of another token (~v ′c). When using pointwise mu-
tual information of the co-ocurrences matrix (Levy
and Goldberg, 2014), this happens implicitly as
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the final matrix is square. Alternatively, when us-
ing a matrix reduction technique (eg: SVD), the
second non-diagonal matrix (which is discarded
most of the time) can be considered as a contex-
tual view of the tokens.

In more modern word embeddings, like
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014), such a representation is ex-
plicit, and the final representation is either one
of the two or a combination of them (for a dis-
cussion on the impact of different combinations
see (Duong et al., 2016)).

2.1 Node embeddings

This dual representation becomes even more im-
portant when considering graph embeddings. To
find a self-supervised optimization function that
induces a representation of nodes, two different
goals are formalized (Tang et al., 2015): ho-
mophily, stating that close nodes should have a
similar representation (McPherson et al., 2001),
and structural similarity, aiming to have simi-
lar representations for words that have a similar
neighbourhood (Fortunato, 2010). The LINE al-
gorithm (Tang et al., 2015) creates node embed-
dings optimized for either of those two. When op-
timizing for homophily, the loss function consists
in maximising their first order similarity:

sim(~vi, ~vj) (1)

As in previous work, we will define the similar-
ity as the logistic function, work in log-space and
define for simplicity :

sim(~vi, ~vj) = log
1

1 + e−~vi·~vj
(2)

Optimizing for structural similarity is achieved
by focusing on the second order similarity, going
through the contextual embedding, by maximis-
ing:

sim(~vi, ~v
′
j) (3)

For two nodes with shared neighbourhoods, op-
timizing this will force their representations to
be similar. While LINE uses the alias table
method (Li et al., 2014) to optimize either Eq. 1 or
Eq. 3, word2vec uses a context window of fixed-
size c to maximize Eq. 3.

2.2 Incorporating semantic knowledge
Combining lexical and semantic information from
a knowledge-graph – for word embeddings – is
not straightforward as they consist in two differ-
ent representations.

One line of research uses knowledge-graphs
to modify word embeddings obtained through
pure distributional, lexical approaches afterwards.
Faruqui et al. (2014) do so by maximising first or-
der similarity (Eq. 1) of two words marked as syn-
onyms in a semantic graph. In order to not disrupt
the embedding space, this is regularized with a
term insisting that the new embeddings should not
be too far apart from the original ones. On top of
this Mrkšic et al. (2016) add also antonyms, push-
ing the representations of two antonyms apart.

Another line of research, closer to our proposi-
tion, is to incorporate semantic knowledge at train-
ing time. Liu et al. (2015) do so through using or-
dinal constraints (similarity of synonyms should
be higher than of non-synonyms). Many other
works trained co-occurrences together with syn-
onyms (Yu and Dredze, 2014; Bian et al., 2014;
Kiela et al., 2015) or even other terms. However,
those methods treat synonyms equally to context
words and do not modify the similarity between
them. They are therefore optimized through sec-
ond order similarity as well.

Our main contribution consists in (i) defin-
ing this problem through a conceptually simple
multi-graph data structure and (ii) treating differ-
ent edges types with different similarity (first or
second order).

3 Joint Learning of Semantic and
Lexical Embeddings

Our proposal is to construct a graph that contains
both the lexical information of co-occurrence of
words, as well as the semantic information con-
tained in knowledge graphs. We construct a multi-
edge graph, where each edge belongs to one of
a predefined class. Here, we report results using
three classes:

• lexical: we add an edge or increment its
weight between node vi and vj every time
word i occurs in the same window (of pre-
defined size c) than word j

• synonym: words i and j are connected when-
ever any of their senses belongs to the same
synset from WordNet.
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• antonym: words i and j are connected when-
ever any of their senses are antonyms accord-
ing to WordNet.

In this paper, we will uniformly sample a syn-
onym from the set of synonyms of a word. We
define Si and Ti to respectively be the set of all
synonyms and antonyms of word i.

For a node (word) vi, we will model its relation
with one of its synonyms using first order proxim-
ity:

sim(~vs, ~vi) (4)

where s ∈ Si.
Using the multi-edge graph setting, we run an

experiment where, when possible, we also include
an antonym as an additional first order negative ex-
ample, uniformly sampled from the antonyms set
Ti of a word. For training, we use negative sam-
pling (N(v)) and end up with the following ob-
jective which we train with stochastic gradient de-
scent:

sim(~v ′j · ~vi) +
k∑

n=1

E
vn∼N(v)

(
sim

(
−~v ′n · ~vi

))
+ sim(~vs · ~vi) +

k∑
n=1

E
vn∼N(v)

(sim (−~vn · ~vi))

+ sim(−~va · ~vi) +
k∑

n=1

E
vn∼N(v)

(sim (−~vn · ~vi))

where s ∈ Si and a ∈ Ti.
This objective function accounts for both types

of similarity during learning.

4 Results

We trained our embeddings on 25 millions of
lines from the english One Billion Word Cor-
pus (Chelba et al., 2013). For any word, we
used WordNet to include its set of synonyms and
antonyms when needed. As usual, we compute
the cosine similarity between the embeddings for
each word and compare the Spearman correlation
of that similarity with human scores evaluating the
extent to which those two words are similar (syn-
onyms) or related.

Datasets compiling scores for explicitly evalu-
ating similarity include SimLex-999 (Hill et al.,
2015), RG-65 (Rubenstein and Goodenough,
1965) and MC-30 (Miller and Charles, 1991).
For comparison purposes, we include also EN-
MTURK-771 (Guy Halawi, 2012), which rather

deals with evaluating word pairs’ relatedness.
WordSimilarity-353 (Finkelstein et al., 2001)
(EN-WS-353-SIM) is less clear on whether it eval-
uates similarity or relatedness, as in contrast to its
title, human participants were asked “to estimate
the relatedness of the words”. Lofi (2015) or Asr
et al. (2018) provide good introductions to the dif-
ference between evaluating similarity versus relat-
edness.

Table 1 summarizes the different results ob-
tained with our joint learning approach (with and
without antonyms), separate results for first order
and second order representations, and word2vec
(skip-gram with negative sampling) with and with-
out retrofitting. It also includes results obtained
with concatenated representations learned from
optimizing first order proximity of synonyms with
second order embeddings (as proposed in Tang
et al. (2015)).

Concatenation surpasses the retrofitting tech-
nique in terms of Spearman correlation scores. It
requires however much more training time, as an
additional embedding is required for each new se-
mantic relationship.

In any case, the joint learning approach we
propose outperforms any kind of method on
datasets evaluating similarity. For instance, the
Spearman correlations we obtain on SimLex-999,
when solely including synonyms, improve on
the word2vec baseline by over 11%. Including
antonyms increases this difference in performance
up to 17% on this particular dataset.

Our attempt at shifting our vector space towards
a similarity nudged one seems confirmed by our
performance on EN-MTURK-771. Indeed, purely
distributional vectors obtain here better Spearman
correlation scores.

We also benchmarked the learning curve with
an increasing amount of lexical data. In Figure 1,
we plot the Spearman correlations obtained when
training with an increasing chunk of the 1 Bil-
lion Word Corpus, comparing jointly-learned vec-
tors with concatenated, LINE second order and
word2vec (vanilla and retrofitted) embeddings.

Figure 1 illustrates that provided with Word-
Net, the joint learning approach is better equipped
to learn representations when less lexical training
data is available. Indeed, higher Spearman cor-
relation scores are obtained from the beginning.
In addition to this, including antonyms further in-
creases the observed gap.
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Method en-simlex-999 en-rg-65 en-mc-30 en-mturk-771 en-ws-353-sim

w2v 0.402 0.603 0.605 0.629 0.713
w2v retrofitted 0.444 0.667 0.653 0.620 0.689
LINE second order 0.378 0.562 0.604 0.571 0.685
LINE first order 0.304 0.533 0.516 0.536 0.642
Concat. Syn. 0.471 0.643 0.673 0.551 0.703
Joint Learning (Syn.) 0.516 0.726 0.771 0.573 0.742
Joint Learning (Syn. + Ant.) 0.580 0.705 0.749 0.570 0.675

Table 1: Spearman correlations between human-based judgements and similarity obtained using different embed-
dings learned on more than 634 millions of tokens. “Concat. Syn.” stands for results obtained when concatenating
to second order representations, first order embeddings of synonyms. “Syn.” and “Syn. + Ant.” stand for the
inclusion of synonyms and antonyms during joint learning

Word pair - relation GloVe w2v Joint Learning (Syn. + Ant.) LINE second order

(coffee, cup) - relatedness 0.335 0.333 0.133 0.207
(cheap, expensive) - antonymy 0.545 0.512 -0.504 0.556
(period, epoch) - meronymy 0.199 0.274 0.272 0.348
(torso, trunk) - synonymy 0.257 0.481 0.766 0.447

Table 2: Cosine similarity measures for different word pairs.

Figure 1: Spearman correlation scores over SimLex-
999 obtained for different embeddings on an increasing
amount of lexical data. “J.-L.” stands for joint-learning.

To illustrate the impact the joint learning ap-
proach has on the embeddings space, Table 2 pro-
vides examples showing the impact our approach
has on the cosine similarity of different kinds of
word pairs.

We observe that while the cosine similarity of
the related word pair decreases, the similarity of
two synonyms greatly increases in comparison to
the antonym pair’s similarity, which turns nega-
tive. Interestingly, the similarity of the two pro-
vided meronyms does not show any great differ-

ence with respect to the one provided by distribu-
tional methods.

5 Conclusion

We proposed a novel way of combining the lexi-
cal information of co-occurrences with that of se-
mantic knowledge bases. Our method maps all
those sources of information into a multi-graph
and modifies existing node embeddings technique
so that they treat edges of different types differ-
ently. We claim that our proposal is conceptu-
ally simpler than existing proposals which either
use the information from the semantic graph to
finetune the word embeddings obtained through
lexical information, or combine the information
in some other indirect way. Instead of this, our
method formalizes an objective to include novel
edge types. In our experiments we presented re-
sults using three types of edges. In addition to
obtaining better results when measured on a stan-
dard word similarity task, our method is less data-
greedy: it obtains better results with much less
training data than other methods. This can be
interesting in particular for the creation of in-
domain word embeddings, where curated knowl-
edge graph exists. Thus, using a multi-graph al-
lows for an easy way of incorporating additional
types of information. In particular, we are consid-
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ering multi-lingual embeddings through the inclu-
sion of bilingual dictionaries which connect nodes
(words) of different languages.
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