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Abstract

The TextGraphs 2019 Shared Task on Multi-
Hop Inference for Explanation Regeneration
(MIER-19) tackles explanation generation for
answers to elementary science questions. It
builds on the AI2 Reasoning Challenge 2018
(ARC-18) which was organized as an ad-
vanced question answering task on a dataset
of elementary science questions. The ARC-
18 questions were shown to be hard to an-
swer with systems focusing on surface-level
cues alone, instead requiring far more power-
ful knowledge and reasoning.

To address MIER-19, we adopt a hybrid
pipelined architecture comprising a feature-
rich learning-to-rank (LTR) machine learning
model, followed by a rule-based system for
reranking the LTR model predictions. Our sys-
tem was ranked fourth in the official evalu-
ation, scoring close to the second and third
ranked teams, achieving 39.4% MAP.

1 Introduction

The TextGraphs 2019 Shared Task on Multi-Hop
Inference for Explanation Regeneration (Jansen
and Ustalov, 2019) was organized for the semantic
evaluation of systems for providing explanations
to elementary science question answers. The task
itself was formulated as a ranking task, where the
goal was to rerank the relevant explanation sen-
tences in a given knowledge base of over 4,000
candidate explanation sentences for a given pair
of an elementary science question and its correct
answer. The QA part of the MIER-19 dataset,
including the questions and their multiple-choice
answers, had been released previously as the AI2
Reasoning Challenge (Clark et al., 2018) dataset
called ARC-18. Since answering science ques-
tions necessitates reasoning over a sophisticated
understanding of both language and the world and
over commonsense knowledge, ARC-18 specifi-

Question Granite is a hard material and forms from
cooling magma. Granite is a type of
Answer igneous rock
Explanation
[rank 1] igneous rocks or minerals are formed from
magma or lava cooling
[rank 2] igneous is a kind of rock
[rank 3] a type is synonymous with a kind
[not in gold expl] rock is hard
[not in gold expl] to cause the formation of means to form
[not in gold expl] metamorphic rock is a kind of rock
[not in gold expl] cooling or colder means removing or
reducing or decreasing heat or temperature

Table 1: Example depicting the Multi-Hop Inference
Explanation Regeneration Task. The multi-hop infer-
ence task was formulated around the presence of a
lexical overlap (shown as underlined words) between
explanation sentences with the question or answer or
other correct explanation sentences. Since the lexical
overlap criteria was not strictly defined around only
the correct explanation candidates (as depicted with the
last four explanation candidates), the task necessitated
use of additional domain and world knowledge to rule
out incorrect explanation candidates.

cally encouraged progress on advanced reason-
ing QA where little progress was made as opposed
to factoid-based QA. This was highlighted when
sophisticated neural approaches for factoid-based
QA (Parikh et al., 2016; Seo et al., 2016; Khot
et al., 2018) tested on the ARC-18 did not achieve
good results. Now with the MIER-19 task, the
ARC-18 objective of testing QA systems for ad-
vanced reasoning dives deeper into the reasoning
aspect by focusing on reranking explanations for
questions and their correct answer choice.

In this article, we describe the version of our
system that participated in MIER-19. Systems
participating in this task assume as input the ques-
tion, its correct answer, and a knowledge base of
over 4,000 candidate explanation sentences. The
task then is to return a ranked list of the expla-
nation sentences where facts in the gold explana-
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tion are expected to be ranked higher than facts not
present in the gold explanation (cf. Table 1). Our
team was ranked fourth in the official evaluation,
scoring within a point gap to the second and third
ranked teams, achieving an overall 39.40% MAP.

Going beyond mere Information Retrieval such
as tf−idf for ranking relevant sentences to a
query, our system addresses the explanation sen-
tence ranking task as follows: we (a) adopt lexical,
grammatical, and semantic features for obtaining
stronger matches between a question, its correct
answer, and candidate explanation sentences for
the answer in a pairwise learning-to-rank frame-
work for ranking explanation sentences; and (b)
perform a reranking of the returned ranked expla-
nation sentences via a set of soft logical rules to
correct for obvious errors made by the learning-
based ranking system.1

The remainder of the article is organized as fol-
lows. We first give a brief overview of the MIER-
19 Shared Task and the corpus (Section 2). After
that, we describe related work (Section 3). Finally,
we present our approach (Section 4), evaluation
results (Section 5), and conclusions (Section 6).

2 The MIER-19 Shared Task

2.1 Task Description

The MIER-19 task (Jansen and Ustalov, 2019) fo-
cused on computing a ranked list of explanation
sentences (as shown in Table 1) for a question and
its correct answer (QA) from an unordered collec-
tion of explanation sentences. Specifically, given
a question, its known correct answer, and a list of
n explanation sentences, the goal was to (1) de-
termine whether an explanation sentence is rele-
vant as justification for the QA, and if so, (2) rank
the relevant explanation sentences in order by their
role in forming a logical discourse fragment.2

2.2 The Task Corpus

To facilitate system development, 1,190 Elemen-
tary Science (i.e. 3rd through 5th grades) ques-
tions were released as part of the training data.

1Our code is released for facilitating future work https:
//bit.ly/2lZo9eW

2Each explanation sentence is also annotated with its ex-
plicit discourse role in the explanation fragment for training
and development data (i.e. as central if it involves core QA
concepts, or as lexical glue if it simply serves as a connector
in the explanation sentence sequence, or as background infor-
mation, etc.). However, we do not consider this annotation as
part of the data since it is not available for the test set.
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Figure 1: Explanation sentences per question-answer
pair in the training and development dataset.

Each question is a 4-way multiple choice ques-
tion with the correct answer known. Further, every
question in the training data is accompanied by up
to 21 explanation sentences picked from a human-
authored tablestore of candidate explanation sen-
tences (see Section 2.2.1 for more details). Simi-
larly, development data was provided, containing
264 multiple choice questions with a known cor-
rect answer and their explanations. The distribu-
tion of explanation sentences per QA in the train-
ing and development datasets is depicted in Fig. 2.

This dataset of explanations for elementary sci-
ence QA was originally released as the WorldTree
corpus (Jansen et al., 2018).

2.2.1 The Explanations Tablestore
The task corpus separately comprised a tablestore
of manually authored 4,789 candidate explanation
sentences. Explanations for the QA instances were
obtained from one or more tables in the tablestore.

Total unique explanation sentences: 4,789
Seen in training data: 2,694
Seen in development data: 964
Seen in training and development data: 589

The tablestore comprised 62 separate tables
each containing explanation sentences around a
particular relation predicate such as “kind of”
(e.g., an acorn is a kind of seed), “part of” (e.g.,
bark is a part of a tree), “cause” (e.g., drought may
cause wildfires), etc., and a number of tables spec-
ified around specific properties such as “actions”
of organisms (e.g., some adult animals lay eggs),
the “properties of things” (e.g., an acid is acidic),
or “if-then” conditions (e.g., when an animal sheds
its fur, its fur becomes less dense). Table 2 lists
prominent explanation table types used in at least
1% of the training and development explanations.

https://bit.ly/2lZo9eW
https://bit.ly/2lZo9eW
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KINDOF 25.22
SYNONYMY 14.27
ACTION 6.48
IF-THEN 5.31
CAUSE 4.17
USEDFOR 4.17
PROPERTIES-THINGS 3.58

REQUIRES 2.87
PARTOF 2.74
COUPLEDRELATIONSHIP 2.67
SOURCEOF 1.89
CONTAINS 1.79
AFFECT 1.73
MADEOF 1.69

ATTRIBUTE-VALUE-RANGE 1.53
CHANGE 1.53
CHANGE-VEC 1.43
EXAMPLES 1.43
PROPERTIES-GENERIC 1.21
TRANSFER 1.11
AFFORDANCES 1.08

Table 2: Explanation table types (21 of 63 in total) sorted by the proportion of their occurrence for their respective
sentences participating in at least 1% of the training and development set QA explanations.

3 Background and Related Work

Elementary Science QA requiring diverse text
representations. In a study conducted on the
New York Regents standardized test QA, Clark
et al. (2013) identified at least five QA cate-
gories in elementary science, viz. taxonomic ques-
tions, definition-based questions, questions based
on properties of things (e.g., parts of an object),
and questions needing several steps of inference.
With the Aristo system (Clark et al., 2016), they
demonstrated that a system operating at different
levels of textual representation and reasoning was
needed to address diverse QA types since it sub-
stantially outperformed a singular information re-
trieval approach.

From these prior insights about the benefit of
a heterogeneous system on a dataset with diverse
QA types, our approach follows suit in using a set
of features over diverse representations of the QA
and its explanation.

Commonsense Knowledge for Explanations.
The relevance of commonsense knowledge in

reasoning task settings was demonstrated by two
recent systems (Paul and Frank, 2019; Bauer et al.,
2018). Paul and Frank (2019), in a sentiment
analysis task, specifically devise a novel method
to extract, rank, filter and select multi-hop rela-
tion paths from ConceptNet (Liu and Singh, 2004)
to interpret the expression of sentiment in terms
of their underlying human needs, thereby obtain-
ing boosted task performance for predicting hu-
man needs. Bauer et al. (2018) for a narrative QA
task, that required the model to reason, gather, and
synthesize disjoint pieces of information within
the context to generate an answer, employed Con-
ceptNet for multi-step reasoning where they con-
structed paths starting from concepts appearing in
the question to concepts appearing in the context,
aiming to emulate multi-hop reasoning.

Relatedly, we employ commonsense knowledge
by tracing commonalities between conceptual cat-
egories of QA and explanation sentence words.

Explanations for Elementary Science QA.
One of the first attempts creating justifications for
answers to elementary science exam questions was
by Jansen et al. (2017) which jointly addressed an-
swer extraction and justification creation. Since
in answering science exam questions, many ques-
tions require inferences from external knowledge
sources, they return the sentences traversed in in-
ferring the correct answer as a result. After iden-
tifying the question’s focus words, they generate
justifications by aggregating multiple sentences
from a number of textual knowledge bases (e.g.,
study guides, science dictionaries) that preferen-
tially (i.e. based on a number of measures de-
signed to assess how well-integrated, relevant, and
on-topic a given justification is) connect sentences
together on the focus words, selecting the answer
corresponding to the highest-ranked justification.
By this method, they obtained a boost in QA per-
formance and, further, the inference mechanism as
an additional result justifying the QA process.

4 Our Approach

Unlike Jansen et al. (2017) who jointly perform
answer extraction and answer explanation infer-
ence, our approach only addresses the task of an-
swer explanation inference assuming we are given
the question, its correct answer, and a knowledge
base of candidate explanation sentences. 3

In the methodology for the manual authoring of
explanations to create the explanation tablestore
for elementary science QA, it was followed that
an explanation sentence:

• overlaps lexically with the question or an-
swer, or overlaps lexically with other expla-
nation sentences to the QA which we call the
overlap criteria; and

3The MIER-19 shared task does not evaluate selecting the
correct answer, hence the choice was up to the participants
whether to model an approach assuming the correct answer
or to perform explanation extraction as a function of correct
answer selection.
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• the sequence of explanation sentences form a
logically coherent discourse fragment which
we call the coherency criteria.

We model both criteria within a pairwise
learning-to-rank (LTR) approach.

Let (q, a, e) be a triplet consisting of a question
q, its correct answer a, and a candidate explanation
sentence e that is a valid or invalid candidate from
the given explanations tablestore.

4.1 Features for Learning-to-Rank

First, given a (q, a, e) triplet, we implement the
overlap criteria by invoking a selected set of fea-
ture functions targeting lexical overlap between
the triplet elements. For this, each triplet is en-
riched lexically by lemmatization and affixation to
ensure matches with word variant forms. How-
ever, more often than not, a QA lexically matches
with irrelevant candidate explanation sentences
(consider the latter explanation sentences in the
example in Table 1) resulting in semantic drift.
Therefore, we hypothesize that the semantic drift
can be controlled to some extent with matches at
different levels of grammatical and semantic ab-
straction of the q, a, and e units, which we also
encode as features.

Specifically, to compute the features, each q,
a, and e unit are represented as bags of: words,
lemmas, OpenIE (Angeli et al., 2015) relation
triples, concepts from ConceptNet (Liu and Singh,
2004), ConceptNet relation triples, Wiktionary
categories, Wiktionary content search matched
page titles, and Framenet (Fillmore, 1976) pred-
icates and arguments. 4 These representations re-
sulted in 76 feature categories shown in Table 3
which are used to generate (q, a, e) triplet instance
one-hot encoded feature vectors.

Second, given as input the (q, a, e) triplet fea-
ture vectors, we model the criteria of valid ver-
sus invalid explanation sentences and the prece-
dence between explanation sentences, i.e. the co-
herency criteria, within the supervised pairwise
LTR framework.

4.2 Pairwise Learning-to-Rank

Pairwise LTR methods are designed to handle
ranking tasks as a binary classification problem for

4OpenIE relations and FrameNet structures are extracted
only for q and e since they need to be computed on sentences
and the answers a are often expressed as phrases.

pairs of resources by modeling instance ranks as
relative pairwise classification decisions.

We employ SVM rank (Joachims, 2006) as
our pairwise LTR algorithm, which after trans-
forming the ranking problem into a set of bi-
nary classification tasks address the classifica-
tion through the formalism of Support Vector
Machines (SVM). Ranking SVMs in a non-
factoid QA ranking problem formulation have
showed similar performances to a Neural Percep-
tron Ranking model (Surdeanu et al., 2011).

4.2.1 Training our MIER-19 Task Model

Next, we describe how an LTR model can be
trained using a (q, a, e) triplet feature vector com-
puted according to the 76 feature categories shown
in Table 3.

The ranker aims to impose a ranking on the
candidate explanation sentences for each QA in
the test set, so that (1) the correct explanation
sentences are ranked higher than the incorrect
ones and (2) the correct explanation sentences are
ranked in order of their precedence w.r.t. each
other. In LTR, this is modeled as an ordered pair
(xqi,ai,ej , xqi,ai,ek ), where xqi,ai,ej is a feature vec-
tor generated between a QA (qi, ai) and a correct
candidate explanation sentence ej , and xqi,ai,ek
is a feature vector generated between (qi, ai) and
an incorrect candidate explanation sentence ek.
In addition, another kind of training instance in
our dataset can occur between correct explanation
sentences as an ordered pair (xqi,ai,ej , xqi,ai,em),
where ej logically precedes em in the explana-
tion sentence sequence. The goal of the ranker-
learning algorithm, then, is to acquire a ranker that
minimizes the number of violations of pairwise
rankings provided in the training set.

The ordered pairwise instances are created
above based on the labels assigned to each training
instance. One detail we left out earlier when dis-
cussing our (q, a, e) triplet features for LTR, was
that each triplet is also assigned a label indicat-
ing a graded relevance between the QA and the
candidate explanation sentence. This is done as
follows. For each (q, a, e) triplet instance, if e is
in the sequence of correct explanation sentences,
then it is labeled in a descending rank order start-
ing at ‘rank=number of explanation sentences+1’
for the first sentence and ending at ‘rank= 2’ for
the last one in the sequence, otherwise, ‘rank= 1’
for all incorrect explanation sentences.
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1. Lexical (31 feature categories)

1. lemmas of q/a/e

2. lemmas shared by q and e, a and e, and q, a and e

3. 5-gram, 4-gram, and 3-gram prefixes and suffixes of q/a/e

4. 5-gram, 4-gram, and 3-gram prefixes and suffixes shared by q, a, and e

5. e’s table type from the provided annotated tablestore data

2. Grammatical (11 feature categories)

1. using OpenIE (Angeli et al., 2015) extracted relation triples from q, a, and e sentences, the
features are: the q/a/e lemmas in the relation subject role, shared q, a and e subject lemmas,
q/a/e lemmas in the relation object role, shared q, a and e object lemmas, and q/a/e lemma
as the relation predicate

3. Semantic (34 feature categories)

1. top 50 conceptualizations of q/a/e words obtained from ConceptNet (Liu and Singh, 2004)

2. top 50 ConceptNet conceptualizations shared by q and e, a and e, and q, a and e words

3. words related to q/a/e words by any ConceptNet relation such as FormOf, IsA, HasContext,
etc.

4. words in common related to q, a, and e words

5. Wiktionary5 categories of q/a/e words

6. Wiktionary categories shared by q, a, and e words

7. Wiktionary page titles for content matched with q/a/e words

8. Wiktionary page titles for content matched with q, a, and e words in common

9. FrameNet v1.7 frames and their frame-elements (Fillmore, 1976) using open-
SESAME (Swayamdipta et al., 2017) were extracted from q and e sentences

Table 3: 76 feature categories for explanation ranking. Each training instance corresponds to a triplet (q, a, e),
where q, a, and e are bags of question, answer, and explanation words/lemmas, respectively, with stopwords
filtered out, where the data was sentence split and tokenized using the Stanford Parser 6.

4.3 Rules Solver

The application of the LTR system on develop-
ment data revealed 11 classes of errors that we
call obvious error categories in the sense that
they could be easily rectified via a set of logical
if − then − else chained rules where the out-
put of one rule is the input of the next. We hy-
pothesize that a rule-based approach can comple-
ment a purely learning-based approach, since a hu-

man could alternatively encode the commonsense
knowledge that may not be accessible to a learn-
ing algorithm given our features set. This inclu-
sion of rules as a post-processing step resulted in
our hybrid learning-based and rule-based system
to MIER-19 explanation sentence ranking.

We list four rules from our complete set of 11
rules as examples next. 7

7We list all the rules in Appendix A.
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E.g. Rule 1: Match with uni- or bigram an-
swers.

if answer is a unigram or bigram then
rerank all explanation sentences containing
the answer to the top

end if
E.g. Rule 2: Match with named entities.

if explanation sentence contains named entities
identified by [A-Z][a-z]+( [A-Z][a-z]+)+ then

rerank the explanation sentence to the bottom
if neither the question or answer contain the
explanation’s named entities

end if
E.g. Rule 3: Rerank explanation sentences with
other color words than the answer

if an answer contains a color word then
rerank all explanation sentences about other
colors in the form “[other color] is a kind of
color” to the bottom of the list

end if
E.g. Rule 4: Rerank based on gerund or par-
ticiple answer words

if answer contains gerund or participle words,
i.e. “ing” words then

rerank all explanation sentences from the
SYNONYMY table type containing gerund
or participle words other than the answer
“ing” word to the bottom of the list

end if

4.4 Testing the Hybrid System

The trained LTR model and the rules were then
applied on the QA instances released as the test
dataset. From test data, (q, a, e) triplets were cre-
ated in the same manner as the development data
where each test QA is given all 4,789 candidate
explanation sentences for ranking. Unlike devel-
opment data, however, in testing the valid expla-
nation sentences are unknown.

5 Evaluation

In this section, we evaluate our hybrid approach to
explanation sentence ranking for elementary sci-
ence QA.

5.1 Experimental Setup

Dataset. We used the 1,190 and 264 elementary
science QA pairs released as the MIER-19 chal-
lenge training and development data, respectively,
for developing our system. For testing, we used

the 1,247 QA instances released in the evaluation
phase of the MIER-19 challenge. For explanation
candidate sentences, we used the tablestore of the
4,789 sentences which remained the same in the
course of the challenge.

Evaluation Metrics. Evaluation results are ob-
tained using the official MHIER-19 challenge
scoring program. Results are expressed in terms
of mAP computed by the following formula.

mAP =
1

N

N∑
n=1

APn

where N is the number of QA instances and AP
is the average precision for a QA computed as fol-
lows.

AP@k =
1

GTP

k∑
i=1

TPseen@i

i

where AP@k, i.e. average precision at k, is
the standard formula used in information retrieval
tasks. Given the MHIER-19 challenge data, for
each QA, GTP is the total ground truth explana-
tion sentences, k is the total number of explana-
tion sentences in the tablestore (i.e. 4,789), and
TPseen@i are the total ground truth explanation
sentences seen until rank i.

By the above metric, our results are evaluated
only for the correct explanation sentences returned
as top-ranked, without considering their order.

Parameter Tuning. To optimize ranker perfor-
mance, we tune the regularization parameter C
(which establishes the balance between generaliz-
ing and overfitting the ranker model to the training
data). However, we noticed that a ranker trained
on all provided explanation sentences is not able
to learn a meaningful discriminative model at all
owing to the large bias in the negative examples
outweighing the positive examples (consider that
valid explanation sentences range between 1 to 21
whereas there are 4,789 available candidate expla-
nation sentences in the tablestore). To overcome
the class imbalance, we tune an additional param-
eter: the number of negative explanation sentences
for training. Every QA training instance is as-
signed 1000 randomly selected negative explana-
tion sentences. We then test tuning the number
of negative training data explanation sentences to
range between 500 to 1,000 in increments of 100.

Both the cost factor and the number of nega-
tive explanation sentences are tuned to maximize
performance on development data. Note, however,
that our development data is created to emulate the
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Dev MAP Test MAP

SVMrank 37.1 34.1
+Rules 44.4 39.4

Table 4: Mean Average Precision (mAP ) percentage
scores for Elementary Science QA explanation sen-
tence ranking from only pairwise LTR (row 1) and as a
hybrid system with rules (row 2) on development and
test datasets, respectively.

testing scenario. So every QA instance during de-
velopment is given all 4,789 candidate explanation
sentences to obtain results for the ranking task.8

Our best LTR model when evaluated on devel-
opment data was obtained with C = 0.9 and 700
negative training instances.

5.2 Results and Discussion
Table 4 shows the elementary science QA expla-
nation sentence ranking results from the official
MIER-19 scoring program in terms of mAP . The
first row corresponds to results from the feature-
rich SVMrank LTR system and the second row
shows the reranked results using rules. While
adding the rules gives us close to a 7 and 5 points
improvement on development and test sets, re-
spectively, the LTR system results are nonetheless
significantly better than an information retrieval
TF-IDF baseline which gives 24.5% and 24.8%
mAP on development and test data. Addition-
ally, Figure 2 shows the impact of the features-
only LTR system versus the features with rules
hybrid system on different length explanation sen-
tences up to 12.9 It illustrates that the longer ex-
planations are indeed harder to handle by both ap-
proaches and on both development and test data.

To provide further insights on the impact of
adding different feature groups in our LTR system,
we show ablation results in Table 5. We discuss
the maximum impact feature groups (viz. affix,
concepts, and relations) with examples, next, to
demonstrate why they work.

Compared to all other features, adding affixes in
the LTR system resulted in the maximum perfor-
mance gain of 6 points on the development data.
In general, affixation enables lexical matches with
variant word forms, which for us, facilitated bet-

8For parameter tuning, C is chosen from the set {0.1, 0.9,
1,10,50,100,500,800} and the number of negative training in-
stances is chosen from the set {500,600,700,800,900,1000}.

9We only consider explanation length up to 12 for the
comparison since the longer explanations are underrepre-
sented in the data with up to 3 QA instances.
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Feature Type Dev MAP Test MAP
1 lemma 28.40 24.85
2 +tablestore 28.05 24.95
3 +affix 34.01 31.01
4 +concepts 35.89 32.94
5 +relations (openIE &

conceptNet)
36.79 33.69

6 +Wiktionary 37.14 33.65
7 +framenet 37.12 34.14

Table 5: Ablation results of the LTR SVMrank system
in terms of percentage mAP with feature groups (from
seven feature types considered) incrementally added.

ter matches between QA and candidate explana-
tion sentences. Consider the following example
showing the top 3 returned explanation sentences.

Question What happens when the Sun’s energy warms
ocean water?
Answer The water evaporates.
Before
[not gold] an ocean is a kind of body of water
[not gold] temperature or heat energy is a property of ob-
jects or weather and includes ordered values of cold or
cool or warm or hot
[not gold] coral lives in the ocean or warm water
After
[not gold] an ocean is a kind of body of water
[rp 2 & rg 1] boiling or evaporation means change from
a liquid into a gas by adding heat energy
[rp 3 & rg 6] the sun transfers solar energy or light energy
or heat energy from itself to the planets or Earth through
sunlight

Before affixation, none of the valid explanation
sentences are retrieved among the top 3. After af-
fixation, however, two valid explantion sentences
get reranked among the top 3 10 owing to enabled
matches with the QA words “Sun’s” and “evapo-
rates” based on their trigram prefixes.

As hypothesized earlier, we found Concept-
Net’s semantic knowledge preventing semantic

10rp and rg stand for predicted rank and gold rank, respec-
tively.
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drift in several instances. This is illustrated in the
example below.

Question In which part of a tree does photosynthesis
most likely take place?
Answer leaves
Before
[rp 1 & rg 1] a leaf performs photosynthesis or gas ex-
change
[rp 5 & rg 2] a leaf is a part of a green plant
[rp 10 & rg 3] a tree is a kind of plant
After
[rp 1 & rg 1] a leaf performs photosynthesis or gas ex-
change
[rp 3 & rg 2] a leaf is a part of a green plant
[rp 7 & rg 3] a tree is a kind of plant

In the example, with additional knowledge such
as that “plant” has a ConceptNet conceptual class
“photosynthetic organism” enables higher rerank-
ing for the second and third explanation sentences
since one of the focus concepts in the question is
photosynthesis.

We find the ConceptNet relations as features en-
able making connections between the question and
answer. These connections enable a more accurate
reranking of those explanation sentences that rely
on information from both the question and the cor-
rect answer closer to the top. Consider the follow-
ing example.

Question Cows are farm animals that eat only plants.
Which of these kinds of living things is a cow?
Answer Herbivore
Before
[rp 3 & rg 6] an animal is a kind of living thing
[rp 5 & rg 1] herbivores only eat plants
After
[rp 2 & rg 1] herbivores only eat plants
[rp 5 & rg 6] an animal is a kind of living thing

For the above example, from ConceptNet we
obtain the lexical relations “herbivore IsA ani-
mal”, “cow RelatedTo animal”, and “an animal
Desires eat” which lexically links the explanation
sentence with the question and the correct answer.
We attribute the application of such relations as
the reason for the correct reranking of the two sen-
tences in terms of precedence and their proximity
to the gold rank.

5.2.1 Negative Results
Apart from the features depicted above, we also
considered WordNet (Miller, 1998) for additional
lexical expansion to facilitate matches for the
(q, a, e) triplets based on linguistic relations such
as synonymy, hypernymy, etc., but did not ob-
tain improved system performance. Further, fea-
tures computed from the word embeddings, viz.

Word2vec (Mikolov et al., 2013), Glove (Pen-
nington et al., 2014), and ConceptNet Number-
batch (Speer et al., 2017), as averaged vectors also
did not improve our model scores.

Finally, while the hybrid system via the rerank-
ing rules addresses lexical ordering between can-
didate explanation sentences, they still cannot
handle eliminating intermediate explanation sen-
tences that may not be semantically meaningful to
the QA. This is illustrated in the representative ex-
ample below.11

Question Jeannie put her soccer ball on the ground on
the side of a hill. What force acted on the soccer ball to
make it roll down the hill?
Answer gravity
[rf 3 & rh 1] gravity is a kind of force
[rf 21 & rh 3] gravity or gravitational force causes ob-
jects that have mass or substances to be pulled down or to
fall on a planet
[rf 4 & rh 14] a ball is a kind of object
[rf 7 & rh 17] to cause means to make

The example shows that the reranked result
from the hybrid system follows the order in the
gold data, however, not consecutively. Sentences
extraneous to the explanation such as “the ground
is at the bottom of an area”, “a softball is a kind
of ball”, etc., are still in between gold explanation
sentences in the reranked results.

6 Conclusions

We employed a hybrid approach to explanation
sentence ranking for Elementary Science QA con-
sisting of a feature-rich LTR system followed by a
series of 11 rules. When evaluated on the MIER-
19 official test data, our approach achieved an
mAP of 39.4%.

An immediate extension to this system would
be to encode the dependencies between explana-
tion sentences as features. While the pairwise LTR
model tackles this dependency to some extent, we
hypothesize that explicit modeling of features be-
tween explanation sentences should produce sig-
nificantly improved scores.
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Rule 1: Match with uni- or bigram answers.
if answer is a unigram or bigram then

rerank all explanation sentences containing
the answer to the top

end if
Rule 2: Match with named entities.

if explanation sentence contains named entities
identified by [A-Z][a-z]+( [A-Z][a-z]+)+ then

rerank the explanation sentence to the bottom
if neither the question or answer contain the
explanation’s named entities
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end if
Rule 3: Match with energy insulator common-
sense knowledge.

if explanation contains wax or rubber or brick
or down feathers as “energy insulator” then

rerank the explanation to the bottom if nei-
ther the question or answer contain “energy
insulator”

end if
Rule 4: Match with “increase” or “decrease”
commonsense knowledge.

if explanation contains “increase” or “decrease”
then

rerank the explanation to the bottom if neither
the question or answer contains “increase” or
“decrease”

end if
Rule 5: Rerank explanation sentences with un-
related entities to the QA.

By this rule, we identify pairs of entities that
are unrelated and rerank all explanation sentences
containing an unrelated entity mention to the bot-
tom of the list. For instance, if the QA is about
“planets”, then all explanation sentences about
“fern” can be reranked to the bottom as it unlikely
for any discussion to exist that relates “planets”
and the “fern” plant. Similarly, if a QA is about
“puppies”, then all explanation sentences about
“peas” can be reranked to the bottom.

To form pairs of unrelated entities, first, we cre-
ate lists of living and nonliving entities using the
KINDOF explanation table type (one among 61
explanation tables with a few shown in Table 2),
where sentences are of the pattern “[LHS] is a
kind of [RHS]”. These lists as created in a recur-
sive manner. For instance, to create the list of liv-
ing entities, we begin with all sentences where the
RHS=“living thing” and add the LHS value to the
list. In the next step, we substitute in the RHS the
new found living entities extracted in the previous
step. Again, we add the new LHS values to the list
of living entities. This process, i.e. substituting
new entities in the RHS and extracting the entity in
the LHS, continues until the list of living entities
no longer changes. As a simple example, given “a
plant is a kind of living thing”, in step 1, we add
plant to the list of living entities. In step 2, given
“peas are a kind of plant”, we add peas to the list
of living entities. The lists for non-living entities
are created in a similar manner, with the starting
pattern using RHS=“nonliving thing”.

Once weve obtained these lists, we obtain all
pairwise combinations of living, non-living, and
living and non-living entities. We identify the
pairs of unrelated entities by filtering out all pairs
of entities that have appeared in training and de-
velopment data. We also manually filter out ad-
ditional entities that we recognize could be re-
lated. Using this list, we rerank the explanation
sentences as follows.

if question or answer contain an entity in the list
of unrelated entity pairs then

rerank all explanation sentences containing
the second element of the pair to the bottom
of the list

end if
Rule 6: Singular form matched in explanation
sentences with plural unigram answers.

if a unigram answer is in plural then
rerank all explanation sentences containing
its singular form to the top of the list follow-
ing explanation sentences containing the ex-
act plural match

end if
Rule 7: Rerank explanation sentences with
other color words than the answer.

if an answer contains a color word then
rerank all explanation sentences about other
colors in the form “[other color] is a kind of
color” to the bottom of the list

end if
Rule 8: Rerank KINDOF explanation sen-
tences with entities not present in the QA.

if QA does not contain generic living entity
types such as “plants”, “animal”, “organism” or
“human” then

rerank all KINDOF explanation sentences to
the bottom relating entities not expressed in
the either the question or answer

end if
Rule 9: Rerank explanations from table types
not considered in training and development
data based on six QA types and overall.

We identify six QA types: “Which”, “When”,
and “What” questions; questions beginning with
“Some”; questions beginning with indefinite arti-
cle “A”; and those beginning with definite article
“The”. For each of these six QA types, we iden-
tify the table types that are never used to gener-
ate explanations in training and development data.
Additionally, we identify table types never used to
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generate explanations in the training and develop-
ment set overall.

if QA is in one of the six types or overall then
rerank all explanation sentences from the
never used table types for the particular type
of QA to the bottom of the list

end if
Rule 10: Match based on alternative sense of
the word “makes”

if QA contains the word “makes” (e.g., “What
makes up most of a human skeleton?”) then

rerank all explanation sentences from the
SYNONYMY table type of “make” with al-
ternative word senses to the bottom of the
list (e.g., “to make something easier means
to help”)

end if
Rule 11: Rerank based on gerund or participle
answer words.

if answer contains gerund or participle words,
i.e. “ing” words then

rerank all explanation sentences from the
SYNONYMY table type containing gerund
or participle words other than the answer
“ing” word to the bottom of the list

end if


