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Abstract

Knowledge graphs (KGs) are generally used
for various NLP tasks. However, as KGs still
miss some information, it is necessary to de-
velop Knowledge Graph Completion (KGC)
methods. Most KGC researches do not focus
on the Out-of-KGs entities (Unseen-entities),
we need a method that can predict the relation
for the entity pairs containing Unseen-entities
to automatically add new entities to the KGs.
In this study, we focus on relation prediction
and propose a method to learn entity represen-
tations via a graph structure that uses Seen-
entities, Unseen-entities and words as nodes
created from the descriptions of all entities. In
the experiments, our method shows a signifi-
cant improvement in the relation prediction for
the entity pairs containing Unseen-entities.

1 Introduction

Knowledge graphs (KGs) are a set of triples
in the form of (subject, relation, object), e.g.,
(Tokyo, Capital, Japan). These are an important
resource for NLP tasks, such as entity linking
(Radhakrishnan et al., 2018), question answering
(Sun et al., 2018; Mohammed et al., 2018), and
text generation (Koncel-Kedziorski et al., 2019).

Although many researches utilize KGs, these
are still incomplete and miss some information.
For example, in the Freebase (Bollacker et al.,
2008), 71% of the person entities are missing
a birthplace (Dong et al., 2014; Krompaß et al.,
2015). In addition, as new information is in-
creased with time, the KGs need to be updated.
Therefore, to further increase the scale of the
KGs, many researches have focused on Knowl-
edge Graph Completion (KGC), which aims at
predicting the missing information; for example,
relation prediction that predicts the relation that
holds between entities.

In recent years, embedding-based KGC meth-
ods have been proposed to learn entities and
relations representations in KGs (Bordes et al.,
2013; Xie et al., 2016b; Shi and Weninger,
2017; Schlichtkrull et al., 2018; An et al., 2018;
Nguyen et al., 2018, 2019). However, previous
researches did not focus on the Out-of-KGs
(OOKG) problem: OOKG is a problem that
can not learn entity representations that are not
included in the training triples (Unseen-entities).
Therefore, the OOKG problem needs to be
addressed to add new entities to the KGs such that
they are automatically extended.

To cope with the OOKG problem, we build
Unseen-entity representations using the entity de-
scriptions. Figure 1(a) illustrates examples of en-
tity descriptions, the descriptions include distinc-
tive words (e.g., game, Nintendo) that represent
the entity. Entities with co-occurring distinctive
words in the descriptions are considered to be re-
lated. For example, the Unseen-entity “Donkey
kong” was created by the “Shigeru Miyamoto”;
therefore, these are highly relevant entities.

DKRL (Xie et al., 2016a) addresses the OOKG
problem using entity descriptions. DKRL simply
encodes the Unseen-entity descriptions separately
with Convolutional Neural Networks (CNN) to
obtain its representations. However, DKRL does
not consider the relations with other entities while
obtaining the Unseen-entity representations. By
contrast, we can obtain better Unseen-entity rep-
resentations by considering the information on re-
lated entities using word co-occurrences from the
descriptions of all entities.

We address relation prediction and propose a
method using entity descriptions to address the
OOKG problem. Our method creates an Entity-
Word graph from the descriptions of all entities.
Figure 1(b) illustrates a part of the graph cre-
ated from the entity descriptions. By creating
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Super	Smash	Bros.	Brawl,	known	in	Japan	as	Dairantō	Smash	Brothers	X,	...
published	by	Nintendo for	the	Wii	video	game console.		…
Brawl	is	the	first	game in	the	series	to	expand	past	Nintendo characters	and	…

Donkey	Kong

Nintendo

Shigeru	Miyamoto

Super	Smash	Bros.	Brawl

Nintendo Co.,	Ltd.	is	a	Japanese	multinational	consumer	electronics	company	
headquartered	in	Kyoto,	Japan.	
Nintendo is	the	world's	largest	video	game company	by	revenue.	…

Donkey	Kong	is	a	platform	game developed	in	1994	by	Nintendo…
the	player	takes	control	of	Mario and	must	rescue	Pauline	from	Donkey	Kong.	…

Shigeru	Miyamoto	is	a	Japanese	video	game designer	and	producer.	…
Miyamoto	joined	Nintendo in	1977,	…
Miyamoto	has	created	include	Mario,		Donkey	Kong		,	…

(a) Entity descriptions

Shigeru	Miyamoto

Super	Smash	Bros.	Brawl

Donkey	Kong

Nintendo

game

Nintendo

Donkey

Mario

Kong

(b) A part of an Entity-Word graph

Figure 1: Examples of (a) entity descriptions and (b) a part of Entity-Word graph. The green node indicates a
Seen-entity and the gray node indicates an Unseen-entity. The orange node indicates a word. The Entity-Word
edge has a TF-IDF score and Word-Word edge has a PMI score.

the Entity-Word graph, even Unseen-entities can
explicitly be connected with other entities. Our
method encodes the graph with Graph Convolu-
tional Networks (GCNs) (Kipf and Welling, 2017)
to learn entity representations considering the
global features of the entire graph. GCNs simplify
the convolutional operations on the graph, and
learn node representations based on their neigh-
borhood information. GCNs are utilized for sev-
eral NLP tasks (Zhang et al., 2018; De Cao et al.,
2019). By encoding the Entity-Word graph with
GCNs, not only the descriptions information but
also information of the related entities is propa-
gated to the Unseen-entities through words. We
expect that the entity representations learned via
our Entity-Word graph can contribute to the im-
provement in the performance of the KGC.

In summary, our contributions are as follows:

• We propose a method to learn Seen- and
Unseen-entity representations using entity
descriptions via GCNs. To the best of our
knowledge, our work is the first consideration
of utilizing entity descriptions via a graph
structure to the KGC.

• In the experiments, our method significantly
outperforms existing models at predicting the
relation between the entity pairs containing
Unseen-entities. Furthermore, our method
outperforms existing models at predicting the
relation between the pairs of Seen-entities.

2 Related work

TransE (Bordes et al., 2013) is a pioneering work
on KGC. The energy function of TransE is defined

as: E(s, r, o) = |s+ r− o|, where, s, r and o
form the representation of a fact triple (s, r, o). The
embedding table in TransE converts a one-hot vec-
tor into a continuous vector space to learn entities
and relations representations. TransE minimizes
the loss function L =

∑
t∈S

∑
t′∈S′ max(E(t) +

γ−E(t′), 0), where, γ is the margin, S represents
the fact triples in the KGs, and S′ represents the
unfact triples that are not in the KGs. The un-
fact triple t′ is created by replacing the subject
or object entity in the fact triple t with another
one. Some variants of TransE are also proposed
in this branch (Wang et al., 2014; Ji et al., 2015;
Lin et al., 2015b,a). However, these models can-
not learn Unseen-entity representations as these
are not included in the training triples.

DKRL (Xie et al., 2016a) is an extension of
TransE that uses entity descriptions to cope with
the OOKG problem. While DKRL directly builds
Unseen-entity representation from its description
to avoid the OOKG problem, DKRL does not
consider the relation between Unseen-entities and
other entities. In this study, we construct an
Entity-Word graph from the descriptions of all
entities. By encoding the graph using GCNs,
the entities information is also propagated to the
Unseen-entities through words. However, DKRL
does not have a mechanism by which the infor-
mation of the related entities is propagated to the
Unseen-entities.

There is a model that addresses triple classifi-
cation for triples including Unseen-entities, which
utilizes auxiliary knowledges instead of textual
information to cope with the OOKG problem
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(Hamaguchi et al., 2017). For example, to clas-
sify the triple (Blade-Runner, is-a, Science-fiction)
containing the Unseen-entity “Blade-Runner” as
either true or false, this model is provided with
an auxiliary triple (Blade-Runner, based-on, Do-
Androids-Dream-of-Electric-Sheep?). The au-
thors deal with the special case and their problem
setting is different from ours.

3 Proposed method

Our method first creates a TF-IDF, PMI, and Self-
loop graph from the descriptions of all entities and
then encodes each graph with different GCN lay-
ers to learn entity representations. Finally, our de-
coder predicts the relation between the entities us-
ing entity representations.

3.1 Graph creation
The TF-IDF graph has edges between entity and
word nodes, and the weight of the edge has a TF-
IDF score. On this graph, the Unseen-entities are
explicitly connected to the other entities via word
nodes. By encoding the TF-IDF graph with GCNs,
our method can learn Unseen-entity representa-
tions considering the information on the related
entities. The TF-IDF adjacency matrix Atf -idf is
expressed by the following formula:

Ai,j
tf -idf =


TF-IDF(i, j) ( entity i, word j. )
TF-IDF(j, i) ( entity j, word i. )
0 ( otherwise. )

.

(1)

The PMI graph has edges between word nodes,
and the weight of the edge has a PMI score. Word
information is propagated among words by encod-
ing this graph with GCNs. The PMI adjacency
matrix Apmi is expressed by the following for-
mula:

Ai,j
pmi =

{
max(PMI(i, j), 0) ( word i, j. )
0 ( otherwise. )

.

(2)

In addition to these graphs, we create a Self-
loop graph with an edge from a node to itself. This
connection indicates that the node representations
are updated using their own representations when
our method encodes this graph with GCNs. The
Self-loop adjacency matrix Aself is a diagonal ma-
trix in which all diagonal entries equal to 1.

3.2 Encoder

Our encoder is expressed by the following formu-
las:

hl+1
tf -idf = σ(Ãtf -idfh

l
outW

l
tf -idf ), (3)

hl+1
pmi = σ(Ãpmih

l
outW

l
pmi), (4)

hl+1
self = σ(Ãselfh

l
outW

l
self ), (5)

hl+1
out = hl+1

tf -idf + hl+1
pmi + hl+1

self , (6)

where htf -idf , hpmi and hself are the node repre-
sentation matrices; hout is an output node repre-
sentation matrix; Each Ã = D− 1

2AD− 1
2 is a nor-

malized adjacency matrix of each A, representing
a graph, where D is the degree matrix of A; W
is a learning parameter matrix; and σ is an activa-
tion function. We used two GCN layers for the en-
coding. By aggregating the node representations
and stacking multiple GCN layers, it is possible to
learn the entity representations with higher-order
neighborhood information.

3.3 Decoder

A decoder is expressed by the following formula:

p = softmax(tanh(hsbjout ⊕ hobjout)Wdec + b), (7)

where p is a probability distribution for the all re-
lations, hsbjout and hobjout are subject and object repre-
sentations, respectively, ⊕ indicates concatenation
of vector representation, Wdec is a learning param-
eter matrix, and b is a bias term. We apply a cross
entropy as a loss function.

4 Experiments

4.1 Datasets and evaluation metrics

In this study, we evaluated our method on a
popular benchmark dataset FB15K (Bordes et al.,
2013) from Freebase. Our method utilizes entity
descriptions; therefore, similar to DKRL, we re-
moved 47 entities that have no descriptions, and
the triples containing these entities in FB15K. To
evaluate the relation prediction for the pair in-
cluding the Unseen-entity, we also evaluated our
method on FB20K. Although FB20K shares the
same training and validation triples as FB15K, the
subject or object entity in the test triples is the
Unseen-entity. The statistics of these datasets have
been described in (Xie et al., 2016a).

Following previous researches on this branch,
we used three metrics, namely Mean Rank (MR),
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Pair type Methods MR MRR Hits@1

S-U [11,586]
DKRL (CNN) 3 15.99 0.69 62.8
Our method 8.03 0.76 67.2

U-S [18,753]
DKRL (CNN) 12.72 0.71 64.8
Our method 6.43 0.76 67.2

U-U [151]
DKRL (CNN) 25.66 0.33 7.9
Our method 35.09 0.73 68.7

Total
DKRL (CNN) 8.91 0.74 65.8
Our method 7.18 0.76 67.5

Table 1: Evaluation results on the FB20K (Unseen set-
ting) and Filtered setting. S-U means that the object is
an Unseen-entity. U-S means that subject is an Unseen-
entity. U-U means that both are Unseen-entities. The
number in the brackets indicates the number of sam-
ples. The best scores are highlighted in bold.

Mean Reciprocal Rank (MRR), and Hits@1 for
evaluation: a lower MR, higher MRR, and higher
Hits@1 indicate better performance. We also fol-
lowed two evaluation settings, namely Raw (R)
and Filtered (F) (Bordes et al., 2013).

4.2 Experimental settings

As a preprocessing for descriptions, we performed
cleaning and tokenizing using (Kim, 2014) and
then removed the stop words defined by the
NLTK1 and words less than 5 times in frequency.
We calculated the TF-IDF and PMI values from
the preprocessed descriptions, following which we
created the Entity-Word graphs. The Entity-Word
graphs contain the entities included in the train-
ing and test sets. Our model learns on the given
the Entity-Word graphs and the gold labels of the
training entity pairs. For our model2, we selected
the window size S as 5. In the 1st layer, we se-
lected the dimension of W as 128 and ReLU as
the activation function and then applied dropout
to htf -idf , hpmi, and hself ; the ratio was 0.5. In
the 2nd layer, we selected the dimension of W as
64 and an identity function as the activation func-
tion, and then applied L2 norm to htf -idf , hpmi,
and hself . We selected one-hot node representa-
tions as the initial node representation matrix h0out
and applied Adam (Kingma and Ba, 2015) as an
optimizer with the learning rate of 0.02.

1https://www.nltk.org/
2We determined parameters by performing grid search for

some candidates. We applied early-stopping on the loss on
the validation set and selected a best model for the test time.

3For comparison and analysis, we implemented DKRL.
4We determined 0.5 as the weight of the DKRL(CNN)

from the validation results.

Methods
MR Hits@1

R F R F
TransE (Bordes et al., 2013) 2.8 2.5 65.1 84.3
TransR (Lin et al., 2015b) 2.49 2.09 70.2 91.6
TKRL (RHE) (Xie et al., 2016b) 2.12 1.73 71.1 92.8
PTransE (ADD, 2step) (Lin et al., 2015a) 1.7 1.2 69.5 93.6
DKRL (CNN)+TransE4 2.15 1.80 70.8 90.5
ProjE (wlistwise) (Shi and Weninger, 2017) 1.5 1.2 75.5 95.6
CACL (Oh et al., 2018) 1.52 1.19 77.6 96.4
Our method 1.51 1.13 72.6 95.0

Table 2: Evaluation results on the FB15K (Seen set-
ting). The scores other than DKRL(CNN)+TransE are
directly taken from (Oh et al., 2018) and the each orig-
inal paper.

Entity1 : Bleach The DiamondDust Rebellion
Bleach: The DiamondDust Rebellion is the second animated
film adaptation of the anime and manga series Bleach. ...
Entity2 : Cameron Arthur Clarke
Cameron Arthur “Cam” Clarke is a prolific American voice
actor and singer, ...
Entity3 : Porco Rosso
Porco Rosso is a 1992 Japanese animated adventure film writ-
ten and directed by Hayao Miyazaki. It is based on Hikōtei
Jidai, a three-part watercolor manga by Miyazaki. ...

Table 3: Entities in the FB15K and their descriptions,
and the relation “dubbing performance/actor” holds
between Entity1 and 2.

4.3 Evaluation results and discussion
In Table 1, our method shows a significant im-
provement on FB20K. Our method treats the
Unseen-entities differently from DKRL. Entity-
Word graphs are created and encoded in our
method; therefore, our method can learn the rep-
resentation of both the Seen- and Unseen-entities.
Moreover, the information of the related entities
is propagated to the Unseen-entities to assist the
learning of Unseen-entities in our method. On the
other hand, since DKRL only uses the descriptions
information to obtain the Unseen-entity represen-
tations, DKRL does not consider the related enti-
ties information. Therefore, we concluded that our
method outperforms the DKRL on the FB20K.

In Table 25, our method shows a better MR than
the previous models. Table 3 shows the entities
in the FB15K and their descriptions, and the rela-
tion “dubbing performance/actor” holds between
Entity1 and 2. Our method correctly predicted this
relation, whereas our implemented DKRL mispre-
dicted this relation as “performance/actor”. To
accurately predict this relation, the KGC model
needs to recognize the attribute that Entity1 is

5In many previous models, the MRR was not reported;
therefore, we compare our method with the others based on
the MR and Hits@1.
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Japanese works and Entity2 is an American voice
actor. However, the description of Entity1 does not
directly indicate that Entity1 can be attributed to
Japanese works. Therefore, the KGC model needs
to recognize this from a few features such as the
Japanese-English words “manga” and “anime”.
The word “manga” also appears in the description
of Entity3, which is a Japanese movie, and this de-
scription also contains words specific to Japanese
works such as “Japanese animated” and “Hayao
Miyazaki” who is famous Japanese animator. Our
method makes use of the graph structure, Entity1
is located near the Japanese works entities such as
Entity3 on the graph, which propagates this infor-
mation to Entity1. Therefore, our method recog-
nizes that Entity1 is Japanese works, and can cor-
rectly predict the relation.

5 Conclusion

In this study, we proposed a method to learn en-
tity representations using entity descriptions via
graph structure. In the experiments, the perfor-
mance of the proposed model showed a signifi-
cant improvement on the FB20K; furthermore, it
outperforms the previous models on the FB15K.
However, although the word order information
(e.g., phrase) is an important clue for the re-
lation prediction, our model disregards it when
creating the Entity-Word graph. Thus, in fu-
ture research, we plan to integrade our encoder
with LSTM (Hochreiter and Schmidhuber, 1997)
which can capture the word order information.
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