
EMNLP-IJCNLP 2019

Graph-Based Methods for
Natural Language Processing

Proceedings of the Thirteenth Workshop

November 4, 2019
Hong Kong

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-86-4

ii

Introduction

Welcome to TextGraphs, the Workshop on Graph-Based Methods for Natural Language Processing. The
thirteenth edition of our workshop is being organized on November 4, 2019, in conjunction with the
2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint
Conference on Natural Language Processing, being held in Hong Kong.

The workshops in the TextGraphs series have published and promoted the synergy between the field of
Graph Theory (GT) and Natural Language Processing (NLP) for over a decade. The target audience of
our workshop comprises of researchers working on problems related to either Graph Theory or graph-
based algorithms applied to Natural Language Processing, Social Media, and the Semantic Web.

TextGraphs addresses a broad spectrum of research areas within NLP. This is because, besides traditional
NLP applications like parsing, word sense disambiguation, semantic role labeling, and information
extraction, graph-based solutions also target web-scale applications like information propagation in
social networks, rumor proliferation, e-reputation, language dynamics learning, and future events
prediction.

The selection process was competitive: we received 31 submissions (17 long and 14 short papers) and
accepted 18 of them (9 long and 9 short papers) for presentation, resulting in the overall acceptance rate
of 58%.

This year, for the first time in the history of TextGraphs, we organized a shared task on Multi-Hop
Inference for Explanation Regeneration. The goal of the task was to provide detailed gold explanations
for standardized elementary science exam questions by selecting facts from a knowledge base. The
shared task received public entries from four participating teams, substantially advancing the state-of-
the-art in this challenging problem. The participants’ reports along with the shared task overview by its
organizers are also presented at the workshop.

We thank Minlie Huang for his invited talk on Controllable Language Generation.

Finally, we are thankful to the members of the program committee for their valuable and high quality
reviews. All submissions have benefited from their expert feedback. Their timely contribution was the
basis for accepting an excellent list of papers and making the thirteenth edition of TextGraphs a success.

Dmitry Ustalov, Swapna Somasundaran, Peter Jansen, Goran Glavaš,
Martin Riedl, Mihai Surdeanu, and Michalis Vazirgiannis
TextGraphs-13 Organizers
November 2019

iii

Organizers:

Dmitry Ustalov, Yandex, Russia
Swapna Somasundaran, Educational Testing Service, Princeton, USA
Peter Jansen, University of Arizona, USA
Goran Glavaš, University of Mannheim, Germany
Martin Riedl, Heidelberg Druckmaschinen, Germany
Mihai Surdeanu, University of Arizona, USA
Michalis Vazirgiannis, École Polytechnique, France

Program Committee:

Željko Agić, IT University Copenhagen, Denmark
Tomáš Brychcín, University of West Bohemia, Czech Republic
Flavio Massimiliano Cecchini, Università Cattolica del Sacro Cuore, Italy
Tanmoy Chakraborty, Indian Institute of Technology Delhi, India
Mihail Chernoskutov, Krasovskii Institute of Mathematics and Mechanics, Russia
Stefano Faralli, University of Rome Unitelma Sapienza, Italy
Michael Flor, Educational Testing Service, USA
Debanjan Ghosh, Massachusetts Institute of Technology, USA
Carlos Gómez-Rodríguez, Universidade da Coruña, Spain
Tomáš Hercig, University of West Bohemia, Czech Republic
Anne Lauscher, University of Mannheim, Germany
Suman Kalyan Maity, Northwestern University, USA
Fragkiskos Malliaros, CentraleSupelec & University of Paris-Saclay, France
Gabor Melli, Sony PlayStation, USA
Mohsen Mesgar, Ubiquitous Knowledge Processing (UKP) Lab, Germany
Clayton Morrison, University of Arizona, USA
Animesh Mukherjee, Indian Institute of Technology Kharagpur, India
Giannis Nikolentzos, École Polytechnique, France
Enrique Noriega-Atala, University of Arizona, USA
Alexander Panchenko, Skolkovo Institute of Science and Technology, Russia
Simone Paolo Ponzetto, University of Mannheim, Germany
Jan Wira Gotama Putra, Tokyo Institute of Technology, Japan
Natalie Schluter, IT University of Copenhagen, Denmark
Rebecca Sharp, University of Arizona, USA
Konstantinos Skianis, École Polytechnique, France
Antoine Tixier, École Polytechnique, France
Nicolas Turenne, Paris Est University & INRA, France
Kateryna Tymoshenko, University of Trento, Italy
Ivan Vulić, University of Cambridge, UK
Vikas Yadav, University of Arizona, USA
Rui Zhang, Yale University, USA

Invited Speakers:

Minlie Huang, Tsinghua University, China

v

Table of Contents

Transfer in Deep Reinforcement Learning Using Knowledge Graphs
Prithviraj Ammanabrolu and Mark Riedl . 1

Relation Prediction for Unseen-Entities Using Entity-Word Graphs
Yuki Tagawa, Motoki Taniguchi, Yasuhide Miura, Tomoki Taniguchi, Tomoko Ohkuma, Takayuki

Yamamoto and Keiichi Nemoto . 11

Scalable graph-based method for individual named entity identification
Sammy Khalife and Michalis Vazirgiannis . 17

Neural Speech Translation using Lattice Transformations and Graph Networks
Daniel Beck, Trevor Cohn and Gholamreza Haffari .26

Using Graphs for Word Embedding with Enhanced Semantic Relations
Matan Zuckerman and Mark Last . 32

Identifying Supporting Facts for Multi-hop Question Answering with Document Graph Networks
Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel and André Freitas 42

Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs
Danni Ma, Chen Chen, Behzad Golshan and Wang-Chiew Tan . 52

Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
Robert Schwarzenberg, Marc Hübner, David Harbecke, Christoph Alt and Leonhard Hennig . . . 58

TextGraphs 2019 Shared Task on Multi-Hop Inference for Explanation Regeneration
Peter Jansen and Dmitry Ustalov . 63

ASU at TextGraphs 2019 Shared Task: Explanation ReGeneration using Language Models and Iterative
Re-Ranking

Pratyay Banerjee . 78

Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Explanation Generation
Yew Ken Chia, Sam Witteveen and Martin Andrews . 85

Team SVMrank: Leveraging Feature-rich Support Vector Machines for Ranking Explanations to Ele-
mentary Science Questions

Jennifer D’Souza, Isaiah Onando Mulang’ and Sören Auer . 90

Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable
Multi-hop Inference

Rajarshi Das, Ameya Godbole, Manzil Zaheer, Shehzaad Dhuliawala and Andrew McCallum . 101

Joint Semantic and Distributional Word Representations with Multi-Graph Embeddings
Pierre Daix-Moreux and Matthias Gallé . 118

Evaluating Research Novelty Detection: Counterfactual Approaches
Reinald Kim Amplayo, Seung-won Hwang and Min Song . 124

Do Sentence Interactions Matter? Leveraging Sentence Level Representations for Fake News Classifica-
tion

Vaibhav Vaibhav, Raghuram Mandyam and Eduard Hovy . 134

vii

Faceted Hierarchy: A New Graph Type to Organize Scientific Concepts and a Construction Method
Qingkai Zeng, Mengxia Yu, Wenhao Yu, JinJun Xiong, Yiyu Shi and Meng Jiang 140

Graph-Based Semi-Supervised Learning for Natural Language Understanding
Zimeng Qiu, Eunah Cho, Xiaochun Ma and William Campbell . 151

Graph Enhanced Cross-Domain Text-to-SQL Generation
Siyu Huo, Tengfei Ma, Jie Chen, Maria Chang, Lingfei Wu and Michael Witbrock 159

Reasoning Over Paths via Knowledge Base Completion
Saatviga Sudhahar, Andrea Pierleoni and Ian Roberts . 164

Node Embeddings for Graph Merging: Case of Knowledge Graph Construction
Ida Szubert and Mark Steedman . 172

DBee: A Database for Creating and Managing Knowledge Graphs and Embeddings
Viktor Schlegel and André Freitas . 177

A Constituency Parsing Tree based Method for Relation Extraction from Abstracts of Scholarly Publica-
tions

Ming Jiang and Jana Diesner . 186

viii

Conference Program

Monday, November 4, 2019

9:00–9:15 Opening remarks
Organizers

9:15–9:35 Transfer in Deep Reinforcement Learning Using Knowledge Graphs
Prithviraj Ammanabrolu and Mark Riedl

9:35–9:50 Relation Prediction for Unseen-Entities Using Entity-Word Graphs
Yuki Tagawa, Motoki Taniguchi, Yasuhide Miura, Tomoki Taniguchi, Tomoko
Ohkuma, Takayuki Yamamoto and Keiichi Nemoto

9:50–10:10 Scalable graph-based method for individual named entity identification
Sammy Khalife and Michalis Vazirgiannis

10:10–10:25 Neural Speech Translation using Lattice Transformations and Graph Networks
Daniel Beck, Trevor Cohn and Gholamreza Haffari

10:25–11:00 Coffee Break

11:00–11:20 Using Graphs for Word Embedding with Enhanced Semantic Relations
Matan Zuckerman and Mark Last

11:20–11:40 Identifying Supporting Facts for Multi-hop Question Answering with Document
Graph Networks
Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel and André Freitas

11:40–11:55 Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs
Danni Ma, Chen Chen, Behzad Golshan and Wang-Chiew Tan

11:55–12:10 Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
Robert Schwarzenberg, Marc Hübner, David Harbecke, Christoph Alt and Leonhard
Hennig

12:10–14:00 Lunch Break

14:00–15:00 Invited Talk: Towards more controllable language generation: knowledge and plan-
ning
Minlie Huang

ix

Monday, November 4, 2019 (continued)

15:00–15:30 TextGraphs 2019 Shared Task on Multi-Hop Inference for Explanation Regeneration
Peter Jansen and Dmitry Ustalov

15:30–16:00 Coffee Break

16:00–17:20 Shared Task Poster Session

ASU at TextGraphs 2019 Shared Task: Explanation ReGeneration using Language
Models and Iterative Re-Ranking
Pratyay Banerjee

Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Expla-
nation Generation
Yew Ken Chia, Sam Witteveen and Martin Andrews

Team SVMrank: Leveraging Feature-rich Support Vector Machines for Ranking Ex-
planations to Elementary Science Questions
Jennifer D’Souza, Isaiah Onando Mulang’ and Sören Auer

Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of
Facts for Explainable Multi-hop Inference
Rajarshi Das, Ameya Godbole, Manzil Zaheer, Shehzaad Dhuliawala and Andrew
McCallum

16:00–17:20 TextGraphs Poster Session

Joint Semantic and Distributional Word Representations with Multi-Graph Embed-
dings
Pierre Daix-Moreux and Matthias Gallé

Evaluating Research Novelty Detection: Counterfactual Approaches
Reinald Kim Amplayo, Seung-won Hwang and Min Song

Do Sentence Interactions Matter? Leveraging Sentence Level Representations for
Fake News Classification
Vaibhav Vaibhav, Raghuram Mandyam and Eduard Hovy

Faceted Hierarchy: A New Graph Type to Organize Scientific Concepts and a Con-
struction Method
Qingkai Zeng, Mengxia Yu, Wenhao Yu, JinJun Xiong, Yiyu Shi and Meng Jiang

x

Monday, November 4, 2019 (continued)

Graph-Based Semi-Supervised Learning for Natural Language Understanding
Zimeng Qiu, Eunah Cho, Xiaochun Ma and William Campbell

Graph Enhanced Cross-Domain Text-to-SQL Generation
Siyu Huo, Tengfei Ma, Jie Chen, Maria Chang, Lingfei Wu and Michael Witbrock

Reasoning Over Paths via Knowledge Base Completion
Saatviga Sudhahar, Andrea Pierleoni and Ian Roberts

Node Embeddings for Graph Merging: Case of Knowledge Graph Construction
Ida Szubert and Mark Steedman

DBee: A Database for Creating and Managing Knowledge Graphs and Embeddings
Viktor Schlegel and André Freitas

A Constituency Parsing Tree based Method for Relation Extraction from Abstracts
of Scholarly Publications
Ming Jiang and Jana Diesner

17:20–17:30 Closing Remark

xi

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 1–10
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Transfer in Deep Reinforcement Learning using Knowledge Graphs

Prithviraj Ammanabrolu
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA
raj.ammanabrolu@gatech.edu

Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA
riedl@cc.gatech.edu

Abstract
Text adventure games, in which players must
make sense of the world through text descrip-
tions and declare actions through text descrip-
tions, provide a stepping stone toward ground-
ing action in language. Prior work has demon-
strated that using a knowledge graph as a
state representation and question-answering to
pre-train a deep Q-network facilitates faster
control policy learning. In this paper, we
explore the use of knowledge graphs as a
representation for domain knowledge transfer
for training text-adventure playing reinforce-
ment learning agents. Our methods are tested
across multiple computer generated and hu-
man authored games, varying in domain and
complexity, and demonstrate that our transfer
learning methods let us learn a higher-quality
control policy faster.

1 Introduction

Text adventure games, in which players must
make sense of the world through text descrip-
tions and declare actions through natural language,
can provide a stepping stone toward more real-
world environments where agents must communi-
cate to understand the state of the world and af-
fect change in the world. Despite the steadily in-
creasing body of research on text-adventure games
(Bordes et al., 2010; He et al., 2016; Narasimhan
et al., 2015; Fulda et al., 2017; Haroush et al.,
2018; Côté et al., 2018; Tao et al., 2018; Am-
manabrolu and Riedl, 2019), and in addition to the
ubiquity of deep reinforcement learning applica-
tions (Parisotto et al., 2016; Zambaldi et al., 2019),
teaching an agent to play text-adventure games re-
mains a challenging task. Learning a control pol-
icy for a text-adventure game requires a signifi-
cant amount of exploration, resulting in training
runs that take hundreds of thousands of simula-
tions (Narasimhan et al., 2015; Ammanabrolu and
Riedl, 2019).

One reason that text-adventure games require so
much exploration is that most deep reinforcement
learning algorithms are trained on a task without
a real prior. In essence, the agent must learn ev-
erything about the game from only its interactions
with the environment. Yet, text-adventure games
make ample use of commonsense knowledge (e.g.,
an axe can be used to cut wood) and genre themes
(e.g., in a horror or fantasy game, a coffin is likely
to contain a vampire or other undead monster).
This is in addition to the challenges innate to the
text-adventure game itself—games are puzzles—
which results in inefficient training.

Ammanabrolu and Riedl (2019) developed a re-
inforcement learning agent that modeled the text
environment as a knowledge graph and achieved
state-of-the-art results on simple text-adventure
games provided by the TextWorld (Côté et al.,
2018) environment. They observed that a simple
form of transfer from very similar games greatly
improved policy training time. However, games
beyond the toy TextWorld environments are be-
yond the reach of state-of-the-art techniques.

In this paper, we explore the use of knowl-
edge graphs and associated neural embeddings as
a medium for domain transfer to improve train-
ing effectiveness on new text-adventure games.
Specifically, we explore transfer learning at mul-
tiple levels and across different dimensions. We
first look at the effects of playing a text-adventure
game given a strong prior in the form of a knowl-
edge graph extracted from generalized textual
walk-throughs of interactive fiction as well as
those made specifically for a given game. Next,
we explore the transfer of control policies in deep
Q-learning (DQN) by pre-training portions of a
deep Q-network using question-answering and by
DQN-to-DQN parameter transfer between games.
We evaluate these techniques on two different
sets of human authored and computer generated

1

games, demonstrating that our transfer learning
methods enable us to learn a higher-quality con-
trol policy faster.

2 Background and Related Work

Text-adventure games, in which an agent must in-
teract with the world entirely through natural lan-
guage, provide us with two challenges that have
proven difficult for deep reinforcement learning
to solve (Narasimhan et al., 2015; Haroush et al.,
2018; Ammanabrolu and Riedl, 2019): (1) The
agent must act based only on potentially incom-
plete textual descriptions of the world around it.
The world is thus partially observable, as the agent
does not have access to the state of the world at
any stage. (2) the action space is combinatorially
large—a consequence of the agent having to de-
clare commands in natural language. These two
problems together have kept commercial text ad-
venture games out of the reach of existing deep
reinforcement learning methods, especially given
the fact that most of these methods attempt to train
on a particular game from scratch.

Text-adventure games can be treated as par-
tially observable Markov decision processes
(POMDPs). This can be represented as a 7-tuple
of 〈S, T,A,Ω, O,R, γ〉: the set of environment
states, conditional transition probabilities between
states, words used to compose text commands, ob-
servations, conditional observation probabilities,
the reward function, and the discount factor re-
spectively (Côté et al., 2018).

Multiple recent works have explored the chal-
lenges associated with these games (Bordes et al.,
2010; He et al., 2016; Narasimhan et al., 2015;
Fulda et al., 2017; Haroush et al., 2018; Côté
et al., 2018; Tao et al., 2018; Ammanabrolu and
Riedl, 2019). Narasimhan et al. (2015) introduce
the LSTM-DQN, which learns to score the ac-
tion verbs and corresponding objects separately
and then combine them into a single action. He
et al. (2016) propose the Deep Reinforcement Rel-
evance Network that consists of separate networks
to encode state and action information, with a fi-
nal Q-value for a state-action pair that is computed
between a pairwise interaction function between
these. Haroush et al. (2018) present the Action
Elimination Network (AEN), which restricts ac-
tions in a state to the top-k most likely ones, us-
ing the emulator’s feedback. Hausknecht et al.
(2019b) design an agent that uses multiple mod-

ules to identify a general set of game play rules for
text games across various domains. None of these
works study how to transfer policies between dif-
ferent text-adventure games in any depth and so
there exists a gap between the two bodies of work.

Transferring policies across different text-
adventure games requires implicitly learning a
mapping between the games’ state and action
spaces. The more different the domain of the
two games, the harder this task becomes. Previ-
ous work (Ammanabrolu and Riedl, 2019) intro-
duced the use of knowledge graphs and question-
answering pre-training to aid in the problems of
partial observability and a combinatorial action
space. This work made use of a system called
TextWorld (Côté et al., 2018) that uses grammars
to generate a series of similar (but not exact same)
games. An oracle was used to play perfect games
and the traces were used to pre-train portions of
the agent’s network responsible for encoding the
observations, graph, and actions. Their results
show that this form of pre-training improves the
quality of the policy at convergence it does not
show a significant improvement in the training
time required to reach convergence. Further, it
is generally unrealistic to have a corpus of very
similar games to draw from. We build on this
work, and explore modifications of this algorithm
that would enable more efficient transfer in text-
adventure games.

Work in transfer in reinforcement learning has
explored the idea of transferring skills (Konidaris
and Barto, 2007; Konidaris et al., 2012) or trans-
ferring value functions/policies (Liu and Stone,
2006). Other approaches attempt transfer in
model-based reinforcement learning (Taylor et al.,
2008; Nguyen et al., 2012; Gasic et al., 2013;
Wang et al., 2015; Joshi and Chowdhary, 2018),
though traditional approaches here rely heavily
on hand crafting state-action mappings across do-
mains. Narasimhan et al. (2017) learn to play
games by predicting mappings across domains us-
ing a both deep Q-networks and value iteration
networks, finding that that grounding the game
state using natural language descriptions of the
game itself aids significantly in transferring useful
knowledge between domains.

In transfer for deep reinforcement learning,
Parisotto et al. (2016) propose the Actor-Mimic
network which learns from expert policies for a
source task using policy distillation and then ini-

2

tializes the network for a target task using these
parameters. Yin and Pan (2017) also use policy
distillation, using task specific features as inputs
to a multi-task policy network and use a hierarchi-
cal experience sampling method to train this multi-
task network. Similarly, Rusu et al. (2016) attempt
to transfer parameters by using frozen parameters
trained on source tasks to help learn a new set
of parameters on target tasks. Rajendran et al.
(2017) attempt something similar but use atten-
tion networks to transfer expert policies between
tasks. These works, however, do not study the re-
quirements for enabling efficient transfer for tasks
rooted in natural language, nor do they explore the
use of knowledge graphs as a state representation.

3 Knowledge Graphs for DQNs

A knowledge graph is a directed graph formed
by a set of semantic, or RDF, triples in the
form of 〈subject, relation, object〉—for exam-
ple, 〈vampires, are, undead〉. We follow the
open-world assumption that what is not in our
knowledge graph can either be true or false.

Ammanabrolu and Riedl (2019) introduced the
Knowledge Graph DQN (KG-DQN) and touched
on some aspects of transfer learning, show-
ing that pre-training portions of the deep Q-
network using question answering system on per-
fect playthroughs of a game increases the qual-
ity of the learned control policy for a generated
text-adventure game. We build on this work and
use KG-DQN to explore transfer with both knowl-
edge graphs and network parameters. Specifically
we seek to transfer skills and knowledge from
(a) static text documents describing game play and
(b) from playing one text-adventure game to a sec-
ond complete game in in the same genre (e.g., hor-
ror games). The rest of this section describes KG-
DQN in detail and summarizes our modifications.1

For each step that the agent takes, it automat-
ically extracts a set of RDF triples from the re-
ceived observation through the use of OpenIE
(Angeli et al., 2015) in addition to a few rules
to account for the regularities of text-adventure
games. The graph itself is more or less a map of
the world, with information about objects’ affor-
dances and attributes linked to the rooms that they
are place in in a map. The graph also makes a dis-
tinction with respect to items that are in the agent’s

1We use the implementation of KG-DQN found at
https://github.com/rajammanabrolu/KG-DQN

Graph embedding

Multi-head graph
attention

Sliding bidirectional
LSTM

Linear

Observation st

Updated graph

LSTM encoder

Actions a1 … an

Actions a’1 … a’n

Q(st, a’i)

Figure 1: The KG-DQN architecture.

possession or in their immediate surrounding en-
vironment. We make minor modifications to the
rules used in Ammanabrolu and Riedl (2019) to
better achieve such a graph in general interactive
fiction environments.

The agent also has access to all actions accepted
by the game’s parser, following Narasimhan et al.
(2015). For general interactive fiction environ-
ments, we develop our own method to extract this
information. This is done by extracting a set of
templates accepted by the parser, with the objects
or noun phrases in the actions replaces with a OBJ
tag. An example of such a template is ”place OBJ
in OBJ”. These OBJ tags are then filled in by look-
ing at all possible objects in the given vocabulary
for the game. This action space is of the order
of A = O(|V | × |O|2) where V is the number
of action verbs, and O is the number of distinct
objects in the world that the agent can interact
with. As this is too large a space for a RL agent to
effectively explore, the knowledge graph is used
to prune this space by ranking actions based on
their presence in the current knowledge graph and
the relations between the objects in the graph as
in Ammanabrolu and Riedl (2019).

The architecture for the deep Q-network con-
sists of two separate neural networks—encoding
state and action separately—with the finalQ-value
for a state-action pair being the result of a pair-
wise interaction function between the two (Fig-
ure 1). We train with a standard DQN training
loop; the policy is determined by the Q-value of a
particular state-action pair, which is updated using

3

the Bellman equation (Sutton and Barto, 2018):

Qt+1(st+1,at+1) =

E[rt+1 + γmax
a∈At

Qt(s, a)|st, at] (1)

where γ refers to the discount factor and rt+1 is
the observed reward. The whole system is trained
using prioritized experience replay Lin (1993), a
modified version of ε-greedy learning, and a tem-
poral difference loss that is computed as:

L(θ) =rk+1+

γ max
a∈Ak+1

Q(st,a; θ)−Q(st,at; θ)
(2)

where Ak+1 represents the action set at step k +
1 and st,at refer to the encoded state and action
representations respectively.

4 Knowledge Graph Seeding

In this section we consider the problem of trans-
ferring a knowledge graph from a static text re-
source to a DQN—which we refer to as seeding.
KG-DQN uses a knowledge graph as a state repre-
sentation and also to prune the action space. This
graph is built up over time, through the course of
the agent’s exploration. When the agent first starts
the game, however, this graph is empty and does
not help much in the action pruning process. The
agent thus wastes a large number of steps near the
beginning of each game exploring ineffectively.

The intuition behind seeding the knowledge
graph from another source is to give the agent a
prior on which actions have a higher utility and
thereby enabling more effective exploration. Text-
adventure games typically belong to a particular
genre of storytelling—e.g., horror, sci-fi, or soap
opera—and an agent is at a distinct disadvantage
if it doesn’t have any genre knowledge. Thus, the
goal of seeding is to give the agent a strong prior.

This seed knowledge graph is extracted from
online general text-adventure guides as well as
game/genre specific guides when available.2 The
graph is extracted from this the guide using a sub-
set of the rules described in Section 3 used to
extract information from the game observations,
with the remainder of the RDF triples coming
from OpenIE. There is no map of rooms in the en-
vironment that can be built, but it is possible to

2An example of a guide we use is found here http://
www.microheaven.com/IFGuide/step3.html

people
tell

You

can

multiple
items

can
use

go
north

go
south

object

examine

knife

cut

take
is

lock
key

is
is

opens

take drop

drop

drop

verb

is

is
.
.
.

.

.

.
can

can

do

do

is

command

inventory

.

.

.

. . .

Figure 2: Select partial example of what a seed knowl-
edge graph looks like. Ellipses indicate other similar
entities and relations not shown.

extract information regarding affordances of fre-
quently occurring objects as well as common ac-
tions that can be performed across a wide range of
text-adventure games. This extracted graph is thus
potentially disjoint, containing only this generaliz-
able information, in contrast to the graph extracted
during the rest of the exploration process. An ex-
ample of a graph used to seed KG-DQN is given
in Fig. 2. The KG-DQN is initialized with this
knowledge graph.

5 Task Specific Transfer

The overarching goal of transfer learning in text-
adventure games is to be able to train an agent on
one game and use this training on to improve the
learning capabilities of another. There is grow-
ing body of work on improving training times
on target tasks by transferring network parameters
trained on source tasks (Rusu et al., 2016; Yin and
Pan, 2017; Rajendran et al., 2017). Of particular
note is the work by Rusu et al. (2016), where they
train a policy on a source task and then use this
to help learn a new set of parameters on a target
task. In this approach, decisions made during the
training of the target task are jointly made using
the frozen parameters of the transferred policy net-
work as well as the current policy network.

Our system first trains a question-answering
system (Chen et al., 2017) using traces given by
an oracle, as in Section 4. For commercial text-
adventure games, these traces take the form of
state-action pairs generated using perfect walk-

4

through descriptions of the game found online as
described in Section 4.

We use the parameters of the question-
answering system to pre-train portions of the deep
Q-network for a different game within in the same
domain. The portions that are pre-trained are the
same parts of the architecture as in Ammanabrolu
and Riedl (2019). This game is referred to as the
source task. The seeding of the knowledge graph
is not strictly necessary but given that state-of-the-
art DRL agents cannot complete real games, this
makes the agent more effective at the source task.

We then transfer the knowledge and skills ac-
quired from playing the source task to another
game from the same genre—the target task. The
parameters of the deep Q-network trained on the
source game are used to initialize a new deep Q-
network for the target task. All the weights indi-
cated in the architecture of KG-DQN as shown in
Fig. 1 are transferred. Unlike Rusu et al. (2016),
we do not freeze the parameters of the deep Q-
network trained on the source task nor use the two
networks to jointly make decisions but instead just
use it to initialize the parameters of the target task
deep Q-network. This is done to account for the
fact that although graph embeddings can be trans-
ferred between games, the actual graph extracted
from a game is non-transferable due to differences
in structure between the games.

6 Experiments

We test our system on two separate sets of
games in different domains using the Jericho and
TextWorld frameworks (Hausknecht et al., 2019a;
Côté et al., 2018). The first set of games is “slice of
life” themed and contains games that involve mun-
dane tasks usually set in textual descriptions of
normal houses. The second set of games is “hor-
ror” themed and contains noticeably more diffi-
cult games with a relatively larger vocabulary size
and action set, non-standard fantasy names, etc.
We choose these domains because of the avail-
ability of games in popular online gaming com-
munities, the degree of vocabulary overlap within
each theme, and overall structure of games in each
theme. Specifically, there must be at least three
games in each domain: at least one game to train
the question-answering system on, and two more
to train the parameters of the source and target task
deep Q-networks. A summary of the statistics for
the games is given in Table 1. Vocabulary overlap

is calculated by measuring the percentage of over-
lap between a game’s vocabulary and the domain’s
vocabulary, i.e. the union of the vocabularies for
all the games we use within the domain. We ob-
serve that in both of these domains, the complex-
ity of the game increases steadily from the game
used for the question-answering system to the tar-
get and then source task games.

We perform ablation tests within each domain,
mainly testing the effects of transfer from seed-
ing, oracle-based question-answering, and source-
to-target parameter transfer. Additionally, there
are a couple of extra dimensions of ablations that
we study, specific to each of the domains and
explained below. All experiments are run three
times using different random seeds. For all the
experiments we report metrics known to be impor-
tant for transfer learning tasks (Taylor and Stone,
2009; Narasimhan et al., 2017): average reward
collected in the first 50 episodes (init. reward), av-
erage reward collected for 50 episodes after con-
vergence (final reward), and number of steps taken
to finish the game for 50 episodes after conver-
gence (steps). For the metrics tested after conver-
gence, we set ε = 0.1 following both Narasimhan
et al. (2015) and Ammanabrolu and Riedl (2019).
We use similar hyperparameters to those reported
in (Ammanabrolu and Riedl, 2019) for training the
KG-DQN with action pruning, with the main dif-
ference being that we use 100 dimensional word
embeddings instead of 50 dimensions for the hor-
ror genre.

6.1 Slice of Life Experiments

TextWorld uses a grammar to generate simi-
lar games. Following Ammanabrolu and Riedl
(2019), we use TextWorld’s “home” theme to gen-
erate the games for the question-answering sys-
tem. TextWorld is a framework that uses a gram-
mar to randomly generate game worlds and quests.
This framework also gives us information such as
instructions on how to finish the quest, and a list
of actions that can be performed at each step based
on the current world state. We do not let our agent
access this additional solution information or ad-
missible actions list. Given the relatively small
quest length for TextWorld games—games can be
completed in as little as 5 steps—we generate 50
such games and partition them into train and test
sets in a 4:1 ratio. The traces are generated on the
training set, and the question-answering system is

5

Table 1: Game statistics

Slice of life Horror
QA/Source Target QA Source Target
TextWorld 9:05 Lurking Horror Afflicted Anchorhead

Vocab size 788 297 773 761 2256
Branching factor 122 677 - 947 1918
Number of rooms 10 7 25 18 28
Completion steps 5 25 289 20 39
Words per obs. 65.1 45.2 68.1 81.2 114.2
New triples per obs. 6.4 4.1 - 12.6 17.0
% Vocab overlap 19.70 21.45 22.80 14.40 66.34
Max. aug. reward 5 27 - 21 43

You

're in

bathroom

have

gold
watch

soiled
clothing

have

bedroom

north
of

is

luxurious

keys

tele-
phone

wallet

has

has

has

has

end
table

sink

toilet

shower

has

has

has

cleaner
clothes

has dresser

has

extremely
sparse

is

You

're in

bathroom

have

gold
watch

soiled
chothing

have

bedroom

north
of

is

luxurious

keys

tele-
phone

wallet

has

has

has

has

end
table

sink

toilet

shower

has

has

has

Bedroom
This	 bedroom	 is	 extremely	 spare,	 with	 dirty	 laundry	 scattered

haphazardly	 all	 over	 the	 floor.	 Cleaner	 clothing	 can	 be	 found	 in	 the

dresser.	A	bathroom	lies	to	the	south,	while	a	door	to	the	east	leads	to	the

living	room.	On	the	end	table	are	a	telephone,	a	wallet	and	some	keys.

>inventory
You	are	carrying:

		some	soiled	clothing	(being	worn)

		a	gold	watch	(being	worn)

>go	south
Bathroom
This	 is	 a	 far	 from	 luxurious	 but	 still	 quite	 functional	 bathroom,	with	 a

sink,	toilet	and	shower.	The	bedroom	lies	to	the	north.

cleaner
clothes

has dresser

has

extremely
sparse

is

Figure 3: Partial unseeded knowledge graph example
given observations and actions in the game 9:05.

evaluated on the test set.
We then pick a random game from the test set to

train our source task deep Q-network for this do-
main. For this training, we use the reward function
provided by TextWorld: +1 for each action taken
that moves the agent closer to finishing the quest;
-1 for each action taken that extends the minimum
number of steps needed to finish the quest from
the current stage; 0 for all other situations.

We choose the game, 9:053 as our target task
game due to similarities in structure in addition to
the vocabulary overlap. Note that there are multi-
ple possible endings to this game and we pick the
simplest one for the purpose of training our agent.

3https://ifdb.tads.org/viewgame?id=
qzftg3j8nh5f34i2

alley

half-
crumbling

brick
walls

tall,
wooden
fence

ends
here atYou

wall of the
northern
building

narrow,
transom style

window

has

has
totter

oppressively
over

outside
the real
estate
office

southeast
of

lane

its way
back

ends
here at

winds
 grim

little cul-
de-sac

ancient
leads

essentially
nowhere

shadowy

corner of ...
twisting
avenues

is
is is

is
tucked

away in

Outside	the	Real	Estate	Office

A	 grim	 little	 cul-de-sac,	 tucked	 away	 in	 a	 corner	 of	 the	 claustrophobic

tangle	of	narrow,	twisting	avenues	that	largely	constitute	the	older	portion

of	Anchorhead.	Like	most	of	the	streets	in	this	city,	it	is	ancient,	shadowy,

and	leads	essentially	nowhere.	The	lane	ends	here	at	the	real	estate	agent's

office,	which	lies	to	the	east,	and	winds	its	way	back	toward	the	center	of

town	to	the	west.	A	narrow,	garbage-choked	alley	opens	to	the	southeast.

>go	southeast
Alley

This	narrow	aperture	between	two	buildings	is	nearly	blocked	with	piles	of

rotting	 cardboard	 boxes	 and	 overstuffed	 garbage	 cans.	 Ugly,	 half-

crumbling	brick	walls	to	either	side	totter	oppressively	over	you.	The	alley

ends	 here	 at	 a	 tall,	 wooden	 fence.	 High	 up	 on	 the	 wall	 of	 the	 northern

building	there	is	a	narrow,	transom-style	window.

're in
alley

half-
crumbling

brick
walls

tall,
wooden
fence

ends
here atYou

wall of the
northern
building

narrow,
transom style

window

has

has
totter

oppressively
over

outside
the real
estate
office

southeast
of

lane

its way
back

ends
here at

winds
 grim

little cul-
de-sac

ancient
leads

essentially
nowhere

shadowy

corner of ...
twisting
avenues

is
is is

is
tucked

away in

Outside	the	Real	Estate	Office

A	 grim	 little	 cul-de-sac,	 tucked	 away	 in	 a	 corner	 of	 the	 claustrophobic

tangle	of	narrow,	twisting	avenues	that	largely	constitute	the	older	portion

of	Anchorhead.	Like	most	of	the	streets	in	this	city,	it	is	ancient,	shadowy,

and	leads	essentially	nowhere.	The	lane	ends	here	at	the	real	estate	agent's

office,	which	lies	to	the	east,	and	winds	its	way	back	toward	the	center	of

town	to	the	west.	A	narrow,	garbage-choked	alley	opens	to	the	southeast.

>go	southeast
Alley

This	narrow	aperture	between	two	buildings	is	nearly	blocked	with	piles	of

rotting	 cardboard	 boxes	 and	 overstuffed	 garbage	 cans.	 Ugly,	 half-

crumbling	brick	walls	to	either	side	totter	oppressively	over	you.	The	alley

ends	 here	 at	 a	 tall,	 wooden	 fence.	 High	 up	 on	 the	 wall	 of	 the	 northern

building	there	is	a	narrow,	transom-style	window.

're in

Figure 4: Partial unseeded knowledge graph example
given observations and actions in the game Anchor-
head.

6.2 Horror Experiments

For the horror domain, we choose Lurking Hor-
ror4 to train the question-answering system on.
The source and target task games are chosen as Af-
flicted5 and Anchorhead6 respectively. However,
due to the size and complexity of these two games
some modifications to the games are required for
the agent to be able to effectively solve them.

4https://ifdb.tads.org/viewgame?id=
jhbd0kja1t57uop

5https://ifdb.tads.org/viewgame?id=
epl4q2933rczoo9x

6https://ifdb.tads.org/viewgame?id=
op0uw1gn1tjqmjt7

6

Figure 5: Reward curve for select experiments in the
slice of life domain.

We partition each of these games and make them
smaller by reducing the final goal of the game
to an intermediate checkpoint leading to it. This
checkpoints were identified manually using walk-
throughs of the game; each game has a natural in-
termediate goal. For example, Anchorhead is seg-
mented into 3 chapters in the form of objectives
spread across 3 days, of which we use only the
first chapter. The exact details of the games after
partitioning is described in Table 1. For Lurking
Horror, we report numbers relevant for the oracle
walkthrough. We then pre-prune the action space
and use only the actions that are relevant for the
sections of the game that we have partitioned out.
The majority of the environment is still available
for the agent to explore but the game ends upon
completion of the chosen intermediate checkpoint.

6.3 Reward Augmentation

The combined state-action space for a commer-
cial text-adventure game is quite large and the
corresponding reward function is very sparse in
comparison. The default, implied reward signal
is to receive positive value upon completion of
the game, and no reward value elsewhere. This
is problematic from an experimentation perspec-
tive as text-adventure games are too complex for
even state-of-the-art deep reinforcement learning
agents to complete. Even using transfer learning
methods, a sparse reward signal usually results in
ineffective exploration by the agent.

To make experimentation feasible, we augment
the reward to give the agent a dense reward sig-
nal. Specifically, we use an oracle to generate
state-action traces (identical to how as when train-

Figure 6: Reward curve for select experiments in the
horror domain.

ing the question-answering system). An oracle is
an agent that is capable of playing and finishing a
game perfectly in the least number of steps pos-
sible. The state-action pairs generated using per-
fect walkthroughs of the game are then used as
checkpoints and used to give the agent additional
reward. If the agent encounters any of these state-
action pairs when training, i.e. performs the right
action given a corresponding state, it receives a
proportional reward in addition to the standard re-
ward built into the game. This reward is scaled
based on the game and is designed to be less than
the smallest reward given by the original reward
function to prevent it from overpowering the built-
in reward. We refer to agents using this technique
as having “dense” reward and “sparse” reward oth-
erwise. The agent otherwise receives no informa-
tion from the oracle about how to win the game.

7 Results/Discussion

The structure of the experiments are such that the
for each of the domains, the target task game is
more complex that the source task game. The slice
of life games are also generally less complex than
the horror games; they have a simpler vocabulary
and a more linear quest structure. Additionally,
given the nature of interactive fiction games, it
is nearly impossible—even for human players—
to achieve completion in the minimum number of
steps (as given by the steps to completion in Ta-
ble 1); each of these games are puzzle based and
require extensive exploration and interaction with
various objects in the environment to complete.

Table 2 and Table 3 show results for the slice of
life and horror domains, respectively. In both do-

7

Table 2: Results for the slice of life games. “KG-DQN Full” refers to KG-DQN when seeded first, trained on the
source, then transferred to the target. All experiment with QA indicate pre-training. S, D indicate sparse and dense
reward respectively.

Experiment Init. Rwd. Final Rwd. Steps
Source Game (TextWorld)

KG-DQN no transfer 2.6 ± 0.73 4.7 ± 0.23 110.83 ± 4.92
KG-DQN w/ QA 2.8 ± 0.61 4.9 ± 0.09 88.57 ± 3.45
KG-DQN seeded 3.2 ± 0.57 4.8 ± 0.16 91.43 ± 1.89

Target Game (9:05)
KG-DQN untuned (D) - 2.5 ±0.48 1479.0 ± 22.3

KG-DQN no transfer (S) - - 1916.0 ± 33.17
KG-DQN no transfer (D) 0.8 ± 0.32 16.5 ± 1.58 1267.2 ± 7.5

KG-DQN w/ QA (S) - - 1428.0 ± 11.26
KG-DQN w/ QA (D) 1.3 ± 0.24 17.4 ± 1.84 1127.0 ± 31.22
KG-DQN seeded (D) 1.4 ± 0.35 16.7 ± 2.41 1393.33 ± 26.5

KG-DQN Full (D) 2.7 ± 0.65 19.7 ± 2.0 274.76 ± 21.45

Table 3: Results for horror games. Note that the reward type is dense for all results. “KG-DQN Full“ refers to
KG-DQN seeded, transferred from source. All experiment with QA indicate pre-training.

Experiment Init. Rwd. Final Rwd. Steps
Source Game (Afflicted)
KG-DQN no transfer 3.0 ± 1.3 14.1 ± 1.73 1934.7 ± 85.67

KG-DQN w/ QA 4.3 ± 1.34 15.1 ± 1.60 1179 ± 32.07
KG-DQN seeded 4.1 ± 1.19 14.6 ± 1.26 1125.3 ± 49.57

Target Game (Anchorhead)
KG-DQN untuned - 3.8 ± 0.23 -

KG-DQN no transfer 1.0 ± 0.34 6.8 ± 0.42 -
KG-DQN w/ QA 3.6 ± 0.91 24.8 ± 0.6 4874 ± 90.74
KG-DQN seeded 1.7 ± 0.62 26.6 ± 0.42 4937 ± 42.93

KG-DQN full 4.1 ± 0.9 39.9 ± 0.53 4334.3 ± 56.13

mains seeding and QA pre-training improve per-
formance by similar amounts from the baseline on
both the source and target task games. A series
of t-tests comparing the results of the pre-training
and graph seeding with the baseline KG-DQN
show that all results are significant with p < 0.05.
Both the pre-training and graph seeding perform
similar functions in enabling the agent to explore
more effectively while picking high utility actions.

Even when untuned, i.e. evaluating the agent
on the target task after having only trained on the
source task, the agent shows better performance
than training on the target task from scratch using
the sparse reward. As expected, we see a further
gain in performance when the dense reward func-
tion is used for both of these domains as well. In
the horror domain, the agent fails to converge to
a state where it is capable of finishing the game
without the dense reward function due to the hor-
ror games being more complex.

When an agent is trained using on just the tar-
get task horror game, Anchorhead, it does not con-
verge to completion and only gets as far as achiev-
ing a reward of approximately 7 (max. observed
reward from the best model is 41). This corre-

sponds to a point in the game where the player is
required to use a term in an action that the player
has never observed before, “look up Verlac” when
in front of a certain file cabinet—“Verlac“ being
the unknown entity. Without seeding or QA pre-
training, the agent is unable to cut down the ac-
tion space enough to effectively explore and find
the solution to progress further. The relative effec-
tiveness of the gains in initial reward due to seed-
ing appears to depend on the game and the cor-
responding static text document. In all situations
except Anchohead, seeding provides comparable
gains in initial reward as compared to QA — there
is no statistical difference between the two when
performing similar t-tests.

When the full system is used—i.e. we seed
the knowledge graph, pre-train QA, then train the
source task game, then the target task game using
the augmented reward function—we see a signif-
icant gain in performance, up to an 80% gain in
terms of completion steps in some cases. The bot-
tleneck at reward 7 is still difficult to pass, how-
ever, as seen in Fig. 6, in which we can see that
the agent spends a relatively long time around this
reward level unless the full transfer technique is

8

used. We further see in Figures 5, 6 that transfer-
ring knowledge results in the agent learning this
higher quality policy much faster. In fact, we note
that training a full system is more efficient than
just training the agent on a single task, i.e. train-
ing a QA system then a source task game for 50
episodes then transferring and training a seeded
target task game for 50 episodes is more effective
than just training the target task game by itself for
even 150+ episodes.

8 Conclusions

We have demonstrated that using knowledge
graphs as a state representation enables effi-
cient transfer between deep reinforcement learn-
ing agents designed to play text-adventure games,
reducing training times and increasing the quality
of the learned control policy. Our results show that
we are able to extract a graph from a general static
text resource and use that to give the agent knowl-
edge regarding domain specific vocabulary, object
affordances, etc. Additionally, we demonstrate
that we can effectively transfer knowledge using
deep Q-network parameter weights, either by pre-
training portions of the network using a question-
answering system or by transferring parameters
from a source to a target game. Our agent trains
faster overall, including the number of episodes re-
quired to pre-train and train on a source task, and
performs up to 80% better on convergence than an
agent not utilizing these techniques.

We conclude that knowledge graphs enable
transfer in deep reinforcement learning agents
by providing the agent with a more explicit–and
interpretable–mapping between the state and ac-
tion spaces of different games. This mapping
helps overcome the challenges twin challenges of
partial observability and combinatorially large ac-
tion spaces inherent in all text-adventure games
by allowing the agent to better explore the state-
action space.

9 Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
1350339. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References
Prithviraj Ammanabrolu and Mark O. Riedl. 2019.

Playing text-adventure games with graph-based
deep reinforcement learning. In Proceedings of
2019 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019.

Gabor Angeli, Johnson Premkumar, Melvin Jose, and
Christopher D. Manning. 2015. Leveraging Lin-
guistic Structure For Open Domain Information Ex-
traction. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).

Antoine Bordes, Nicolas Usunier, Ronan Collobert,
and Jason Weston. 2010. Towards understanding sit-
uated natural language. In Proceedings of the 2010
International Conference on Artificial Intelligence
and Statistics.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Emery Fine, James Moore, Matthew
Hausknecht, Layla El Asri, Mahmoud Adada,
Wendy Tay, and Adam Trischler. 2018. TextWorld :
A Learning Environment for Text-based Games. In
Proceedings of the ICML/IJCAI 2018 Workshop on
Computer Games, page 29.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David
Wingate. 2017. What can you do with a rock? affor-
dance extraction via word embeddings. In Proceed-
ings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages
1039–1045.

Milica Gasic, Catherine Breslin, Matthew Hender-
son, Dongho Kim, Martin Szummer, Blaise Thom-
son, Pirros Tsiakoulis, and Steve J. Young. 2013.
Pomdp-based dialogue manager adaptation to ex-
tended domains. In SIGDIAL Conference.

Matan Haroush, Tom Zahavy, Daniel J Mankowitz, and
Shie Mannor. 2018. Learning How Not to Act in
Text-Based Games. In Workshop Track at ICLR
2018, pages 1–4.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2019a. Interac-
tive fiction games: A colossal adventure. CoRR,
abs/1909.05398.

Matthew Hausknecht, Ricky Loynd, Greg Yang,
Adith Swaminathan, and Jason D. Williams. 2019b.
Nail: A general interactive fiction agent. CoRR,
abs/1902.04259.

9

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
Reinforcement Learning with a Natural Language
Action Space. In Association for Computational
Linguistics (ACL).

Girish Joshi and Girish Chowdhary. 2018. Cross-
domain transfer in reinforcement learning using tar-
get apprentice. In Proceedings of the International
Conference on Robotics and Automation, pages
7525–7532.

George Konidaris and Andrew G. Barto. 2007. Build-
ing portable options: Skill transfer in reinforcement
learning. In IJCAI.

George Konidaris, Ilya Scheidwasser, and Andrew
G. Barto. 2012. Transfer in reinforcement learning
via shared features. The Journal of Machine Learn-
ing Research, 13:1333–1371.

Long-Ji Lin. 1993. Reinforcement learning for robots
using neural networks. Ph.D. thesis, Carnegie Mel-
lon University.

Yaxin Liu and Peter Stone. 2006. Value-function-based
transfer for reinforcement learning using structure
mapping. In AAAI.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2017. Deep transfer in reinforcement
learning by language grounding. Journal of Artifi-
cial Intelligence Research, 63.

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language Understanding for Text-
based Games Using Deep Reinforcement Learning.
In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Trung Thanh Nguyen, Tomi Silander, and Tze-Yun
Leong. 2012. Transferring expectations in model-
based reinforcement learning. In NIPS.

Emilio Parisotto, Jimmy Ba, and Ruslan R. Salakhutdi-
nov. 2016. Actor-mimic: Deep multitask and trans-
fer reinforcement learning. CoRR, abs/1511.06342.

Janarthanan Rajendran, Aravind S. Lakshminarayanan,
Mitesh M. Khapra, P. Prasanna, and Balaraman
Ravindran. 2017. Attend, adapt and transfer: At-
tentive deep architecture for adaptive transfer from
multiple sources in the same domain. In ICLR.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. 2016. Progressive neural networks. CoRR,
abs/1606.04671.

Richard S Sutton and Andrew G Barto. 2018. Rein-
forcement Learning: An Introduction. MIT Press.

Ruo Yu Tao, Marc-Alexandre Côté, Xingdi Yuan, and
Layla El Asri. 2018. Towards solving text-based

games by producing adaptive action spaces. In Pro-
ceedings of the 2018 NeurIPS Workshop on Word-
play: Reinforcement and Language Learning in
Text-based Games.

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone.
2008. Transferring instances for model-based rein-
forcement learning. In ECML/PKDD.

Matthew E. Taylor and Peter Stone. 2009. Trans-
fer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research,
10:1633–1685.

Zhuoran Wang, Tsung-Hsien Wen, Pei hao Su,
and Yannis Stylianou. 2015. Learning domain-
independent dialogue policies via ontology param-
eterisation. In SIGDIAL Conference.

H. Yin and S. J. Pan. 2017. Knowledge transfer
for deep reinforcement learning with hierarchical
experience replay. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence,
AAAI’17, pages 1640–1646. AAAI Press.

Vinicius Zambaldi, David Raposo, Adam Santoro, Vic-
tor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lock-
hart, Murray Shanahan, Victoria Langston, Razvan
Pascanu, Matthew Botvinick, Oriol Vinyals, and Pe-
ter Battaglia. 2019. Deep reinforcement learning
with relational inductive biases. In International
Conference on Learning Representations.

10

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 11–16
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Relation Prediction for Unseen-Entities Using Entity-Word Graphs

Yuki Tagawa, Motoki Taniguchi, Yasuhide Miura, Tomoki Taniguchi,
Tomoko Ohkuma, Takayuki Yamamoto, Keiichi Nemoto

Fuji Xerox Co., Ltd.
{tagawa.yuki taniguchi.motoki, yasuhide.miura, taniguchi.tomoki,

ohkuma.tomoko, yamamoto.takayuki, nemoto.keiichi}
@fujixerox.co.jp

Abstract

Knowledge graphs (KGs) are generally used
for various NLP tasks. However, as KGs still
miss some information, it is necessary to de-
velop Knowledge Graph Completion (KGC)
methods. Most KGC researches do not focus
on the Out-of-KGs entities (Unseen-entities),
we need a method that can predict the relation
for the entity pairs containing Unseen-entities
to automatically add new entities to the KGs.
In this study, we focus on relation prediction
and propose a method to learn entity represen-
tations via a graph structure that uses Seen-
entities, Unseen-entities and words as nodes
created from the descriptions of all entities. In
the experiments, our method shows a signifi-
cant improvement in the relation prediction for
the entity pairs containing Unseen-entities.

1 Introduction

Knowledge graphs (KGs) are a set of triples
in the form of (subject, relation, object), e.g.,
(Tokyo, Capital, Japan). These are an important
resource for NLP tasks, such as entity linking
(Radhakrishnan et al., 2018), question answering
(Sun et al., 2018; Mohammed et al., 2018), and
text generation (Koncel-Kedziorski et al., 2019).

Although many researches utilize KGs, these
are still incomplete and miss some information.
For example, in the Freebase (Bollacker et al.,
2008), 71% of the person entities are missing
a birthplace (Dong et al., 2014; Krompaß et al.,
2015). In addition, as new information is in-
creased with time, the KGs need to be updated.
Therefore, to further increase the scale of the
KGs, many researches have focused on Knowl-
edge Graph Completion (KGC), which aims at
predicting the missing information; for example,
relation prediction that predicts the relation that
holds between entities.

In recent years, embedding-based KGC meth-
ods have been proposed to learn entities and
relations representations in KGs (Bordes et al.,
2013; Xie et al., 2016b; Shi and Weninger,
2017; Schlichtkrull et al., 2018; An et al., 2018;
Nguyen et al., 2018, 2019). However, previous
researches did not focus on the Out-of-KGs
(OOKG) problem: OOKG is a problem that
can not learn entity representations that are not
included in the training triples (Unseen-entities).
Therefore, the OOKG problem needs to be
addressed to add new entities to the KGs such that
they are automatically extended.

To cope with the OOKG problem, we build
Unseen-entity representations using the entity de-
scriptions. Figure 1(a) illustrates examples of en-
tity descriptions, the descriptions include distinc-
tive words (e.g., game, Nintendo) that represent
the entity. Entities with co-occurring distinctive
words in the descriptions are considered to be re-
lated. For example, the Unseen-entity “Donkey
kong” was created by the “Shigeru Miyamoto”;
therefore, these are highly relevant entities.

DKRL (Xie et al., 2016a) addresses the OOKG
problem using entity descriptions. DKRL simply
encodes the Unseen-entity descriptions separately
with Convolutional Neural Networks (CNN) to
obtain its representations. However, DKRL does
not consider the relations with other entities while
obtaining the Unseen-entity representations. By
contrast, we can obtain better Unseen-entity rep-
resentations by considering the information on re-
lated entities using word co-occurrences from the
descriptions of all entities.

We address relation prediction and propose a
method using entity descriptions to address the
OOKG problem. Our method creates an Entity-
Word graph from the descriptions of all entities.
Figure 1(b) illustrates a part of the graph cre-
ated from the entity descriptions. By creating

11

Super	Smash	Bros.	Brawl,	known	in	Japan	as	Dairantō	Smash	Brothers	X,	...
published	by	Nintendo for	the	Wii	video	game console.		…
Brawl	is	the	first	game in	the	series	to	expand	past	Nintendo characters	and	…

Donkey	Kong

Nintendo

Shigeru	Miyamoto

Super	Smash	Bros.	Brawl

Nintendo Co.,	Ltd.	is	a	Japanese	multinational	consumer	electronics	company	
headquartered	in	Kyoto,	Japan.	
Nintendo is	the	world's	largest	video	game company	by	revenue.	…

Donkey	Kong	is	a	platform	game developed	in	1994	by	Nintendo…
the	player	takes	control	of	Mario and	must	rescue	Pauline	from	Donkey	Kong.	…

Shigeru	Miyamoto	is	a	Japanese	video	game designer	and	producer.	…
Miyamoto	joined	Nintendo in	1977,	…
Miyamoto	has	created	include	Mario,		Donkey	Kong		,	…

(a) Entity descriptions

Shigeru	Miyamoto

Super	Smash	Bros.	Brawl

Donkey	Kong

Nintendo

game

Nintendo

Donkey

Mario

Kong

(b) A part of an Entity-Word graph

Figure 1: Examples of (a) entity descriptions and (b) a part of Entity-Word graph. The green node indicates a
Seen-entity and the gray node indicates an Unseen-entity. The orange node indicates a word. The Entity-Word
edge has a TF-IDF score and Word-Word edge has a PMI score.

the Entity-Word graph, even Unseen-entities can
explicitly be connected with other entities. Our
method encodes the graph with Graph Convolu-
tional Networks (GCNs) (Kipf and Welling, 2017)
to learn entity representations considering the
global features of the entire graph. GCNs simplify
the convolutional operations on the graph, and
learn node representations based on their neigh-
borhood information. GCNs are utilized for sev-
eral NLP tasks (Zhang et al., 2018; De Cao et al.,
2019). By encoding the Entity-Word graph with
GCNs, not only the descriptions information but
also information of the related entities is propa-
gated to the Unseen-entities through words. We
expect that the entity representations learned via
our Entity-Word graph can contribute to the im-
provement in the performance of the KGC.

In summary, our contributions are as follows:

• We propose a method to learn Seen- and
Unseen-entity representations using entity
descriptions via GCNs. To the best of our
knowledge, our work is the first consideration
of utilizing entity descriptions via a graph
structure to the KGC.

• In the experiments, our method significantly
outperforms existing models at predicting the
relation between the entity pairs containing
Unseen-entities. Furthermore, our method
outperforms existing models at predicting the
relation between the pairs of Seen-entities.

2 Related work

TransE (Bordes et al., 2013) is a pioneering work
on KGC. The energy function of TransE is defined

as: E(s, r, o) = |s+ r− o|, where, s, r and o
form the representation of a fact triple (s, r, o). The
embedding table in TransE converts a one-hot vec-
tor into a continuous vector space to learn entities
and relations representations. TransE minimizes
the loss function L =

∑
t∈S

∑
t′∈S′ max(E(t) +

γ−E(t′), 0), where, γ is the margin, S represents
the fact triples in the KGs, and S′ represents the
unfact triples that are not in the KGs. The un-
fact triple t′ is created by replacing the subject
or object entity in the fact triple t with another
one. Some variants of TransE are also proposed
in this branch (Wang et al., 2014; Ji et al., 2015;
Lin et al., 2015b,a). However, these models can-
not learn Unseen-entity representations as these
are not included in the training triples.

DKRL (Xie et al., 2016a) is an extension of
TransE that uses entity descriptions to cope with
the OOKG problem. While DKRL directly builds
Unseen-entity representation from its description
to avoid the OOKG problem, DKRL does not
consider the relation between Unseen-entities and
other entities. In this study, we construct an
Entity-Word graph from the descriptions of all
entities. By encoding the graph using GCNs,
the entities information is also propagated to the
Unseen-entities through words. However, DKRL
does not have a mechanism by which the infor-
mation of the related entities is propagated to the
Unseen-entities.

There is a model that addresses triple classifi-
cation for triples including Unseen-entities, which
utilizes auxiliary knowledges instead of textual
information to cope with the OOKG problem

12

(Hamaguchi et al., 2017). For example, to clas-
sify the triple (Blade-Runner, is-a, Science-fiction)
containing the Unseen-entity “Blade-Runner” as
either true or false, this model is provided with
an auxiliary triple (Blade-Runner, based-on, Do-
Androids-Dream-of-Electric-Sheep?). The au-
thors deal with the special case and their problem
setting is different from ours.

3 Proposed method

Our method first creates a TF-IDF, PMI, and Self-
loop graph from the descriptions of all entities and
then encodes each graph with different GCN lay-
ers to learn entity representations. Finally, our de-
coder predicts the relation between the entities us-
ing entity representations.

3.1 Graph creation
The TF-IDF graph has edges between entity and
word nodes, and the weight of the edge has a TF-
IDF score. On this graph, the Unseen-entities are
explicitly connected to the other entities via word
nodes. By encoding the TF-IDF graph with GCNs,
our method can learn Unseen-entity representa-
tions considering the information on the related
entities. The TF-IDF adjacency matrix Atf -idf is
expressed by the following formula:

Ai,j
tf -idf =

TF-IDF(i, j) (entity i, word j.)
TF-IDF(j, i) (entity j, word i.)
0 (otherwise.)

.

(1)

The PMI graph has edges between word nodes,
and the weight of the edge has a PMI score. Word
information is propagated among words by encod-
ing this graph with GCNs. The PMI adjacency
matrix Apmi is expressed by the following for-
mula:

Ai,j
pmi =

{
max(PMI(i, j), 0) (word i, j.)
0 (otherwise.)

.

(2)

In addition to these graphs, we create a Self-
loop graph with an edge from a node to itself. This
connection indicates that the node representations
are updated using their own representations when
our method encodes this graph with GCNs. The
Self-loop adjacency matrix Aself is a diagonal ma-
trix in which all diagonal entries equal to 1.

3.2 Encoder

Our encoder is expressed by the following formu-
las:

hl+1
tf -idf = σ(Ãtf -idfh

l
outW

l
tf -idf), (3)

hl+1
pmi = σ(Ãpmih

l
outW

l
pmi), (4)

hl+1
self = σ(Ãselfh

l
outW

l
self), (5)

hl+1
out = hl+1

tf -idf + hl+1
pmi + hl+1

self , (6)

where htf -idf , hpmi and hself are the node repre-
sentation matrices; hout is an output node repre-
sentation matrix; Each Ã = D− 1

2AD− 1
2 is a nor-

malized adjacency matrix of each A, representing
a graph, where D is the degree matrix of A; W
is a learning parameter matrix; and σ is an activa-
tion function. We used two GCN layers for the en-
coding. By aggregating the node representations
and stacking multiple GCN layers, it is possible to
learn the entity representations with higher-order
neighborhood information.

3.3 Decoder

A decoder is expressed by the following formula:

p = softmax(tanh(hsbjout ⊕ hobjout)Wdec + b), (7)

where p is a probability distribution for the all re-
lations, hsbjout and hobjout are subject and object repre-
sentations, respectively, ⊕ indicates concatenation
of vector representation, Wdec is a learning param-
eter matrix, and b is a bias term. We apply a cross
entropy as a loss function.

4 Experiments

4.1 Datasets and evaluation metrics

In this study, we evaluated our method on a
popular benchmark dataset FB15K (Bordes et al.,
2013) from Freebase. Our method utilizes entity
descriptions; therefore, similar to DKRL, we re-
moved 47 entities that have no descriptions, and
the triples containing these entities in FB15K. To
evaluate the relation prediction for the pair in-
cluding the Unseen-entity, we also evaluated our
method on FB20K. Although FB20K shares the
same training and validation triples as FB15K, the
subject or object entity in the test triples is the
Unseen-entity. The statistics of these datasets have
been described in (Xie et al., 2016a).

Following previous researches on this branch,
we used three metrics, namely Mean Rank (MR),

13

Pair type Methods MR MRR Hits@1

S-U [11,586]
DKRL (CNN) 3 15.99 0.69 62.8
Our method 8.03 0.76 67.2

U-S [18,753]
DKRL (CNN) 12.72 0.71 64.8
Our method 6.43 0.76 67.2

U-U [151]
DKRL (CNN) 25.66 0.33 7.9
Our method 35.09 0.73 68.7

Total
DKRL (CNN) 8.91 0.74 65.8
Our method 7.18 0.76 67.5

Table 1: Evaluation results on the FB20K (Unseen set-
ting) and Filtered setting. S-U means that the object is
an Unseen-entity. U-S means that subject is an Unseen-
entity. U-U means that both are Unseen-entities. The
number in the brackets indicates the number of sam-
ples. The best scores are highlighted in bold.

Mean Reciprocal Rank (MRR), and Hits@1 for
evaluation: a lower MR, higher MRR, and higher
Hits@1 indicate better performance. We also fol-
lowed two evaluation settings, namely Raw (R)
and Filtered (F) (Bordes et al., 2013).

4.2 Experimental settings

As a preprocessing for descriptions, we performed
cleaning and tokenizing using (Kim, 2014) and
then removed the stop words defined by the
NLTK1 and words less than 5 times in frequency.
We calculated the TF-IDF and PMI values from
the preprocessed descriptions, following which we
created the Entity-Word graphs. The Entity-Word
graphs contain the entities included in the train-
ing and test sets. Our model learns on the given
the Entity-Word graphs and the gold labels of the
training entity pairs. For our model2, we selected
the window size S as 5. In the 1st layer, we se-
lected the dimension of W as 128 and ReLU as
the activation function and then applied dropout
to htf -idf , hpmi, and hself ; the ratio was 0.5. In
the 2nd layer, we selected the dimension of W as
64 and an identity function as the activation func-
tion, and then applied L2 norm to htf -idf , hpmi,
and hself . We selected one-hot node representa-
tions as the initial node representation matrix h0out
and applied Adam (Kingma and Ba, 2015) as an
optimizer with the learning rate of 0.02.

1https://www.nltk.org/
2We determined parameters by performing grid search for

some candidates. We applied early-stopping on the loss on
the validation set and selected a best model for the test time.

3For comparison and analysis, we implemented DKRL.
4We determined 0.5 as the weight of the DKRL(CNN)

from the validation results.

Methods
MR Hits@1

R F R F
TransE (Bordes et al., 2013) 2.8 2.5 65.1 84.3
TransR (Lin et al., 2015b) 2.49 2.09 70.2 91.6
TKRL (RHE) (Xie et al., 2016b) 2.12 1.73 71.1 92.8
PTransE (ADD, 2step) (Lin et al., 2015a) 1.7 1.2 69.5 93.6
DKRL (CNN)+TransE4 2.15 1.80 70.8 90.5
ProjE (wlistwise) (Shi and Weninger, 2017) 1.5 1.2 75.5 95.6
CACL (Oh et al., 2018) 1.52 1.19 77.6 96.4
Our method 1.51 1.13 72.6 95.0

Table 2: Evaluation results on the FB15K (Seen set-
ting). The scores other than DKRL(CNN)+TransE are
directly taken from (Oh et al., 2018) and the each orig-
inal paper.

Entity1 : Bleach The DiamondDust Rebellion
Bleach: The DiamondDust Rebellion is the second animated
film adaptation of the anime and manga series Bleach. ...
Entity2 : Cameron Arthur Clarke
Cameron Arthur “Cam” Clarke is a prolific American voice
actor and singer, ...
Entity3 : Porco Rosso
Porco Rosso is a 1992 Japanese animated adventure film writ-
ten and directed by Hayao Miyazaki. It is based on Hikōtei
Jidai, a three-part watercolor manga by Miyazaki. ...

Table 3: Entities in the FB15K and their descriptions,
and the relation “dubbing performance/actor” holds
between Entity1 and 2.

4.3 Evaluation results and discussion
In Table 1, our method shows a significant im-
provement on FB20K. Our method treats the
Unseen-entities differently from DKRL. Entity-
Word graphs are created and encoded in our
method; therefore, our method can learn the rep-
resentation of both the Seen- and Unseen-entities.
Moreover, the information of the related entities
is propagated to the Unseen-entities to assist the
learning of Unseen-entities in our method. On the
other hand, since DKRL only uses the descriptions
information to obtain the Unseen-entity represen-
tations, DKRL does not consider the related enti-
ties information. Therefore, we concluded that our
method outperforms the DKRL on the FB20K.

In Table 25, our method shows a better MR than
the previous models. Table 3 shows the entities
in the FB15K and their descriptions, and the rela-
tion “dubbing performance/actor” holds between
Entity1 and 2. Our method correctly predicted this
relation, whereas our implemented DKRL mispre-
dicted this relation as “performance/actor”. To
accurately predict this relation, the KGC model
needs to recognize the attribute that Entity1 is

5In many previous models, the MRR was not reported;
therefore, we compare our method with the others based on
the MR and Hits@1.

14

Japanese works and Entity2 is an American voice
actor. However, the description of Entity1 does not
directly indicate that Entity1 can be attributed to
Japanese works. Therefore, the KGC model needs
to recognize this from a few features such as the
Japanese-English words “manga” and “anime”.
The word “manga” also appears in the description
of Entity3, which is a Japanese movie, and this de-
scription also contains words specific to Japanese
works such as “Japanese animated” and “Hayao
Miyazaki” who is famous Japanese animator. Our
method makes use of the graph structure, Entity1
is located near the Japanese works entities such as
Entity3 on the graph, which propagates this infor-
mation to Entity1. Therefore, our method recog-
nizes that Entity1 is Japanese works, and can cor-
rectly predict the relation.

5 Conclusion

In this study, we proposed a method to learn en-
tity representations using entity descriptions via
graph structure. In the experiments, the perfor-
mance of the proposed model showed a signifi-
cant improvement on the FB20K; furthermore, it
outperforms the previous models on the FB15K.
However, although the word order information
(e.g., phrase) is an important clue for the re-
lation prediction, our model disregards it when
creating the Entity-Word graph. Thus, in fu-
ture research, we plan to integrade our encoder
with LSTM (Hochreiter and Schmidhuber, 1997)
which can capture the word order information.

References
Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018. Ac-

curate text-enhanced knowledge graph representa-
tion learning. In Proceedings of NAACL.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of SIGMOD.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of NIPS.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019.
Question answering by reasoning across documents
with graph convolutional networks. In Proceedings
of NAACL.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,

Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of SIGKDD.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. 2017. Knowledge transfer for
out-of-knowledge-base entities: A graph neural net-
work approach. In Proceedings of IJCAI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of ICLR.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of NAACL.

Denis Krompaß, Stephan Baier, and Volker Tresp.
2015. Type-constrained representation learning in
knowledge graphs. In Proceedings of ISWC.

Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong
Sun, Siwei Rao, and Song Liu. 2015a. Modeling
relation paths for representation learning of knowl-
edge bases. In Proceedings of EMNLP.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of AAAI.

Salman Mohammed, Peng Shi, and Jimmy Lin. 2018.
Strong baselines for simple question answering over
knowledge graphs with and without neural net-
works. In Proceedings of NAACL.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel embed-
ding model for knowledge base completion based
on convolutional neural network. In Proceedings of
NAACL.

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen,
Dat Quoc Nguyen, and Dinh Phung. 2019. A cap-
sule network-based embedding model for knowl-
edge graph completion and search personalization.
In Proceedings of NAACL.

Byungkook Oh, Seungmin Seo, and Kyong-Ho Lee.
2018. Knowledge graph completion by context-
aware convolutional learning with multi-hop neigh-
borhoods. In Proceedings of CIKM.

15

Priya Radhakrishnan, Partha Talukdar, and Vasudeva
Varma. 2018. Elden: Improved entity linking us-
ing densified knowledge graphs. In Proceedings of
NAACL.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In Proceedings of ESWC.

Baoxu Shi and Tim Weninger. 2017. Proje: Embed-
ding projection for knowledge graph completion. In
Proceedings of AAAI.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of EMNLP.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of AAAI.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016a. Representation learning of
knowledge graphs with entity descriptions. In Pro-
ceedings of AAAI.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016b.
Representation learning of knowledge graphs with
hierarchical types. In Proceedings of IJCAI.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings
of EMNLP.

16

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 17–25
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Scalable graph-based method for individual named entity identification

Sammy Khalife Michalis Vazirgiannis
LIX, CNRS, Ecole Polytechnique

Institut Polytechnique de Paris, 91128 Palaiseau, France
khalife@lix.polytechnique.fr
mvazirg@lix.polytechnique.fr

Abstract

In this paper, we consider the named entity
linking (NEL) problem. We assume a set of
queries, named entities, that have to be iden-
tified within a knowledge base. This know-
ledge base is represented by a text database
paired with a semantic graph, endowed with
a classification of entities (ontology). We
present state-of-the-art methods in NEL, and
propose a new method for individual identi-
fication requiring few annotated data samples.
We demonstrate its scalability and perform-
ance over standard datasets, for several on-
tology configurations. Our approach is well-
motivated for integration in real systems. In-
deed, recent deep learning methods, despite
their capacity to improve experimental preci-
sion, require lots of parameter tuning along
with large volume of annotated data.

1 Introduction

1.1 Basic concepts and definitions
The purpose of Named entity discovery (NED) in
information retrieval is two-fold. First, it aims at
extracting pre-defined sets of words from text doc-
uments: this corresponds to Named entity recog-
nition (NER). These words are representations of
named entities (such as names, places, locations,
...). Then, these entity mentions paired with their
context are seen as queries to be identified within
database: this corresponds to named entity linking
(NEL). NEL is also refered as named entity disam-
biguation. The interest in NEL has grown recently
in several fields: in bioinformatics, to obtain loc-
ations of viral sequences from databases (Weis-
senbacher et al., 2015), or to process biomedical
litterature (Zheng et al., 2015). It also revealed
to be useful in recruitment in order to identify
employer names in a database (Liu et al., 2018).
Firstly, it is important to stress that the subtask
of NED, Named entity recognition (NER), is not

trivial since we do not have an exhaustive list of
the possible spelling of named entities. Moreover
their text representation can change (for example,
“J. Kennedy" vs. “John Kennedy"). In this paper
we focus on the second task, Named entity linking
(NEL).

Named entity (and Mention/Query): An entity
is a real-world object and usually has a physical
existence. It is denoted with a proper name. In the
expression “Named Entity", the word “Named"
aims to restrict the possible set of entities to only
those for which one or many rigid designators
stands for the referent (Nadeau and Sekine, 2007).
When a named entity appears in a document, its
surface form can also be refered as a mention. Fi-
nally, a query refers to the mention, the context
where it appears, and a type of entity considered.

Ontology: In this paper, our definition of an on-
tology is represented as a tree of entity types. In
the following, the variable T represents the total
number of nodes of this tree minus one (we don’t
count the root node since it is uninformative). Ori-
ginally, entities had a very limited number of types
(Nadeau and Sekine, 2007), such as person (PER),
organization (ORG), and localization (GPE) (i.e
T = 3). These types play a central role for
named entity recognition and identification. An
example of ontology is in Fig. 1. More recently,
due to the increase in the volume of the web se-
mantics data, fine-grained classifications are avail-
able, with hundreds of entity types, similarly to
DBPedia ontology1 (Lehmann et al., 2015).

Knowledge base/graph: A Knowledge base is a
database providing supplementary descriptive and
semantic information about entities. The semantic
information is contained in a knowledge graph,
where a node represents an entity, and an edge rep-
resents a semantic relation. The knowledge graph

1http://wiki.dbpedia.org/services-resources/ontology

17

Entity

PER

Politician
ORG

Political Party Association

GPE

City

Figure 1: Example of ontology, T = 7

E1 - Politician - John F. Kennedy
John F. Kennedy is served as

the 35th President of the U.S.A

E2 - Political Party - Demo-
cratic Party (United States)

The Democratic Party is a major con-
temporary political party in the U.S.A

E3 - City - Washington
Washington is the capital of the U.S.A

Figure 2: Representation of a unweighted directed se-
mantic graph (Wikipedia/NIST TAC-KBP Challenge
2010). An edge between two entities E1 and E2 rep-
resents a url link from E1 web page to E2 web page.

can be of any kind (directed, weighted, ...). See
Fig. 2 for an example.

Named entity linking (NEL): Given a named
entity query, the purpose of named entity linking
is to identify the corresponding ground truth entity
(gold entity) in a database (knowledge base). For
a detailed description of a concrete competition in
entity linking, we refer to (Ji et al., 2014).

Individual & collective linking: Linking can be
done individually or collectively. In the first case,
queries are independent. In the collective frame-
work, we consider a set of queries that usually ori-
ginates from the same document, and for which
gold entities (i.e ground truth entities) should have
some proximity, or coherence. In this work, we
propose individual linking approach.

1.2 Contributions

In this work, we provide a brief survey of exist-
ing methods for named entity linking. Then, we
investigate a method for individual named entity
linking. The first step of this method, refered as
entity filtering, reduces entity candidates to top K
entities for one query. The second step, refered
as entity identification, aims at identifying the true
entity among the remaining K candidates, based

on a new graph-based algorithm. We include an
experimental evaluation of our method with sev-
eral datasets, with an analysis of the impact of
parameter K, the ontology parameter T , and a de-
tailed comparison with existing approaches. The
implementation used for experiments is available
at our repository2. We do not include in this pa-
per work on Fine-grained named entity recogni-
tion (Ling and Weld, 2012). Moreover, we do not
include NIL-detection problem (detect if a query is
referring to an entity that is not in the knowledge
base, for instance (Ji et al., 2014)).

2 Related work

In the following subsections, we present three
families of algorithms for named entity linking.
Notations: E = {1, ..., E} ⊂ N: indexes of entit-
ies and Q = {1, ..., Q} ⊂ N: indexes of queries,
êi: system’s output entity index for query index qi.

2.1 Graphs for NED
Formulation: Given a scoring function defined
between queries and entities, let Wi,j the corres-
ponding score between the query i and the entity
j. For individual disambiguation, one wants to
perform independent query-entity attribution. A
straightforward formulation is:

êi = argmax
j∈E

Wi,j (1)

In this case, the total cost is separable in the vari-
able i, but the score Wi,j can use the knowledge
graph structure: this is the case in our approach.
For the sake of completeness, we give a descrip-
tion of the collective linking formulation. In this
framework the optimization formulation is differ-
ent: the underlying gold entities should respect
some arbitrary semantic coherence. The coher-
ence information is represented within a coher-
ence function ψ : EQ → R between the en-
tity candidates. Usually ψ is defined from the
knowledge graph structure. For example ψ can
be defined using the opposite sign of the shortest-
path function on the knowledge graph. With these
notations, the set of selected entities are formally
defined as:

ê1, ..., êQ = argmax
j1,..,jq∈EQ

[(

Q∑

l=1

Wl,jl)+ψ(j1, ..., jQ)]

(2)
2If needed, please send your request at khalife@lix.polytechnique.fr.

18

Eq. (2) can be formulated as a boolean integer
program. Its NP-hardness (Cucerzan, 2007) does
not allow to solve the general case for an important
number of queries. (Ratinov et al., 2011) evalu-
ated local and global approaches to find approxim-
ate solutions of an approximation of Eq. (2) with
Eq. (3), given a new coherence function ψ̃, and for
each query ql a disambiguation context of entities
Cl:

ê1, ..., êQ = argmax
j1,..,jq∈EQ

[(

Q∑

l=1

Wl,jl+
∑

k∈Cl

ψ̃(jl, jk))]

(3)
The formulation with Eq. (3) is halfway

between individual and collective linking: it sug-
gests to select a convenient set of disambiguation
contexts, and then solving locally for each query.
In the same time, it still enforces some coherence
among the predited entities. Collective linking
also has other formulations: (Han et al., 2011)
proposed a collective formulation for entity link-
ing decisions, in which evidence can be reinforced
into high-probability decisions.

For individual graph based linking, a rule based
on the importance of the entity node in the know-
ledge graph rule has been studied experimentally
(Guo et al., 2011).

a

b

e1

e2

e3

wa,e1

...

...

...
we1,e2

we2,e3

...
wb,e3

Figure 3: Directed query/entity bipartite weighted
graph. Nodes e1, e2, e3 are entities in the knowledge
base (same as Fig. 2). Nodes a and b are entity queries
extracted from text documents.

Dense subgraphs, PageRank: Other graph-
based approaches have been developed. (Hof-
fart et al., 2011), and (Alhelbawy and Gaizauskas,
2014) proposed to link efficiently a query to its
corresponding entity using the weighted undirec-
ted bipartite graph (Fig. 3). The idea is to extract
a dense subgraph in which every query node is
connected to exactly one entity, yielding the most
likely disambiguation. In general, this combin-

atorial optimization problem is NP-hard with re-
spect to the number of nodes, since they gener-
alize Steiner-tree problem (Hoffart et al., 2011).
However heuristics to solve this problem have
been experimented: (Hoffart et al., 2011) and (Al-
helbawy and Gaizauskas, 2014) proposed a dis-
carding algorithm using taboo search and local
similarities with polynomial complexity. Adapt-
ations of PageRank algorithm were carried out to
provide each entity a popularity score: (Usbeck
et al., 2014) built a weighted graph of all queries
and entities based on local and global similarit-
ies, and capitalize on the Hyperlink-Induced Topic
Search (HITS) algorithm to produce node author-
ity scores. Then, within similar entities to queries,
only entities with high authority will be retained.

2.2 Probabilistic graphical models
Another interesting idea is to consider named
entity queries as random variables and their
golden/true entities as hidden states. Unlike char-
acter recognition where |E| = |Ei| = 26 for latin
alphabet, the number of possible states S per en-
tity is large (usually S ≥ 106). Since Viterbi
algorithm has a O(N |S|2) complexity, where N
is the number of observations, inference is ineffi-
cient. To overcome this issue, (Alhelbawy and Ga-
izauskas, 2013) considers a reduced set of candid-
ates per query: ei ∈ Ei using query text informa-
tion. Using annotation, an Hidden Markov Model
(HMM) is trained on the reduced set of candid-
ates. Inference is made using message passing (Vi-
terbi algorithm) to find the most probable named
entity sequence. Another approach using prob-
abilistic graphical model has been provided by
(Ganea et al., 2016), with a factor graph that uses
popularity-based prior.

2.3 Embeddings and deep architectures
Recent advances in neural networks conception
suggested to use word embeddings and convolu-
tional neural networks to solve the named entity
linking problem. (Sun et al., 2015) proposed to
maximize a corrupted cosine similarity between a
query, its annotated gold entity and a false entity.
An example of learning representations for entities
using a neural architecture is achieved in (Yamada
et al., 2017), a linking system based on the simil-
arity of average of pre-trained entity embeddings
has been proposed (Yamada et al., 2016), with a
O(QE2) complexity. Finally other architectures
have been proposed (Sil et al., 2018; Raiman and

19

Raiman, 2018), the latter using a fine-grained on-
tology type system and reaching promising results
on several datasets.

3 Methodology

In this section we present a novel graph-based
method for NEL. As a preprocessing step, we pro-
pose a new but simple entity filtering method using
information retrieval techniques to obtain a lim-
ited number of entity candidates. The novelty of
our method lies in the second subsection where we
present a new graph-based method for final entity
identification. Source code is available at our re-
pository2.

3.1 Entity filtering

To discard wrong entity candidates, we use the
three sources of information in the query q =
(m, c, t̂): the mention name, the information con-
tained in the rest of document, and the entity type.
Obviously, the richer is the ontology (i.e the larger
is T), the easier the NEL problem (but harder is
the NER problem). In order to improve existing
entity filtering algorithms, we propose a routine
based on three main components below. The al-
gorithm is summarized in algorithm 1).

a - preProcess: For trivial queries having a
mention name equal to an existing entity name
and type, we implemented a naive match pre-
processing. If a mention has the same name and
the same type, its gold entity is labelled as the cor-
responding entity.

b - acronymDetection & acronymScore: Ac-
ronym detection and expansion is a common topic
in bioinformatics. We refer to (Ehrmann et al.,
2013) as a survey of acronym detection methods.
We implemented a simple rule-based decision for
acronym detection, following (Gusfield, 1997): a
string is tagged as an acronym if there are two or
more capital letters, and that consecutive distance
between two capital letters is always one. The sim-
ilarity score for acronym extension is chosen as the
length of longest common substring (Apostolico
and Guerra, 1987) between the acronym and cap-
ital letters of the target.

c - JN & contextScore: When the named en-
tity mention is not tagged as an acronym, compar-
ison with entity titles is performed by computing
N-grams for N ∈ {2, 3, 4}, and use Jaccard In-
dex of mention name and entity title. It is refered
as JN in algorithm 1. We also mesure similarity

between the context of the query and the text de-
scription of an entity in the knowledge base. We
experimented several techniques: TF-IDF, BM25 ,
BM25+ based on the probabilistic retrieval frame-
work developed in the 1970s and 1980s (we refer
to (Robertson et al., 2009) for a recent descrip-
tion). The experimental results were very similar
in term of recall. We present results obtained with
TFIDF (cf. Sec. 4).

Algorithm 1 Entity filtering (generation of entity
candidates)
Require: Parameter K, Query (q = (m, c, t̂)), Entities

(ej , tj)1≤j≤E

1: preProcess(q, (ej , tj)1≤j≤E)
2: ds = []
3: yacr ← acronymDetection(m)
4: for j = 1→ E do
5: if tj == t̂ then
6: if yacr == 1 then
7: sn = acronymScore(m, ej)
8: else
9: sn = JN(m, ej)

10: end if
11: st =

1
2
(sn + contextScore(c, ej))

12: Sorted insertion by value of {j : st} in ds
13: end if
14: end for
15: return ds[: K] (K top entities)

3.2 Graph-based identification

In this section, we present our graph-based method
for named entity identification. This graph-based
method uses enriched features extraction from the
knowledge graph, in order to re-rank top entity
candidates.

Feature extraction: Let q and e respectively a
query and an entity. T still represents the number
of distinct entity types in the ontology. Let s be
a scoring function between a query and an entity.
Let Nt(e) the set of entity neighbors of type t (cf.
Fig 4 for an example). By convention if Nt(e) =
∅, then s(q,Nt(e)) , 0. f(q, e) is the filtering
score obtained with algorithm 1. We define the
features vector associated with the couple (q, e),
Xq,e as the scores concatenation:

(Xq,e)0 = f(q, e)

∀t ∈ {1, ...,T }, (Xq,e)t = s(q,Nt(e))
(4)

The label of a couple (q, e) is defined as:

Y q,e =

{
1 if e is the gold entity of q
0 otherwise

(5)

20

Cambridge 1

Cambridgeshire

Fitzwilliam Museum

England

Wilf Mannion

Cambridge 2

Massachussets

United States

MIT Museum

Figure 4: Two homonyms: Cambridge cities. Each
color is assigned to a node in the ontology. If t1 is as-
sociated to the entity type Country, and t2 to Football
player, then
Nt1(Cambridge 1) = {England}
Nt2(Cambridge 1) = {Wilf Mannion}
Nt1(Cambridge 2) = {United States}
Nt2(Cambridge 2) = ∅

Supervised NEL: With this formulation, we
can train NEL standard regressors or classifiers in
a supervised learning framework. At inference,
the couple (q, ê) maximizing the prediction score
yields predicted entity ê. If same scores are re-
turned for different couples, we return the first
candidate. (This situation didn’t occur in prac-
tice). The feature extraction procedure and infer-
ence are summed up in algorithm 2 and algorithm
3 respectively.

Algorithm 2 Feature extraction using knowledge
graph and ontology
Require: Knowledge Graph G, Query q, Entity candidate e

with initial filtering score s0, Types (tj)1≤j≤T

1: Xq,e = [s0]
2: Get neighbor nodes of e
3: for j = 1 to T do
4: Aggregate text description of neighbors of type tj
5: Compute score stj betweenNtj (e) and the query q
6: Append stj to Xq,e

7: end for
8: return Score vectors (Xq,e)1≤j≤T+1

Algorithm 3 Named entity identification (Infer-
ence)
Require: Knowledge base B and its graph GB , queries

(qi)1≤i≤M , scoring threshold K, trained predictor F̂
1: for i = 1 to M do
2: Use filtering on query qi and B, return a list of K

top ranked entities (e1
h)1≤h≤K

3: Use algorithm 2 using GB , on K entity candidates,
return new score vectors

4: Evaluate F̂ on each vector score and use maximum a
posteriori to infer estimated gold entity ĝi

5: end for
6: return (ĝi)1≤i≤M (list of estimated gold entities)

Graph-based scoring functions: In the identi-

fication step, features defined from Eq. (4) require
the choice of a scoring function. First of all, sev-
eral representations for q and e are possible. In
our first experiment, we used the standard TFIDF
representation for the supervised learning proced-
ure described previously, and the corresponding
scoring function with cosine similarity. This al-
lowed to increase slightly empirical accuracy over
entity filtering.

In order to explore a broader class of scoring
functions, let us introduce graph of words (GoW)
representations. GoW is a representation built
over a sequence of objects in order to capture
sequential relationships. Given a window size,
nodes are added to the graph by their string rep-
resentation, and edges are added between nodes
in the same sliding window. This representa-
tion has proven its efficiency for several inform-
ation retrieval problems (Rousseau and Vazirgian-
nis, 2013).

Indeed, bag of words representations can be
considered as a special case of graph of words
representations, for which edge deleting opera-
tions have been applied. Here, we consider that
the query context and the entity description are
both composed of at least 10 words for GoW to
be meaningful. The final step to define a scor-
ing function as in Eq. (4), is to compare the two
graph structures (one from the query context and
the other from the entity description).

Given two graphs G and H, determining if G is
isomorphic H allows to measure graph similarit-
ies (Cordella et al., 2004). However, for several
applications, including the topic of this paper, iso-
morphic conditions are too rigid since two docu-
ments can be similar without isomorphic GoWs.
Also, we are interested in graph similarity meas-
ures taking in account structure (word relations)
and node attributes (words). For this reason, graph
kernels have been popularized as a powerful tool
to measure graph similarity in a continuous fash-
ion.

Following the notations of Sec. 3.2, and k a
graph kernel, we considered the family of scor-
ing functions: (q, e) 7→ k(GoWq, GoWNt(e)) in
our experiments. If Nt(e) contains more than one
node, we concatenate their text content and com-
pute a GoW. As mentioned previously, this family
of functions countains some of the bag-of-words
scoring functions, such as TFIDF. We obtained
better empirical results using standard graph ker-

21

nels (cf. next paragraph for examples). It should
be noted that we could not use graph kernels for
the first step (entity filtering), since the computa-
tion time would be too long. On the contrary, the
identification step takes as input a limited amount
of entity candidates, which makes the computation
time reasonable.

Graph-of-words window, graph kernels & re-
gressors: We selected as a graph-of-word win-
dow w = 4 (same results were obtained for w ∈
{3, 4, 5, 6}), with different graph kernels, includ-
ing Shortest-path kernel, Weisfeiler-Lehman Ker-
nel. The accuracy results for each graph kernel
were very close, but higher than with TFIDF scor-
ing (1% to 2% better). In Sec. 4, we report results
for the pyramid match graph kernel, for its low
complexity among standard kernels (Nikolentzos
et al., 2017). Finally, we used several standard
classifiers: regression trees, support vector ma-
chines, and logistic regression. We obtained bet-
ter results with logistic regression (reported in
Table 1).

Computational complexity: The total complex-
ity (filtering and identification) is: O(M(E +
KTG)). We report this in Table 2, along with
some experimental computing times.

4 Experimental setup and evaluation

The source code of our experiments along with
documentation, and datasets samples are available
at our repository2.

4.1 Datasets, entity types, and ontology:

We used CONLL and NIST TAC-KBP 2009-2010
as datasets. Each query contains its gold entity
id and type. TAC-KBP: the corresponding know-
ledge base is composed of 818741 entities. TAC09
contains 1675 test queries, and TAC10 1074 for
train and 1020 for test. CONLL/AIDA is com-
posed of 22516 queries for training and 4379 quer-
ies for test.

The other methods, mainly deep learning (DL)
in Table 1 use millions of training examples from
Wikipedia’s anchor links and corresponding entit-
ies. In our method, we did not use this additional
training data, but only those provided by the ori-
ginal challenges.

Also, we considered a more recent Knowledge
base (Wikipedia 2016 dump with 2880838 entit-
ies) since the original Wikipedia 2010 dump is not
available anymore. The ontology we considered

is available on DBPedia1. We provide the script
that builds the complete knowledge base and on-
tology in our repository. To generate fine-grained
ontology knowledge bases, we describe the pro-
cedure (along with the code) in our repository.
We must remind that our method does not include
fined-grained entity recognition from the queries:
we suppose this given as input in the data. For
the implementation of graph kernels, we used the
GraKeL software library (Siglidis et al., 2018).

4.2 Results:

We compare our methods with most performing
baselines. Table 1 sums up our experimental res-
ults (averaged P@1 is also referred as accuracy
(Sun et al., 2015)). We included standard devi-
ation of the accuracy, but could not include p-
significance of our method, due to the difficulty to
reproduce other baselines experiments (no source
code is publicly available, or filtering method
is not detailed). Our method yields remarkable
accuracy on TAC09 dataset, CONLL/AIDA and
TAC10 datasets. It performs better than any ex-
isting graph-based methods, outperforms all ex-
isting methods on two NIST TAC09 and TAC10,
and is competitive with state-of-the arts methods
on CONLL/AIDA. We also report impact of para-
meter K on average precision P@1 (accuracy).
Results are in Fig. 5. Low values of K, corres-
ponding to limited exploration, leading to decreas-
ing accuracy. High values of K yield too many en-
tity candidates and an imbalanced learning prob-
lem, resulting in a decrease of accuracy. Results
are similar for 5 ≤K ≤ 10, and allow a 2% to 3%
improvement over filtering. As expected, the pre-
cision is strictly increasing with respect to T but
the variation is bounded by 5% for T ∈ [3, 249].

Table 2: Computing times rounded to the minute. Q =
1000, E = 2.8× 106, G ≤ 200, K = 7, T = 249. Setup 1:
Single CPU with 32Gb Ram, 4-cores 2.40GHz. Setup 2: Dis-
tributed cluster with variety of 20 CPU processors equivalent
to setup 1 (Spark/Hadoop technology)

Component Complexity
Time (mn.)

Setup 1 Setup 2
Filtering O(ME) 196 15
Identification O(QKTG) 153 10

5 Conclusion

In this paper, we proposed a new methodology
concerning the problem of named entity linking.

22

Table 1: Comparison with state-of-the art methods for K = 7 and T = 249. PGMs stands for probabilistic
graphical model.

Method Nil detection Train. size
P@1 (Accuracy) ± std %

TAC09 TAC10 AIDA

(Ganea et al., 2016) PGM No ∼ 106 / / 87.39

(Ganea and Hofmann, 2017) PGM/DL No ∼ 106 / / 92.22

(Sun et al., 2015) DL No ∼ 106 82.26 83.92 /

(Yamada et al., 2016) DL No ∼ 106 / 85.2 93.1

(Yamada et al., 2017) DL No ∼ 106 / 87.7 94.3

(Globerson et al., 2016) DL Yes ∼ 106 / 87.2 92.7

(Sil et al., 2018) DL Not detailed ∼ 106 / 87.4 93.0

(Raiman and Raiman, 2018) DL Not detailed ∼ 106 / 90.85 94.87

(Guo et al., 2011) Graphs Yes ∼ 104 84.89 82.40 /

(Hoffart et al., 2011) Graphs No ∼ 104 / / 81.91

Our method Graphs No ∼ 103, 104 93.67±0.06 94.70±0.05 93.56±0.06

1 5 10 15 20
90

92

94

96

98

100

K

A
ve

ra
ge

ac
cu

ra
cy

(%
)

P@1 = f(K), T=249

TAC09
TAC10

CONLL AIDA

3 19 76 171 250

88

90

92

94

96

98

100

T

A
ve

ra
ge

ac
cu

ra
cy

(%
)

P@1 = g(T), K=7

TAC09
TAC10

CONLL AIDA

Figure 5: Impact of K and T on average P@1.

First, we presented an entity filtering algorithm to
return entity candidates that improves over trivial
association rules. Then, each entity candidate is
matched with a new representation built on a sub-
graph centered on their node. These representa-
tions use information contained in the ontology
of the knowledge base. Finally, we used stand-
ard supervised learning to identify entities in the
top candidates from filtering. We showed experi-
mentally with standard datasets that named entity
linking systematically improves over filtering us-
ing graph-based identification (for 2 ≤ K ≤ 10),
up to 3%. Our experiments show that our method
is competitive with state-of-the-art, and is stable
with respect to K and T , has a linear complex-
ity and reasonable experimental computing time.
Our linking system is relatively easy to implement,
with few hyper-parameters. Last but not least, it
does not require lots of data compared with deep
learning to reach good experimental performance:
only a few thousands of training samples were
used to reach these results.

References

Ayman Alhelbawy and Robert Gaizauskas. 2013.
Named entity disambiguation using hmms. In 2013
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Techno-
logies (IAT), volume 3, pages 159–162. IEEE.

Ayman Alhelbawy and Robert Gaizauskas. 2014.
Graph ranking for collective named entity disambig-
uation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 75–80.

23

A. Apostolico and C. Guerra. 1987. The longest com-
mon subsequence problem revisited. Algorithmica,
2(1):315–336.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and
Mario Vento. 2004. A (sub) graph isomorphism al-
gorithm for matching large graphs. IEEE transac-
tions on pattern analysis and machine intelligence,
26(10):1367–1372.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of the 2007 EMNLP-CoNLL, pages 708–716.

Maud Ehrmann, Leonida Della Rocca, Ralf Steinber-
ger, and Hristo Tanev. 2013. Acronym recogni-
tion and processing in 22 languages. arXiv preprint
arXiv:1309.6185.

Octavian-Eugen Ganea, Marina Ganea, Aurelien Luc-
chi, Carsten Eickhoff, and Thomas Hofmann. 2016.
Probabilistic bag-of-hyperlinks model for entity
linking. In Proceedings of the 25th International
Conference on World Wide Web, pages 927–938. In-
ternational World Wide Web Conferences Steering
Committee.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2619–2629.

Amir Globerson, Nevena Lazic, Soumen Chakra-
barti, Amarnag Subramanya, Michael Ringaard, and
Fernando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 621–631.

Yuhang Guo, Wanxiang Che, Ting Liu, and Sheng Li.
2011. A graph-based method for entity linking. In
Proceedings of 5th International Joint Conference
on Natural Language Processing, pages 1010–1018.

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: computer science and computational
biology. Cambridge university press.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Inform-
ation Retrieval, pages 765–774. ACM.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Spa-
niol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 782–792. Association for Computa-
tional Linguistics.

Heng Ji, Joel Nothman, Ben Hachey, et al. 2014. Over-
view of tac-kbp2014 entity discovery and linking
tasks. In Proc. Text Analysis Conference (TAC2014),
pages 1333–1339.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. 2015. Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In Twenty-Sixth AAAI Conference
on Artificial Intelligence.

Qiaoling Liu, Josh Chao, Thomas Mahoney, Alan
Chern, Chris Min, Faizan Javed, and Valentin
Jijkoun. 2018. Lessons learned from developing and
deploying a large-scale employer name normaliza-
tion system for online recruitment. In Proceedings
of the 24th ACM SIGKDD, pages 556–565. ACM.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingv-
isticae Investigationes, 30(1):3–26.

Giannis Nikolentzos, Polykarpos Meladianos, and
Michalis Vazirgiannis. 2017. Matching Node Em-
beddings for Graph Similarity. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence,
pages 2429–2435.

Jonathan Raphael Raiman and Olivier Michel Rai-
man. 2018. Deeptype: multilingual entity linking
by neural type system evolution. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Lev Ratinov, Dan Roth, Doug Downey, and Mike
Anderson. 2011. Local and global algorithms
for disambiguation to wikipedia. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 1375–1384. Associ-
ation for Computational Linguistics.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and bey-
ond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’13, pages 59–68, New York, NY,
USA. ACM.

Giannis Siglidis, Giannis Nikolentzos, Stratis Lim-
nios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. 2018. Grakel: A
graph kernel library in python. arXiv preprint
arXiv:1806.02193.

24

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity
disambiguation. In IJCAI, pages 1333–1339.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Mi-
chael Röder, Daniel Gerber, Sandro Athaide Coelho,
Sören Auer, and Andreas Both. 2014. Agdistis-
graph-based disambiguation of named entities using
linked data. In International semantic web confer-
ence, pages 457–471. Springer.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard,
Mari Figaro, Robert Rivera, Matthew Scotch, and
Graciela Gonzalez. 2015. Knowledge-driven geo-
spatial location resolution for phylogeographic mod-
els of virus migration. Bioinformatics, 31(12):i348–
i356.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. CoNLL 2016, page 250.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2017. Learning distributed rep-
resentations of texts and entities from knowledge
base. Transactions of the Association for Compu-
tational Linguistics, 5:397–411.

Jin G Zheng, Daniel Howsmon, Boliang Zhang, Juer-
gen Hahn, Deborah McGuinness, James Hendler,
and Heng Ji. 2015. Entity linking for biomedical
literature. BMC medical informatics and decision
making, 15(1):S4.

25

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 26–31
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Neural Speech Translation using Lattice Transformations and Graph
Networks

Daniel Beck† Trevor Cohn† Gholamreza Haffari‡
†School of Computing and Information Systems

University of Melbourne, Australia
{d.beck,t.cohn}@unimelb.edu.au

‡Faculty of Information Technology
Monash University, Australia

gholamreza.haffari@monash.edu

Abstract
Speech translation systems usually follow a
pipeline approach, using word lattices as an
intermediate representation. However, previ-
ous work assume access to the original tran-
scriptions used to train the ASR system, which
can limit applicability in real scenarios. In this
work we propose an approach for speech trans-
lation through lattice transformations and neu-
ral models based on graph networks. Experi-
mental results show that our approach reaches
competitive performance without relying on
transcriptions, while also being orders of mag-
nitude faster than previous work.

1 Introduction

Translation from speech utterances is a challeng-
ing problem that has been studied both under sta-
tistical, symbolic approaches (Ney, 1999; Casacu-
berta et al., 2004; Kumar et al., 2015) and more re-
cently using neural models (Sperber et al., 2017).
Most previous work rely on pipeline approaches,
using the output of a speech recognition system
(ASR) as an input to a machine translation (MT)
one. These inputs can be simply the 1-best sen-
tence returned by the ASR system or a more struc-
tured representation such as a lattice.

Some recent work on end-to-end systems by-
pass the need for intermediate representations,
with impressive results (Weiss et al., 2017). How-
ever, such a scenario has drawbacks. From a prac-
tical perspective, it requires access to the original
speech utterances and transcriptions, which can be
unrealistic if a user needs to employ an out-of-
the-box ASR system. From a theoretical perspec-
tive, intermediate representations such as lattices
can be enriched through external, textual resources
such as monolingual corpora or dictionaries.

Sperber et al. (2017) proposes a lattice-to-
sequence model which, in theory, can address both
problems above. However, their model suffers

from training speed performance due to the lack
of efficient batching procedures and they rely on
transcriptions for pretraining. In this work, we
address these two problems by applying lattice
transformations and graph networks as encoders.
More specifically, we enrich the lattices by apply-
ing subword segmentation using byte-pair encod-
ing (Sennrich et al., 2016, BPE) and perform a
minimisation step to remove redundant nodes aris-
ing from this procedure. Together with the stan-
dard batching strategies provided by graph net-
works, we are able to decrease training time by
two orders of magnitude, enabling us to match
their translation performance under the same train-
ing speed constraints without relying on gold tran-
scriptions.

2 Approach

Many graph network options exist in the litera-
ture (Bruna et al., 2014; Duvenaud et al., 2015;
Kipf and Welling, 2017; Gilmer et al., 2017): in
this work we opt for a Gated Graph Neural Net-
work (Li et al., 2016, GGNN), which was re-
cently incorporated in an encoder-decoder archi-
tecture by Beck et al. (2018). Assume a directed
graph G = {V, E , LV , LE}, where V is a set of
nodes (v, `v), E is a set of edges (vi, vj , `e) and
LV and LE are respectively vocabularies for nodes
and edges, from which node and edge labels (`v
and `e) are defined. Given an input graph with
node embeddings X, a GGNN is defined as

h0
v = xv

rtv = σ

(
crv
∑

u∈Nv

Wr
`eh

(t−1)
u + br

`e

)

ztv = σ

(
czv
∑

u∈Nv

Wz
`eh

(t−1)
u + bz

`e

)

26

h̃t
v = ρ

(
cv
∑

u∈Nv

W`e

(
rtu � h(t−1)

u

)
+ b`e

)

ht
v = (1− ztv)� h(i−1)

v + ztv � h̃t
v

where e = (u, v, `e) is the edge between nodes u
and v, N (v) is the set of neighbour nodes for v, ρ
is a non-linear function, σ is the sigmoid function
and cv = czv = crv = |Nv|−1 are normalisation
constants.

Intuitively, a GGNN reduces to a GRU (Cho
et al., 2014) if the graph is a linear chain. There-
fore, the GGNN acts as a generalised encoder that
updates nodes according to their neighbourhood.
Multiple layers can be stacked, allowing informa-
tion to be propagated through longer paths in the
graph. Batching can be done by using adjacency
matrices and matrix operations to perform the up-
dates, enabling efficient processing on a GPU.

2.1 Lattice Transformations
As pointed out by Beck et al. (2018), GGNNs can
suffer from parameter explosion when the edge la-
bel space is large, as the number of parameters is
proportional to the set of edge labels. This is a
problem for lattices, since most of the information
is encoded on the edges. We tackle this problem
by transforming the lattices into their correspond-
ing line graphs, which swaps nodes and edges.1

After this transformation, we also add start and
end symbols, which enable the encoder to prop-
agate information through all possible paths in the
lattice. Importantly, we also remove node scores
from the lattice in most of our experiments, but
we do revisit this idea in §3.3.

Having lattices as inputs allow us to incorpo-
rate additional steps of textual transformations. To
showcase this, in this work we perform subword
segmentation on the lattice nodes using BPE. If a
node is not present in the subword vocabulary, we
split it into subwords and connect them in a left-
to-right manner.

The BPE segmentation can lead to redundant
nodes in the lattice. Our next transformation step
is a minimisation procedure, where such nodes are
joined into a single node in the graph. To perform
this step, we leverage an efficient algorithm for
automata minimisation (Hopcroft, 1971), which
traverses the graph detecting redundant nodes by
using equivalence classes, running in O(n log n)
time, where n is the number of nodes.

1This procedure is also done in Sperber et al. (2017).

con quién

habla

hablo

<s> con quién

habla

hablo

</s>

<s> con quién

hab@@ la

hab@@ lo

</s>

<s> con quién hab@@

la

lo

</s>

<s> con quién hab@@

la

lo

</s>

Figure 1: Proposed lattice transformations. From top
to bottom: 1) Original lattice with scores removed;
2) Line graph transformation; 3) Subword segmenta-
tion; 4) Lattice minimisation; 5) Addition of reverse
and self-loop edges.

The final step adds reverse and self-loop edges
to the lattice, where these new edges have specific
parameters in the encoder. This eases propaga-
tion of information and is standard practice when
using graph networks as encoders (Marcheggiani
and Titov, 2017; Bastings et al., 2017; Beck et al.,
2018). We show an example of all the transforma-
tion steps on Figure 1.

In Figure 2 we show the architecture of our sys-
tem, using the final lattice from Figure 1 as an
example. Nodes are represented as embeddings
that are updated according to the lattice structure,
resulting in a set of hidden states as the output.
Other components follow a standard seq2seq
model, using a bilinear attention module (Luong
et al., 2015) and a 2-layer LSTM (Hochreiter and

27

Bilinear
Attention

with

who

am

I

speaking

Embeddings GGNN Encoder Attention RNN Decoder

<s>

con

quién

hab@@

la

lo

</s>

...

Figure 2: Model architecture, using the final Spanish lattice from Figure 1 and its corresponding English translation
as an example.

Schmidhuber, 1997) as the decoder.

3 Experiments

Data We perform experiments using the
Fisher/Callhome Speech Translation corpus,
composed of Spanish telephone conversations
with their corresponding English translations.
We use the original release by Post et al. (2013),
containing both 1-best and pruned lattice outputs
from an ASR system for each Spanish utterance.2

The Fisher corpus contain 150K instances and we
use the original splits provided with the datasets.
Following previous work (Post et al., 2013;
Sperber et al., 2017), we lowercase and remove
punctuation from the English translations. To
build the BPE models, we extract the vocabulary
from the Spanish training lattices, using 8K split
operations.

Models and Evaluation All our models are
trained on the Fisher training set. For the 1-best
baseline we use a standard seq2seq architecture
and for the GGNN models, we use the same setup
as Beck et al. (2018). Our implementation is based
on the Sockeye toolkit (Hieber et al., 2017) and
we use default values for most hyperparameters,
except for batch size (16) and GGNN layers (8).3

For regularisation, we apply 0.5 dropout on the in-
put embeddings and perform early stopping on the
corresponding Fisher dev set.

2We refer the reader to Post et al. (2013) for details on the
ASR system and how the lattices were generated.

3A complete description of hyperparameter values is
available in the Supplementary Material.

1-best L L+S L+S+M

Median 32.4 34.4 34.5 34.3
Ensemble 36.1 38.3 38.7 39.1

Table 1: Out-of-the-box scenario results, in BLEU
scores. “L” corresponds to word lattice inputs, “L+S”
and “L+S+M” correspond to lattices after subword seg-
mentation and after minimisation, respectively.

Each model is trained using 5 different seeds
and we report BLEU (Papineni et al., 2001) re-
sults using the median performance according to
the dev set and an ensemble of the 5 models. For
the word-based models, we remove any tokens
with frequency lower than 2 (as in Sperber et al.
(2017)), while for subword models we do not per-
form any threshold pruning. We report all results
on the Fisher “dev2” set.4

3.1 Out-of-the-box ASR scenario

In this scenario we assume only lattices and 1-best
outputs are available, simulating a setting where
we do not have access to the transcriptions. Ta-
ble 1 shows that results are consistent with pre-
vious work: lattices provide significant improve-
ments over simply using the 1-best output. More
importantly though, the results also highlight the
benefits of our proposed transformations and we
obtain the best ensemble performance using min-
imised lattices.

4We also experimented with the Callhome test set, simi-
lar to previous work. However, we did not see any different
trends so we omit the results.

28

L+S+M L+S+M+T

Median 34.3 37.1
Ensemble 39.1 42.3

Previous Work - no lattice scores
Sperber et al. (2017) – 36.9

Previous Work - with lattice scores
Post et al. (2013) – 36.8
Sperber et al. (2017) – 38.5

Table 2: Results with transcriptions, in BLEU scores.
“L+S+M” corresponds to the same results in Table 1
and “L+S+M+T” is the setting with gold transcriptions
added to the training set.

3.2 Adding Transcriptions

The out-of-the-box results in §3.1 are arguably
more general in terms of applicability in real sce-
narios. However, in order to compare with the
state-of-the-art, we also experiment with a sce-
nario where we have access to the original Spanish
transcriptions. To incorporate transcriptions into
our model, we convert them into a linear chain
graph, after segmenting using BPE. With this, we
can simply take the union of transcriptions and lat-
tices into a single training set. We keep the dev
and test sets with lattices only, as this emulates test
time conditions.

The results shown in Table 2 are consistent with
previous work: adding transcriptions further en-
hance the system performance. We also slightly
outperform Sperber et al. (2017) in the setting
where they ignore lattice scores, as in our ap-
proach. Most importantly, we are able to reach
those results while being two orders of magnitude
faster at training time: Sperber et al. (2017) report
taking 1.5 days for each epoch while our archi-
tecture can process each epoch in 15min. The rea-
son is because their model relies on the CPU while
our GGNN-based model can be easily batched and
computed in a GPU.

Given those differences in training time, it is
worth mentioning that the best model in Sperber
et al. (2017) is surpassed by our best ensemble us-
ing lattices only. This means that we can obtain
state-of-the-art performance even in an out-of-the-
box scenario, under the same training speed con-
straints. While there are other constraints that may
be considered (such as parameter budget), we nev-
ertheless believe this is an encouraging result for
real world scenarios.

3.3 Adding Lattice Scores
Our approach is not without limitations. In par-
ticular, the GGNN encoder ignores lattice scores,
which can help the model disambiguate between
different paths in the lattice. As a simple first ap-
proach to incorporate scores, we embed them us-
ing a multilayer perceptron, using the score as the
input. This however did not produce good results:
performance dropped to 32.9 BLEU in the single
model setting and 38.4 for the ensemble.

It is worth noticing that Sperber et al. (2017) has
a more principled approach to incorporate scores:
by modifying the attention module. This is ar-
guably a better choice, since the scores can di-
rectly inform the decoder about the ambiguity in
the lattice. Since this approach does not affect the
encoder, it is theoretically possible to combine our
GGNN encoder with their attention module, we
leave this avenue for future work.

4 Conclusions and Future Work

In this work we proposed an architecture for
lattice-to-string translation by treating lattices as
general graphs and leveraging on recent advances
in neural networks for graphs.5 Compared to pre-
vious similar work, our model permits easy mini-
batching and allows one to freely enrich the lat-
tices with additional information, which we ex-
ploit by incorporating BPE segmentation and lat-
tice minimisation. We show promising results and
outperform baselines in speech translation, partic-
ularly in out-of-the-box ASR scenarios, when one
has no access to transcriptions.

For future work, we plan to investigate better
approaches to incorporate scores in the lattices.
The approaches used by Sperber et al. (2017) can
provide a starting point in this direction. The
same minimisation procedures we employ can be
adapted to weighted lattices (Eisner, 2003). An-
other important avenue is to explore this approach
in low-resource scenarios such as ones involving
endangered languages (Adams et al., 2017; Anas-
tasopoulos and Chiang, 2018).

Acknowledgements

This work was supported by the Australian Re-
search Council (DP160102686). The research
reported in this paper was partly conducted at
the 2017 Frederick Jelinek Memorial Summer

5Code to replicate results available at github.com/
beckdaniel/textgraphs2019_lat2seq.

29

Workshop on Speech and Language Technolo-
gies, hosted at Carnegie Mellon University and
sponsored by Johns Hopkins University with un-
restricted gifts from Amazon, Apple, Facebook,
Google, and Microsoft.

References
Oliver Adams, Trevor Cohn, Graham Neubig, and

Alexis Michaud. 2017. Phonemic transcription of
low-resource tonal languages. In Proceedings of
ALTA, pages 53–60.

Antonis Anastasopoulos and David Chiang. 2018. Tied
Multitask Learning for Neural Speech Translation.
In Proceedings of NAACL.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
Convolutional Encoders for Syntax-aware Neural
Machine Translation. In Proceedings of EMNLP,
pages 1947–1957.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-Sequence Learning using Gated
Graph Neural Networks. In Proceedings of ACL.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. 2014. Spectral Networks and Locally
Connected Networks on Graphs. In Proceedings of
ICLR, page 14.

Francisco Casacuberta, Hermann Ney, Franz Josef
Och, Enrique Vidal, Juan Miguel Vilar, Sergio Bar-
rachina, Ismael Garcı́a-Varea, David Llorens, Car-
los D. Martı́nez, Sirko Molau, Francisco Nevado,
Moisés Ángeles Pastor, David Picó, Alberto San-
chis, and Christoph Tillmann. 2004. Some ap-
proaches to statistical and finite-state speech-to-
speech translation. Computer Speech and Lan-
guage, 18(1):25–47.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In Pro-
ceedings of EMNLP, pages 1724–1734.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-
Iparraguirre, Rafael Gómez-Bombarelli, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams.
2015. Convolutional Networks on Graphs for
Learning Molecular Fingerprints. In Proceedings of
NIPS, pages 2215–2223.

Jason Eisner. 2003. Simpler and More General Min-
imization for Weighted Finite-State Automata. In
Proceedings of NAACL, pages 64–71.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
Message Passing for Quantum Chemistry. In Pro-
ceedings of ICML.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A Toolkit for Neural Machine
Translation. arXiv preprint, pages 1–18.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

John Hopcroft. 1971. An O(n log n) Algorithm for
Minimizing States in a Finite Automaton. Theory
of machines and computations.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. In Proceedings of ICLR.

Gaurav Kumar, Graeme Blackwood, Jan Trmal, Daniel
Povey, and Sanjeev Khudanpur. 2015. A Coarse-
Grained Model for Optimal Coupling of ASR and
SMT Systems for Speech Translation. In Proceed-
ings of EMNLP, pages 1902–1907.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2016. Gated Graph Sequence Neu-
ral Networks. In Proceedings of ICLR, 1, pages 1–
20.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings
of EMNLP, pages 1412–1421.

Diego Marcheggiani and Ivan Titov. 2017. Encod-
ing Sentences with Graph Convolutional Networks
for Semantic Role Labeling. In Proceedings of
EMNLP.

Hermann Ney. 1999. Speech Translation: Coupling
of Recognition and Translation. In Proceedings of
ICASSP, pages 517–520.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
ACL, pages 311–318.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khu-
danpur. 2013. Improved Speech-to-Text Transla-
tion with the Fisher and Callhome Spanish–English
Speech Translation Corpus. In Proceedings of
IWSLT.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of ACL, pages
1715–1725.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2017. Neural Lattice-to-Sequence
Models for Uncertain Inputs. In Proceedings of
EMNLP, pages 1380–1389.

30

Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly translate foreign
speech. In Proceedings of INTERSPEECH, pages
2625–2629.

31

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 32–41
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Using Graphs for Word Embedding with Enhanced Semantic Relations

Matan Zuckerman
Department of Software

and Information Systems Engineering
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
matzuck89@gmail.com

Mark Last
Department of Software

and Information Systems Engineering
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel
mlast@bgu.ac.il

Abstract

Word embedding algorithms have become a
common tool in the field of natural language
processing. While some, like Word2Vec, are
based on sequential text input, others are uti-
lizing a graph representation of text. In this
paper, we introduce a new algorithm, named
WordGraph2Vec, or in short WG2V, which
combines the two approaches to gain the ben-
efits of both. The algorithm uses a directed
word graph to provide additional information
for sequential text input algorithms. Our ex-
periments on benchmark datasets show that
text classification algorithms are nearly as ac-
curate with WG2V as with other word embed-
ding models while preserving more stable ac-
curacy rankings.

1 Introduction

Graph embedding in traditional studies aims to
represent nodes as vectors in low-dimensional
space. Nodes in a graph will have similar vec-
tors if they share similar attributes. An exam-
ple of a node attribute can be betweeness, which
is defined as the number of times a node ap-
pears on the shortest path between two other
nodes. Graph-based modeling has proved itself
in many applications including node classifica-
tion (Gibert et al., 2012), link prediction (Grover
and Leskovec, 2016), community detection (Wang
et al., 2017) and more (Goyal and Ferrara, 2018).
While graph representation can be applied in a va-
riety of domains, this paper will focus on natural
language processing applications. Language can
be represented by a graph of words in multiple
ways. The node (word) connections can repre-
sent semantic relationships between words such as
”king” and ”queen”, different grammatical forms
of the same word such as walk and walked, co-
occurring words, etc. Semantic similarity, which
is an inherit part of word embedding, can help with

a variety of NLP applications, such as text summa-
rization (Nallapati et al., 2016), document classifi-
cation (Yang et al., 2016), and machine translation
(Zou et al., 2013). Creating a good feature repre-
sentation of words is crucial for achieving reason-
able results in all these tasks.
In this study, we propose a novel word em-
bedding algorithm named WordGraph2Vec, or
WG2V. WordGraph2Vec combines the benefits of
existing word embedding algorithms and tries to
minimize their downfalls. While existing algo-
rithms are focused on input in the form of vec-
tors alone or in the form of graphs alone, Word-
Graph2Vec takes into consideration both of these
input types in its training phase. The word graph
construction procedure used by WordGraph2Vec
is similar to the graph representation in Schenker’s
(2003) work, where each unique word is repre-
sented by a node in the graph and there is a di-
rected edge between two nodes if the correspond-
ing two words follow each other in at least one
sentence. The difference is that Schenker’s orig-
inal word graph was used for representing indi-
vidual web documents whereas WordGraph2Vec
generates a word graph from a large corpus of
text that is expected to represent a natural lan-
guage. We evaluate WordGraph2Vec vs. the state-
of-the art node embedding algorithms (Grover and
Leskovec, 2016; Tang et al., 2015; Perozzi et al.,
2014) on the tasks of semantic relationships detec-
tion and text classification.

2 Related Work

In this section, we cover the related work on text
representation and the benefits of graph-based rep-
resentation models for natural language process-
ing, along with common word embedding meth-
ods and state-of-the-art algorithms for graph em-
bedding.

32

2.1 Text Representation

One of the challenges in natural language process-
ing is how to represent a term. The most com-
mon term representation is vector representation,
such as ”one-hot” vector, a vector in the size of the
vocabulary, where only one dimension is equal to
one and all others are zeros. More advanced meth-
ods of embedding terms (mostly, words) in a vec-
tor space are covered in the next sub-section.

Graph representation of text, by its natural
structure, defines relationships between graph
nodes. Each graph node represents a term, which
can be defined in various ways including words,
sentences, and n-grams. The node connections can
define the ”closeness” of terms to each other in a
richer way than the ”one-hot” vector representa-
tion including lexical and semantic relations, con-
textual overlap, etc. A potential advantage of us-
ing a directed graph model over context-dependent
representations, such as word2vec, is preserving
information about the word order in the input text.

Graph representation is not new in the world
of text processing (Schenker et al., 2005; Son-
awane and Kulkarni, 2014). Graph representa-
tions outperformed the classical vector represen-
tations of text documents, such as TF-IDF, on
several NLP tasks including document classifi-
cation (Markov et al., 2008), text summariza-
tion (Garcı́a-Hernández et al., 2009), word sense
disambiguation (Agirre and Soroa, 2009), and
keyword extraction (Litvak and Last, 2008).

2.2 Word Embedding

Word Embedding is the process of represent-
ing words as dense vectors in a low-dimensional
space. This process gained momentum since the
paper of Mikolov (2013), which proposed a novel
deep learning algorithm that yields word embed-
ding. Mikolov’s Word2Vec algorithm can be im-
plemented in two ways. The first one is CBOW,
predicting a word based on the words surround-
ing it. The second one is Skip-Gram, predicting
the surrounding words of a specific word based on
this word. The target word and its neighbors are
selected from a sliding window, which traverses
the corpus in linear steps. Similar words that do
not fall in the same window, because they do not
appear next to each other in the corpus, might not
be ”close” to each other in the low-dimensional
space as will be shown in the next section. The
Word2Vec training objective, as implemented in

Skip-Gram, is to maximize the average log proba-
bility of:

1

T

T∑

t=1

∑

−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

Where T is the entire input text, c is half of the
window size, and w are all co-occurring words.
GloVe (Pennington et al., 2014) is another algo-
rithm, which produces word embedding. The al-
gorithm is essentially a log-bilinear model. The
model tries to minimize the discrepancy between
the estimated probability of two words appearing
next to each other and the true probability of their
co-occurrence. Both GloVe and Word2Vec are
considered state-of-the-art algorithms for creating
word embedding. Those word embedding meth-
ods are suffering from the limitation of ignoring
the high-level, conceptual context of a given word.
The vector of each word is trained only on its raw,
low-level context and not on relations of words out
of that context, which may affect the quality of
word embedding. The word order is also ignored
by the above methods.

2.3 Graph Embedding

Graph embedding models can overcome the limi-
tations of the sequential input methods mentioned
in the previous section. Paths in a word graph may
connect semantically related words, which do not
necessarily appear in the same low-level context.
Those connections can be utilized for enriching
the word embedding. Thus, a graph-based model
can take into account both the structural and the
semantic information represented by text.

An example of the above can be demonstrated
by the following two sentences from a given cor-
pus: ”The boy went to school” and ”The man went
to work”. If the sentence ”The boy went to work”
does not exist in the corpus, a sequential input
model, such as Word2Vec, would not be trained
on it, whereas a graph input algorithm can also be
trained on this word sequence, because the node
”went” is shared in the graph between the two sen-
tences. Since ”The boy went to work” is a valid
path in the graph, the corresponding sentence can
be included in the training set. This way we can
enhance the semantic relationships between words
represented by the embedded vectors. In addition,
there is a need for NLP algorithms that can exploit
the benefits of the graph input on one hand and
face the challenges it brings on the other hand.

33

There are several state-of-the-art algorithms for
producing graph embedding. Graph embedding
can be node embedding, edge embedding or both.
When defining an embedding, the ”similarity” be-
tween nodes is the main key. In a graph represen-
tation, there are two major node similarity mea-
sures that can be applied:

• Nodes with the same neighbors are logically
supposed to be similar. For example, in a so-
cial network a friend of my friend has a high
probability to be my friend.

• Nodes that are not connected to each other,
but have the same structural attributes, such
as hubs.

Different algorithms approached those similari-
ties in different ways. DeepWalk (Perozzi et al.,
2014) is an algorithm based on the notion of a
random walk. Random walk can be used to ap-
proximate similarity (Fouss et al., 2007). It is a
method which is useful in large graphs when it is
not possible for a computer to handle all of the
graph data in its memory. DeepWalk algorithm
tries to maximize the log probability of observing
the last k nodes and the next k nodes in a random
walk. The length of the random walk is set as 2k +
1. The algorithm generates multiple random walks
and it tries to optimize the sum of log-likelihoods
for each random walk. Random walks, as opposed
to the Word2Vec model, do not scan the data lin-
early, which can be beneficial if the data is not lin-
ear. (Perozzi et al., 2014) did not evaluate the
DeepWalk algorithm on text data.

Graph embedding algorithms achieved supe-
rior performance in domains that can be naturally
modeled as graphs including social networks, arti-
cle citations, word graphs, etc. A sample applica-
tion is link prediction in social networks (Grover
and Leskovec, 2016), where the Node2Vec algo-
rithm achieved a high AUC score.

The Node2Vec algorithm is also based on a ran-
dom walk. The algorithm tries to maximize the
occurrence of subsequent nodes in a random walk.
The main difference between the Node2Vec and
DeepWalk is that Node2Vec has a mechanism of
trade-off between breadth first search (BFS) and
depth first search (DFS). Each search will lead to
a different embedding. While in BFS the similar-
ity is mostly based on neighboring nodes, in DFS
further nodes will have a higher impact and hence
will succeed to represent the community better.

This trade-off produces better, more informative
and higher quality embedding. An example of
using Node2Vec algorithm for text representation
can be found in Figure 1.

Figure 1: Example for Node2Vec walks. The nodes
in bold represent a valid walk that was generated from
Node2Vec algorithm. A sliding window will be trained
on this walk.

The text graph used by Node2Vec in (Grover
and Leskovec, 2016) is different from Schenker’s
model. The Node2Vec graph is undirected. Each
two co-occurring words in the text have an edge
between them. The paper does not mention
whether they applied a minimal word frequency
threshold to graph nodes or took into account sen-
tence boundaries when defining edges.

Another node embedding algorithm is LINE
(Tang et al., 2015). LINE algorithm is based on
two types of connections:

• first-order proximity - local pairwise proxim-
ity between two nodes

• second-order proximity - proximity between
the neighborhood structures of the nodes

The algorithm objective is to minimize the com-
bination of the first and the second-order pair-
wise proximity. LINE defines for each two
nodes their joint probability distributions using the
two proximity measures and then minimizes the
Kullback-Leibler divergence of these two distri-
butions. LINE was evaluated on a text graph. In
LINE, the text graph is undirected, words with fre-
quency smaller than five are discarded, and words
are considered as co-occurring if they appear in
the same sliding-window of five words. It was not
mentioned in the paper whether the graph edges
were affected by the sentence boundaries.

Both DeepWalk and Node2Vec have the lim-
itation of skipping some nodes by the random
paths the algorithms generate for training. Con-
sequently, some semantically related words may
never appear on the same path. The LINE algo-
rithm only considers first and second order rela-
tions between words and ignores the relations of

34

a higher order. This restriction may create word
embeddings with lower quality.

3 Methodology

To overcome some of the limitations of exist-
ing word embedding methods, we propose a new,
graph-based methodology, which has the follow-
ing original contributions:

• Word graph construction: utilizing
Schenker’s directed graph model and
extending it to a large language corpus.

• Graph-based word embedding: introducing
a new algorithm named WordGraph2Vec,
which combines the advantages of the
Word2Vec and Node2Vec algorithms.

3.1 Word Graph Construction

The construction of the text graph in this paper is
similar to Schenker’s work (Schenker et al., 2005),
but Schenker’s graphs were constructed from rel-
atively short web documents rather than from a
large corpus representing an entire language. Each
unique word in the corpus becomes a node in the
graph and there is a directed edge between two
nodes if the corresponding two words are consec-
utive in at least one sentence in the corpus. Stop
words and words with less than 100 occurrences
across the corpus were removed. The graph con-
tains only words and not punctuation marks of
any kind. The edge label represents the num-
ber of times the second word follows the first
one. The graph is directed and weighted by the
co-occurrence frequency. We preserve the edge
directions, because the order of words in a sen-
tence is usually important for its meaning, which
should also affect the calculation of edge fre-
quency weights. For example, the phrase ”hot
dog” will be represented in the graph with a rel-
atively higher weight than ”dog hot” which might
have an edge in the graph but with a much lower
weight as this phrase is very rare in English lan-
guage. The text graph we use is different from the
graphs in LINE and Node2Vec algorithms, which
were discussed in the Related Work section.

3.2 WordGraph2Vec Algorithm

WordGraph2Vec builds upon the Word2Vec
(Mikolov et al., 2013). The main difference be-
tween WordGraph2Vec to Word2Vec is that Word-
Graph2Vec enriches the text by adding target

words for a specific context word in a sliding-
window. In each sentence, m random context
words are chosen. From the sliding window,
which contains the context words, t target words
are chosen. For each target word, n neighboring
words in radius r are picked from the graph and
added as a new context-target combination. Here
the training objective is to maximize the log prob-
ability of words in the same sliding window and
the log probability of the new context-target com-
bination. This is done by maximizing equations 1
and 2.

1

T ′

T ′∑

t=1

∑

t∈m,nt∈n
log p(wnt|wt) (2)

where t indices refer only to the words that were
chosen as the m context words and nt are the new
target words from the graph that are relevant to a
specific t. T ′ is the number of new word combi-
nations. In this way, the context words can predict
additional target words from the word graph that
do not necessarily appear in the same sentence but
share a semantic relation to the context words.

Algorithm 1 WordGraph2Vec algorithm
Input: M: Number of context words, T: Num-

ber of target words, N: Number of neighboring
words, R: Radius in graph, Text: Text, Sliding-
Window: Size of the sliding window, G: Words
Graph, E: embedding size

Output: Word Embedding for each node
v ∈ G

1: for Sentence ∈ Text do
2: CWords ←
SelectCWords(Sentence,M)

3: for SlidingWindow ∈ Sentence do
Word2Vec (SlidingWindow, E)

4: for word ∈ SlidingWindow do
5: if word ∈ CWords then
6: TargetWords ←
SelectTWords(SlidingWindow, T)

7: for target ∈ TargetWords
do

8: graphWords ←
SelectNWords(N, target,G,R)

9: for node ∈ graphWords
do Word2Vec (combination of node+word,
E)

Figure 2 shows an example of WordGraph2Vec
algorithm where the radius is one. Two context

35

Figure 2: Example for WordGraph2Vec algorithm.

words are chosen and for each context word, one
target word is picked from a specific sliding win-
dow in the size of five. For each target word, two
new target words are picked from the graph. The
advantage of WordGraph2Vec over Word2Vec and
Node2vec is that it overcomes the limitations of
both models. While the Word2Vec model only
looks at linear relations between words, our algo-
rithm takes into account context-target word pairs
that are not necessarily taken from existing sen-
tences in the corpus. In contrast, Node2Vec sam-
ples a path of words from the word graph using
random walks rather than considering all neigh-
boring words of a specific word. This means that
Node2Vec, unlike Word2Vec, may ignore seman-
tic relations between some co-occurring words in
the original text.

The Algorithm 1 pseudocode presents the pro-
posed algorithm (WordGraph2Vec). The SelectC-
Words function selects C random context words
from a sentence. SelectTWords selects T random
target words from the sliding window where at
least one word is in CWords. SelectNWords selects
N additional target words from the graph within
the radius R. Word2Vec is trained combinations
of context and target words for embedding of size
E.

4 Empirical Evaluation

In this section, we discuss the evaluation metrics,
the data, and the algorithms used in our experi-
ments.

4.1 Language Corpus
The Wikipedia dump [can be downloaded
from https://dumps.wikimedia.org/
backup-index.html] dataset is a publicly
available resource. Wikipedia publishes every
couple of months a free xml file for all their
articles and metadata in several languages. The
Wikipedia dump used in this paper is in the
English language. The dump was created on
”2018-07-20” and consists of approximately
5,700,000 articles. The dataset contains more
words than exist in the English language as there

Parameter Value
Tokens 2,183,079,274

Unique words 13,744,507
Tok’ less than 5 incidence 11,430,003

Tok’ less than 100 incidence 13,436,432

Table 1: Wikipedia dump statistic.

are also words that represent proper names such
as locations, people, organizations, dates etc. The
Wikipedia corpus is a collection of millions of
sentences, which are expected to represent well
the real-world distribution of a language.

While there are many unique words in the
Wikipedia dump, only a small amount of them is
frequently used. Thus, 83.1% of the words appear
in the corpus less than five times as can be seen in
Table 1 and only 2.2% of the words appear more
than 100 times. This small group of 2.2% unique
words is responsible for 97.2% of all word occur-
rences in the entire corpus.

In the view of these findings, we implemented
the graph construction method introduced by
Schenker (Schenker et al., 2005). All words with
frequency of lower than 100 times were discarded.
In addition, stopwords, as they usually do not con-
tribute to the semantic meaning of other words,
were also removed. Punctuation marks were re-
moved from the graph as well.

4.2 Evaluation Tasks and Metrics
Evaluation of the word embedding methods was
performed on two main tasks:

• Analogy test, both by Gladkova (analogy test,
a) and Mikolov (analogy test, b)

• Document classification, based on bench-
mark datasets

4.2.1 Analogy test
Both Gladkova (2016) and Mikolov proposed
analogy tests, which aim to test the semantic re-
lations between ”similar” words. The main dif-
ference between the two tests is in the combina-
tion of the questions. The test Gladkova proposed
contains 99,200 analogy questions in 40 morpho-
logical and semantic categories. The 40 linguis-
tic relations are separated into four types of rela-
tions: inflectional and derivational morphology, as
well as lexicographic and encyclopedic semantics.
Examples of these types can be seen in Table 2.

36

Types Examples
Inflections car:cars, go:going
Derivation able:unable, life:lifeless

Lexicography sea:water, clean:dirty
Encyclopedia spain:madrid, dog:bark

Table 2: Examples for the four different types of anal-
ogy questions

All four types are balanced, i.e., there is the same
number of questions for each type. Mikolov pro-
posed a test which contains 19,544 questions from
14 different relations. The amount of questions is
unbalanced across the relations. For example, the
country:capital relation appears in over 50% of the
questions. All questions are in the structure of a is
to b as c is to d. Solving analogy questions can
be done using the similarity between words calcu-
lated by equations 3 and 4.

d = argmaxd∈V (sim(d, c− a+ b)) (3)

where V is a set of all words in the vocabulary
excluding a,b and c, and sim is defined as:

sim(u, v) = cosine(u, v) =
(u ∗ v)
||u||||v|| (4)

An answer to a question was labeled as correct
if the correct word was among the top ten most
similar words in the returned results.

Each question was tested on the word em-
bedding vectors that were generated by the dif-
ferent algorithms, which are described in sub-
section 5.1. For each algorithm, the percentage of
questions that were answered correctly was pre-
sented as the accuracy of each word embedding
method.

4.2.2 Document classification
Document classification is a common NLP task.
While the application of this task is well under-
stood, the implementation of classification algo-
rithms can be difficult. Using word vectors as an
input to such algorithm can help the algorithm to
”understand” the meaning of the entire document
based on the semantic relations of its words. Since
WordGraph2Vec is supposed to generate enhanced
semantic vectors, document classification seems
to be a natural task for this model. In our classifi-
cation experiments, each document is represented

Dataset Class train test
AGs news 4 3000 1900
DBpedia 14 40000 5000

Yelp reviews 5 130000 10000
Yelp polarity 2 280000 19000

Yahoo 10 140000 5000
Amazon review 5 600000 130000
Amazon polarity 2 1800000 200000

Table 3: datasets information, columns are the num-
ber of classes in the dataset, number of samples in the
training set and number of samples in the testing set,
respectively.

by a vector calculated as the average of the em-
beddings of all document words (subject to the fil-
tering specifications). The datasets that were used
in this study are based on (Zhang et al., 2015) and
they are listed in Table 3

Each document from the datasets was converted
to a vector in the size of the embedding. For the
classification task in this paper, we used the fol-
lowing three algorithms:

1. Neural Network algorithm:

• Input layer size embedding size
• three hidden layers of 256 neurons and

dropout of 20%
• dense layer
• softmax activation

2. Random forest - 10 estimators, two min sam-
ples and no max depth

3. Logistic regression - L2 penalty, hinge loss
and 1,000 iterations.

The parameters for Random Forest and Logis-
tic regression are the default parameters in scikit-
learn package in Python implementation. The
Neural Network architecture was based on our
previous experience in similar classification tasks.

We evaluated the proposed word embed-
ding model in terms of model accuracy against
the competing algorithms LINE, Word2Vec and
Node2Vec described in section 5.1 .

5 Experiments

In this section, we present the settings of our ex-
periments and their results.

37

algorithm Mikolov test Inflectional Derivational Encyclopedic Lexicographic
Word2Vec 71.0 77.9 31.8 25.7 15.2
Node2Vec 53.2 59.2 7.5 20.4 14.3
Line-first 57.9 65.5 8.1 19.4 11.8
Line-second 49.3 75.6 13.1 15.4 13.7
Emb1 50.1 47.8 13.4 17.1 7.6
Emb2 60.8 68.9 21.4 20.6 10.7
Emb3 52.1 53.4 14.5 18.3 8.2
Emb4 63.3 71.9 24.7 21.9 11.6

Table 4: Accuracy percentage results of Mikolov Analogy test and the four main question types created in the
Gladkova Analogy test.

5.1 Experimental Setups

We compared WordGraph2Vec with the following
baselines:
Word2VEc: Window size 10, Skip-Gram method,
embedding size 300.
Node2Vec: Window size 10. 80 nodes per walk. p
and q equal to one. 10 rehearsals and embedding
size 300.
LINE: Both first and second proximities. Embed-
ding size of 300.
All baselines and WordGraph2Vec were trained on
the Wikipedia dump described in section 4.1.
Using WordGraph2Vec we generated four differ-
ent word embeddings, all were trained in window
size 10, Skip-gram method and embedding size
300:
Emb1: Two context words (M = 2), one target
word (T = 1) per context word. Two (N = 2) extra
target words from the graph within the radius of
one (R = 1).
Emb2: Two context words (M = 2), one target
word (T = 1) per context word. One (N = 1) ex-
tra target word from the graph within the radius of
one (R = 1).
Emb3: Three context words (M = 3), one target
word (T = 1) per context word. Three (N = 3) ex-
tra target words from the graph within the radius
of one (R = 1).
Emb4: Three context words (M = 3), one target
word (T = 1) per context word. One (N = 1) ex-
tra target word from the graph within the radius of
one (R = 1).

5.2 Experimental Results

5.2.1 Analogy test
We first compared the four tested embeddings of
WordGraph2Vec against all baselines in terms of
accuracy of the analogy test. In the Mikolov test,

only 19,303 questions remained after we removed
questions that contained words, which were fil-
tered in advance. In the Gladkova test, only 89,484
questions remained after the same filtering opera-
tion as mentioned above. The four question types
remained balanced.

As can be observed from Table 4, Word2Vec
achieved the best results in both Mikolov and
Gladkova analogy tests. Apparently, the low-
level linear context is much more significant for
analogy tasks in a natural language like En-
glish. However, Emb4 in WordGraph2Vec was
ranked as the second best after Word2Vec. It
may be no coincidence as Emb4 is the most
similar to the Word2Vec implementation. Both
Emb2 and Emb4 achieved better results than the
competing graph-based algorithms. The Glad-
kova test, which is more balanced and does not
contain significant outliers (such as country:city),
present a more comprehensible result. With Word-
Graph2Vec, Emb2 and Emb4 achieved the high-
est accuracy scores in the Gladkova test, similar
to the Mikolov’s test. Only questions under Lex-
icographic type resulted in lower accuracy scores
than the other baselines.

One reason, which might cause the lower ac-
curacy results of WordGraph2Vec in comparison
to Word2Vec, is the ”noise” WordGraph2Vec cre-
ates. This ”noise” can be described by the example
below. Let us assume that there are two sentences
in the corpus. The first, ”University application
could be tough”. The second, ”The safari in Kenya
could be dangerous”. With WordGraph2Vec, a
valid word sequence could be ”University appli-
cation could be dangerous”. The above sentence
is less likely to appear in the language and might
cause the word vectors of ”university” and ”dan-
gerous” to be ”closer” to each other though their

38

Algorithms DBpedia Ag News Yelp Yelp pol Yahoo Amazon Amazon pol Rank Std
Emb1 97.56 91.00 71.08 85.19 81.96 69.25 82.24 1.40
Emb2 97.62 91.12 71.36 85.61 82.05 69.44 82.70 1.56
Emb3 97.63 91.01 70.96 85.16 81.83 69.27 82.29 1.54
Emb4 97.65 91.04 70.79 85.75 81.98 69.53 82.78 2.13
LINE-first 97.55 90.98 72.34 83.87 82.43 69.45 81.07 2.25
LINE-second 97.52 91.14 71.15 85.81 82.22 69.11 82.54 2.01
Node2vec 97.14 90.91 70.69 82.80 81.84 68.81 79.19 3.35
word2vec 97.69 91.31 70.92 86.48 82.44 69.09 83.08 2.69

Table 5: Average results across the different classification algorithms. The values are the accuracy in percent-
age. Rank Std is the standard deviation values of the ranking of each embedding across all 21 combinations of
classification algorithms and datasets.

semantic relationship is quite weak.
In further investigation of our results, we com-
pared Word2Vec with Emb4 embedding, which is
the closest to Word2Vec in terms of the training
sentence set and Mikolov’s analogy test results.

Out of 19,303 questions of the analogy test,
2,027 questions were answered correctly by
Word2Vec and incorrectly by WordGraph2Vec.
On the other hand, 515 questions were answered
correctly by WordGraph2Vec only. The result for
each question is a ranked list, which was cal-
culated by the equation 3, of all the vocabulary
words. Incorrect answer means the correct word
is not in the top ten words on that list. Figure 3
presents a histogram of the positions of the cor-
rect words in the list mentioned above. The distri-
bution can be described as a ”long-tail” where in
most cases (41.2%) the correct answer was ranked
between positions 10-20. This could be because
of the ”noise” that was created by unrelated sen-
tences. In addition, we examined the end of the
tail as it is interesting to understand why in some
questions the correct position drops from the top
ten to more than 1000.

Figure 3: WordGraph2Vec histogram for the correct
analogy results.

Figure 4 presents a table with Average and Me-

dian results for the amount of occurrences of a
word c from equation 3 for each position group.
The purpose of equation 3 is to find the best match
for a word c that will be as close as possible to the
subtraction of word vectors a and b. One theory
that requires further investigation is presented in
figure 4. WordGraph2Vec adds new sentences by
choosing random words from each existing sen-
tence and picking random words from a graph
based on their occurrence frequency in the entire
corpus. As the word c occurrence frequency in
the corpus decreases, the results of the analogy
tests containing this word drop. Presumably, this
happens because a smaller amount of new train-
ing sentences contain the word c. Furthermore,
we conducted a statistical comparison between the
occurrence frequency of words in the ranking po-
sition 10-50 and 50+ and it was shown with alpha
= 0.001 that the average occurrence frequency is
higher in the group of 10-50.

Figure 4: Word ranking positions vs. word frequencies.

5.2.2 Document classification
Each classification algorithm from section 5.1 was
used to predict the document labels. The input
was a vector representation of the document cre-

39

ated by the word embedding. In total 21 results
were collected (seven datasets and three classifi-
cation algorithm). As can be seen from Table 5,
Word2Vec achieved the best average accuracy re-
sults on five datasets out of seven though the dif-
ferences vs. most other algorithms do not appear
significant. Emb2 was ranked in the second place
in four datasets out of seven. Mostly, Word2Vec
reached higher accuracy scores than Emb2, but the
most interesting insight is that when Word2Vec
achieved lower scores, Emb2 was still ranked in
the second place, probably as a result of the new
information gained from the graph.

Figure 5: Accuracy ranking results for the best config-
uration of the proposed algorithm and the competing
baselines. The x axis represents the average ranking of
each embedding across the datasets.

In Figure 5, we see the ranking of Emb2 com-
pared to all other baselines. Emb2 did not achieve
the best accuracy scores but from Table 5 Emb2
had more stable results than the baselines as the
standard deviation of its ranking is much lower
than Line, Node2Vec and Word2Vec. From ex-
amining Figure 5 it seems that Line-2 is more
stable but it has a higher standard deviation than
Emb2 and its average ranking is lower. Node2Vec
on average produced the lowest accuracy scores
and it is inferior to the rest of the algorithms. Be-
sides, Node2Vec is very unstable as its ranking
has a standard deviation of 3.35, which is more
than double than Emb2. In Figure 5, we can
also see how the ranking of Line-1 varies from
the first place to almost the last one. In order to
verify the significance of the accuracy difference,
we conducted a paired t-test. The test has shown
that Emb2 has significantly higher accuracy re-
sults than the other baselines.

Table 6 presents the statistical significance re-
sults between all baselines and Emb2. For p =

baselines d-avg sd se(d) t
W2V -0.16 0.55 0.001 -1.32
N2V 1.22 2.18 0.004 2.57

Line-1 0.32 1.17 0.002 1.25
Line-2 0.06 0.56 0.001 0.49

Table 6: Statistical significance results between the best
configuration of the proposed algorithm, Emb2, and the
baselines.

0.05 the t − value with 20 degrees of freedom is
2.086. Node2Vec was found significantly worse
than Emb2. Word2Vec reached a higher accuracy
score than Emb2, but the difference was not statis-
tically significant.

6 Conclusion

In this paper, we present WordGraph2Vec, a word
embedding algorithm with semantic enhancement.
The algorithm makes use of both linear and graph
input in order to strengthen the semantic relations
between words. Our experimental results show
that the proposed embedding did not achieve the
best results on analogy and classification tasks but
was stable across the datasets and in most cases
was ranked at the second place in terms of docu-
ment classification and analogy tests accuracy. In
future work, further settings of WordGraph2Vec
can be explored, such as additional word graph
configurations and a larger radius R for the new
target words, which should yield target words that
are not close to the context word in the original
text. In addition, the proposed graph-based ap-
proach to word embedding can be evaluated on
other NLP tasks in multiple languages.

References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

pagerank for word sense disambiguation. In Pro-
ceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 33–41. Association for Computa-
tional Linguistics.

Francois Fouss, Alain Pirotte, Jean-Michel Renders,
and Marco Saerens. 2007. Random-walk compu-
tation of similarities between nodes of a graph with
application to collaborative recommendation. IEEE
Transactions on knowledge and data engineering,
19(3):355–369.

René Arnulfo Garcı́a-Hernández, Yulia Ledeneva,
Griselda Matı́as Mendoza, Ángel Hernández

40

Dominguez, Jorge Chavez, Alexander Gelbukh,
and José Luis Tapia Fabela. 2009. Comparing
commercial tools and state-of-the-art methods for
generating text summaries. In Artificial Intelligence,
2009. MICAI 2009. Eighth Mexican International
Conference on, pages 92–96. IEEE.

Jaume Gibert, Ernest Valveny, and Horst Bunke. 2012.
Graph embedding in vector spaces by node attribute
statistics. Pattern Recognition, 45(9):3072–3083.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pages 8–
15.

Palash Goyal and Emilio Ferrara. 2018. Graph embed-
ding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864. ACM.

Marina Litvak and Mark Last. 2008. Graph-based
keyword extraction for single-document summa-
rization. In Proceedings of the workshop on
Multi-source Multilingual Information Extraction
and Summarization, pages 17–24. Association for
Computational Linguistics.

Alex Markov, Mark Last, and Abraham Kandel. 2008.
The hybrid representation model for web document
classification. International Journal of Intelligent
Systems, 23(6):654–679.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

Adam Schenker, Horst Bunke, Mark Last, and Abra-
ham Kandel. 2005. Graph-Theoretic Techniques for
Web Content Mining. World Scientific Publishing
Co., Inc., River Edge, NJ, USA.

Adam Schenker, Mark Last, Horst Bunke, and Abra-
ham Kandel. 2003. Classification of web documents
using a graph model. In Document Analysis and
Recognition, 2003. Proceedings. Seventh Interna-
tional Conference on, pages 240–244. IEEE.

Sheetal S Sonawane and Parag A Kulkarni. 2014.
Graph based representation and analysis of text doc-
ument: A survey of techniques. International Jour-
nal of Computer Applications, 96(19).

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, pages 1067–1077. International World Wide
Web Conferences Steering Committee.

Gladkova analogy test. a. Gladkova analogy
test. Available at http://vecto.space/
projects/BATS/.

Mikolov analogy test. b. Mikolov analogy test. Avail-
able at http://download.tensorflow.
org/data/questions-words.txt.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu
Zhu, and Shiqiang Yang. 2017. Community pre-
serving network embedding. In AAAI, pages 203–
209.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Will Y Zou, Richard Socher, Daniel Cer, and Christo-
pher D Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1393–1398.

41

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 42–51
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Identifying Supporting Facts for Multi-hop Question Answering with
Document Graph Networks

Mokanarangan Thayaparan∗, Marco Valentino∗, Viktor Schlegel∗, André Freitas
Department of Computer Science

University of Manchester
{thayaparan.mokanarangan,marco.valentino,viktor.schlegel,andre.freitas}

@manchester.ac.uk

Abstract

Recent advances in reading comprehension
have resulted in models that surpass human
performance when the answer is contained in
a single, continuous passage of text. However,
complex Question Answering (QA) typically
requires multi-hop reasoning – i.e. the integra-
tion of supporting facts from different sources,
to infer the correct answer.

This paper proposes Document Graph Net-
work (DGN), a message passing architecture
for the identification of supporting facts over a
graph-structured representation of text.

The evaluation on HotpotQA shows that DGN
obtains competitive results when compared to
a reading comprehension baseline operating
on raw text, confirming the relevance of struc-
tured representations for supporting multi-hop
reasoning.

1 Introduction

Question Answering (QA) is the task of inferring
the answer for a natural language question in a
given knowledge source. Acknowledged as a suit-
able task for benchmarking natural language un-
derstanding, QA is gradually evolving from mere
retrieval task to a well-established tool for testing
complex forms of reasoning. Recent advances in
deep learning have sparked interest in a specific
type of QA emphasising Machine Comprehension
(MC) aspects, where background knowledge is en-
tirely expressed in form of unstructured text.

State-of-the-art techniques for MC typically re-
trieve the answer from a continuous passage of
text by adopting a combination of character and
word-level models with various forms of attention
mechanisms (Seo et al., 2016; Yu et al., 2018). By
employing unsupervised pre-training on large cor-
pora (Devlin et al., 2018), these models are capa-

∗: equal contribution

Document A: Erik Watts

Erik Watts (born December 19, 1967) is an American semi-retired professional wrestler. He is
best known for his appearances with World Championship Wrestling and the World Wrestling
Federation in the 1990s. He is the son of WWE Hall of Famer Bill Watts.

Document B: Bill Watts

William F. Watts Jr. (born May 5, 1939) is an American former professional wrestler, promoter,
and WWE Hall of Fame Inductee (2009).Watts was famous under his "Cowboy" gimmick in his
wrestling career, and then as a tough, no-nonsense promoter in the Mid-South United States,
which grew to become the Universal Wrestling Federation (UWF).

Document-Document

Sentence-Document

Sentence-Document

William F. Watts Jr. (born May 5,
1939) is an American former

professional wrestler, promoter, and
WWE Hall of Fame Inductee (2009).

Sentence-Document

Erik Watts is the
son of WWE Hall

of Famer Bill
Watts.

Sentence-Document

Q: When was Erik Watts' father born?

Sentence-Document

(1)

(2)Erik Watts (born December 19,
1967) is an American semi-retired

professional wrestler.

Bill Watts was famous under his "Cowboy" gimmick in his
wrestling career, and then as a tough, no-nonsense promoter

in the Mid-South United States, which grew to become the
Universal Wrestling Federation (UWF).

Erik Watts is best known for his
appearances with World Championship

Wrestling and the World Wrestling
Federation in the 1990s

Erik Watts
Bill Watts

Figure 1: Is structure important for complex, multi-
hop Question Answering (QA) over unstructured text
passages? To answer this question we explore the task
of identifying supporting facts (rounded rectangles) by
transforming a corpus of documents (1) into an undi-
rected graph (2) connecting sentence nodes (rectan-
gles) and document nodes (hexagons).

ble of outperforming humans in reading compre-
hension tasks where the context is represented by
a single paragraph (Rajpurkar et al., 2018).

However, when it comes to answering complex
questions on large document collections, it is un-
likely that a single passage can provide sufficient
evidence to support the answer. Complex QA typ-
ically requires multi-hop reasoning, i.e. the abil-
ity of combining multiple information fragments
from different sources.

Moreover, recent studies have raised concerns
on inference capabilities, generalisation and inter-
pretability of current MC models (Wiese et al.,
2017; Dhingra et al., 2017; Kaushik and Lipton,
2018), leading to the creation of novel datasets that
propose multi-hop reading comprehension as a
benchmark for evaluating complex reasoning and
explainability (Yang et al., 2018).

42

Consider the example in Figure 1. In order to
answer the question “When was Erik Watts’ father
born?” a QA system has to retrieve and combine
supporting facts stored in different documents:

1. Document A: “Erik Watts is the son of WWE
Hall of Famer Bill Watts”;

2. Document B: “William F. Watts Jr. (born
May 5, 1939) is an American former profes-
sional wrestler, promoter, and WWE Hall of
Fame Inductee (2009)”.

The explicit selection of supporting facts has a
dual role in a multi-hop QA pipeline:

(a) It allows the system to consider all and only
those facts that are relevant to answer a spe-
cific question;

(b) It provides an explicit trace of the reasoning
process, which can be presented as justifica-
tion for the answer.

This paper explores the task of identifying sup-
porting facts for multi-hop QA over large collec-
tions of documents where several passages act as
distractors for the MC model. In this setting, we
hypothesise that graph-structured representations
play a key role in reducing complexity and im-
proving the ability to retrieve meaningful evidence
for the answer.

As shown in Figure 1.1, identifying support-
ing facts in unstructured text is challenging as it
requires capturing long-term dependencies to ex-
clude irrelevant passages. On the other hand (Fig-
ure 1.2), a graph-structured representation con-
necting related documents simplifies the integra-
tion of relevant facts by making them mutually
reachable in few hops. We put this observation in
practice by transforming a text corpus in a global
representation that links documents and sentences
by means of mutual references.

In order to identify supporting facts on undi-
rected graphs, we investigate the use of message
passing architectures with relational inductive bias
(Battaglia et al., 2018). We present the Document
Graph Network (DGN), a specific type of Gated
Graph Neural Network (GGNN) (Li et al., 2015)
trained to identify supporting facts in the afore-
mentioned structured representation.

We evaluate DGN on HotpotQA (Yang et al.,
2018), a recently proposed dataset for assessing

MC performance on supporting facts identifica-
tion. The experiments show that DGN is able to
obtain improvements in F1 score when compared
to a MC baseline that adopts a sequential reading
strategy. The obtained results confirm the value of
pursuing research towards the definition of novel
MC architectures, which are able to incorporate
structure as an integral part of their learning and
inference processes.

2 Document Graph Network

The following section presents the Document
Graph Network (DGN), a message passing archi-
tecture designed to identify supporting facts for
multi-hop QA on graph-structured representations
of documents.

Here, we discuss in details the construction of
the underlying graph, the DGN model, and a pre-
filtering step implemented to alleviate the impact
of large graphs on model complexity.

2.1 Graph-structured Representation

Given an arbitrary corpus of documents D =
{D1, D2, . . . , Dn}, we aim to build an undirected
document graph DG as structured representation
of D (Figure 1).

The advantage of using graph-structured repre-
sentations lies in reducing the inference steps nec-
essary to combine two or more supporting facts.
Therefore, we want to extract a representation that
increases the probability of connecting relevant
sentences with short paths in the graph. We ob-
serve that multi-hop questions usually require rea-
soning on two concepts/entities that are described
in different, but interlinked documents. We put in
practice this observation by connecting two docu-
ments if they contain mentions to the same enti-
ties.

The Document Graph (DG) contains nodes of
two types. We represent each document Di in D
as a document node di and each of its sentences
SjDi as a sentence node sjDi . We then add an
edge of type esentence−document that links them.
This edge type represents the fact that a specific
sentence belongs to a specific document. We ap-
ply coreference resolution to solve implicit entity
mentions within the documents. Subsequently,
we add an edge of type edocument−document be-
tween two document nodes d1, d2, if the entities
described in D1 are referenced in D2 or vice-
versa.

43

Collection of Documents

Extract Document Graph

Document Graph

Step 1: Graph Construction Step 2: Prefiltering

Filter Top K relevant sentence nodes

Step 3: Supporting Facts Selection

h1t-1

h2t-1

h3t-1

h4t-1

h1t-1

h2t-1

h4t-1

h3t-1

T=1

h1t-1

h2t-1

h3t-1

h4t-1

h1t-1

h2t-1

h4t-1

h3t-1

T=n

Graph
Propagation

Erik Watts

 Gated Graph Neural Network

Output Network

Q: When was Erik Watts'
father born?

Extracted Sub Graph B
i-L

in
ea

r A
tte

nt
io

n

He is the son of WWE Hall of Famer Bill Watts.

William F. Watts Jr. (born May 5, 1939) is an
American former professional wrestler,
promoter, and WWE Hall of Fame Inductee (2009).

Question
Embedding

Node
Embeddings

Se
lf-
A
tte

nt
io
n

h1n-1 h3n-1

Sentence
Nodes

0 1

...

1

hkn-1

...
Supporting

Facts

Figure 2: Overview of the approach for the identification of supporting facts in a multi-hop QA pipeline. Step 1 is
applied offline for extracting a graph-structured representation from large corpora (Sec. 2.1). In Step 2, we employ
a filtering algorithm (Sec. 2.3) to retrieve a sub-graph containing the top k relevant sentences nodes. The final step
(Step 3) adopts the DGN model for message passing and binary classification of the supporting facts (Sec. 2.4).

Given a question q, we useDG (instead ofD) as
input for the DGN model. the representation does
not include edges between sentences since we ob-
served increasing complexity in the model with-
out gaining substantial benefits in terms of perfor-
mance.

2.2 Architectural Overview

Figure 2 highlights the main components of the
DGN architecture.

From the target corpus, we automatically ex-
tract a Document Graph DG encoding the back-
ground knowledge expressed in a corpus of docu-
ments (Step 1). This data and its graphical struc-
ture is permanently stored into a database, ready
to be loaded when it is required. The first step is
performed offline, allowing the integration of new
knowledge regardless of the runtime pipeline im-
plemented to address the task.

In order to speed up the computation and al-
leviate current drawbacks of Gated Graph Neu-
ral Networks (Li et al., 2015), the question an-
swering pipeline is augmented with a prefiltering
step (Step 2). The adopted algorithm (Sec 2.3),
based on a relevance score, is aimed at reducing
the number of nodes involved in the computation.
Current limitations of Gated Graph Neural Net-
works, in fact, are mainly connected with the size
of the input graph used for learning and predic-

tion. Performance in terms of computational ef-
ficiency and learning degrades proportionally to
the number of nodes and edge types in the in-
put graph. In order to reduce the negative impact
of large graphs, we adopt the prefiltering step to
prune DG, and retrieve a set of sentence nodes
S = {S1, S2, . . . , Sk} expected to contain sup-
porting facts for a question q.

The subsequent step (Step 3) is aimed at select-
ing supporting facts for q. For this task we em-
ploy the Document Graph Network (DGN) on the
subset of DG induced by S (section 2.4). Specif-
ically, we apply the aforementioned architecture
to learn a distributed representation of each node
in the graph via message passing. This represen-
tation is then used by an Output Network (ON)
to perform binary classification on the sentence
nodes in S and select a set of supporting facts
SF = {sf1, sf2, . . . , sfm} with SF ⊆ S. In
the experiments we perform supervised learning
on the training set provided by HotpotQA (Yang
et al., 2018) to correctly predict the elements be-
longing to SF .

2.3 Prefiltering Step

Given a question q and a set of documents D =
{D1, D2, . . . , Dn} as context, the aim of the pre-
filtering step is to retrieve a subset of the context
containing the k most relevant sentences to q.

44

In order to achieve this goal, we adopt a rank-
ing based approach similar to the one illustrated in
(Narasimhan et al., 2018). Specifically, we con-
sider all the sentences occurring in the documents
and compute the similarity between each word
in a sentence and each word in the question q.
We adopt pre-trained GloVe vectors (Pennington
et al., 2014) to obtain the distributed representa-
tion of each word. Subsequently, we produce the
relevance score of each sentence by calculating the
mean among the m highest similarity values. The
final subset is obtained by selecting the sentences
with the top k relevance scores.

An empirical analysis suggested that m = 5
gives the best results on the development set. We
evaluated this approach by computing the recall
of retrieving the top k supporting facts for k =
{20, 25, 30}, obtaining values greater than 90%
for k = 25 and k = 30. Since the average num-
ber of candidate sentences for each question in the
corpus is 50.89, the described algorithm allows us
to discard 60.7% (k = 20), 50.87% (k = 25) and
41.05% (k = 30) of irrelevant context.

2.4 Identifying Supporting Facts
The Document Graph Network (DGN) is em-
ployed for the identification of supporting facts.
The DGN model is based on a standard Gated
Graph Neural Network architecture (GGNN) (Li
et al., 2015) where the inner representation of the
nodes is customised to carry out this specific task.
We apply DGN on the sub-graph retrieved by the
filtering module.

In alignment with prior research in the field we
encode Question(Q), Nodes(N) and Graph(G) as
follows:

1. Question Representation: The question is
stripped of punctuation and stop words and
tokenised to obtain W words. These words
are subsequently converted into a tensor
Q ∈ R|W |×D using pre-trained GloVe vec-
tors (Pennington et al., 2014) of dimension
D.

2. Node Representation: Similar to the ques-
tion representation, each node is also con-
verted to V ∈ R|W |×D using entities for doc-
ument nodes and sentences words for sen-
tence nodes.

3. Graph Representation: Each document
graphDG is represented by an adjacency ma-

trix A ∈ R|V |×2|E||V | where V and E denote
the vertices and edge types respectively.

Each node (vi) is conditioned on the question
(qi) using Bi-Linear Attention (Kim et al., 2018).
The attention weights αi of each word w in the
nodes are determined by a learned function fBAN

as shown in Equation 2. Here fBAN computes the
attention scores between two matrices using a bi-
linear attention function. This function has a ma-
trix of weights W and a bias vector b used to cal-
culate the similarity between the two matrices as
VWQT + b:

eiw = fBAN (viw, qi) (1)

αiw =
exp(eiw)∑|W |
k=1 exp(eik)

(2)

Following the calculation of the attention
scores, the question conditioned vectors are deter-
mined as follows:

v̂i = φ({vi}, {αi}) (3)

Here, φ is a learned function that combines the
attention scores of each word by employing a non-
linear transformation.

After conditioning the nodes representation on
the question, we employ a Self-Attention Model
function fSAN (Vaswani et al., 2017) to calculate
the weight of each vector δi. Here, the learned
function fSAN is responsible for computing the
weights of each vector in a node. The rationale be-
hind this operation is to condense the matrices to a
vector suitable for a Gated Graph Neural Network
architecture while retaining the most discrimina-
tive semantic information.

riw = fSAN (v̂iw) (4)

δiw =
exp(riw)∑|W |
k=1 exp(rik)

(5)

After computing the self-attention score, we
calculate the initial annotation vectors for the
GGNN as follows:

xv = σ({v̂i}, {δi}) (6)

where σ is a function that returns a single vector
by multiplying the corresponding attention scores
and summing them up. The basic recurrent unit of
a GGNN can be formalised as follows:

45

h(1)v = [xTv , 0]
T (7)

a(t)v = AT
v:[h

(t−1)T
1 ...h

(t−1)T
|V |]T + b (8)

ztv = σ(W za(t)v + U zh(t−1)v) (9)

rtv = σ(W ra(t)v + U rh(t−1)v) (10)

h̃tv = tanh(Wa(t)v + U(rtv � h(t−1)v)) (11)

h(t)v = (1− ztv)� h(t−1)v + ztv � h̃(t)v (12)

We perform T time steps of propagation and re-
trieve the distributed nodes representation by us-
ing the final hidden state. The computed represen-
tation of each node implicitly captures the seman-
tic information of its neighbours at a distance up to
T hops. In the experiments, we found it sufficient
to set T = 3.

The graph is heterogeneous with nodes repre-
senting questions, sentences and documents. As
the supporting facts identification task requires
sentence classification, we retain the final hidden
state of the sentence nodes while discarding the
others. We use the sentence representations as in-
put to a feed forward neural network called Output
Network. We perform binary classification of each
sentence to predict whether it is a supporting fact
or not:

ov = g(h(T)
v , xv) (13)

3 Evaluation

The experiments are motivated by the guiding re-
search question of the paper: Does structure play
a role in identifying supporting facts for multi-hop
Question Answering? We further break down the
question in the following research hypotheses:

• RH1: Existing machine comprehension
models benefit from reducing the context to
a small number of sentences necessary to an-
swer a question.

• RH2: Models operating on a graph-
structured representation perform better, sup-
porting the identification of relevant facts
when compared to a baseline that uses a se-
quential strategy.

We seek to provide evidence for those claims by
conducting the following experiments:

• Experiment 1: investigate how a representa-
tive state-of-the-art MC model performs on
different passages with varying coherency
and length.

• Experiment 2: evaluate the capability of
the proposed approach to identify supporting
facts in a question answering scenario where
the relevant facts are distributed across mul-
tiple documents.

Specific tests are performed to identify con-
tributing features and compare the overall perfor-
mance of the approach with a sequential baseline
reported in the literature.

HotpotQA We ran the experiments over the re-
cently proposed HotpotQA dataset (Yang et al.,
2018), which requires MC models to find support-
ing passages in a large set of documents, and per-
form multi-hop reasoning to arrive at the correct
answer. HotpotQA provides 105,547 first para-
graphs extracted from Wikipedia articles, and cor-
responding question-answer pairs created by hu-
man annotators. Questions are designed to only be
answerable by combining information from two
articles and require to bridge documents via a con-
cept or entity mentioned in both articles. A subset
of questions require a comparison of similar con-
cepts concerning their common or differing prop-
erties. Furthermore, the dataset provides labels for
supporting sentences, making it possible to per-
form quantitative analysis on the retrieval of sup-
porting facts.

In all of the reported experiments, if not stated
otherwise, training is performed on the HotpotQA
training set while the evaluation is performed on
the development set in the distractor setting. In
order to address this setting, a system has to re-
trieve the answer and the supporting facts for a
given question by reasoning over a set of ten doc-
uments. Only two of the supplied documents are
guaranteed to contain the information that is suf-
ficient and necessary to answer the question. The
remaining eight documents are similar documents
retrieved by an information retrieval model (hence
the name distractor).

3.1 State-of-the-Art Machine
Comprehension Performance

This experiment is designed to investigate the ca-
pabilities of single passage MC models to retrieve
the correct answer when provided with a context

46

of varying size and coherency. For this analysis we
adopt BERT (Devlin et al., 2018), a neural trans-
former architecture (Vaswani et al., 2017) consti-
tuting the state-of-the-art latent representation for
various NLP tasks.

The publicly available model is pre-trained in an
unsupervised manner on a large text corpus with
the objective of language modelling and next sen-
tence prediction. Fine-tuning this model to spe-
cific NLP tasks has shown to achieve state-of-
the-art-results for many NLP tasks, among others
question answering and machine reading compre-
hension (Devlin et al., 2018). To that end, we fine-
tune the model on the training split of HotpotQA
and evaluate it on the evaluation split. Before
training, we manually remove all the questions
that cannot be answered by retrieving a continu-
ous passage in the supporting facts (e.g. we ex-
clude comparison questions that typically require
yes/no type of answers).

We evaluate the performance of BERT with
supporting facts only, and then progressively en-
rich the context by a rising number of sentences
retrieved by the filtering algorithm (Sec. 2.3). The
results of this experiment are reported in Table 1.

Note that these results can not be interpreted as
a resilient comparison baseline as (1) we don’t op-
timise the set of hyper-parameters associated with
the model training and (2) we ensure the existence
of supporting facts in the evaluation, since we are
interested in the intrinsic performance of BERT in
answer retrieval.

Unsurprisingly, the best results are achieved
when the context provided to BERT is composed
of supporting facts only. Conversely, the perfor-
mance of the model gradually deteriorates when
distracting information is added to the context.

These results reinforce our assumption that a
module capable of identifying the correct set of
supporting facts represents a fundamental com-
ponent in a multi-hop QA pipeline. Moreover,
this component may be complementary to down-
stream machine comprehension models, consti-
tuting a valid support to improve overall perfor-
mances in answer retrieval.

3.2 Supporting Facts Identification

We compare the DGN model on the task of iden-
tifying supporting facts against the neural baseline
reported in (Yang et al., 2018). In order to suit the
task, the baseline architecture extends the state-of-

Table 1: F1 and exact match (EM) score of BERT when
evaluated on answer retrieval over contexts of varying
size.

Sentences SF only +5 +10 +20 +25 +30
F1 0.75 0.60 0.52 0.44 0.42 0.42
EM 0.60 0.47 0.40 0.33 0.32 0.31

Table 2: Supporting facts identification: Harmonic
mean (F1), Precision and Recall

Model F1 P R
Baseline (Yang et al., 2018) 66.66 - -
Baseline Replication (Answer + SF) 65.28 63.28 67.43
Baseline Replication (SF only) 46.44 48.80 44.31
DGN (best) 68.02 61.51 76.07
DGN (no edge types) 45.84 - -

the-art answer passage retrieval model (Seo et al.,
2016) by an additional recurrent layer that classi-
fies whether a sentence is a supporting fact or not.
The model is trained jointly and under strong su-
pervision on the objectives of retrieving both an-
swer and supporting facts. We replicate the exper-
iment on our infrastructure in order to obtain more
detailed measures, such as precision an recall. The
results of the evaluation are reported in Table 2.

The experiments show that the DGN model out-
performs the baseline in terms of F1 score (≈2%
improvement compared to the results reported in
the paper, ≈3% improvement compared to our
replication), and recall (≈14% improvement over
our replication). However, the baseline implemen-
tation has a higher precision. We attribute that to
the fact that the baseline optimises for both answer
extraction and supporting facts retrieval.

In general we observe that recall is higher than
precision throughout the experiments. Compared
to the DGN model, the baseline is less penalised
when the retrieved answer still matches the ex-
pected answer, even if retrieved from an unrelated
sentence spuriously. in the absence of the answer
selection optimisation criterion, the DGN model
is only penalised if it fails to predict the correct
supporting facts. This forces the model to priori-
tise recall over precision during training. Adding a
weight to the loss calculation as an additional hy-
perparameter can balance the precision and recall
metric.

We don’t evaluate DGN on the task of answer
retrieval, since the proposed architecture focuses
on the classification of the relevant supporting
facts. The task of jointly retrieving answer and
supporting facts is left for future work.

47

Table 3: Precision, Recall and F1 score of the DGN
model with different values of k assigned to the pre-
filtering algorithm. The best values are highlighted.

k = 20 k = 25 k = 30 full
Prefiltering (R) 84.72 90.23 94.29 100.00
DGN (F1) 63.40 67.38 68.02 66.00
DGN (P) 57.83 61.92 61.51 53.37
DGN (R) 70.17 73.90 76.07 86.47

3.3 Analysis

In order to understand the interaction of the key
contributing parts of the architecture, we analyse
the behaviour of the full pipeline in different set-
tings. Specifically, we measure the DGN perfor-
mance when trained and evaluated on the output
of the filtering step. During the training, we en-
sure the existence of the supporting facts in the in-
put graph of the DGN model. We then evaluate it
on the development set by performing prediction
on the subset retrieved by the filtering algorithm.
The results reported in Table 3 take into account
the combined performance of the full pipeline with
different hyperparameters assigned to the prefilter-
ing algorithm.

Firstly, we observe the increase of recall with
the increasing number of retrieved sentences. This
fact is unsurprising and it is in line with the higher
recall score of the filtering module. More sen-
tences means broader coverage, and thus higher
recall even before executing DGN prediction.

Secondly, across the experiments, we observe
that k = 30 is the best number of sentences for
the model to learn from. This is confirmed by the
best precision and overall F1 score obtained when
training and predicting on the top 30 sentences.
Moreover, we observed that the application of the
filtering algorithm sensibly speeds up the training,
decreasing at the same time the amount of mem-
ory required to store matrices and weights of the
graph network. The application of a light filtering
is then justified both in terms of performance and
computational complexity.

Regarding the baseline model, we aim to anal-
yse the impact of multi-task learning, where the
model is jointly trained to retrieve supporting facts
and the final answer. We observe a significant drop
in performance (≈20% F1 score) when we opti-
mise the baseline only for supporting facts identi-
fication (see Baseline Replication in Table 2). This
observation is perfectly in line with the literature.
(Hashimoto et al., 2016) report improvements on

low level tasks when jointly optimised with higher
level tasks in a hierarchical learning setting. Re-
garding multi-hop QA, the identification of sup-
porting facts directly depends on the answer being
predicted correctly and vice-versa. A plausible fu-
ture work may be to understand whether DGN can
benefit from a similar multi-task learning setup.

Finally, we investigate the role of the semantic
information expressed explicitly in the Document
Graph. To that end, we train the DGN model us-
ing the same configuration of the best performing
model without edge type information. This results
in a notable drop of F1 score (see Table 2) rein-
forcing the evidence that explicit semantic infor-
mation encoded in relational form contributes to-
wards the performance of the model. A promising
future direction will be to investigate whether dif-
ferent types of semantic representation benefit the
performance of the model and to what extent.

4 Related Work

State-of-the-art approaches for Open-Domain
Question Answering over large collections of doc-
uments employ a combination of character-level
models, self-attention (Wang et al., 2017), and bi-
attention (Seo et al., 2016) to operate over unstruc-
tured paragraphs without exploiting any structured
text representation. Despite these methods have
demonstrated impressive results reaching in some
cases super-human performances (Seo et al., 2016;
Chen et al., 2017; Yu et al., 2018), recent studies
have raised important concerns related to general-
isation (Wiese et al., 2017; Dhingra et al., 2017)
complex reasoning (Welbl et al., 2018) and ex-
plainability (Yang et al., 2018). Specifically, the
lack of structured representation makes it hard for
current Machine Comprehension models to find
meaningful patterns in large corpora, generalise
beyond the training domain and justify the answer.

Research efforts towards the creation of
message-passing architectures with relational in-
ductive bias (Battaglia et al., 2018) have enabled
machine learning algorithms to incorporate graph-
ical structures in their training process. These
models, trained over explicit entities and rela-
tions, have the potential to boost generalisation,
interpretability and abstract reasoning capabilities.
A variety of Graph Neural Network architectures
have already demonstrated remarkable results in a
large set of applications ranging from Computer
Vision, Physical Systems and Protein-Protein In-

48

teraction (Zhou et al., 2018).

Our research is in line with recent trends in
Question Answering prone to explore message-
passing architectures over graph-structured rep-
resentation of documents to enhance perfor-
mance and overcome challenges involved in deal-
ing with unstructured text. (Sun et al., 2018)
fuse text corpus with manually-curated knowl-
edge bases to create heterogeneous graphs of KB
facts and text sentences. Their model, GRAFT-
Net, built upon Graph Convolutional Networks
(Schlichtkrull et al., 2018), is used to propagate
information between heterogeneous nodes in the
graph and perform binary classification on en-
tity nodes to select the answer. Differently from
the proposed approach, the latter work focuses on
links between whole paragraphs and external en-
tities in a Knowledge Base. Moreover, GRAFT-
Net is designed for single-hop Question Answer-
ing, assuming that the question is always about a
single entity.

The proposed approach is similar to (De Cao
et al., 2018) and (Song et al., 2018), where the aim
is to answer complex questions that require the in-
tegration of multiple text passages. However, our
research is focused on the identification of sup-
porting facts instead of answer retrieval.

Another line of research focuses on narrow-
ing down the context for later Machine Compre-
hension models by selecting relevant passages as
supporting facts. Work in that direction includes
(Watanabe et al., 2017) which present a neural
information retrieval system to retrieve a suffi-
ciently small paragraph and (Geva and Berant,
2018) which employ a Deep Q-Network (DQN)
to solve the task by learning to navigate over an
intra-document tree. A similar approach is cho-
sen by (Clark and Gardner, 2017). However, in-
stead of operating on document structure, they
adopt a sampling technique to make the model
more robust towards multi-paragraph documents.
These approaches are not directly comparable to
our work since they focus either on single para-
graphs or intra-document (local) structure.

Strongly related to our work is (Yang et al.,
2018) which presents HotpotQA, a novel dataset
for multi-hop QA. The authors highlight the im-
portance of identifying supporting facts for im-
proving reasoning and explainability of current
systems. We compare the proposed architecture
with the baseline described in their paper. The

model is based on a state-of-the-art MC model
(Seo et al., 2016) that adopts a sequential reading
strategy to identifying supporting facts from large
collections of documents.

5 Conclusion

In this paper, we investigated the role played by
interlinked sentence representation for complex,
multi-hop question answering under the focus of
supporting facts identification, i.e. retrieving the
minimum set of facts required to answer a given
question. We emphasise that this problem is worth
pursuing, showing that the performance of state-
of-the-art models substantially deteriorates as the
size of the accompanying context increases.

We present Document Graph Network (DGN),
a novel approach for selecting supporting facts in
a multi-hop QA pipeline. The model operates over
explicit relational knowledge, connecting docu-
ments and sentences extracted from large text cor-
pora. We adopt a pre-filtering step to limit the
number of nodes and train a customised Graph
Gated Neural Network directly on the extracted
representation.

We train and evaluate the DGN model on a
newly proposed dataset for complex, multi-hop
question answering over unstructured text. The
evaluation shows that DGN outperforms a base-
line adopting a sequential reading strategy. Addi-
tionally, we show that when trained to retrieve just
supporting facts, the performance of the baseline
degrades by ≈20%.

Perhaps most importantly, we highlight a way
to combine structured and distributional sentence
representation models and propose further re-
search lines in that direction. As future work, we
aim to investigate the role and impact of different
structured sentence representation models within
the inference process, linking it with the Open In-
formation Extraction (Cetto et al., 2018; Niklaus
et al., 2018) and sentence simplification (Niklaus
et al., 2019, 2017) literature.

We believe that further research can be dedi-
cated to inject richer structured knowledge in the
model, allowing for fine-grained message passing
and improved representation learning. Another
important line of research will focus on the im-
plementation of advanced mechanisms and tech-
niques to scale the approach to massive text cor-
pora such as the whole Wikipedia.

49

Acknowledgements

The authors would like to express their gratitude
towards members of the AI Systems lab at the
University of Manchester for many fruitful and in-
tense discussions.

References
Peter W Battaglia, Jessica B Hamrick, Victor Bapst,

Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-
teusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. 2018. Rela-
tional inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.

Matthias Cetto, Christina Niklaus, André Freitas,
and Siegfried Handschuh. 2018. Graphene:
Semantically-linked propositions in open informa-
tion extraction. Prooceedings of COLING.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2018.
Question answering by reasoning across documents
with graph convolutional networks. arXiv preprint
arXiv:1808.09920.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bhuwan Dhingra, Kathryn Mazaitis, and William W
Cohen. 2017. Quasar: Datasets for question an-
swering by search and reading. arXiv preprint
arXiv:1707.03904.

Mor Geva and Jonathan Berant. 2018. Learning to
search in long documents using document structure.
arXiv preprint arXiv:1806.03529.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587.

Divyansh Kaushik and Zachary C Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks.
arXiv preprint arXiv:1808.04926.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In Advances
in Neural Information Processing Systems, pages
1571–1581.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2015. Gated graph sequence neu-
ral networks. arXiv preprint arXiv:1511.05493.

Medhini Narasimhan, Svetlana Lazebnik, and Alexan-
der Schwing. 2018. Out of the box: Reasoning with
graph convolution nets for factual visual question
answering. In Advances in Neural Information Pro-
cessing Systems, pages 2659–2670.

Christina Niklaus, Bernhard Bermeitinger, Siegfried
Handschuh, and André Freitas. 2017. A sentence
simplification system for improving relation extrac-
tion.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2018. A survey on open infor-
mation extraction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3866–3878, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2019. Transforming complex
sentences into a semantic hierarchy. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3415–3427, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang,
Radu Florian, and Daniel Gildea. 2018. Exploring
graph-structured passage representation for multi-
hop reading comprehension with graph neural net-
works. arXiv preprint arXiv:1809.02040.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4231–
4242.

50

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

Yusuke Watanabe, Bhuwan Dhingra, and Ruslan
Salakhutdinov. 2017. Question Answering from
Unstructured Text by Retrieval and Comprehension.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association of Computational Linguis-
tics, 6:287–302.

Georg Wiese, Dirk Weissenborn, and Mariana
Neves. 2017. Neural domain adaptation for
biomedical question answering. arXiv preprint
arXiv:1706.03610.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2018. Graph neu-
ral networks: A review of methods and applications.
arXiv preprint arXiv:1812.08434.

51

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 52–57
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Essentia: Mining Domain-specific Paraphrases
with Word-Alignment Graphs

Danni Ma1, Chen Chen2, Behzad Golshan2, Wang-Chiew Tan2

1Department of Computer and Information Science, University of Pennsylvania
2Megagon Labs

dannima@seas.upenn.edu, {chen,behzad,wangchiew}@megagon.ai

Abstract

Paraphrases are important linguistic resources
for a wide variety of NLP applications. Many
techniques for automatic paraphrase mining
from general corpora have been proposed.
While these techniques are successful at dis-
covering generic paraphrases, they often fail
to identify domain-specific paraphrases (e.g.,
{“staff ”, “concierge”} in the hospitality do-
main). This is because current techniques
are often based on statistical methods, while
domain-specific corpora are too small to fit sta-
tistical methods. In this paper, we present an
unsupervised graph-based technique to mine
paraphrases from a small set of sentences that
roughly share the same topic or intent. Our
system, ESSENTIA, relies on word-alignment
techniques to create a word-alignment graph
that merges and organizes tokens from input
sentences. The resulting graph is then used to
generate candidate paraphrases. We demon-
strate that our system obtains high quality
paraphrases, as evaluated by crowd workers.
We further show that the majority of the iden-
tified paraphrases are domain-specific and thus
complement existing paraphrase databases.

1 Introduction

Paraphrases are important linguistic resources
which are widely used in many NLP tasks, in-
cluding text-to-text generation (Ganitkevitch et al.,
2011), recognizing textual entailment (Dagan
et al., 2005), and machine translation (Marton
et al., 2009). Today, mining paraphrases still
remains an active research area (Ferreira et al.,
2018; Gupta et al., 2018; Iyyer et al., 2018; Zhang
et al., 2019). Most existing work on this topic
focuses on mining general-purpose paraphrases
(e.g., {“prevalent”, “very common”}), but fails to
extract domain-specific paraphrases. For exam-
ple, while {“reservation”, “stay”} are not para-
phrases in general, they are interchangeable in the

The World Economy

fully recovered from

shrugged off

gotten rid

has

of

the crisis

already

completely

Figure 1: An instance of a word-alignment graph.

following sentence:
Can we extend our reservation for two more days?

Existing paraphrase mining techniques are of-
ten based on statistical methods. They cannot be
immediately applied to domain-specific corpora,
because such corpora are usually smaller in size
and lack parallel data. ESSENTIA overcomes this
problem by using an unsupervised graph-based
method that mines domain-specific paraphrases
from a small set of short sentences sharing the
same topic or intent. ESSENTIA’s key insight is
that a collection of sentences from a specific do-
main often exhibit common patterns. ESSENTIA

makes use of these properties to align tokens of
input sentences. The resulting alignments are then
summarized in a directed acyclic graph (DAG)
called the word-alignment graph. It illustrates
which phrases can be used interchangeably and
thus are potential paraphrases. Figure 1 shows
the word-alignment graph generated from the
following three sentences:

- The world economy has fully recovered from the crisis.

- The world economy has shrugged off the crisis completely.

- The world economy has gotten rid of the crisis already.

The word-alignment graph reveals that phrases
that are not aligned, but share the same aligned
context (i.e. surrounding words) are likely to be
domain-specific paraphrases. Hence, even though
{“fully recovered from”, “shrugged off ”, “gotten
rid of ”} are not aligned, they are likely para-
phrases because they share the same patterns be-

52

Inp
ut

Sen
ten

ce
s Word

Aligner

Word
Alignment

Graph
Generator

Paraphrase
Generator

Figure 2: The architecture of ESSENTIA.

fore and after themselves.
While this work is focused on mining para-

phrases, we believe that word-alignment graphs
have other interesting applications, and we leave
them for future work. For instance, a word-
alignment graph enables one to generate new sen-
tences or phrases that do not appear in the original
set of sentences. “The world economy has gotten
rid of the crisis completely” is a new sentence that
is generated using the graph in Figure 1.

Contributions. We present ESSENTIA, an unsu-
pervised system for mining domain-specific para-
phrases by creating rich graph structures from
small corpora. Experiments on datasets in real-
world applications demonstrate that ESSENTIA

finds high-quality domain-specific paraphrases.
We also validate that these domain-specific para-
phrases complement and augment PPDB (Para-
phrase Database), the most extensive paraphrase
database available in the community.

2 Essentia

The architecture of ESSENTIA (Figure 2) consists
of: (1) a word aligner which aligns similar words
(and phrases) between different sentences based
on syntactic and semantic similarity; (2) a word-
alignment graph generator that summarizes the
alignments into a compact graph structure; and (3)
a paraphrase generator that mines domain-specific
paraphrases from the word-alignment graph. We
describe each component below.

2.1 Word aligner
We use the state-of-the-art monolingual word
aligner by Sultan et al. (2014). The input to the
word aligner is a single pair of sentences and the
output is a predicted mapping between tokens of
two sentences. ESSENTIA uses the word aligner to
compute the alignments for all pairs of sentences
provided as input.

Every sentence is first pre-processed by replac-
ing numbers and named entities – which are iden-
tified by spaCy (Honnibal and Montani, 2017) –
with special symbols “NUM” and “ORG” respec-
tively before it is passed to the word aligner.

The word aligner relies on paraphrase, lexical
resources and word embedding techniques to find
a mapping between tokens. In other words, the
word aligner finds general-purpose paraphrases
and maps their tokens accordingly. ESSENTIA fur-
ther processes the output of the word aligner to
mine domain-specific paraphrases.

2.2 Word-alignment graph generator
Once the alignments between every pair of sen-
tences are available, the word-alignment graph
generator summarizes all the alignments into
a unified structure, referred to as the word-
alignment graph. It is a DAG that represents all
the input sentences (see Figure 1 as an example).
The process of creating the word-alignment graph
is described as follows.

The first step partitions the set of input sen-
tences into compatible groups. A group of sen-
tences is compatible if their alignments adhere to
the following three conditions:

• Injectivity For any pair of sentences, each
word should be mapped to at most one word in
the other sentence.

• Monotonicity For any pair of sentences, if a
word w1 appears before w2, then the word that
w1 maps to should also appears before the word
that w2 maps to in the other sentence. Sentence
pairs such as “Yesterday I saw him” and “I saw
him yesterday” violate this condition.

• Transitivity Given any three sentences s1, s2,
and s3, if a word w1 in s1 is mapped to w2 in
s2, and w2 in s2 is mapped to w3 in s3, then w1

should be only mapped to w3 in s3.

The above conditions are necessary to ensure
that the resulting representation is compact and
forms a DAG. We start by partitioning the input
sentences into compatible groups. The partition-
ing strategy is a simple greedy algorithm which
starts with a single empty group. A sentence will
be added to the first group that remains compatible
upon adding this new sentence. If no such group
exists, a new empty group is created and the sen-
tence is added to this group. This process repeats
until each sentence is assigned to one group.

Next, the word-alignment graph generator rep-
resents each group as a DAG and then combines
all the DAGs using a shared start-node and end-
node to create the final word-alignment graph.
Specifically, a line graph is first created for each

53

sentence (i.e., a word-alignment graph for a sin-
gle sentence). Then, the alignments are processed:
for each pair of aligned words, their corresponding
nodes are contracted to a single node. Due to the
constraints imposed earlier, one can easily show
that the resulting graph will be cycle-free.

2.3 Paraphrase generator

Given a word-alignment graph, the paraphrase
generator considers all paths in the graph that
share the same start and end node as paraphrase
candidates. For instance, in Figure 1, there are
three branches that start from the node “has” and
end in “the”. Consequently, the phrases {“fully re-
covered from”, “shrugged off ”, “gotten rid of ”}
are extracted as paraphrase candidates.

However, not all extracted candidates are para-
phrases. Consider the following sentences:
- Give me directions to my parent’s place

- Give me directions to the Time Square

In this case, {“my parent’s place”, “the Time
Square”} will be extracted as candidates, but it is
clear that they are not valid paraphrases.

To avoid generating wrong paraphrases, we de-
sign a filtering step – which can be implemented
either using rules (e.g., regular expressions) or sta-
tistical methods (e.g., word similarity) – on top
of the extracted candidates. Our current imple-
mentation of this filtering functionality adopts a
rule-based heuristic that only considers candidates
of verb phrases containing three or fewer tokens,
such as {“access to Wi-Fi”, “hookup to Wi-Fi”}.
Our empirical study reveals that many such verb
phrases are domain-specific paraphrases. Other
classes of phrases, such as noun phrases, turn
out to have much noise. For example, many
noun phrases are simply different options (e.g.,
{“today”,“tomorrow”}). We leave the design of
advanced filters for those classes as future work.

In the process of discovering paraphrases, we
observe that sentences can be “cleaned”. That
is, some phrases can be removed without affect-
ing the essential meaning of a sentence. Figure 1
shows that the phrases “already” and “completely”
share the same start and end node. Moreover, we
see that the start and end node are also directly
connected with a single edge. Such phrases are
optional phrases and can be removed without af-
fecting the core meaning of a sentence. By identi-
fying optional phrases, we can simplify the set of
input sentences to its “essence”, where the name

of ESSENTIA comes from.

Notes on scalability. The time required by the
word aligner to compute alignments between two
sentences is quite small and can be considered
as constant since the length of input sentences
is bounded in practice. Given that, the time-
complexity of ESSENTIA’s pipeline for n input
sentences is O(n2) as we need to compute align-
ments between all pairs of sentences. In prac-
tice, the pipeline can be applied to roughly a hun-
dred sentences within an hour. For a larger collec-
tion of sentences, as described in Section 2.2, we
first run a clustering algorithm to group sentences
into smaller clusters, and then feed each cluster to
ESSENTIA’s pipeline.

3 Related Work

Collecting and curating a database of paraphrases
is a costly and time-consuming task in general.
Although there are existing techniques to collect
paraphrase pairs from crowd-workers more effi-
ciently and with lower cost (Chen and Dolan,
2011), there has been a great interest in developing
techniques for automatically mining paraphrases
from existing corpora. Barzilay and McKeown
(2001) proposed the first unsupervised learning al-
gorithm for paraphrase acquisition from a corpus
of multiple English translations of the same source
text. Barzilay and Lee (2003) followed up with
an approach that applied multiple-sequence align-
ment to sentences gathered from parallel corpora.
Pang et al. (2003) proposed a new syntax-based
algorithm to produce word-alignment graphs for
sentences. Finally, Quirk et al. (2004) applied sta-
tistical machine translation techniques to extract
paraphrases from monolingual parallel corpora.

The most extensive resource for paraphrases to-
day is PPDB (Ganitkevitch et al., 2013; Ganitke-
vitch and Callison-Burch, 2014; Pavlick et al.,
2015b). PPDB consists of a huge number of
phrase pairs with confidence estimates, and has
already been proven effective for multiple tasks.
However, as our experiments show, PPDB and
other resources fail to capture a large number of
domain-specific paraphrases.

To extract domain-specific paraphrases, Pavlick
et al. (2015a) extended Moore-Lewis method
(Moore and Lewis, 2010) and learned para-
phrases from bilingual corpora. Zhang et al.
(2016) constructed Markov networks of words
and picked paraphrases based on the frequency

54

Dataset # of extracted pairs # of valid pairs Precision

ESSENTIA
Snips 173 84 48.55%

HotelQA 2221 642 28.91%

FSA Snips 18 15 83.33%
HotelQA 342 185 54.09 %

Table 1: Comparison between ESSENTIA and FSA baseline on paraphrase extraction

of co-occurrences. However, these systems rely
on significantly large amounts of domain-specific
data (either for supervised training or conduct-
ing frequency analysis), which may not always
be available. ESSENTIA instead uses an un-
supervised graph-based technique for paraphrase
mining and does not rely on the presence of a
large amount of domain-specific data. The word-
alignment graph constructed by ESSENTIA can be
interpreted as an extension of multi-sentence com-
pression (Filippova, 2010). We compactly main-
tain all paths and expressions in the constructed
word-alignment graphs. As pointed out in Pang
et al. (2003), the extracted paraphrases can help
enrich the diversity of expressions regarding a spe-
cific intention, and ultimately provide more train-
ing examples for data-driven models.

4 Evaluation

ESSENTIA is evaluated on two datasets and is
shown to generate high quality domain-specific
paraphrases. We compare our system against a
syntax-based alignment technique by Pang et al.
(2003), which we refer to as FSA, as it generates
Finite-State Automata for compactly representing
sentences in a setting similar to ours. Compared
to FSA, ESSENTIA generates 263% more para-
phrases on those two datasets. We further demon-
strate that most extracted paraphrases are truly
domain-specific and thus are missing from PPDB.
Datasets We use two datasets to evaluate
ESSENTIA. The first one, commonly known as the
Snips dataset (Coucke et al., 2018), is a collection
of queries submitted to smart conversational de-
vices (e.g., Google Home or Alexa). Snips has ten
documents, each covering one intent such as “Get
Directions”, “Get Weather” and so on. On aver-
age, each document has 32 sentences, and each
sentence has 9 words. The other dataset – which is
called HotelQA – is an industry proprietary dataset
of various types of questions submitted by hotel
guests regarding different amenities and services,
such as “Check-out” or “Wi-Fi”. HotelQA also
consists of ten documents, with an average of 54

sentences per document and 10 words per sen-
tence. HotelQA was our primary motivation for
investigating this problem. The industry applica-
tion requires an automatic method to identify a set
of questions that are semantically equivalent.

4.1 Mining Paraphrases

Table 1 compares the performance of ESSENTIA

with the FSA baseline for paraphrase mining.
Specifically, we show the number of phrase
pairs extracted by ESSENTIA and FSA from both
datasets (“# of extracted pairs” column), number
of valid paraphrases within these pairs (“# of valid
pairs” column), and precision (“Precision” col-
umn). Although FSA has higher precision due to
conservative sentence alignment, ESSENTIA ex-
tracts significantly more paraphrases, improving
the recall by 460% (Snips) and 247% (HotelQA)
over the baseline. To identify valid paraphrases,
we design a crowd-sourcing task on Figure-Eight
Data Annotation Platform. In this task, we present
an extracted candidate pair (e.g., {“log onto”,
“connect to”}) and a domain (e.g., “Wi-Fi”) to
human annotators, and ask them to decide whether
the two phrases are paraphrases or not.

ESSENTIA discovers a large number of para-
phrases missing from PPDB, which has the high-
est coverage among the existing paraphrase re-
sources (Pavlick and Callison-Burch, 2016). More
precisely, we take the 726 correct extractions of
ESSENTIA (as verified by human annotators) and
search to see if they appear in PPDB even with
low confidence scores. We find that only 4% of
our discovered paraphrases appear in PPDB. This
in turn shows the effectiveness of ESSENTIA in
discovering paraphrases, because it goes beyond
PPDB by using only a few sentences. Table 2 lists
some domains and examples of domain-specific
paraphrases detected by ESSENTIA.

Finally, to better understand how ESSENTIA’s
performance can be improved and what opportu-
nities lie ahead for further research, we review a
sample of ESSENTIA’s incorrect extractions and
identify two major classes of errors. One class

55

Domain Example paraphrases
Restaurant search recommend a good place

suggest a place
Restaurant reservation get me a place

get me a spot
Get directions show me the way

get me directions
Get weather need the weather

want the weather
Request ride find a taxi

need an uber
Share location share my location

send my location
Hotel Wi-Fi log onto the Wi-Fi

connect to Wi-Fi
Hotel checkout extend our checkout

have a late checkout

Table 2: Examples of domain-specific paraphrases.

consists of expressions that are alternative options
but not necessarily paraphrases (e.g., {“avoiding
the highway”, “avoiding toll road”}). Another
class contains expressions that involve the same
topic but have slightly different intentions (e.g.,
{“tell me the Wi-Fi password”, “how to connect to
Wi-Fi”}). While the two error classes we discuss
here are the most prevalent ones, an in-depth anal-
ysis of error classes and their frequencies (which
we leave as future work) can be quite insightful.

5 Conclusion and Future Work

We present ESSENTIA, an unsupervised graph-
based system for extracting domain-specific para-
phrases, and demonstrate its effectiveness using
datasets in real-world applications. Empirical re-
sults show that ESSENTIA can generate high qual-
ity domain-specific paraphrases that are largely
absent from mainstream paraphrase databases.

Future work involves various directions. One
direction is to derive domain-specific sentence
templates from corpora. These templates can be
useful for natural language generation in question-
answering systems or dialogue systems. Second,
the current method can be extended to mine para-
phrases from a wide range of syntactic units other
than verb phrases. Also, the word aligner can be
improved to align prepositions more accurately, so
that the generated alignment graph would reveal
more paraphrases. Finally, ESSENTIA can also be
used to identify linguistic patterns other than para-
phrases, such as phatic expressions (e.g., “Excuse
me”, “All right”), which will in turn allow us to
identify the essential constituents of a sentence.

References
Regina Barzilay and Lillian Lee. 2003. Learning

to paraphrase: an unsupervised approach using
multiple-sequence alignment. In Proceedings of
NAACL-HLT 2003.

Regina Barzilay and Kathleen R McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of NAACL-HLT 2003, pages 50–57.

David L. Chen and William B. Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation. In
Proceedings of ACL 2011, pages 190–200.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190.

Rafael Ferreira, George DC Cavalcanti, Fred Freitas,
Rafael Dueire Lins, Steven J Simske, and Marcelo
Riss. 2018. Combining sentence similarities mea-
sures to identify paraphrases. Computer Speech &
Language, pages 59–73.

Katja Filippova. 2010. Multi-sentence compression:
Finding shortest paths in word graphs. In Proceed-
ings of COLING 2010, pages 322–330.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
LREC 2014, pages 4276–4283.

Juri Ganitkevitch, Chris Callison-Burch, Courtney
Napoles, and Benjamin Van Durme. 2011. Learning
sentential paraphrases from bilingual parallel cor-
pora for text-to-text generation. In Proceedings of
EMNLP 2011, pages 1168–1179.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT 2013,
pages 758–764.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL-HLT 2018, pages 1875–
1885.

56

Yuval Marton, Chris Callison-Burch, and Philip
Resnik. 2009. Improved statistical machine trans-
lation using monolingually-derived paraphrases. In
Proceedings of EMNLP 2009, pages 381–390.

Robert C Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of ACL 2010, pages 220–224. Association
for Computational Linguistics.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations:
Extracting paraphrases and generating new sen-
tences. In Proceedings of NAACL-HLT 2003, pages
102–109.

Ellie Pavlick and Chris Callison-Burch. 2016. Simple
PPDB: A paraphrase database for simplification. In
Proceedings of ACL 2016, pages 143–148.

Ellie Pavlick, Juri Ganitkevitch, Tsz Ping Chan,
Xuchen Yao, Benjamin Van Durme, and Chris
Callison-Burch. 2015a. Domain-specific paraphrase
extraction. In Proceedings of ACL-IJCNLP 2015,
pages 57–62.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015b. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of ACL-IJCNLP
2015, pages 425–430.

Chris Quirk, Chris Brockett, and William Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Proceedings of EMNLP 2004,
pages 142–149.

Md. Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2014. Back to basics for monolingual align-
ment: Exploiting word similarity and contextual ev-
idence. Transactions of the Association for Compu-
tational Linguistics, pages 219–230.

Lilin Zhang, Zhen Weng, Wenyan Xiao, Jianyi Wan,
Zhiming Chen, Yiming Tan, Maoxi Li, and Ming-
wen Wang. 2016. Extract domain-specific para-
phrase from monolingual corpus for automatic eval-
uation of machine translation. In Proceedings of
WMT 2016, pages 511–517.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of NAACL-HLT 2019, pages
1298–1308.

57

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 58–62
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Layerwise Relevance Visualization in Convolutional Text Graph
Classifiers

Robert Schwarzenberg, Marc Hübner, David Harbecke, Christoph Alt, Leonhard Hennig
German Research Center for Artificial Intelligence (DFKI), Berlin, Germany

{firstname.lastname@dfki.de}

Abstract

Representations in the hidden layers of Deep
Neural Networks (DNN) are often hard to in-
terpret since it is difficult to project them into
an interpretable domain. Graph Convolutional
Networks (GCN) allow this projection, but ex-
isting explainability methods do not exploit
this fact, i.e. do not focus their explanations on
intermediate states. In this work, we present
a novel method that traces and visualizes fea-
tures that contribute to a classification decision
in the visible and hidden layers of a GCN. Our
method exposes hidden cross-layer dynamics
in the input graph structure. We experimen-
tally demonstrate that it yields meaningful lay-
erwise explanations for a GCN sentence clas-
sifier.

1 Introduction

A Deep Neural Network (DNN) that offers – or
from which we can retrieve – explanations for its
decisions arguably is easier to improve and de-
bug than a black box model. Loosely following
Montavon et al. (2018), we understand an expla-
nation as a “collection of features (...) that have
contributed for a given example to produce a deci-
sion.” For humans to make sense of an explanation
it needs to be expressed in a human-interpretable
domain, which is often the input space (Montavon
et al., 2018).

For instance, in the vision domain Bach et al.
(2015) propose the Layerwise Relevance Propa-
gation (LRP) algorithm that propagates contribu-
tions from an output activation back to the first
layer, the input pixel space. Arras et al. (2017)
implement a similar strategy for NLP tasks, where
contributions are propagated into the word vector
space and then summed up over the word vector
dimensions to create heatmaps in the plain text in-
put space.

In the course of the backpropagation of con-
tributions, hidden layers in the DNN are visited,
but rarely inspected.1 A major challenge when in-
specting and interpreting hidden states lies in the
fact that a projection into an interpretable domain
is often made difficult by the non-linearity, non-
locality and dimension reduction/expansion across
hidden layers.

In this work, we present an explainability
method that visits and projects visible and hidden
states in Graph Convolutional Networks (GCN)
(Kipf and Welling, 2016) onto the interpretable in-
put space. Each GCN layer fuses neighborhoods
in the input graph. For this fusion to work, GCNs
need to replicate the input adjacency at each layer.
This allows us to project their intermediate repre-
sentations back onto the graph.

Our method, layerwise relevance visualization
(LRV), not only visualizes static explanations in
the hidden layers, but also tracks and visual-
izes hidden cross-layer dynamics, as illustrated in
Fig. 1. In a qualitative and a quantitative anal-
ysis, we experimentally demonstrate that our ap-
proach yields meaningful explanations for a GCN
sentence classifier.

2 Methods

In this section we explain how we combine GCNs
and LRP for layerwise relevance visualization. We
begin with a short recap of GCNs and LRP to es-
tablish a basis for our approach and to introduce
notation.

2.1 Graph Convolutional Networks
Assume a graph G represented by (Ã,H(0))
where Ã is a degree-normalized adjacency matrix,
which introduces self loops to the nodes in G, and

1Although, Arras et al. (2017) propose inspecting hidden
layers with LRP as a possible future direction.

58

A total of 116 patients were randomized .
(2.08) (14.21) (8.56) (41.18) (0.0) (30.28) (2.56) (1.12)

det

nmod

case

nummod

nsubjpass

auxpass punct

GCN

GCN

FC

A total of 116 patients were randomized .
(1.36) (6.29) (4.58) (25.71) (19.46) (22.41) (19.13) (1.07)

det

nmod

case

nummod

nsubjpass

auxpass punct

GCN

GCN

FC

A total of 116 patients were randomized .
(0.74) (12.64) (1.15) (18.41) (20.87) (17.91) (27.39) (0.9)

det

nmod

case

nummod

nsubjpass

auxpass punct
GCN

GCN

FC

Figure 1: Layerwise Relevance Visualization in a Graph Convolutional Network. Left: Projection of relevance
percentages (in brackets) onto the input graph structure (red highlighting). Edge strength is proportional to the
relevance percentage an edge carried from one layer to the next. Right: Architecture (replicated at each layer) of
the GCN sentence classifier (input bottom, output top). Node and edge relevance were normalized layerwise. The
predicted label of the input was RESULT, as was the true label.

H(0) ∈ IRn×d an embedding matrix of the n nodes
in G, ordered in compliance with Ã. A GCN layer
propagates such graph inputs according to

H(l+1) = σ
(
ÃH(l)W (l)

)
, (1)

which can be decomposed into a feature projec-
tion H ′(l) = H(l)W (l) and an adjacency projec-
tion ÃH ′(l), followed by a non-linearity σ.

The adjacency projection fuses each node with
the features in its effective neighborhood. At each
GCN layer, the effective neighborhood becomes
one hop larger, starting with a one-hop neighbor-
hood in the first layer. The last layer in a GCN
classifier typically is fully connected (FC) and
projects its inputs onto class probabilities.

2.2 Layerwise Relevance Propagation
To receive explanations for the classifications of
a GCN classifier, we apply LRP. LRP explains a
neuron’s activation by computing how much each
of its input neurons contributed2 to the activation.
Contributions are propagated back layerwise.

2We use the terms contribution and relevance inter-
changeably.

Montavon et al. (2017) show that the positive
contribution of neuron h

(l)
i , as defined in Bach

et al. (2015) with the z+-rule, is equivalent to

Ri =
∑

j

h
(l)
i w

+
ij∑

k h
(l)
k w

+
kj

Rj , (2)

where
∑

k sums over the neurons in layer l and∑
j over the neurons in layer (l + 1). Eq. 2

only allows positive inputs, which each layer re-
ceives if the previous layers are activated using
ReLUs.3 LRP has an important property, namely
the relevance conservation property:

∑
j Rj←k =

Rk, Rj =
∑

k Rj←k, which not only conserves
relevance from neuron to neuron but also from
layer to layer (Bach et al., 2015).

2.3 Layerwise Relevance Visualization
We combine graph convolutional networks and
layerwise relevance propagation for layerwise rel-
evance visualization as follows. During train-
ing, GCNs receive input graphs in the form of
(Ã,H(0)) tuples. This is efficient and allows

3LRP is capable of tracking negative contributions, too.
In this work, we focus on positive contributions.

59

batching but it poses a problem for LRP: If the
adjacency matrix is considered part of the input,
one could argue that it should receive relevance
mass. This, however, would make it hard to meet
the conservation property.

Instead, we treat Ã as part of the model in a
post-hoc explanation phase, in which we construct
an FC layer with Ã as its weights. The GCN layer
then consists of two FC sublayers. During the for-
ward pass, the first one performs the feature pro-
jection and the second one – the newly constructed
one – the adjacency projection.

To make use of Eq. 2 in the adjacency layer,
we need to avoid propagating negative activations.
This is why we apply the ReLU activation early,
right after the feature projection, which yields the
propagation rule

H(l+1) = Ãσ(H(l)W (l)). (3)

When unrolled, this effectively just moves one ad-
jacency projection from inside the first ReLU to
outside the last ReLU. Alternatively, it should be
possible to first perform the adjacency projection
and afterwards the feature projection.

Eq. 3 allows us to directly apply Eq. 2 to the
two projection sublayers in a GCN layer. Dur-
ing LRP, we cache the intermediate contribution
maps R(l) ∈ IRn×f that we receive right after
we propagated past the feature projection sublayer
and compute node i’s contribution in that layer as
R(i(l)) =

∑
cR

(l)
ic . In addition, we also compute

the edge relevance e(l)(i,j) between nodes i and j as
the amount of relevance that it carried from layer
l − 1 to layer l.

In what follows, we use R(i(l)) and e(l)ij to visu-
alize hidden state dynamics (i.e. relevance flow) in
the input graph. Furthermore, similar to Xie and
Lu (2019), we make use of perturbation experi-
ments to verify that our method indeed identifies
the relevant components in the input graph.

3 Experiments

Our experiments are publicly available:
https://github.com/DFKI-NLP/lrv/.
We trained a GCN sentence classifier on a 20k
subset of the PubMed 200k RCT dataset (Der-
noncourt and Lee, 2017). The dataset contains
scientific abstracts in which each sentence is
annotated with either of the 5 labels BACK-
GROUND, OBJECTIVE, METHOD, RESULT,
or CONCLUSION. Dernoncourt and Lee (2017)

describe the task as a sequential classification task
since all sentences in one abstract are classified
in sequence, but we treat it as a conventional
sentence classification task, classifying each
sentence in isolation.

In a preprocessing step, we used ScispaCy
(Neumann et al., 2019) for tokenization and de-
pendency parsing to generate the input graphs for
the GCN sentence classifier. For the node em-
beddings in the dependency graph, we utilized
pre-trained fastText embeddings (Mikolov et al.,
2018). Edge type information was discarded.

Our classifier, implemented and trained using
PyTorch (Paszke et al., 2017), consists of two
stacked GCN layers (Eq. 3), followed by a max-
pooling operation and a subsequent FC layer. All
layers were trained without bias and optimized
with the Adam optimizer (Kingma and Ba, 2014).
After each optimization step we clamped the neg-
ative weights of the last FC layer to avoid negative
outputs.

During training, we batched inputs, but in the
post-hoc explanation phase, single graphs from the
test set were forwarded through the network to im-
plement the strategy outlined in Sec. 2.3. We first
constructed the adjacency layer with Ã, then per-
formed a forward pass during which we cached the
inputs at each layer for LRP.

LRP started at the output neuron with the max-
imal activation, before the softmax normalization.
For all intermediate layers we used Eq. 2. Since
coefficients in the input word vectors are nega-
tive, we used a special propagation rule (Montavon
et al., 2017), which we omit here, due to space
contraints. We cached the intermediate contribu-
tion maps right after the max-pooling operation,
after the second and after the first (input space)
feature projection layers in the GCN layers.

For the qualitative analysis, we visualized the
contributions of each node at each layer as well as
the relevance flow over the graph’s edges across
layers, as outlined in Sec. 2.3. For the quantita-
tive validation, we deleted a growing portion of
the globally most relevant edges (starting with the
most relevant ones) and monitored the model’s
classification performance. In a second experi-
ment, we did the same starting with the least rele-
vant edges. Here, global edge relevance refers to
the sum of an edge’s relevance across all layers,∑

l e
(l)
ij .

60

4 Results

After training, our model achieved a weighted F1

score of 0.822 on the official (20k) test set. We
then performed the post-hoc explanation with the
trained model, receiving layerwise explanations as
the one depicted in Fig. 1. More examples can be
found in the appendix.

Fig. 1 (top) shows which vectors in the final
layer the GCN bases its classification decision on.
The middle and bottom segments reveal how much
relevant information the model fused in these vec-
tors from neighboring nodes during the forward
pass:

According to the LRV in Fig. 1, the model
primarily bases its classification decision on the
fusion of the vector representations of total,
patients, and 116. The vector representations
of these nodes are accumulated in the vector of
116 in two steps.

Interestingly, the vector of patients con-
tributes a larger portion after it has been fused with
total. Furthermore, randomized becomes
more relevant after the first GCN layer, contribut-
ing to the second most relevant n-gram (were,
randomized). Other n-grams, such as (A,
total) or (of, patients) appear less rele-
vant.

Note that if we had simply redistributed the
contributions in the final layer, using only the
adjacency matrix, without considering the acti-
vations in the forward pass as LRP does, these
n-grams would have received an unsubstantiated
share. Furthermore, a conventional, single expla-
nation in the input space would have hardly re-
vealed the hidden dynamics discussed above.

As explained in Sec. 3, we also conducted in-
put perturbation experiments to validate that our
method indeed identifies the graph components
that are relevant to the GCN decision. Fig. 2 sum-
marizes the results: The performance of our model
degrades much faster when we delete edges that
contributed a lot to the model’s decision, accord-
ing to our method. We take this as evidence that
our method indeed correctly identifies the relevant
components in the input graphs.

5 Related Work

Niepert et al. (2016); Wu et al. (2019) introduce
graph networks that natively support feature visu-
alization (explanations) but their models are not

0 20 40 60 80 100

0.78

0.8

0.82

Percentage of deleted edges

W
ei

gh
te

d
F 1

least relevant
most relevant

Figure 2: Perturbation experiment.

graph convolutional networks in the sense of Kipf
and Welling (2016) that we address here.

Veličković et al. (2017) propose Graph Atten-
tion Networks and also project an explanation of a
hidden representation onto the input graph. They
do not, however, continue across multiple layers.
Furthermore, their explanation technique differs
from ours. The authors use attention coefficients
to scale edge thicknesses in their explanatory visu-
alization. In contrast, we base edge relevance on
the amount of relevance an edge carried from one
layer to the next, according to LRP. Our method
does this in a conventional GCN, which does not
apply the attention mechanism.

The body of work on the explainability of graph
neural nets also includes the GNN explainer by
Ying et al. (2019), a model-agnostic explainabil-
ity method. Since their method is model-agnostic,
it can be applied to GCNs. Nevertheless, it would
not reveal hidden dynamics, as our method does.

In parallel to our work, in the last couple of
months, several more works on explainability in
the context of graph neural nets were published.
Pope et al. (2019), for instance, evaluate sev-
eral explainability methods on data sets from the
chemistry and vision domains. The methods do
not include LRP, however, and the authors do not
visualize relevance layerwise. The two works that
are most related to our approach were published
very recently by Xie and Lu (2019) and Baldas-
sarre and Azizpour (2019). Both implement LRP
for graph networks (inter alia). Xie and Lu (2019)
introduce the notion of node importance visualiza-
tion, which is also reflected in our explanations
and Baldassarre and Azizpour (2019), similar to

61

our approach, suggest to trace (and visualize) ex-
planations over feature-less edges. Both works,
however, address a different task from ours: In
contrast to our graph classification task, they per-
form node classification and identify k-hop neigh-
bor contributions in the proximity of a central node
of interest.

6 Conclusions

We presented layerwise relevance visualization in
convolutional text graph classifiers. We demon-
strated that our approach allows to track, visualize
and inspect visible as well as hidden state dynam-
ics. We conducted qualitative and quantitative ex-
periments to validate the proposed method.

This is a focused contribution; further research
should be conducted to test the approach in other
domains and on other data sets. Future versions
should also exploit LRP’s ability to expose nega-
tive evidence and the method could be extended to
node classifiers.

7 Acknowledgements

This research was partially supported by the Ger-
man Federal Ministry of Education and Research
through the project DEEPLEE (01IW17001). We
would also like to thank the anonymous reviewers
for their feedback on the paper and Arne Binder
for his feedback on the code base.

References
Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. 2017.
”What is relevant in a text document?”: An in-
terpretable machine learning approach. PloS one,
12(8):e0181142.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE, 10(7):e0130140.

Federico Baldassarre and Hossein Azizpour. 2019. Ex-
plainability techniques for graph convolutional net-
works. arXiv preprint arXiv:1905.13686.

Franck Dernoncourt and Ji Young Lee. 2017. Pubmed
200k rct: a dataset for sequential sentence classifica-
tion in medical abstracts. IJCNLP 2017, page 308.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Grégoire Montavon, Sebastian Lapuschkin, Alexander
Binder, Wojciech Samek, and Klaus-Robert Müller.
2017. Explaining nonlinear classification decisions
with deep taylor decomposition. Pattern Recogni-
tion, 65:211–222.

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2018. Methods for interpreting and
understanding deep neural networks. Digital Signal
Processing, 73:1–15.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. 2016. Learning convolutional neural net-
works for graphs. In International conference on
machine learning, pages 2014–2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami,
Charles E Martin, and Heiko Hoffmann. 2019. Ex-
plainability methods for graph convolutional neural
networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
10772–10781.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Felix Wu, Tianyi Zhan, Amauri Holonda de Souza Jr.,
Christopher Fifty, Tao Yu, and Kilian Weinberger Q.
2019. Simplifying graph convolutional network.
arXiv preprint.

Shangsheng Xie and Mingming Lu. 2019. Interpret-
ing and understanding graph convolutional neural
network using gradient-based attribution methods.
arXiv preprint arXiv:1903.03768.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zit-
nik, and Jure Leskovec. 2019. Gnn explainer: A tool
for post-hoc explanation of graph neural networks.
arXiv preprint arXiv:1903.03894.

62

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 63–77
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

TextGraphs 2019 Shared Task on Multi-Hop Inference for
Explanation Regeneration∗

Peter Jansen? and Dmitry Ustalov†, ‡

?School of Information, University of Arizona, USA
pajansen@email.arizona.edu

†Data and Web Science Group, University of Mannheim, Germany
‡Yandex, Russian Federation

dmitry@informatik.uni-mannheim.de

Abstract

While automated question answering systems
are increasingly able to retrieve answers to nat-
ural language questions, their ability to gener-
ate detailed human-readable explanations for
their answers is still quite limited. The Shared
Task on Multi-Hop Inference for Explanation
Regeneration tasks participants with regener-
ating detailed gold explanations for standard-
ized elementary science exam questions by se-
lecting facts from a knowledge base of semi-
structured tables. Each explanation contains
between 1 and 16 interconnected facts that
form an “explanation graph” spanning core sci-
entific knowledge and detailed world knowl-
edge. It is expected that successfully combin-
ing these facts to generate detailed explana-
tions will require advancing methods in multi-
hop inference and information combination,
and will make use of the supervised training
data provided by the WorldTree explanation
corpus. The top-performing system achieved
a mean average precision (MAP) of 0.56, sub-
stantially advancing the state-of-the-art over
a baseline information retrieval model. De-
tailed extended analyses of all submitted sys-
tems showed large relative improvements in
accessing the most challenging multi-hop in-
ference problems, while absolute performance
remains low, highlighting the difficulty of gen-
erating detailed explanations through multi-
hop reasoning.

1 Introduction

Multi-hop inference is the task of combining more
than one piece of information to solve an infer-
ence task, such as question answering. This can
take many forms, from combining free-text sen-
tences read from books or the web, to combining
linked facts from a structured knowledge base. The

∗The two authors contributed equally to this work.

Figure 1: The explanation regeneration task supplies
a model with a question and its correct answer (top),
and the model must successfully regenerate the gold
explanation for why the answer to the question is cor-
rect by selecting the appropriate set of interconnected
facts from a knowledge base (bottom). Gold explana-
tions range from having 1 to over 16 facts, with this
example containing 3 facts.

Shared Task on Explanation Regeneration asks par-
ticipants to develop methods to reconstruct gold
explanations for elementary science questions, us-
ing a corpus of explanations that provides super-
vision and instrumentation for this multi-hop in-
ference task. Each explanation is represented as
an “explanation graph”, a set of up to 16 atomic
facts drawn from a knowledge base of 4,950 facts
that, together, form a detailed explanation for the
reasoning required to answer a question. The ex-
planations include both core scientific facts as well
as detailed world knowledge, integrating aspects
of multi-hop reasoning and common-sense infer-
ence. It is anticipated that linking these facts to
achieve strong performance at rebuilding the gold
explanation graphs will require methods to perform
multi-hop inference.

63

Large language models have recently demon-
strated human-level performance on elementary
and middle school standardized multiple choice
science exams, achieving 90% on the elementary
subset, and 92% on middle-school exams (Clark
et al., 2019). While these models are able to answer
most questions correctly, they are generally unable
to explain the reasoning behind their answers to
a user, for example generating the explanation in
Figure 1. This inability to perform interpretable,
explanation-centered inference places strong limits
on the utility of these underlying solution meth-
ods. For example, an intelligent tutoring system
that provides students correct answers but that is
unable to explain why they are correct limits the
student’s ability to acquire a deep understanding
of the subject matter. Similarly, in the medical do-
main, a system that recommends a patient receive
a particular surgery but that is unable to explain
why presents challenges towards trusting that the
system has made the correct medical decision.

Multi-hop inference provides a natural mecha-
nism for producing explanations by aggregating
multiple facts into an “explanation graph”, or a se-
ries of facts that were used to perform the inference
and arrive at a particular answer. By providing
these same facts to a user in the form of a human-
readable explanation, the user is able to inspect the
reasoning made by an automated algorithm, both to
understand its reasoning and evaluate its soundness.
An additional implication of multi-hop inference
is the ability to meaningfully combine facts using
smaller, human-scale (or child-scale) knowledge
resources to perform the inference task. For exam-
ple, the RoBERTa model (Liu et al., 2019) used to
achieve 90% accuracy on science exam question
answering by Clark et al. (2019) was pre-trained
on 160GB of text, while the WorldTree explanation
corpus (Jansen et al., 2018) used here shows these
same questions can be answered and provided with
detailed explanations using only 500KB of text,
a difference of more than 5 orders of magnitude.1

Unfortunately multi-hop reasoning is currently very
challenging, and current methods have strong limi-
tations due to noise in this information aggregation
process, the limitations of existing training data,
and the ultimate numbers of facts required to build
detailed explanations. These contemporary chal-

1The knowledge base in the WorldTree explanation corpus
is approximately 500KB, a factor of 320,000 times less than
the 160GB of text used to train the RoBERTa language model
(Liu et al., 2019).

lenges are briefly described in Section 2.
We propose “explanation regeneration” as a

stepping-stone task on the path towards large-scale
multi-hop inference for question answering and
explanation generation. Explanation regeneration
supplies a model with both a question and correct
answer, and asks the model to regenerate a detailed
gold explanation (generated by a human annotator)
by selecting one or more facts in a knowledge base
that the model believes should be in the explana-
tion. As the results of this shared task show, even
with the question and correct answer provided, re-
generating a detailed explanation proves to be an
extremely challenging task, even when the facts
are drawn from a comparatively small knowledge
base. It is our hope that this stepping-stone task
will help inform methods of combining information
to support inference, and provide instrumentation
to develop algorithms capable of combining large
numbers of facts (10+) that appear challenging to
reach with current methods for multi-hop inference.

2 Contemporary Challenges in
Multi-hop Inference

Semantic Drift. One of the central challenges to
performing multi-hop inference is that meaning-
fully combining facts – i.e. traversing from one
fact to another in a knowledge graph – is a noisy
process, in large part because the signals we have
for knowing whether two facts are relevant to an-
swering a question (and can thus be meaningfully
combined) are imperfect. Often times those signals
are as simple as lexical overlap – two sentences (or
nodes) in a knowledge graph sharing one or more
of the same words. Sometimes this lexical over-
lap is a useful traversal mechanism – for example,
knowing both “a fly is a kind of [insect]” and “an
[insect] has six legs”, two facts that connect on the
word insect, helps answer the question about in-
sect identification in Figure 1. Unfortunately, often
times these signals can lead to information that is
not on context or relevant to answering a particular
question – for example, combining “a [tree] is a
kind of living thing” and “[trees] require sunlight to
survive” would be unlikely to help answer a ques-
tion about “Which adaptations help a tree survive
the heat of a forest fire?”.

The observation that chaining facts together on
imperfect signals often leads inference to go off-
context and become errorful is the phenomenon of
“semantic drift” (Fried et al., 2015), and has been

64

Figure 2: An example gold explanation graph that contains 11 facts. Top: the question and its correct answer.
Bottom: the 11 facts of the gold explanation. Each fact is represented as a row in a semi-structured table, drawn
from a knowledge base of 62 tables totalling approximately 4,950 table rows. Colored edges represent how facts
interconnect with each other and/or the question or answer text based on lexical overlap (i.e. sharing one or more
of the same lemmas).

demonstrated across a wide variety of representa-
tions and traversal algorithms including words and
dependencies (Fried et al., 2015), embeddings (Pan
et al., 2017), sentences and sentence-level graphs
(Jansen et al., 2017), as well as aggregating entire
paragraphs (Clark and Gardner, 2018). Typically
multi-hop models see small performance benefits
(of between 1% to 5%) when aggregating 2 pieces
of information, and may see small performance
benefits when aggregating 3 pieces of information,
then performance decreases as progressively more
information is aggregated due to this “semantic
drift”. Khashabi et al. (2019) analytically show that
semantic drift places strong limits on the amount
of information able to be combined for inference.

Long Inference Chains. Jansen et al. (2016,
2018) showed that even inferences for elementary
science require aggregating an average of 6 facts
(and as many as 16 facts) to answer and explain
the reasoning behind those answers when com-
mon sense knowledge is included. With contempo-
rary inference models infrequently able to combine
more than 2 facts, the current state-of-the-art is

still far from being able to meaningfully combine
enough information to produce detailed and thor-
ough explanations to 4th grade science questions.

Multi-hop methods are not required to an-
swer questions on many “multi-hop” datasets.
Chen and Durrett (2019) show that it is possible
to achieve near state-of-the-art performance on
two popular multi-hop question answering datasets,
WikiHop (Welbl et al., 2018) and HotPotQA (Yang
et al., 2018), using baseline models that do not per-
form multi-hop inference. Because new multi-hop
inference algorithms are often characterized using
their accuracy on the question answering task as
a proxy for their capacity to perform multi-hop
inference, rather than explicitly evaluating an algo-
rithm’s capacity to aggregate information by con-
trolling the amount of information it can combine
(as in Fried et al. (2015)), we currently do not have
well-controlled characterizations of the informa-
tion aggregation abilities of many proposed multi-
hop algorithms. The WorldTree explanation corpus
(Jansen et al., 2018) used in this dataset provides
detailed supervised training and evaluation data

65

Question: A student placed an ice cube on a plate in the sun. Ten minutes later, only water was on the plate.
Which process caused the ice cube to change to water?

Answer Candidates: (A) condensation (B) evaporation (C) freezing (*D) melting

Gold Explanation from WorldTree Corpus:
Explanatory Role Fact (Table Row)

CENTRAL melting means changing from a solid into a liquid by adding heat energy
GROUNDING an ice cube is a kind of solid
GROUNDING water is a kind of liquid

CENTRAL water is in the solid state, called ice, for temperatures between -273C and 0 C
LEXGLUE heat means heat energy
LEXGLUE adding heat means increasing temperature
CENTRAL if an object absorbs solar energy then that object will increase in temperature
CENTRAL if an object is in the sunlight then that object will absorb solar energy
CENTRAL the sun is a source of (light ; light energy) called sunlight
LEXGLUE to be in the sun means to be in the sunlight
CENTRAL melting is a kind of process

Explanation Regeneration Task (Ranking):
Rank Gold Fact (Table Row)

1 * melting is a kind of process
2 thawing is similar to melting
3 melting is a kind of phase change
4 melting is when solids are heated above their melting point
5 amount of water in a body of water increases by (storms ; rain ; ice melting)
6 an ice cube is a kind of object
7 * an ice cube is a kind of solid
8 freezing point is similar to melting point
9 melting point is a property of a (substance ; material)
10 glaciers melting has a negative impact on the glaicial environment
11 plate tectonics is a kind of process
12 sometimes piles of rock are formed by melting glaciers depositing rocks
13 melting point can be used to identify a pure substance
14 ice crystals means ice
15 the (freezing point of water ; melting point of water) is 0C
16 the melting point of iron is 1538C
17 the melting point of oxygen is -218.8C
18 * melting means changing from a solid into a liquid by adding heat energy
19 adding salt to a liquid decreases the melting point of that liquid
20 ice is a kind of food
...

Ranks of gold rows: 1, 7, 18, 53, 102, 384, 408, 858, 860, 3778, 3956
Average precision of ranking: 0.149

Figure 3: An example ranking from the tf.idf baseline system for the explanation reconstruction task. Top: the
elementary science question and multiple choice answer candidates, with the correct answer highlighted (the cor-
rect answer is supplied to the model). Middle: the gold explanation for this question, supplied by the WorldTree
corpus. Each fact/sentence is represented as a row in a semi-structured table (see Section 4 for a description of
the explanation corpus and knowledge base). Bottom: the baseline system’s rankings of the facts in the knowledge
base, where facts believed to be in the gold explanation are preferentially ranked to the top of the list.

for how multiple facts can link to produce detailed
explanations, providing a targeted method of instru-
menting multi-hop performance.

Chance Performance on Knowledge Graphs.
Jansen (2018) empirically demonstrated that se-
mantic drift can be overpoweringly large or decep-
tively low, depending on the text resources used to

build the knowledge graph, and the criteria used
for selecting nodes. While the chance of hopping
to a relevant node on a graph constructed from sen-
tences in an open-domain corpus like Wikipedia
can be very small, using a term frequency model
can increase this chance performance by orders
of magnitude, increasing chance traversal perfor-
mance beyond the performance of some algorithms

66

reported in the literature. Unfortunately evaluating
the chance performance on a knowledge graph is
currently a very expensive manual task, and we
currently suffer from a methods problem of being
able to disentangle the performance of novel multi-
hop algorithms from the chance performance of the
knowledge graphs they use.

Explicit Training Data for Multi-hop Inference
and Explanation Construction. Because of the
difficulty and expense associated with manually an-
notating inference paths in a knowledge base, most
multi-hop inference algorithms have lacked explicit
supervision for the multi-hop inference task. As
a result, models have often had to use other latent
signals – like answering a question correctly – as
a proxy for doing well at the multi-hop inference
task, even if they do not have a strong correlation
with producing meaningful combinations of infor-
mation or strong explanations (Jansen et al., 2017).

3 Task Description

The explanation regeneration task supplies both
the question and correct answer, and requires a
model to build an explanation for why the answer
is correct. We consider this a stepping-stone task
towards multi-hop inference for question answer-
ing as the model (strictly speaking) is only required
to perform an explanation construction task, and
is not required to perform the question answering
task of inferring the correct answer to the question
– though models are free to also undertake this step
if they wish.

To encourage a wide variety of techniques both
graph-based and otherwise, the evaluation of expla-
nation reconstruction is framed as a ranking task.
For a given question, the model is given the ques-
tion and correct answer text, and must selectively
rank a list of knowledge base facts such that those
the model believes are a part of a gold explanation
for that question are preferentially ranked to the
top of a list.

An example question and gold explanation graph
are shown in Figure 2. The question asks a student
to infer what process causes an ice cube to turn into
water when placed in the sun. The detailed explana-
tion is aimed at supplying all facts required to have
a detailed understanding of the situation to arrive
at the correct answer, and includes both core scien-
tific knowledge (e.g. “if an object absorbs solar
energy then that object will increase in tempera-
ture”) and world knowledge (e.g. “an ice cube is

a kind of solid”). This scientific and world knowl-
edge is generally not supplied in the question, but is
knowledge a computational algorithm would likely
require in order to arrive at a complete explanation
that would be meaningful to someone who may not
possess that world knowledge. In this way the level
of detail in the explanations is aimed at a young
child that possesses minimal world knowledge, and
the explanations tend to represent instantiated ver-
sions of scripts or frames (Schank and Abelson,
1975; Baker et al., 1998) that a model would have
to understand or use to completely reconstruct the
explanation.

An example of the explanation reconstruction
task framed as a ranking problem is shown in Fig-
ure 3. Here, an example model (the tf.idf baseline)
must preferentially rank facts from the knowledge
base that it believes are part of the gold explanation
to the top of the ranked list. In the case of the ex-
ample question about ice melting in the sun, only
three of the facts listed in the gold explanation are
ranked within the top 20 facts (here, “melting is
a kind of process” and “an ice cube is a kind of
solid”, ranked at positions 1 and 7, respectively,
as well as the core scientific fact “melting means
changing from a solid to a liquid by adding heat
energy”, ranked at position 18). Explanation recon-
struction performance is evaluated in terms of mean
average precision (MAP) by comparing the ranked
list of facts with the gold explanation. In Section 7,
we perform extended analyses that further break
down the performance of each system submitted
to this shared task using both automated analyses
as well as a manual analyses of the relevance of
highly ranked explanation sentences.

4 Training and Evaluation Dataset

The data used in this shared task comes from the
WorldTree explanation corpus (Jansen et al., 2018).
The data includes approximately 2,200 standard-
ized elementary science exam questions 3rd to 5th

grade drawn from the Aristo Reasoning Challenge
(ARC) corpus (Clark et al., 2018). 1,657 of these
questions include detailed explanations for their
answers, in the form of graphs of separate atomic
facts that are connected together by having lexical
overlap (i.e. shared words) with each other, and/or
the question or answer text. For this shared task,
the corpus is divided into the standard ARC train,
development, and test sets. Considering only ques-
tions that contain gold explanations, this results in

67

Figure 4: The distribution of explanation lengths in the
training set, represented as numbers of discrete facts
(or “table rows”) in the explanation. On average, each
question contains 6.3 facts in its explanation.

Figure 5: The distribution of facts with a given explana-
tory role, calculated within question. For the average
explanation, 61% of explanation facts are labeled as
having a central role, while 19% are labeled as ground-
ing, and the remaining 21% as lexical glue. For the
average explanation containing 6 facts, approximately
4 of these facts will (on average) be labeled as central,
one will be labeled grounding, and one will be labeled
as lexical glue.

a total of 902 questions for training, 214 for devel-
opment, and 541 for test.2 The remaining questions
that do not have gold explanation graphs required
specialized reasoning (e.g. spatial or mathemati-
cal reasoning) that did not easily lend itself to the
method of textual explanation used in constructing
this corpus.

Each explanation is represented as a reference to
one or more facts in a semi-structured knowledge
base of tables (the “tablestore”). The tablestore
contains 62 tables, each organized around a particu-
lar kind of knowledge (e.g. taxonomic knowledge,
part-of knowledge, properties, changes, causality,
coupled relationships, etc.) developed through a
data-driven analysis of understanding the needs

2A new version of the WorldTree corpus that substantially
expands the size of the dataset is anticipated shortly.

of elementary science explanations (Jansen et al.,
2016). Each “fact” is represented as one row in a
given table, and can be used as either structured or
unstructured text. As a structured representation,
each table row represents an n-ary relation whose
relational roles are afforded by the columns in each
table. As an unstructured representation, each table
includes “filler” columns that allow each row to be
read off as a human-readable plain text sentence, al-
lowing the same data to be used for both structured
and unstructured techniques.

The WorldTree tablestore contains 4,950 table
rows/facts, 3,686 of which are actively used in at
least one explanation. Explanation graphs com-
monly reuse the same knowledge (i.e. the same
table row) used in other explanations. The most
common fact (“an animal is a kind of organism”)
is used in 89 different explanations, and approxi-
mately 1,500 facts are reused in more than one ex-
planation. Explanations were designed to include
detailed world knowledge with the goal of being
“meaningful to a 5 year old child”, and range from
having a single fact to over 16 facts, with the dis-
tribution of explanation lengths shown in Figure 4.
More details, analyses, and summary statistics are
included in Jansen et al. (2018).

For each explanation, the WorldTree corpus also
includes annotation for how important each fact
is towards the explanation. There are three cate-
gories of importance, with their distribution within
questions shown in Figure 5:

CENTRAL: These facts are at the core of the ex-
planation, and are often core scientific con-
cepts in elementary science. For example, in
a question primarily testing a knowledge of
changes of states of matter, “melting means
changing from a solid to a liquid by adding
heat energy” would be considered having a
central role.

GROUNDING: These facts tend to link core sci-
entific facts in the explanation with specific
examples found in the question. For example,
a question might require reasoning about ice
cubes, butter, ice cream, or other solids melt-
ing. These facts (e.g. “ice is a kind of solid”)
are considered as having a grounding role.

LEXICAL GLUE: The explanation graphs in
WorldTree require each explanation sentence
to be explicitly linked to either the question

68

text, answer text, or other explanation sen-
tences based on lexical overlap (i.e. two sen-
tences having one or more shared words).
Facts with a “lexical glue” role tend to ex-
press synonymy or short definitional relation-
ships, potentially between short multi-word
expressions, such as “adding heat means in-
creasing heat energy”. These are used to
bridge two facts in an explanation together
when the facts use different words for simi-
lar concepts (e.g. one fact refers to “adding
heat”, while another fact refers to “increasing
heat energy”). These facts are important for
computational explanations, allowing explicit
linking between referents, but would likely
be considered excess detail when delivering
explanations to most human users.

This explanatory role annotation makes it possi-
ble to separately evaluate how many central facts,
grounding facts, and lexical glue (or synonymy) re-
lations that a given inference method reconstructs.
For two algorithms with similar performance, this
allows determining whether one primarily recon-
structs more of the core “central” facts, making it
more likely to be useful to a human user.

5 Shared Task Online Competition Setup

Similar to our previous experience in shared task
organization (Panchenko et al., 2018), we used the
CodaLab platform for running the competition on-
line.3 For the convenience of the participants, the
shared task was divided into two phases. In the
Practice phase which began on May 20, 2019, we
released the participant kit that included the full
training and development datasets along with the
Python code of the scoring program used in the
competition and the Scala code for the tf.idf base-
line.4 In the Evaluation phase held from July 12
till August 9, 2019, we provided the participants
with a masked version of the test set the rankings
of which were shuffled randomly. The actual test
set was stored on CodaLab and was not available
to the participants, who had to upload their own
rankings to receive the MAP value computed on
CodaLab. Each team was limited to 15 trials; only
one result could be published on the leaderboard.

3https://competitions.codalab.org/
competitions/20150

4https://github.com/umanlp/tg2019task

Performance
Team (MAP)

ChainsOfReasoning (COR) 0.563
pbanerj6 (ASU) 0.413
Red Dragon AI (RDAI) 0.402 0.477*
jenlindadsouza (JS) 0.394
Baseline (tf.idf) 0.296

Table 1: The leaderboard performance of the submit-
ted systems for the explanation regeneration task on
the held out test set. (* denotes that the team ulti-
mately achieved higher performance post-deadline, and
describes this additional in their system description pa-
per.)

6 System Descriptions and Performance

The shared task received public entries from 4 par-
ticipating teams, with the performance of their sys-
tems shown in Table 1. In this section we briefly
describe these systems.

Baseline. A term frequency model that uses a
tf.idf weighting scheme (e.g. Ch. 6, Manning et al.,
2008) to determine lexical overlap between each
row in the knowledge base with the question and
answer text. For each row, the cosine similarity be-
tween a vectors representing the question text and
row text is calculated, and this process is repeated
for the answer text. These two cosine similarities
serve as features to an SVMrank ranking classifier
(Joachims, 2006),5 which, for a given question, pro-
duces a ranked list of rows in the knowledge base
most likely to be part of the gold explanation for
that question.

Model 1 (JS). The system by D’Souza et al.
(2019) performs explanation regeneration first by
identifying facts that have high matches with ques-
tions using a set of overlap criteria, then by ensur-
ing this set of initial facts can meaningfully pair
together using a set of coherency criteria. Overlap
criteria are evaluated using ConceptNet concepts
and triples (Liu and Singh, 2004), FrameNet predi-
cates and arguments (Baker et al., 1998), OpenIE
triples (Angeli et al., 2015), as well as lexical fea-
tures such as words and lemmas. This results in 76
feature categories that are ranked using SVMrank.
An error analysis identified 11 common and clear
categories of errors that were addressed by rerank-
ing candidate rows using a series of hand-crafted
rules, such as “if an explanation sentence contains

5http://svmlight.joachims.org/

69

a named entity that is not found in the question or
answer, reduce its rank”. This rule-based reranking
resulted in a large 5% performance boost to the
model.

Model 2 (ASU). The system by Banerjee (2019)
models explanation regeneration using a re-ranking
paradigm, where a first model is used to provide
an initial ranking, and the top-N facts ranked by
that system are re-ranked to improve overall per-
formance. Initial ranking was explored using both
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
2019) transformer models, fine-tuned on the super-
vised explanation reconstruction data provided by
the training set. Experiments showed that initial
ranking performance was improved when trained
with additional contextual information, in the form
of including parts of gold explanations with ques-
tion text when training the row relevance ranking
task. The reranking procedure involved evaluating
both relevance and cosine similarity between expla-
nation rows in a shortlist of top ranked rows, where
a shortlist size of N=15 demonstrated maximum
reranking performance.

Model 3 (RDAI). This series of systems by Chai
et al. (2019) explores fine-tuned variations of tf.idf
and BERT-based models. A BERT model is aug-
mented with a regression module trained to predict
the relevance score for each (question text, explana-
tion row) pair, where this relevance score is calcu-
lated using an improved tf.idf method. Due to the
compute time required, the model is used to rerank
the top 64 predictions made by the tf.idf module.

Model 4 (COR). This best-performing system
by Das et al. (2019) presents two models: a BERT
baseline that ranks individual facts, and a BERT
model that ranks paths of facts. Where other sub-
missions used BERT as a reranking model, here
the BERT baseline is used to rank the entire set
of facts in the knowledge base, increasing perfor-
mance to 0.56 MAP on the development set. This
team observed that for 76% of questions, all the
remaining facts in the explanation are within 1-
hop of the top 25 candidates returned by a tf.idf
model. They then construct a path ranking model,
where a BERT model is trained with valid short
chains of valid multi-hop facts from the top 25
candidates. Because of the large number of possi-
ble permutations of multi-fact combinations, the
computational requirements of this chain model are
significantly higher, and due to this limitation the

chain model was evaluated only using the top 25 or
top 50 candidates. While this path ranking model
slightly underperformed the BERT baseline, it did
so while substantially undersampling the space of
possible starting points for chains of reading (top
25 candidate facts vs all 4,950 facts). The team
then show how an ensemble method that uses the
path ranking model for high-confidence cases, and
the BERT baseline for low-confidence cases can
achieve higher performance than either model in-
dependently.

7 Extended Evaluation and Analysis

The annotation in the WorldTree corpus and its
supporting structured knowledge base allows per-
forming detailed automated and semi-automated
characterizations of model performance. To help
assess each model’s capacity to perform multi-hop
inference, we perform an evaluation of model per-
formance using lexical overlap between questions
and facts as a means of determining the necessity of
requiring multiple hops to find and preferentially
rank a given fact. To mitigate issues with fully-
automated evaluations of explanation regeneration
performance, we also include a manual evaluation
of the relevance of highly-ranked facts in Table 3.
We include additional automated characterizations
of performance in Table 4.

7.1 Performance by Lexical Overlap /
Multiple Hops

Ostensibly the easiest explanatory facts for many
models to locate are those that contain a large num-
ber of shared words with the question and/or an-
swer text,6 while those with only a single shared
word can be difficult or improbable to locate
(Jansen, 2018). Those explanatory facts that do
not contain shared words with the question or an-
swer require multi-hop methods to locate, travers-
ing from question text through one or more other
explanatory facts before ultimately being identified.
This distinction is shown in Figure 6.

Breaking down performance by the amount of
lexical overlap (shared words) with the question
and/or answer helps characterize how well a given
model is performing at the multi-hop inference
task. A model particularly able to retrieve facts
with a high amount of lexical overlap may show

6Jansen (2018) empirically demonstrated that sentences
containing 2 or more shared words with the question and/or
answer text can have an extremely high chance performance
at being retrieved.

70

Questions Baseline Team
Metric N tf.idf JS ASU RDAI COR
Evaluating overlap considering only nouns, verbs, adjectives, and adverbs:

(1-hop) Rows with 2 or more shared words with Q/A 541 0.44 0.55 0.59 0.64 0.68
(1-hop) Rows with 1 shared word with Q/A 275 0.12 0.21 0.36 0.30 0.48
(2+ hop) Rows without shared words with Q/A 88 0.00 0.13 0.20 0.15 0.31

Evaluating overlap without filtering (all words considered):
(1-hop) Rows with 2 or more shared words with Q/A 541 0.35 0.45 0.50 0.54 0.61
(1-hop) Rows with 1 shared word with Q/A 275 0.18 0.29 0.39 0.34 0.50
(2+ hop) Rows without shared words with Q/A 88 0.00 0.12 0.24 0.19 0.35

Table 2: Explanation reconstruction performance broken down by the level of lexical overlap a given fact has with
the question and/or answer. 1-hop refers to facts that have at least one shared word with the question or answer.
2+ hops refers to facts that do not have lexical overlap with question or answer text, and must be traversed to from
the question text through other facts. Results across all models show that performance at finding facts generally
decreases as the proportion of lexical overlap between the question text and a given fact decreases. Performance
reflects mean average precision on the explanation regeneration task. Note that average performance in this analysis
is normalized by the number of questions a given criterion applies to (N), and not the total number of questions in
the evaluation corpus, and as such may vary from lexical overlap results reported in participant papers.

a large overall performance in explanation recon-
struction, but be poor at performing multi-hop in-
ference. Similarly, a model particularly able to per-
form multi-hop inference without a strong retrieval
component may have its multi-hop performance
masked by an overall low score at the multi-hop
inference task. Performance on identifying facts
that do not have lexical overlap with the question
or answer is a strong indicator of multi-hop infer-
ence performance, as these facts can only be found
through indirect means, such as “hopping” to other
intermediate facts between them and the question
or answer text.

Model performance broken down by explanation
rows that contain lexical overlap with question or
answer terms is included in Table 2. Here, lexical
overlap is assessed by the intersection of the set of
lemmas in both question and answer text, versus the
set of words in a given table row. This means that
multiple mentions of the same word, or words that
reduce to the same lemma, are considered only a
single word of overlap. For example, if the question
and answer contained three occurrences of the word
“organisms”, and a given table row also contained
two occurrences of “organism”, this would still
only count as one word of lexical overlap between
question and row text.

Table 2 shows that for all models submitted to
the shared task, the largest contributor to model
performance is from locating explanation sentences
that have 2 or more shared words with the question
or answer. Similarly, models also derive moderate
performance from locating explanation sentences

that contain only a single word of overlap between
question and answer. All models show their lowest
performance on locating gold explanation facts that
do not contain lexical overlap with the question or
answer, ranging from a MAP of nearly zero (for the
tf.idf model, which exclusively uses lexical overlap
to rank explanation sentences), to a MAP of up
to one half of a given model’s “2+ shared word”
performance, depending on whether only content
lemmas (nouns, verbs, adjectives, and adverbs) or
all lemmas are considered for lexical overlap.

Recent work has demonstrated that it is possible
for models to achieve high performance on multi-
hop datasets without performing multi-hop infer-
ence (Chen and Durrett, 2019; Min et al., 2019),
highlighting the need to directly instrument multi-
hop performance versus overall performance to
gauge progress on this challenging task. The eval-
uation in Table 2 shows that higher overall expla-
nation regeneration performance does not neces-
sarily imply better multi-hop performance. The
best-performing model achieves a MAP of 0.35
on ranking 2+ hop facts, up from the negligible
2+ hop performance of the baseline model. While
this 2+ hop performance is low in an absolute sense,
it represents a substantial improvement in the state-
of-the-art on this dataset.

It is important to note that examining the per-
formance on facts without lexical overlap is not
a complete assessment of multi-hop performance.
Indeed, it is common for certain clusters of facts to
contain lexical overlap not only with the question
and answer, but also with each other. Identify-

71

Question
Recycling newspapers is good for the

environment because it:
Answer: helps conserve resources.

Gold Explanation Sentences that share
2 or more words with Q or A

1. Recycling resources has a positive impact on the
environment and the conservation of those resources.

Gold Explanation Sentences that share
1 word with Q or A

2. A newspaper is made of paper.
3. Trees are a kind of resource.
4. “To be good for” means “to have a positive impact on”.

Gold Explanation Sentences that
do not share words with Q or A

5. Trees are a source of paper.

Figure 6: Example explanation sentences with differ-
ent degrees of lexical overlap with the question/answer.
Top/Middle: gold explanation sentences that have two
or more (top) or exactly one (middle) shared words
with the question or answer (bolded). Bottom: gold
explanation sentences that do not have shared words
with the question or answer, and are only connected
based on shared words with other explanation sen-
tences (underlined).

ing this inter-fact cohesion to successfully locate
these clusters of explanatory facts is still a form
of multi-hop inference, as it requires integrating
knowledge from more than one fact – even if each
of those facts contains strong retrieval cues such as
lexical overlap with question text. As such, assess-
ing performance on facts without lexical overlap
with question text is only one method of assessing
multi-hop performance on particularly challenging
multi-hop problems, and not a complete characteri-
zation of multi-hop performance.

7.2 Manual Evaluation of Explanation
Quality

For each question in the WorldTree corpus, an an-
notator has provided a set of gold facts that provide
a detailed explanation for why the answer is correct.
While this enables supervised training and fully au-
tomatic evaluation of explanation generation, the
explanation annotation is non-exhaustive – that is,
it is possible for there to be facts in the knowledge
base that may be relevant to building an explanation
for a given question, but that are not included in the
gold explanation. This is a pragmatic limitation of
the ability to perform entirely automated evaluation
using this dataset, as there are often multiple (poten-

tially overlapping) ways of building an explanation
for the answer to a question. As a result of this
limitation, rows ranked highly by some algorithms
may be genuinely useful for building explanations,
but would be marked incorrect by the automated
evaluation, under-estimating performance in some
circumstances. Performing a small-scale manual
evaluation of explanation quality at regular mile-
stones helps provide a balance between speed of
evaluation during model development, and accu-
racy in model characterization. To address this
need in evaluation accuracy, we performed a man-
ual characterization of model performance for each
of the 4 shared task model submissions, as well as
the baseline model.

We performed a manual evaluation of fact rel-
evance for all facts ranked within the top 20 for
each model on 14 randomly selected questions7 in
the held-out test set. This resulted in 758 manual
evaluations of fact relevance. For a given question,
all facts ranked in the top 20 across each model
were pooled into a single list such that the annota-
tor was blind to which model(s) selected them. The
facts were ranked on a 4 point scale: (1) Gold, (2)
Highly Relevant facts that could appear in a gold
explanation, (3) Possibly Relevant facts generally
on broadly similar topics to the question or entities
in the question, and (4) facts that are Not Relevant
to the question.8 Examples of these ratings can be
found in Figure 7.

The results of this manual analysis are shown
in Table 3, presented as proportions of the top-N
ranked rows for each model. In Table 3, the propor-
tion marked gold is equivalent to the Precision@N
metric in Table 4, but measured using 14 ques-
tions instead of the entire test set. Using this as a
gauge of accuracy, we observe that there is gener-
ally strong agreement between the Precision@N
values in this sample of 14 questions as to the entire
test set, with values generally within a few percent-
age points9. This manual evaluation shows that

7The 14 questions selected for manual evaluation were the
initial questions in the test set.

8One of the challenges with such a rating system is its
subjectivity. Different explanations can be written for the
same question that may contain many of the same facts, or
largely different facts. It is also possible that a very detailed
explanation that includes a large amount of world knowledge
might include more “possibly relevant/topical” facts than a less
detailed, more high-level explanation. The methodological
issues with manually evaluating explanation quality are left to
future work.

9Notable exceptions are the manual evaluations of the Top-
5 values for the ASU and RDAI models, which can vary by

72

Baseline Team
Manual Rating tf.idf JS ASU RDAI COR
Top 5 Ranked Rows

Marked Gold 27% 32% 46% 36% 49%
Highly Relevant 19% 22% 26% 27% 20%
Possibly Relevant or Topical 40% 25% 16% 30% 24%
Not Relevant 14% 22% 13% 7% 7%
Manual Relevance@5 (Gold+HR) 46% 54% 72% 63% 79%

Top 10 Ranked Rows
Marked Gold 17% 23% 31% 29% 34%
Highly Relevant 15% 15% 21% 26% 17%
Possibly Relevant or Topical 45% 34% 25% 30% 33%
Not Relevant 33% 29% 22% 15% 16%
Manual Relevance@10 (Gold+HR) 32% 38% 52% 55% 51%

Top 20 Ranked Rows
Marked Gold 11% 14% 18% 18% 20%
Highly Relevant 13% 12% 18% 23% 19%
Possibly Relevant or Topical 40% 39% 29% 38% 40%
Not Relevant 36% 35% 35% 22% 21%
Manual Relevance@20 (Gold+HR) 24% 26% 36% 41% 39%

Table 3: Manually rated relevance judgements for the top 5, top 10, and top 20 ranked rows, across 14 randomly
sampled questions. Results at top 20 reflect 758 manual judgements. “Marked gold” performance is equivalent to
Precision@N performance in Table 4 with 14 samples instead of 541. Results show that generally between 12%
and 27% of top-ranked facts that are not marked as gold may also be highly relevant to building an explanation
for a given question. This adjusted performance, summing both gold and manually-rated highly relevant facts, is
provided as “Manual Relevance@N”.

Question
Q: Many grass snakes are green. The color of the snake most likely helps it to:

(A) climb tall trees
(B) fit into small spaces.

(*C) hide when threatened
(D) shed its skin

Manual Relevance Rating Example Row
Gold Camouflage is used for protection/hiding by prey from predators.
Highly Relevant Camouflage is a kind of adaptation for hiding in an environment.
Possibly Relevant/Topical Eyes can sense light energy for seeing.
Not Relevant Many animals are herbivores.

Figure 7: Example manual ratings of fact relevance for the explanation reconstruction task. “Gold” ratings are
automatically determined by whether a fact is marked as gold in the explanation for a given question. For facts
not marked as gold, manual ratings of “Highly Relevant”, “Possibly Relevant/Topical”, and “Not Relevant” were
added.

across all models, between 12% and 27% of the
most highly ranked facts may also be highly rel-
evant to building an explanation for the question,
but are not included as part of the gold explanation.
All in all, this highlights the importance of treat-
ing gold explanation annotation as a minimum set

as much as ±7% from the full test set. All Top-20 values are
within 1% of the full test sample in Table 4

of facts for assessing coverage and completeness,
but that assessing relevance of highly ranked facts
is still best accomplished by including at least a
modest manual evaluation.

7.3 Additional Performance Evaluation

Additional automatic performance evaluations are
shown in Table 4, which includes evaluation by

73

Questions Baseline Team
Metric N tf.idf JS ASU RDAI COR
Mean Average Precision (MAP)

MAP 541 0.30 0.40 0.42 0.48 0.57

MAP by Explanatory Role
CENTRAL rows 531 0.34 0.49 0.42 0.58 0.59
GROUNDING rows 347 0.19 0.18 0.17 0.23 0.37
LEXICALGLUE rows 382 0.07 0.12 0.31 0.18 0.32

MAP by Table Knowledge Types
Retrieval tables 541 0.31 0.43 0.43 0.46 0.54
Inference-supporting tables 541 0.26 0.33 0.39 0.42 0.46
Complex inference tables 541 0.20 0.15 0.28 0.31 0.33

Precision@N
Precision@1 541 55% 67% 63% 79% 79%
Precision@2 541 43% 49% 47% 63% 69%
Precision@3 541 36% 44% 44% 54% 59%
Precision@4 541 31% 37% 41% 48% 53%
Precision@5 541 27% 32% 39% 43% 48%
Precision@10 541 17% 21% 27% 29% 34%
Precision@20 541 11% 13% 18% 18% 21%

Table 4: Explanation reconstruction performance broken down by the explanatory role of facts, table knowledge
types, and using a Precision@N metric. Note that average performance in this analysis is normalized by the number
of questions a given criterion applies to N, and not the total number of questions in the evaluation corpus, and as
such may vary from lexical overlap results reported in participant papers. Excluding a small number of missing
row references also causes a slight performance increase in some models in the second or third decimal place
compared to official leaderboard results.

explanatory role, table knowledge category, as well
as evaluations of model performance using Preci-
sion@N that serves as an automated comparison
to the manual relevance evaluation in the previous
section.

7.3.1 Performance by Explanatory Roles
Table 4 shows performance broken down by the
explanatory role of the facts being analysed. Here,
each model creates a ranked list of facts, and the
facts in a given question’s gold explanation that
do not match a filter (either CENTRAL, GROUND-
ING, or LEXICAL GLUE) are removed both from
the gold explanation and from the ranked list. Mean
average precision is then calculated as normal. This
evaluation allows assessing how well each model
is able to find facts that provide different roles in
an explanation, and whether a given method fo-
cuses on core or central scientific facts, or facts
that ground entities in the question or answer to
those core facts. Similarly, it allows assessing
the performance on the “lexical glue” facts that
help bridge explanation facts together in compu-
tational explanations through synonymy relations,

but would likely be considered overly verbose or
unnecessary when read by an adult human.

The evaluation shows that all models generally
perform best on identifying core or central facts,
while ranking grounding facts less highly. “Lex-
ical glue” facts that serve as the connecting glue
between facts that use different words to describe
the same concept showed the highest variation in
performance, with the baseline model nearly ignor-
ing these facts, while two teams rank these nearly
as high as the best performance on the grounding
facts.

7.3.2 Performance by Table Knowledge
Types

Tables can express very different kinds of knowl-
edge, with varying levels of complexity and roles in
an explanation. The tables in the WorldTree corpus
are broadly divided into three main types:

Retrieval Tables: Tables that generally supply tax-
onomic (kind-of) or property knowledge.

Inference-Supporting Tables: Tables that in-
clude knowledge of actions, object affordances,

74

uses of materials or devices, sources of things, re-
quirements, or affect relationships.

Complex Inference Tables: Tables that include
knowledge of causality, processes, changes,
coupled relationships, and if/then relationships.

Table 4 shows explanation reconstruction per-
formance by table knowledge type. Generally for
all models submitted to the shared task, perfor-
mance for retrieval knowledge types was highest,
followed by knowledge from inference supporting
tables. Knowledge from complex inference tables
was the most challenging for models to find and
preferentially rank.

8 Conclusion

The TextGraphs 2019 Shared Task on Multi-Hop
Inference for Explanation Regeneration received
four team submissions that exceeded the perfor-
mance of the baseline system. The systems used
a variety of methods from additional knowledge
resources (such as ConceptNet or FrameNet) to
directly training language models to perform multi-
hop inference by predicting chains of facts. The
top-performing system increased baseline perfor-
mance by nearly a factor of two on this task, achiev-
ing a new state-of-the-art.

Multi-hop performance. In spite of these
achievements, our extended analysis shows that
the performance on the most challenging multi-hop
inference problems – those facts that do not have
lexical overlap with question or answer and must be
reached by traversing indirectly through other facts
– is still low. Though the bulk of the performance
of these systems clusters around identifying facts
that have large amounts of lexical overlap with the
question or answer (i.e. 2 or more facts), we have
seen how these easier-to-locate facts can serve as a
spring board to launch more targeted searches for
other facts in the explanation.

Language models and training data. The high-
est performing systems in this shared task made
use of language models, which have repeatedly
demonstrated record-breaking performance on a
wide range of language classification tasks in re-
cent years. These language models tend to have
large requirements for supervised training data that
are difficult to meet in cases where large-scale man-
ual annotation is required, such as in construct-
ing detailed explanations containing world knowl-

edge. The WorldTree explanation corpus provides
a unique resource of large, many-fact structured ex-
planations to train the multi-hop inference task, but
the manual generation of these explanations means
the corpus (at approximately 1.6k explanations) is
orders of magnitude smaller than resources that are
traditionally used to train language models. In spite
of this, teams on this shared task have proposed
methods to address training relevance judgements
with this scale of data, and achieved state-of-the-
art results. While it is unlikely that large-scale
supervised structured training data resources will
soon become available to test the ultimate limits of
language models for explanation generation, the re-
sults of this shared task naturally pose the question
of whether statistical methods will continue to ex-
ceed structured knowledge base approaches to ex-
planation generation (using resources such as Con-
ceptNet and FrameNet), particularly as the field
turns to investigating common sense knowledge
and other world-knowledge-centered approaches
to inference.

Explanation Regeneration as a proxy task for
multi-hop inference models. While explanation
regeneration does not require a model to find a
correct answer to a question, it does help distill
the problem of multi-hop inference to center on
the task of combining multiple facts together in
meaningful ways to support explainable inference.
Explanation-centered inference and interpretable
machine learning currently take on a variety of
forms, from using representations amenable to hu-
man explanation for the inference process (e.g.,
Swartout et al., 1991; Abujabal et al., 2017; Li
et al., 2018), to using black-box systems to arrive
at answers that are later mapped onto other, more
explainable models (e.g., Ribeiro et al., 2016). By
focusing on the task of meaningfully combining
multiple facts to build explanations, our hope is that
explanation regeneration can serve as a stepping-
stone task toward complex inference systems capa-
ble of building long chains of inference that both
automatically answer questions while providing de-
tailed human-readable explanations for why their
reasoning is correct.

9 Acknowledgements

The organizers wish to express their thanks to all
shared task teams for their participation. We thank
Elizabeth Wainwright and Steven Marmorstein for
contributions to the WorldTree explanation corpus,

75

who were funded by the Allen Institute for Ar-
tificial Intelligence (AI2). Peter Jansen’s work
on the shared task was supported by National
Science Foundation (NSF Award #1815948, “Ex-
plainable Natural Language Inference”). Dmitry
Ustalov’s work on the shared task at the University
of Mannheim was supported by the Deutsche For-
schungsgemeinschaft (DFG) foundation under the
“JOIN-T” project.

References
Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed

Yahya, and Gerhard Weikum. 2017. QUINT: In-
terpretable Question Answering over Knowledge
Bases. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, EMNLP 2017, pages 61–
66, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging Lin-
guistic Structure For Open Domain Information Ex-
traction. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
ACL-IJCNLP 2015, pages 344–354, Beijing, China.
Association for Computational Linguistics.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics - Volume 1, ACL ’98/COLING ’98, pages 86–
90, Montréal, QC, Canada. Association for Compu-
tational Linguistics.

Pratyay Banerjee. 2019. TextGraphs-2019 Shared
Task: Explanation ReGeneration using Language
Models and Iterative Re-Ranking. In Proceedings
of the Thirteenth Workshop on Graph-Based Meth-
ods for Natural Language Processing, TextGraphs-
13, Hong Kong. Association for Computational Lin-
guistics.

Yew Ken Chai, Sam Witteveen, and Martin Andrews.
2019. Language Model Assisted Explanation Gen-
eration TextGraphs-13 Shared Task System Descrip-
tion. In Proceedings of the Thirteenth Workshop on
Graph-Based Methods for Natural Language Pro-
cessing, TextGraphs-13, Hong Kong. Association
for Computational Linguistics.

Jifan Chen and Greg Durrett. 2019. Understanding
Dataset Design Choices for Multi-hop Reasoning.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), NAACL-

HLT 2019, pages 4026–4032, Minneapolis, MN,
USA. Association for Computational Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and Effective Multi-Paragraph Reading Comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2018, pages 845–855,
Melbourne, VIC, Australia. Association for Compu-
tational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.
arXiv:1803.05457.

Peter Clark et al. 2019. From ‘F’ to ‘A’ on the N.Y.
Regents Science Exams: An Overview of the Aristo
Project. arXiv:1909.01958.

Rajarshi Das, Ameya Godbole, Manzil Zaheer, She-
hzaad Dhuliawala, and Andrew McCallum. 2019.
Reasoning over Chains of Facts for Explainable
Multi-hop Inference. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing, TextGraphs-13, Hong
Kong. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), NAACL-HLT 2019, pages 4171–4186, Min-
neapolis, MN, USA. Association for Computational
Linguistics.

Jennifer D’Souza, Isaiah Onando Mulang’, and Sören
Auer. 2019. Team SVMrank: Leveraging Feature-
rich Support Vector Machines for Ranking Expla-
nations to Elementary Science Questions. In Pro-
ceedings of the Thirteenth Workshop on Graph-
Based Methods for Natural Language Processing,
TextGraphs-13, Hong Kong. Association for Com-
putational Linguistics.

Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mi-
hai Surdeanu, and Peter Clark. 2015. Higher-order
Lexical Semantic Models for Non-factoid Answer
Reranking. Transactions of the Association for Com-
putational Linguistics, 3:197–210.

Peter Jansen. 2018. Multi-hop Inference for Sentence-
level TextGraphs: How Challenging is Meaningfully
Combining Information for Science Question An-
swering? In Proceedings of the Twelfth Workshop
on Graph-Based Methods for Natural Language
Processing, TextGraphs-12, pages 12–17, New Or-
leans, LA, USA. Association for Computational Lin-
guistics.

76

Peter Jansen, Niranjan Balasubramanian, Mihai Sur-
deanu, and Peter Clark. 2016. What’s in an Explana-
tion? Characterizing Knowledge and Inference Re-
quirements for Elementary Science Exams. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, COLING 2016, pages 2956–2965, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing QA as Building and Rank-
ing Intersentence Answer Justifications. Computa-
tional Linguistics, 43(2):407–449.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A Corpus of Explanation Graphs for Elemen-
tary Science Questions supporting Multi-hop In-
ference. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation, LREC 2018, pages 2732–2740, Miyazaki,
Japan. European Language Resources Association
(ELRA).

Thorsten Joachims. 2006. Training Linear SVMs in
Linear Time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 217–
226, New York, NY, USA. ACM.

Daniel Khashabi, Erfan Sadeqi Azer, Tushar Khot,
Ashish Sabharwal, and Dan Roth. 2019. On the Ca-
pabilities and Limitations of Reasoning for Natural
Language Understanding. arXiv:1901.02522.

Qing Li, Qingyi Tao, Shafiq Joty, Jianfei Cai, and Jiebo
Luo. 2018. VQA-E: Explaining, Elaborating, and
Enhancing Your Answers for Visual Questions. In
Computer Vision – ECCV 2018, 15th European Con-
ference, Munich, Germany, September 8–14, 2018,
Proceedings, Part VII, ECCV 2018, pages 570–586,
Cham, Switzerland. Springer International Publish-
ing.

Hugo Liu and Push Singh. 2004. ConceptNet — A
Practical Commonsense Reasoning Tool-Kit. BT
Technology Journal, 22(4):211–226.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gard-
ner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2019. Compositional Questions Do Not Necessi-
tate Multi-hop Reasoning. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2019, pages 4249–4257,

Florence, Italy. Association for Computational Lin-
guistics.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai,
and Xiaofei He. 2017. MEMEN: Multi-layer Em-
bedding with Memory Networks for Machine Com-
prehension. arXiv:1707.09098.

Alexander Panchenko, Anastasia Lopukhina, Dmitry
Ustalov, Konstantin Lopukhin, Nikolay Arefyev,
Alexey Leontyev, and Natalia Loukachevitch. 2018.
RUSSE’2018: A Shared Task on Word Sense In-
duction for the Russian Language. In Computa-
tional Linguistics and Intellectual Technologies: Pa-
pers from the Annual International Conference “Di-
alogue”, pages 547–564, Moscow, Russia. RSUH.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier. In Pro-
ceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pages 1135–1144, San Francisco,
CA, USA. ACM.

Roger C. Schank and Robert P. Abelson. 1975. Scripts,
Plans, and Knowledge. In Proceedings of the Fourth
International Joint Conference on Artificial Intelli-
gence, IJCAI-75, pages 151–157, Tbilisi, Georgia,
USSR. IJCAI Organization.

William Swartout, Cécile Paris, and Johanna Moore.
1991. Explanations in Knowledge Systems: De-
sign for Explainable Expert Systems. IEEE Expert,
6(3):58–64.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing Datasets for Multi-hop
Reading Comprehension Across Documents. Trans-
actions of the Association for Computational Lin-
guistics, 6:287–302.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. arXiv:1906.08237.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HOTPOTQA: A Dataset for
Diverse, Explainable Multi-hop Question Answer-
ing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2018, pages 2369–2380, Brussels, Belgium.
Association for Computational Linguistics.

77

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 78–84
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

ASU at TextGraphs 2019 Shared Task: Explanation ReGeneration using
Language Models and Iterative Re-Ranking

Pratyay Banerjee
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University

pbanerj6@asu.edu

Abstract

In this work we describe the system from
Natural Language Processing group at Ari-
zona State University for the TextGraphs 2019
Shared Task. The task focuses on Expla-
nation Regeneration, an intermediate step to-
wards general multi-hop inference on large
graphs. Our approach consists of modeling the
explanation regeneration task as a learning to
rank problem, for which we use state-of-the-
art language models and explore dataset prepa-
ration techniques. We utilize an iterative re-
ranking based approach to further improve the
rankings. Our system secured 2nd rank in the
task with a mean average precision (MAP) of
41.3% on the test set.

1 Introduction

Question Answering in natural language often re-
quires deeper linguistic understanding and reason-
ing over multiple sentences. For complex ques-
tions, it is very unlikely to build or have a knowl-
edge corpora that contains a single sentence an-
swer to all the questions from which a model
can simply cherrypick. The knowledge required
to answer a question may be spread over multi-
ple passages (Rajpurkar et al., 2016; Lai et al.,
2017). Such complex reasoning requires systems
to perform multi-hop inference, where they need
to combine more than one piece of information
(Welbl et al., 2018).

In this shared task of Explanation ReGenera-
tion, the systems need to perform multi-hop infer-
ence and rank a set of explanatory facts for a given
elementary science question and correct answer
pair. An example is shown in Table 1. The task
provides a new corpora of close to 5000 explana-
tions, and a set of gold explanations for each ques-
tion and correct answer pair (Jansen et al., 2018).
The example highlights an instance for this task,
where systems need to perform multi-hop infer-
ence to combine diverse information and identify

Question: Which of the following is an exam-
ple of an organism taking in nutrients?
(A) a dog burying a bone (B) a girl eating an
apple (C) an insect crawling on a leaf (D) a
boy planting tomatoes
Gold Explanation Facts:
A girl means a human girl. : Grounding
Humans are living organisms. : Grounding
Eating is when an organism takes in nutrients
in the form of food. : Central
Fruits are kinds of foods. : Grounding
An apple is a kind of fruit. : Grounding
Irrelevant Explanation Facts:
Some flowers become fruits.
Fruit contains seeds.
Organisms; living things live in their habitat;
their home
Consumers eat other organisms

Table 1: An example of Explanation Regeneration

relevant explanation sentences needed to answer
the specific question.

Explanation ReGeneration is a challenging
task. This is due to the presence of other irrelevant
sentences in the corpora with respect to the given
question, which have a good lexical and semantic
overlap (Jansen, 2018). Ideally, the explanations
need to be in order, but for the sake of simplicity,
ordering of the explanations are ignored.

In the dataset, to measure the performance of
the system over different types of explanations, the
explanations are further categorized into classes.
These classes differ in the importance of the expla-
nation in explaining the correct answer. These cat-
egories are Central, Grounding and Lexical Glue.
Central facts are often core scientific facts rele-
vant to answering the question. Grounding are
facts which connect to other core scientific facts,
present in the explanation. Examples of Central

78

and Grounding facts are present in Table 2. Lexi-
cal glue facts express synonymy or definitional re-
lationships. An example of Lexical glue facts :
“glowing means producing light”.

This paper describes a system developed by the
Natural Language Processing group of Arizona
State University. We approach the task of expla-
nation regeneration as a learning to rank (Burges
et al., 2005) problem. The system utilizes state
of the art neural language models (Devlin et al.,
2019; Yang et al., 2019), finetunes them on the
knowledge corpora and trains them to perform the
task of ranking using customized dataset prepara-
tion techniques. We further improve on the rank-
ing using an iterative re-ranking algorithm.

We make the following contributions in the pa-
per: (a) We evaluate different ways for dataset
preparation to use neural language models for the
task of explanation generation; (b) We evaluate
different language models for ranking and analyse
their performance on the task; (c) We show how
to use iterative re-ranking algorithm to further im-
prove performance; (d) We also provide a detailed
analysis of the dataset.

In the following sections we first give an
overview of our system. We describe the individ-
ual components of the system in Sections 3,4. We
evaluate each component on the provided valida-
tion set and show the performance on the hidden
test set in Section 5. We conclude with a detailed
error analysis and evaluating our model with rele-
vant metrics in Section 6,7,8.

2 Approach

In recent years, several language models (Devlin
et al., 2019; Yang et al., 2019; Peters et al., 2018)
have shown considerable linguistic understand-
ing and perform well in tasks requiring multi-hop
reasoning such as question answering (Rajpurkar
et al., 2016; Mihaylov et al., 2018; Khashabi et al.,
2018; Lai et al., 2017), and document ranking
tasks (Callan et al., 2009).

For the task of Explanation ReGeneration we
chose BERT (Devlin et al., 2019) and XLNET
(Yang et al., 2019), two state-of-the-art neural
language models and explore their effectiveness
in capturing long inference chains and perform-
ing multi-hop inference. BERT and XLNET
are pretrained using Masked Language Modelling
(MLM) and Probabilistic Masked Language Mod-
elling (PMLM) respectively. These pretraining

tasks enables BERT and XLNET to understand
the dependencies between masked and unmasked
words. This is needed to capture relevant con-
cepts, words and entities linking between central,
grounding and lexical glue facts. We finetune
these language models on the knowledge corpora
of 5000 explanations using their respective lan-
guage modelling tasks.

To rank the explanations, we learn the rele-
vance of each explanation for a given question
and correct answer pair. We evaluate multiple
dataset preparation techniques for finetuning the
language models. We also evaluate different rele-
vance learner models by attaching different kinds
of classification and regression heads over the lan-
guage models. From the relevance learner, we ob-
tain the relevance scores and an initial ranking of
the explanations. We perform further re-ranking
using a custom re-ranking algorithm similar to in
Banerjee et al..

3 Dataset Preparation and Relevance
Learner

We prepare multiple datasets for the following
tasks. The preparation techniques are described
in the following sub-sections.

3.1 Language Modelling
The language models are initially finetuned on the
Explanation Knowledge corpora using MLM and
PMLM respectively. The dataset for this task is
prepared using scripts from pytorch-transformer
package. We prepare both MLM and PMLM
datasets and finetune the respective language mod-
els. We follow the steps as mentioned by Devlin
et al. and Yang et al. for generating the language
model datasets.

3.2 Relevance Learning using Classification
head

We model the relevance learning task as a two-
class classification task with class 0 represent-
ing irrelevance and class 1 representing relevance.
Here by relevance, we mean the fact is part of
the explanation. Finally, we take the probability
scores of class 1, and use them as relevance scores.
Formally,

Rel(Ej , Qi, Ai) = P (Ej ∈ G|Qi, Ai) (1)

where Ej is the jth explanation, Q,A are the ith
question and correct answer pair and G is the set
of gold explanation facts.

79

The dataset provides the set of gold facts, but
does not provide the set of irrelevant facts. To
create the irrelevant set, for each gold fact we re-
trieve top k similar facts present in the explana-
tion corpora, but not present in the gold fact set.
This is done to make the model learn relevance
to the context of passage and correct answer, and
not focus on similar looking sentences. We com-
pute the similarity between sentences using cosine
similarity between sentence vectors (Honnibal and
Montani, 2017). We repeat the gold explanation k
times to maintain the balance between the classes.

We prepare another dataset where we provide
a context passage. This passage comprises of al-
ready selected n facts, and the rest |G| − n gold
facts are labelled as relevant class 1. We find ir-
relevant facts for the |G| − n gold facts using the
same process as above. In this case, we learn the
following probability:

Rel(Ej , Cn, Qi, Ai) = P (Ej ∈ G|Cn, Qi, Ai)
(2)

where Cn represents the n already selected facts,
1 ≤ n ≤ 16, as there are a maximum of 16 and
minimum of 1 gold explanation facts. This context
is given only during the training phase, while dur-
ing the validation and testing, we only provide the
question and correct answer pair along with expla-
nation Ej . Moreover, we ensure that the dataset is
balanced between two classes. To make the model
learn longer dependencies, we train using a con-
text. This classification task optimizes classifica-
tion accuracy metric.

3.3 Relevance Learning using Regression
head

The datasets for the regression tasks are similar to
the datasets of classification head. Instead of two
class classification, we provide target scores of 6,
5, 4, 0 for Central, Grounding, Lexical Glue and
Irrelevant facts respectively. The above scoring
scheme was decided to give central and ground-
ing facts higher precedence, as they are core for
a proper explanation. All target scores were en-
sured to be balanced. As described in the above
section, we prepare two datasets, one with and
another without context explanation sentences.
The regression task optimizes mean-squared-error
scores.

4 Iterative Re-Ranking

We sort the Relevance scores from the Relevance
Learner models and perform an initial ranking of
the explanation sentences. We feed this initial
ranked explanation facts to our iterative re-ranking
algorithm, which is defined as follows.

Let N be the depth of re-ranking from the top,
i.e, we run re-ranking for N rounds. Let E0 be
the top explanation fact in the initial ranking, Ei

be the last selected explanatory fact and Ej (i <
j ≤ N + i) is the current candidate explanation
fact for a given question Q and correct answer A.
We compute a weighted relevance score using the
top i (i <= N) selected facts as:

Wscore(Ej , Ei) =

∑i
k=0Rel(Ek) ∗ Sim(Ej , Ek)∑i

k=0Rel(Ek)
(3)

We sort ranking scores of the candidate expla-
nation facts and choose the top explanation fact for
the i+1 th round, where the ranking score is given
by :

score(Ej , Ei, Q,A)

=Wscore(Ej , Ei) ∗ Sim(Ej , Q : A)
(4)

Here Rel is the relevance score from the Rele-
vance Learner models and Sim is the cosine sim-
ilarity of the explanation sentence vectors from
Spacy (Honnibal and Montani, 2017). For the
facts whose initial rank is greater than depth N ,
we keep the initial ranking as is. The itera-
tive re-ranking algorithm is designed to exploit
the overlapping nature of the explanations. The
above score gives importance to the initial rele-
vance score (facts already ranked by relevance),
the vector similarity of the candidate explanation
and both the selected explanation sentences and
question/correct answer pair.

5 Experiments and Test Results

The training dataset for the task contains 1191
questions, each having 4 answers. The gold expla-
nations set has a minimum size of 1 and maximum
size of 16. The validation dataset had 265 ques-
tions and the hidden test set has 1248 questions.
The explanation knowledge corpora has around
5000 explanation sentences. The two relevance
learner training dataset has size of 99687 without
context and 656250 with context. Several com-
binations of context are generated using the gold

80

selected explanation facts, leading to such a large
training corpus. We evaluate both BERT Large
and XLNET large, using both the tasks and the two
different datasets. In Table 2 are the results of our
evaluation on the validation set. All the metrics are
Mean-Average-Precision unless mentioned other-
wise. All the metrics are on the validation set.

Task v/s Model BERT XLNET
Classification 0.3638 0.3254
Classification with Context 0.3891 0.3473
Regression 0.3288 0.3164
Regression with Context 0.3466 0.3273

Table 2: Comparison of the Relevance Learners with
different dataset preparation techniques without re-
ranking

It can be observed in Table 2 that the two class
classification head with context performs best and
BERT Large outperforms XLNET Large for this
particular task. In Table 3, we compare the Rel-
evance Learners before and after Iterative Re-
ranking. It can be seen that Iterative Re-ranking
improves the scores of both the Relevance Learn-
ers by around 2.5%.

Table 4 compares the MAP for different expla-
nation roles before and after iterative re-ranking.
It can be seen that Iterative re-ranking improves
MAP for Central and Grounding explanations but
penalizes Lexical Glue.

Figure 1 shows performance of the Relevance
Learner and Iterative Re-ranking for questions
with different length of gold explanations. It can
be seen that the model performs well for expla-
nations whose length are less than or equal to 5.
Performance decreases with increasing length of
gold explanations.

1Background and Neg roles were found in the gold expla-
nation set but definition for them are not shared.

N v/s Model BERT XLNET
1 0.3891 0.3473
3 0.4000 0.3556
5 0.4062 0.3661
10 0.4181 0.3701
15 0.4225 0.3738
20 0.4204 0.3721
30 0.4191 0.3665

Table 3: Comparison of Relevance Learners with Iter-
ative Re-ranking till depth N

Explanation Roles BERT N=15
CENTRAL 0.3589 0.3912
GROUNDING 0.0631 0.0965
LEXICAL GLUE 0.1721 0.1537
BACKGROUND 1 0.0253 0.0226
NEG 1 0.0003 0.000586

Table 4: MAP for different Explanation Roles for
BERT trained with classification head and context, be-
fore and after re-ranking till N=15

Figure 1: MAP v/s Length of the Gold Explanation

Table 5 shows the MAP scores for the best mod-
els on both the Validation and the hidden Test set.

6 Error Analysis

In the following sub-sections we analyse our sys-
tem components, the performance of the final re-
ranked Relevance Learner system and the shared
task dataset.

6.1 Model Analysis
1. XLNET performs poorly compared to BERT

for this task. The difference arises due to
two reasons, the way the datasets are pre-
pared and the way the language models are
finetuned. The dataset preparation tech-
niques BERT captures deeper chains and bet-
ter ranks those explanation which have low

Model Validation Test
BERT with Context 0.3891 0.3983
ReRanked N=15 0.4225 0.4130
Baseline SVM Rank 0.28 0.2962

Table 5: Validation and Test MAP for the best Rele-
vance Learner, Reranked and the provide baseline mod-
els

81

Gold Explanation Predicted Explanation
heat means temperature increases adding heat means increasing temperature
sunlight is a kind of solar energy the sun is the source of solar energy called sunlight
look at means observe observe means see
a kitten is a kind of young; baby cat a kitten is a young; baby cat

Table 6: Similar Explanations present in top 30

Gold Explanation Predicted Explanation

an animal is a kind of living thing
an animal is a kind of organism

an organism is a living thing

a frog is a kind of aquatic animal
a frog is a kind of amphibian

an amphibian is a kind of animal
a leaf is a part of a tree

a leaf is a part of a,green plant
a tree is a kind of plant

Table 7: Single-hop and Multi-hop Errors in top 30

Gold Explanation
to reduce means to decrease
Predicted Explanation
to lower means to decrease
less means a reduced amount

Table 8: Errors due to Sentence Vectors in top 30

direct lexical or semantic overlap with the
question and correct answer.

2. XLNET focuses on explanations mainly on
the words whose word vectors are closely re-
lated to the question and answer, and per-
forms poorly for explanations which are one
or two hop away. The dataset with context,
improves the performance for both, enabling
capturing deeper chains to some extent.

3. The way the datasets are prepared introduces
bias against some explanation facts. For ex-
ample, the Lexical Glue facts are of the type
“X means Y” and the Grounding facts are of
the type “X is kind of Y”. Using sentence
vectors for identifying similar but irrelevant
explanations leads to a set of explanations be-
ing particularly tagged as irrelevant. These
are ranked low even if they are relevant for
the validation set. This leads to poor perfor-
mance compared to Central facts.

4. The Iterative Re-ranking algorithm improves
the performance irrespective of the Rele-
vance Learner model. The algorithm gives
importance to the relevance score, vector

Gold Explanation
temperature rise means become warmer
Predicted Explanation
warm up means increase temperature
warmer means greater; higher in temperature

Table 9: Model unable to understand ordering in Lexi-
cal Glue in top 30

similarity with previously selected explana-
tions and vector similarity with the question
answer pair. This introduces a bias against
Lexical Glue explanations, as they only have
a word common with the entire question, an-
swer and previously selected facts. The op-
timal depth of the re-ranking correlates with
the maximum length of explanations.

5. The model is able to rank Central explana-
tions with a high precision. Central facts
possess a significant overlap with the ques-
tion and correct answer. The re-ranking al-
gorithm improves the precision even further.
From Figure 1, it can be inferred, the expla-
nations with length 1 only contain Central ex-
planations. For explanations with length 2,
the model precision drops considerably. This
occurs because the model is poor in ranking
Lexical Glue and Grounding explanations.

6. For Lexical Glue and Grounding explana-
tions, which have the form “X means Y” and
“X is kind of Y”, the model is not able to un-
derstand the order between X and Y required

82

for the explanation, i.e, instead of “X means
Y”, it ranks “Y means X” higher. Table 9 is
one such instance. This contributes to the low
MAP for these types of explanations.

7. The use of sentence vectors for similarity
introduces errors shown in Table 8, where
the correct explanation contains “reduce”, but
the predicted explanations which have simi-
lar words like “lower”, “less” and “reduced
amount”, are ranked higher.

8. Out of the total 226 questions in the vali-
dation set, there were only 13 questions for
which the system could not predict any of the
gold explanation facts in the top 30. The facts
predicted for these had a high word over-
lap, both symbolic and word-vector wise, but
were not relevant to the explanation set.

6.2 Dataset Analysis

1. We further looked at the gold annotations and
top 30 model predictions and identified few
predictions having similar semantic meaning
being present. For example in Table 6, the
predicted explanations were present in top
30. This shows there can be alternate expla-
nations other than the provided gold set.

2. In Table 7 we can see the model makes both
kinds of errors. For few gold explanations, it
brings two alternate explanation facts and for
some explanations it combines the facts and
ranks a single explanation in the top 30. This
also shows there can be several such combi-
nations possible.

7 Discussion

From the analysis, we can observe that multiple
alternate explanations are possible. This is analo-
gous to multiple paths being available for the ex-
planation of a phenomenon. Our model precision
should improve with availability of such alternate
explanations. We recommend enriching the gold
annotations with possible alternatives for future
rounds of the task.

It is promising to see a language model based on
stacked attention layers is able to perform multi-
hop inference with a reasonable precision, with-
out much feature engineering. The use of neu-
ral language models and sentence vector similar-
ities bring errors, such as point 6 and 7 in the

Error Analysis section. We can introduce sym-
bolic and graph based features to capture order-
ing (Witschel, 2007). We can also compute graph
feature-enriched sentence vectors using principles
of textual and visual grounding (Cai et al., 2018;
Guo et al., 2016; Yeh et al., 2018; Grover and
Leskovec, 2016). In our system design, we did
not use the different explanation roles and the de-
pendencies between them. Using such features the
precision is likely to improve further. Our Iterative
re-ranking algorithm shows it can improve the pre-
cision even more, given a reasonably precise Rel-
evance Learner model. This is the first time this
task has been organized and there is lot of scope
for improvement in precision.

8 Conclusion

In this paper, we have presented a system that par-
ticipated in the shared task on explanation regen-
eration and ranked second out of 4 participating
teams. We designed a simple system using a neu-
ral language model as a relevance learner and an
iterative re-ranking algorithm. We have also pre-
sented detailed error analysis of the system output,
the possible enrichments in the gold annotations of
the dataset and discussed possible directions for
future work.

References
Pratyay Banerjee, Kuntal Kumar Pal, Arindam Mitra,

and Chitta Baral. 2019. Careful selection of knowl-
edge to solve open book question answering. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, pages 6120–6129.

Christopher Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Gre-
gory N Hullender. 2005. Learning to rank using gra-
dient descent. In Proceedings of the 22nd Interna-
tional Conference on Machine learning (ICML-05),
pages 89–96.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. 2018. A comprehensive survey of
graph embedding: Problems, techniques, and appli-
cations. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637.

Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao.
2009. Clueweb09 data set.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

83

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864. ACM.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2016. Jointly embedding knowledge graphs
and logical rules. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 192–202.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Peter Jansen. 2018. Multi-hop inference for sentence-
level textgraphs: How challenging is meaningfully
combining information for science question answer-
ing? In Proceedings of the Twelfth Workshop on
Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-12), pages 12–17.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton T. Morrison. 2018.
Worldtree: A corpus of explanation graphs for
elementary science questions supporting multi-hop
inference. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC).

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), volume 1, pages 252–262.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392. Asso-
ciation for Computational Linguistics.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, 6:287–302.

Hans Friedrich Witschel. 2007. Multi-level association
graphs - a new graph-based model for Information
Retrieval. In Proceedings of the Second Workshop
on TextGraphs: Graph-Based Algorithms for Nat-
ural Language Processing, pages 9–16, Rochester,
NY, USA. Association for Computational Linguis-
tics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Raymond A Yeh, Minh N Do, and Alexander G
Schwing. 2018. Unsupervised textual grounding:
Linking words to image concepts. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 6125–6134.

84

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 85–89
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Red Dragon AI at TextGraphs 2019 Shared Task:
Language Model Assisted Explanation Generation

Yew Ken Chia
Red Dragon AI

Singapore
ken@reddragon.ai

Sam Witteveen
Red Dragon AI

Singapore
sam@reddragon.ai

Martin Andrews
Red Dragon AI

Singapore
martin@reddragon.ai

Abstract

The TextGraphs-13 Shared Task on Explana-
tion Regeneration (Jansen and Ustalov, 2019)
asked participants to develop methods to re-
construct gold explanations for elementary sci-
ence questions. Red Dragon AI’s entries used
the language of the questions and explanation
text directly, rather than a constructing a sep-
arate graph-like representation. Our leader-
board submission placed us 3rd in the compe-
tition, but we present here three methods of in-
creasing sophistication, each of which scored
successively higher on the test set after the
competition close.

1 Introduction

The Explanation Regeneration shared task asked
participants to develop methods to reconstruct
gold explanations for elementary science ques-
tions (Clark et al., 2018), using a new corpus
of gold explanations (Jansen et al., 2018) that
provides supervision and instrumentation for this
multi-hop inference task.

Each explanation is represented as an “explana-
tion graph”, a set of atomic facts (between 1 and
16 per explanation, drawn from a knowledge base
of 5,000 facts) that, together, form a detailed ex-
planation for the reasoning required to answer and
explain the resoning behind a question.

Linking these facts to achieve strong perfor-
mance at rebuilding the gold explanation graphs
requires methods to perform multi-hop inference -
which has been shown to be far harder than infer-
ence of smaller numbers of hops (Jansen, 2018),
particularly for the case here, where there is con-
siderable uncertainty (at a lexical level) of how
individual explanations logically link somewhat
‘fuzzy’ graph nodes.

Data Python Scala Python Leaderboard
split Baseline Baseline Baseline1e9 Submission

Train 0.0810 0.2214 0.4216

Dev 0.0544 0.2890 0.2140 0.4358

Test 0.4017

Table 1: Base MAP scoring - where the Python
Baseline1e9 is the same as the original Python Baseline,
but with the evaluate.py code updated to assume
missing explanations have rank of 109

1.1 Dataset Review

The WorldTree corpus (Jansen et al., 2018) is a
new dataset is a comprehensive collection of ele-
mentary science exam questions and explanations.
Each explanation sentence is a fact that is related
to science or common sense, and is represented
in a structured table that can be converted to free-
text. For each question, the gold explanations have
lexical overlap (i.e. having common words), and
are denoted as having a specific explanation role
such as CENTRAL (core concepts); GROUNDING
(linking core facts to the question); and LEXICAL
GLUE (linking facts which may not have lexical
overlap).

1.2 Problem Review

As described in the introduction, the general task
being posed is one of multi-hop inference, where
a number of ‘atomic fact’ sentences must be com-
bined to form a coherent chain of reasoning to
solve the elementary science problem being posed.

These explanatory facts must be retrieved from
a semi-structured knowledge base - in which the
surface form of the explanation is represented as a
series of terms gathered by their functional role in
the explanation.

For instance, for the explanation “Grass snakes
live in grass” is encoded as “[Grass snakes] [live
in] [grass]”, and this explanation is found in a

85

PROTO-HABITATS table. However, in the same
table there are also more elaborate explanations,
for example : “Mice live in in holes in the ground
in fields / in forests.” is expressed as : “[mice]
[live in] [in holes in the ground] [in fields OR in
forests]”. And more logically complex : “Most
predators live in/near the same environment as
their prey.” being expressed as : “[most] [preda-
tors] [live in OR live near] [the same environment
as their prey]”.

So, whereas the simpler explanations fit in the
usual Knowledge-Base triples paradigm, the more
complex ones are much more nuanced about what
actually constitutes a node, and how reliable the
arcs are between them. Indeed, there is also a col-
lection of if/then explanations, including ex-
amples such as : “[if] [something] [has a] [posi-
tive impact on] [something else] [then] [increas-
ing] [the] [amount of] [that something] [has a]
[positive impact on] [that something else]” - where
the explanation has meta-effect on the graph itself,
and includes ‘unbound variables’. 1

2 Preliminary Steps

In this work, we used the pure textual form of each
explanation, problem and correct answer, rather
than using the semi-structured form given in the
column-oriented files provided in the dataset. For
each of these we performed Penn-Treebank to-
kenisation, followed by lemmatisation using the
lemmatisation files provided with the dataset, and
then stop-word removal.2

Concerned by the low performance of the
Python Baseline method (compared to the Scala
Baseline, which seemed to operate using an al-
gorithm of similar ‘strength’), we identified an
issue in the organizer’s evaluation script where
predicted explanations that were missing any of
the gold explanations were assigned a MAP score
of zero. This dramatically penalised the Python
Baseline, since it was restricted to only returning
10 lines of explanation. It also effectively forces
all submissions to include a ranking over all ex-
planations - a simple fix (with the Python Baseline
rescored in Table 1) will be submitted via GitHub.
This should also make the upload/scoring process
faster, since only the top ∼1000 explanation lines
meaningfully contribute to the rank scoring.

1The PROTO-IF-THEN explanation table should have
been annotated with a big red warning sign

2PTB tokenisation and stopwords from the NLTK pack-
age)

3 Model Architectures

Although more classic graph methods were ini-
tially attempted, along the lines of Kwon et al.
(2018), where the challenge of semantic drift in
multi-hop inference was analysed and the effec-
tiveness of information extraction methods was
demonstrated, the following 3 methods (which
now easily surpass the score of our competition
submission) were ultimately pursued due to their
simplicity/effectiveness.

Data Optimised Iterated BERT

split TF-IDF TF-IDF Re-ranking

Train 0.4525 0.4827 0.6677

Dev 0.4581 0.4966 0.5089

Test 0.4274 0.4576 0.4771

Time 0.02 46.97 92.96

Table 2: MAP scoring of new methods. The timings
are in seconds for the whole dev-set, and the BERT
Re-ranking figure includes the initial Iterated TF-IDF
step.

3.1 Optimized TF-IDF

As mentioned above, the original TF-IDF imple-
mentation of the provided Python baseline script
did not predict a full ranking, and was penalized
by the evaluation script. When this issue was
remedied, its MAP score rose to 0.2140.

However, there are three main steps that signif-
icantly improve the performance of this baseline:

1. The original question text included all the an-
swer choices, only one of which was correct
(while the others are distractors). Removing
the distractors resulted in improvement;

2. The TF-IDF algorithm is very sensitive to
keywords. Using the provided lemmatisation
set and NLTK for tokenisation helped to align
the different forms of the same keyword and
reduce the vocabulary size needed;

3. Stopword removal gave us approximately
0.04 MAP improvement throughout - remov-
ing noise in the texts that was evidently ‘dis-
tracting’ for TF-IDF.

As shown in Table 2, these optimisation steps
increased the Python Baseline score significantly,
without introducing algorithmic complexity.

86

3.2 Iterated TF-IDF

While graph methods have shown to be effective
for multi-hop question answering, the schema in
the textgraphs dataset is unconventional (as illus-
trated earlier). To counter this, the previous TF-
IDF method was extended to simulate jumps be-
tween explanations, inspired by graph methods,
but without forming any actual graphs:

1. TF-IDF vectors are pre-computed for all
questions and explanation candidates;

2. For each question, the closest explanation
candidate by cosine proximity is selected,
and their TF-IDF vectors are aggregated by
a max operation;

3. The next closest (unused) explanation is se-
lected, and this process was then applied it-
eratively up to maxlen=128 times3, with
the current TF-IDF comparison vector pro-
gressively increasing in expressiveness. At
each iteration, the current TF-IDF vector was
down-scaled by an exponential factor of the
length of the current explanation set, as this
was found to increase development set results
by up to +0.0344.

By treating the TF-IDF vector as a representa-
tion of the current chain of reasoning, each succes-
sive iteration builds on the representation to accu-
mulate a sequence of explanations.

The algorithm outlined above was additionally
enhanced by adding a weighting factor to each
successive explanation as it is added to the cumu-
lative TF-IDF vector. Without this factor, the ef-
fectiveness was lower because the TF-IDF repre-
sentation itself was prone to semantic drift away
from the original question. Hence, each succes-
sive explanation’s weight was down-scaled, and
this was shown to work well.4

3.3 BERT Re-ranking

Large pretrained language models have been
proven effective on a wide range of downstream
tasks, including multi-hop question answering,
such as in Liu et al. (2019) on the RACE dataset,

3 This maxlen value was chosen to minimise computa-
tion time, noting that explanation ranks below approximately
100 have negligible impact on the final score.

4Full, replicable code is available on GitHub for all
3 methods described here, at https://github.com/
mdda/worldtree_corpus/tree/textgraphs

and Xu et al. (2019) which showed that large fine-
tuned language models can be beneficial for com-
plex question answering domains (especially in a
data-constrained context).

Inspired by this, we decided to adapt BERT
(Devlin et al., 2018) - a popular language model
that has produced competitive results on a variety
of NLP tasks - for the explanation generation task.

For our ‘BERT Re-ranking’ method, we attach a
regression head to a BERT Language Model. This
regression head is then trained to predict a rele-
vance score for each pair of question and explana-
tion candidate. The approach is as follows :

1. Calculate a TF-IDF relevance score for every
tokenised explanation against the tokenised
‘[Problem] [CorrectAnswer] [Gold explana-
tions]’ in the training set. This will rate the
true explanation sentences very highly, but
also provide a ‘soft tail’ of rankings across
all explanations;

2. Use this relevance score as the prediction
target of the BERT regression head, where
BERT makes its predictions from the original
‘[Problem] [CorrectAnswer]’ text combined
with each potential Explanation text in turn
(over the training set);

3. At prediction time, the explanations are
ranked according to their relevance to ‘[Prob-
lem] [CorrectAnswer]’ as predicted by the
BERT model’s output.

We cast the problem as a regression task (rather
than a classification task), since treating it as a task
to classify which explanations are relevant would
result in an imbalanced dataset because the gold
explanation sentences only comprise a small pro-
portion of the total set. By using soft targets (given
to us by the TF-IDF score against the gold answers
in the training set), even explanations which are
not designated as “gold” but have some relevance
to the gold paragraph can provide learning signal
for the model.

Due to constraints in compute and time, the
model is only used to rerank the topn = 64 pre-
dictions made by the TF-IDF methods.

The BERT model selected was of “Base” size
with 110M parameters, which had been pretrained
on BooksCorpus and English Wikipedia. We
did not further finetune it on texts similar to the
TextGraphs dataset prior to regression training. In

87

1 2 3 4 5 6 7 8 9 10+

Gold explanation lengths

0.0

0.2

0.4

0.6

0.8

M
ea

n
M

A
P

sc
or

e

Mean MAP score against Gold explanation lengths

OptimizedTFIDF

IterativeTFIDF

IterativeTFIDF + BERT

Figure 1: Mean MAP score against gold explanation
lengths

other tests, we found that the “Large” size model
did not help improve the final MAP score.

4 Discussion

The authors’ initial attempts at tackling the Shared
Task focussed on graph-based methods. However,
as identified in (Jansen, 2018), the uncertainty in-
volved with interpreting each lexical representa-
tion, combined with the number of hops required,
meant that this line of enquiry was put to one side5.

While the graph-like approach is clearly attrac-
tive from a reasoning point of view (and will be the
focus of future work), we found that using purely
the textual aspects of the explanation database
bore fruit more readily. Also. the complexity of
the resulting systems could be minimised such that
the description of each system could be as consise
as possible.

Specifically, we were able to optimise the TF-
IDF baseline to such an extent that our ‘Opti-
mised TF-IDF’ would now place 2nd in the sub-
mission rankings, even though it used no special
techniques at all.6

The Iterated TF-IDF method, while more algo-
rithmically complex, also does not need any train-
ing on the data before it is used. This shows how
effective traditional text processing methods can
be, when used strategically.

The BERT Re-ranking method, in contrast, does
require training, and also applies one of the more
sophisticated Language Models available to ex-
tract more meaning from the explanation texts.

Figure 1 illustrates how there is a clear trend to-

5Having only achieved 0.3946 on the test set
6Indeed, our Optimized TF-IDF, scoring 0.4581 on the

dev set, and 0.4274 on the test set, could be considered a new
baseline for this corpus, given its simplicity.

Explanation Optimised Iterated BERT

role TF-IDF TF-IDF Re-ranking

GROUNDING 0.1373 0.1401 0.0880

LEX-GLUE 0.0655 0.0733 0.0830

CENTRAL 0.4597 0.5033 0.5579

BACKGROUND 0.0302 0.0285 0.0349

NEG 0.0026 0.0025 0.0022

ROLE 0.0401 0.0391 0.0439

Table 3: Contribution of Explanation Roles - Dev-Set
MAP per role (computed by filtering explanations of
other roles out of the gold explanation list then com-
puting the MAP as per normal)

wards being able to build longer explanations as
our semantic relevance methods become more so-
phisticated.

There are also clear trends across the data in Ta-
ble 3 that show that the more sophisticated meth-
ods are able to bring more CENTRAL explanations
into the mix, even though they are more ‘textually
distant’ from the original Question and Answer
statements. Surprisingly, this is at the expense of
some of the GROUNDING statements.

Since these methods seem to focus on different
aspects of solving the ranking problem, we have
also explored averaging the ranks they assign to
the explanations (essentially ensembling their de-
cisions). Empirically, this improves performance7

at the expense of making the model more obscure.

4.1 Further Work

Despite our apparent success with less sophis-
ticated methods, it seems clear that more ex-
plicit graph-based methods appears will be re-
quired to tackle the tougher questions in this
dataset (for instance those that require logical de-
ductions, as illustrated earlier, or hypothetical sit-
uations such as some ‘predictor-prey equilibrium’
problems). Even some simple statements (such as
‘Most predators ...’) present obstacles to existing
Knowledge-Base representations.

In terms of concrete next steps, we are ex-
ploring the idea of creating intermediate forms of
representation, where textual explanations can be
linked using a graph to plan out the logical steps.
However these grander schemes suffer from being

7The combination of ‘Iterated TF-IDF’ and ‘BERT Re-
ranking’ scoring 0.5195 on the dev set, up from their scores
of 0.4966 and 0.5089 respectively

88

incrementally less effective than finding additional
‘smart tricks’ for existing methods!

In preparation, we have begun to explore doing
more careful preprocessing, notably :

1. Exploiting the structure of the explanation
tables individually, since some columns are
known to be relationship-types that would be
suitable for labelling arcs between nodes in a
typical Knowledge Graph setting;

2. Expanding out the conjunction elements
within the explanation tables. For instance
in explanations like “[coral] [lives in the]
[ocean OR warm water]”, the different sub-
explanations “(Coral, LIVES-IN, Ocean)”
and “(Coral, LIVES-IN, WarmWater)” can
be generated, which are far closer to a ‘graph-
able’ representation;

3. Better lemmatisation : For instance ‘ice cube’
covers both ‘ice’ and ‘ice cube’ nodes. We
need some more ‘common sense’ to cover
these cases.

Clearly, it is early days for this kind of multi-
hop inference over textual explanations. At this
point, we have only scratched the surface of the
problem, and look forward to helping to advance
the state-of-the-art in the future.

Acknowledgments

The authors would like to thank Google for ac-
cess to the TFRC TPU program which was used
in training and fine-tuning models during experi-
mentation for this paper.

References
Peter F. Clark, Isaac Cowhey, Oren Etzioni, Tushar

Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. 2018. Think you have solved ques-
tion answering? Try ARC, the AI2 Reasoning Chal-
lenge. ArXiv, arXiv:1803.05457.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of deep bidirectional transformers for language
understanding. Computing Research Repository,
arXiv:1810.04805.

Peter Jansen. 2018. Multi-hop inference for sentence-
level textgraphs: How challenging is meaningfully
combining information for science question answer-
ing? In Proceedings of the Twelfth Workshop on
Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-12), pages 12–17.

Peter Jansen and Dmitry Ustalov. 2019. TextGraphs
2019 Shared Task on Multi-Hop Inference for Ex-
planation Regeneration. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-13), Hong
Kong. Association for Computational Linguistics.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A Corpus of Explanation Graphs for Elementary
Science Questions supporting Multi-hop Inference.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Heeyoung Kwon, Harsh Trivedi, Peter Jansen, Mi-
hai Surdeanu, and Niranjan Balasubramanian. 2018.
Controlling information aggregation for complex
question answering. In European Conference on In-
formation Retrieval, pages 750–757. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Dongfang Xu, Peter Jansen, Jaycie Martin, Zheng-
nan Xie, Vikas Yadav, Harish Tayyar Madabushi,
Oyvind Tafjord, and Peter Clark. 2019. Multi-
class hierarchical question classification for mul-
tiple choice science exams. arXiv preprint
arXiv:1908.05441.

89

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 90–100
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Team SVMrank: Leveraging Feature-rich Support Vector Machines for
Ranking Explanations to Elementary Science Questions

Jennifer D’Souza1, Isaiah Onando Mulang’2, Sören Auer1

1TIB Leibniz Information Centre for Science and Technology, Hannover, Germany
{jennifer.dsouza|auer}@tib.eu

2Fraunhofer IAIS, Sank Augustin, Germany
{isaiah.mulang.onando}@iais.fraunhofer.de

Abstract

The TextGraphs 2019 Shared Task on Multi-
Hop Inference for Explanation Regeneration
(MIER-19) tackles explanation generation for
answers to elementary science questions. It
builds on the AI2 Reasoning Challenge 2018
(ARC-18) which was organized as an ad-
vanced question answering task on a dataset
of elementary science questions. The ARC-
18 questions were shown to be hard to an-
swer with systems focusing on surface-level
cues alone, instead requiring far more power-
ful knowledge and reasoning.

To address MIER-19, we adopt a hybrid
pipelined architecture comprising a feature-
rich learning-to-rank (LTR) machine learning
model, followed by a rule-based system for
reranking the LTR model predictions. Our sys-
tem was ranked fourth in the official evalu-
ation, scoring close to the second and third
ranked teams, achieving 39.4% MAP.

1 Introduction

The TextGraphs 2019 Shared Task on Multi-Hop
Inference for Explanation Regeneration (Jansen
and Ustalov, 2019) was organized for the semantic
evaluation of systems for providing explanations
to elementary science question answers. The task
itself was formulated as a ranking task, where the
goal was to rerank the relevant explanation sen-
tences in a given knowledge base of over 4,000
candidate explanation sentences for a given pair
of an elementary science question and its correct
answer. The QA part of the MIER-19 dataset,
including the questions and their multiple-choice
answers, had been released previously as the AI2
Reasoning Challenge (Clark et al., 2018) dataset
called ARC-18. Since answering science ques-
tions necessitates reasoning over a sophisticated
understanding of both language and the world and
over commonsense knowledge, ARC-18 specifi-

Question Granite is a hard material and forms from
cooling magma. Granite is a type of
Answer igneous rock
Explanation
[rank 1] igneous rocks or minerals are formed from
magma or lava cooling
[rank 2] igneous is a kind of rock
[rank 3] a type is synonymous with a kind
[not in gold expl] rock is hard
[not in gold expl] to cause the formation of means to form
[not in gold expl] metamorphic rock is a kind of rock
[not in gold expl] cooling or colder means removing or
reducing or decreasing heat or temperature

Table 1: Example depicting the Multi-Hop Inference
Explanation Regeneration Task. The multi-hop infer-
ence task was formulated around the presence of a
lexical overlap (shown as underlined words) between
explanation sentences with the question or answer or
other correct explanation sentences. Since the lexical
overlap criteria was not strictly defined around only
the correct explanation candidates (as depicted with the
last four explanation candidates), the task necessitated
use of additional domain and world knowledge to rule
out incorrect explanation candidates.

cally encouraged progress on advanced reason-
ing QA where little progress was made as opposed
to factoid-based QA. This was highlighted when
sophisticated neural approaches for factoid-based
QA (Parikh et al., 2016; Seo et al., 2016; Khot
et al., 2018) tested on the ARC-18 did not achieve
good results. Now with the MIER-19 task, the
ARC-18 objective of testing QA systems for ad-
vanced reasoning dives deeper into the reasoning
aspect by focusing on reranking explanations for
questions and their correct answer choice.

In this article, we describe the version of our
system that participated in MIER-19. Systems
participating in this task assume as input the ques-
tion, its correct answer, and a knowledge base of
over 4,000 candidate explanation sentences. The
task then is to return a ranked list of the expla-
nation sentences where facts in the gold explana-

90

tion are expected to be ranked higher than facts not
present in the gold explanation (cf. Table 1). Our
team was ranked fourth in the official evaluation,
scoring within a point gap to the second and third
ranked teams, achieving an overall 39.40% MAP.

Going beyond mere Information Retrieval such
as tf−idf for ranking relevant sentences to a
query, our system addresses the explanation sen-
tence ranking task as follows: we (a) adopt lexical,
grammatical, and semantic features for obtaining
stronger matches between a question, its correct
answer, and candidate explanation sentences for
the answer in a pairwise learning-to-rank frame-
work for ranking explanation sentences; and (b)
perform a reranking of the returned ranked expla-
nation sentences via a set of soft logical rules to
correct for obvious errors made by the learning-
based ranking system.1

The remainder of the article is organized as fol-
lows. We first give a brief overview of the MIER-
19 Shared Task and the corpus (Section 2). After
that, we describe related work (Section 3). Finally,
we present our approach (Section 4), evaluation
results (Section 5), and conclusions (Section 6).

2 The MIER-19 Shared Task

2.1 Task Description

The MIER-19 task (Jansen and Ustalov, 2019) fo-
cused on computing a ranked list of explanation
sentences (as shown in Table 1) for a question and
its correct answer (QA) from an unordered collec-
tion of explanation sentences. Specifically, given
a question, its known correct answer, and a list of
n explanation sentences, the goal was to (1) de-
termine whether an explanation sentence is rele-
vant as justification for the QA, and if so, (2) rank
the relevant explanation sentences in order by their
role in forming a logical discourse fragment.2

2.2 The Task Corpus

To facilitate system development, 1,190 Elemen-
tary Science (i.e. 3rd through 5th grades) ques-
tions were released as part of the training data.

1Our code is released for facilitating future work https:
//bit.ly/2lZo9eW

2Each explanation sentence is also annotated with its ex-
plicit discourse role in the explanation fragment for training
and development data (i.e. as central if it involves core QA
concepts, or as lexical glue if it simply serves as a connector
in the explanation sentence sequence, or as background infor-
mation, etc.). However, we do not consider this annotation as
part of the data since it is not available for the test set.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

Q

A
In

st
an

ce
s

Explanation Sentences

Training Data

Development Data

Figure 1: Explanation sentences per question-answer
pair in the training and development dataset.

Each question is a 4-way multiple choice ques-
tion with the correct answer known. Further, every
question in the training data is accompanied by up
to 21 explanation sentences picked from a human-
authored tablestore of candidate explanation sen-
tences (see Section 2.2.1 for more details). Simi-
larly, development data was provided, containing
264 multiple choice questions with a known cor-
rect answer and their explanations. The distribu-
tion of explanation sentences per QA in the train-
ing and development datasets is depicted in Fig. 2.

This dataset of explanations for elementary sci-
ence QA was originally released as the WorldTree
corpus (Jansen et al., 2018).

2.2.1 The Explanations Tablestore
The task corpus separately comprised a tablestore
of manually authored 4,789 candidate explanation
sentences. Explanations for the QA instances were
obtained from one or more tables in the tablestore.

Total unique explanation sentences: 4,789
Seen in training data: 2,694
Seen in development data: 964
Seen in training and development data: 589

The tablestore comprised 62 separate tables
each containing explanation sentences around a
particular relation predicate such as “kind of”
(e.g., an acorn is a kind of seed), “part of” (e.g.,
bark is a part of a tree), “cause” (e.g., drought may
cause wildfires), etc., and a number of tables spec-
ified around specific properties such as “actions”
of organisms (e.g., some adult animals lay eggs),
the “properties of things” (e.g., an acid is acidic),
or “if-then” conditions (e.g., when an animal sheds
its fur, its fur becomes less dense). Table 2 lists
prominent explanation table types used in at least
1% of the training and development explanations.

91

KINDOF 25.22
SYNONYMY 14.27
ACTION 6.48
IF-THEN 5.31
CAUSE 4.17
USEDFOR 4.17
PROPERTIES-THINGS 3.58

REQUIRES 2.87
PARTOF 2.74
COUPLEDRELATIONSHIP 2.67
SOURCEOF 1.89
CONTAINS 1.79
AFFECT 1.73
MADEOF 1.69

ATTRIBUTE-VALUE-RANGE 1.53
CHANGE 1.53
CHANGE-VEC 1.43
EXAMPLES 1.43
PROPERTIES-GENERIC 1.21
TRANSFER 1.11
AFFORDANCES 1.08

Table 2: Explanation table types (21 of 63 in total) sorted by the proportion of their occurrence for their respective
sentences participating in at least 1% of the training and development set QA explanations.

3 Background and Related Work

Elementary Science QA requiring diverse text
representations. In a study conducted on the
New York Regents standardized test QA, Clark
et al. (2013) identified at least five QA cate-
gories in elementary science, viz. taxonomic ques-
tions, definition-based questions, questions based
on properties of things (e.g., parts of an object),
and questions needing several steps of inference.
With the Aristo system (Clark et al., 2016), they
demonstrated that a system operating at different
levels of textual representation and reasoning was
needed to address diverse QA types since it sub-
stantially outperformed a singular information re-
trieval approach.

From these prior insights about the benefit of
a heterogeneous system on a dataset with diverse
QA types, our approach follows suit in using a set
of features over diverse representations of the QA
and its explanation.

Commonsense Knowledge for Explanations.
The relevance of commonsense knowledge in

reasoning task settings was demonstrated by two
recent systems (Paul and Frank, 2019; Bauer et al.,
2018). Paul and Frank (2019), in a sentiment
analysis task, specifically devise a novel method
to extract, rank, filter and select multi-hop rela-
tion paths from ConceptNet (Liu and Singh, 2004)
to interpret the expression of sentiment in terms
of their underlying human needs, thereby obtain-
ing boosted task performance for predicting hu-
man needs. Bauer et al. (2018) for a narrative QA
task, that required the model to reason, gather, and
synthesize disjoint pieces of information within
the context to generate an answer, employed Con-
ceptNet for multi-step reasoning where they con-
structed paths starting from concepts appearing in
the question to concepts appearing in the context,
aiming to emulate multi-hop reasoning.

Relatedly, we employ commonsense knowledge
by tracing commonalities between conceptual cat-
egories of QA and explanation sentence words.

Explanations for Elementary Science QA.
One of the first attempts creating justifications for
answers to elementary science exam questions was
by Jansen et al. (2017) which jointly addressed an-
swer extraction and justification creation. Since
in answering science exam questions, many ques-
tions require inferences from external knowledge
sources, they return the sentences traversed in in-
ferring the correct answer as a result. After iden-
tifying the question’s focus words, they generate
justifications by aggregating multiple sentences
from a number of textual knowledge bases (e.g.,
study guides, science dictionaries) that preferen-
tially (i.e. based on a number of measures de-
signed to assess how well-integrated, relevant, and
on-topic a given justification is) connect sentences
together on the focus words, selecting the answer
corresponding to the highest-ranked justification.
By this method, they obtained a boost in QA per-
formance and, further, the inference mechanism as
an additional result justifying the QA process.

4 Our Approach

Unlike Jansen et al. (2017) who jointly perform
answer extraction and answer explanation infer-
ence, our approach only addresses the task of an-
swer explanation inference assuming we are given
the question, its correct answer, and a knowledge
base of candidate explanation sentences. 3

In the methodology for the manual authoring of
explanations to create the explanation tablestore
for elementary science QA, it was followed that
an explanation sentence:

• overlaps lexically with the question or an-
swer, or overlaps lexically with other expla-
nation sentences to the QA which we call the
overlap criteria; and

3The MIER-19 shared task does not evaluate selecting the
correct answer, hence the choice was up to the participants
whether to model an approach assuming the correct answer
or to perform explanation extraction as a function of correct
answer selection.

92

• the sequence of explanation sentences form a
logically coherent discourse fragment which
we call the coherency criteria.

We model both criteria within a pairwise
learning-to-rank (LTR) approach.

Let (q, a, e) be a triplet consisting of a question
q, its correct answer a, and a candidate explanation
sentence e that is a valid or invalid candidate from
the given explanations tablestore.

4.1 Features for Learning-to-Rank

First, given a (q, a, e) triplet, we implement the
overlap criteria by invoking a selected set of fea-
ture functions targeting lexical overlap between
the triplet elements. For this, each triplet is en-
riched lexically by lemmatization and affixation to
ensure matches with word variant forms. How-
ever, more often than not, a QA lexically matches
with irrelevant candidate explanation sentences
(consider the latter explanation sentences in the
example in Table 1) resulting in semantic drift.
Therefore, we hypothesize that the semantic drift
can be controlled to some extent with matches at
different levels of grammatical and semantic ab-
straction of the q, a, and e units, which we also
encode as features.

Specifically, to compute the features, each q,
a, and e unit are represented as bags of: words,
lemmas, OpenIE (Angeli et al., 2015) relation
triples, concepts from ConceptNet (Liu and Singh,
2004), ConceptNet relation triples, Wiktionary
categories, Wiktionary content search matched
page titles, and Framenet (Fillmore, 1976) pred-
icates and arguments. 4 These representations re-
sulted in 76 feature categories shown in Table 3
which are used to generate (q, a, e) triplet instance
one-hot encoded feature vectors.

Second, given as input the (q, a, e) triplet fea-
ture vectors, we model the criteria of valid ver-
sus invalid explanation sentences and the prece-
dence between explanation sentences, i.e. the co-
herency criteria, within the supervised pairwise
LTR framework.

4.2 Pairwise Learning-to-Rank

Pairwise LTR methods are designed to handle
ranking tasks as a binary classification problem for

4OpenIE relations and FrameNet structures are extracted
only for q and e since they need to be computed on sentences
and the answers a are often expressed as phrases.

pairs of resources by modeling instance ranks as
relative pairwise classification decisions.

We employ SVM rank (Joachims, 2006) as
our pairwise LTR algorithm, which after trans-
forming the ranking problem into a set of bi-
nary classification tasks address the classifica-
tion through the formalism of Support Vector
Machines (SVM). Ranking SVMs in a non-
factoid QA ranking problem formulation have
showed similar performances to a Neural Percep-
tron Ranking model (Surdeanu et al., 2011).

4.2.1 Training our MIER-19 Task Model

Next, we describe how an LTR model can be
trained using a (q, a, e) triplet feature vector com-
puted according to the 76 feature categories shown
in Table 3.

The ranker aims to impose a ranking on the
candidate explanation sentences for each QA in
the test set, so that (1) the correct explanation
sentences are ranked higher than the incorrect
ones and (2) the correct explanation sentences are
ranked in order of their precedence w.r.t. each
other. In LTR, this is modeled as an ordered pair
(xqi,ai,ej , xqi,ai,ek), where xqi,ai,ej is a feature vec-
tor generated between a QA (qi, ai) and a correct
candidate explanation sentence ej , and xqi,ai,ek
is a feature vector generated between (qi, ai) and
an incorrect candidate explanation sentence ek.
In addition, another kind of training instance in
our dataset can occur between correct explanation
sentences as an ordered pair (xqi,ai,ej , xqi,ai,em),
where ej logically precedes em in the explana-
tion sentence sequence. The goal of the ranker-
learning algorithm, then, is to acquire a ranker that
minimizes the number of violations of pairwise
rankings provided in the training set.

The ordered pairwise instances are created
above based on the labels assigned to each training
instance. One detail we left out earlier when dis-
cussing our (q, a, e) triplet features for LTR, was
that each triplet is also assigned a label indicat-
ing a graded relevance between the QA and the
candidate explanation sentence. This is done as
follows. For each (q, a, e) triplet instance, if e is
in the sequence of correct explanation sentences,
then it is labeled in a descending rank order start-
ing at ‘rank=number of explanation sentences+1’
for the first sentence and ending at ‘rank= 2’ for
the last one in the sequence, otherwise, ‘rank= 1’
for all incorrect explanation sentences.

93

1. Lexical (31 feature categories)

1. lemmas of q/a/e

2. lemmas shared by q and e, a and e, and q, a and e

3. 5-gram, 4-gram, and 3-gram prefixes and suffixes of q/a/e

4. 5-gram, 4-gram, and 3-gram prefixes and suffixes shared by q, a, and e

5. e’s table type from the provided annotated tablestore data

2. Grammatical (11 feature categories)

1. using OpenIE (Angeli et al., 2015) extracted relation triples from q, a, and e sentences, the
features are: the q/a/e lemmas in the relation subject role, shared q, a and e subject lemmas,
q/a/e lemmas in the relation object role, shared q, a and e object lemmas, and q/a/e lemma
as the relation predicate

3. Semantic (34 feature categories)

1. top 50 conceptualizations of q/a/e words obtained from ConceptNet (Liu and Singh, 2004)

2. top 50 ConceptNet conceptualizations shared by q and e, a and e, and q, a and e words

3. words related to q/a/e words by any ConceptNet relation such as FormOf, IsA, HasContext,
etc.

4. words in common related to q, a, and e words

5. Wiktionary5 categories of q/a/e words

6. Wiktionary categories shared by q, a, and e words

7. Wiktionary page titles for content matched with q/a/e words

8. Wiktionary page titles for content matched with q, a, and e words in common

9. FrameNet v1.7 frames and their frame-elements (Fillmore, 1976) using open-
SESAME (Swayamdipta et al., 2017) were extracted from q and e sentences

Table 3: 76 feature categories for explanation ranking. Each training instance corresponds to a triplet (q, a, e),
where q, a, and e are bags of question, answer, and explanation words/lemmas, respectively, with stopwords
filtered out, where the data was sentence split and tokenized using the Stanford Parser 6.

4.3 Rules Solver

The application of the LTR system on develop-
ment data revealed 11 classes of errors that we
call obvious error categories in the sense that
they could be easily rectified via a set of logical
if − then − else chained rules where the out-
put of one rule is the input of the next. We hy-
pothesize that a rule-based approach can comple-
ment a purely learning-based approach, since a hu-

man could alternatively encode the commonsense
knowledge that may not be accessible to a learn-
ing algorithm given our features set. This inclu-
sion of rules as a post-processing step resulted in
our hybrid learning-based and rule-based system
to MIER-19 explanation sentence ranking.

We list four rules from our complete set of 11
rules as examples next. 7

7We list all the rules in Appendix A.

94

E.g. Rule 1: Match with uni- or bigram an-
swers.

if answer is a unigram or bigram then
rerank all explanation sentences containing
the answer to the top

end if
E.g. Rule 2: Match with named entities.

if explanation sentence contains named entities
identified by [A-Z][a-z]+([A-Z][a-z]+)+ then

rerank the explanation sentence to the bottom
if neither the question or answer contain the
explanation’s named entities

end if
E.g. Rule 3: Rerank explanation sentences with
other color words than the answer

if an answer contains a color word then
rerank all explanation sentences about other
colors in the form “[other color] is a kind of
color” to the bottom of the list

end if
E.g. Rule 4: Rerank based on gerund or par-
ticiple answer words

if answer contains gerund or participle words,
i.e. “ing” words then

rerank all explanation sentences from the
SYNONYMY table type containing gerund
or participle words other than the answer
“ing” word to the bottom of the list

end if

4.4 Testing the Hybrid System

The trained LTR model and the rules were then
applied on the QA instances released as the test
dataset. From test data, (q, a, e) triplets were cre-
ated in the same manner as the development data
where each test QA is given all 4,789 candidate
explanation sentences for ranking. Unlike devel-
opment data, however, in testing the valid expla-
nation sentences are unknown.

5 Evaluation

In this section, we evaluate our hybrid approach to
explanation sentence ranking for elementary sci-
ence QA.

5.1 Experimental Setup

Dataset. We used the 1,190 and 264 elementary
science QA pairs released as the MIER-19 chal-
lenge training and development data, respectively,
for developing our system. For testing, we used

the 1,247 QA instances released in the evaluation
phase of the MIER-19 challenge. For explanation
candidate sentences, we used the tablestore of the
4,789 sentences which remained the same in the
course of the challenge.

Evaluation Metrics. Evaluation results are ob-
tained using the official MHIER-19 challenge
scoring program. Results are expressed in terms
of mAP computed by the following formula.

mAP =
1

N

N∑

n=1

APn

whereN is the number of QA instances andAP
is the average precision for a QA computed as fol-
lows.

AP@k =
1

GTP

k∑

i=1

TPseen@i

i

where AP@k, i.e. average precision at k, is
the standard formula used in information retrieval
tasks. Given the MHIER-19 challenge data, for
each QA, GTP is the total ground truth explana-
tion sentences, k is the total number of explana-
tion sentences in the tablestore (i.e. 4,789), and
TPseen@i are the total ground truth explanation
sentences seen until rank i.

By the above metric, our results are evaluated
only for the correct explanation sentences returned
as top-ranked, without considering their order.

Parameter Tuning. To optimize ranker perfor-
mance, we tune the regularization parameter C
(which establishes the balance between generaliz-
ing and overfitting the ranker model to the training
data). However, we noticed that a ranker trained
on all provided explanation sentences is not able
to learn a meaningful discriminative model at all
owing to the large bias in the negative examples
outweighing the positive examples (consider that
valid explanation sentences range between 1 to 21
whereas there are 4,789 available candidate expla-
nation sentences in the tablestore). To overcome
the class imbalance, we tune an additional param-
eter: the number of negative explanation sentences
for training. Every QA training instance is as-
signed 1000 randomly selected negative explana-
tion sentences. We then test tuning the number
of negative training data explanation sentences to
range between 500 to 1,000 in increments of 100.

Both the cost factor and the number of nega-
tive explanation sentences are tuned to maximize
performance on development data. Note, however,
that our development data is created to emulate the

95

Dev MAP Test MAP

SVMrank 37.1 34.1
+Rules 44.4 39.4

Table 4: Mean Average Precision (mAP) percentage
scores for Elementary Science QA explanation sen-
tence ranking from only pairwise LTR (row 1) and as a
hybrid system with rules (row 2) on development and
test datasets, respectively.

testing scenario. So every QA instance during de-
velopment is given all 4,789 candidate explanation
sentences to obtain results for the ranking task.8

Our best LTR model when evaluated on devel-
opment data was obtained with C = 0.9 and 700
negative training instances.

5.2 Results and Discussion
Table 4 shows the elementary science QA expla-
nation sentence ranking results from the official
MIER-19 scoring program in terms of mAP . The
first row corresponds to results from the feature-
rich SVMrank LTR system and the second row
shows the reranked results using rules. While
adding the rules gives us close to a 7 and 5 points
improvement on development and test sets, re-
spectively, the LTR system results are nonetheless
significantly better than an information retrieval
TF-IDF baseline which gives 24.5% and 24.8%
mAP on development and test data. Addition-
ally, Figure 2 shows the impact of the features-
only LTR system versus the features with rules
hybrid system on different length explanation sen-
tences up to 12.9 It illustrates that the longer ex-
planations are indeed harder to handle by both ap-
proaches and on both development and test data.

To provide further insights on the impact of
adding different feature groups in our LTR system,
we show ablation results in Table 5. We discuss
the maximum impact feature groups (viz. affix,
concepts, and relations) with examples, next, to
demonstrate why they work.

Compared to all other features, adding affixes in
the LTR system resulted in the maximum perfor-
mance gain of 6 points on the development data.
In general, affixation enables lexical matches with
variant word forms, which for us, facilitated bet-

8For parameter tuning, C is chosen from the set {0.1, 0.9,
1,10,50,100,500,800} and the number of negative training in-
stances is chosen from the set {500,600,700,800,900,1000}.

9We only consider explanation length up to 12 for the
comparison since the longer explanations are underrepre-
sented in the data with up to 3 QA instances.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

M
A

P

Explanation Sentences

Dev Features

Dev Features+Rules

Test Features

Test Features+Rules

Figure 2: Percentage mAP of the ‘Features’ ver-
sus ‘Features+Rules’ systems on Development data (in
blue) and Test data (in red), respectively, on different
length explanation sentences.

Feature Type Dev MAP Test MAP
1 lemma 28.40 24.85
2 +tablestore 28.05 24.95
3 +affix 34.01 31.01
4 +concepts 35.89 32.94
5 +relations (openIE &

conceptNet)
36.79 33.69

6 +Wiktionary 37.14 33.65
7 +framenet 37.12 34.14

Table 5: Ablation results of the LTR SVMrank system
in terms of percentagemAP with feature groups (from
seven feature types considered) incrementally added.

ter matches between QA and candidate explana-
tion sentences. Consider the following example
showing the top 3 returned explanation sentences.

Question What happens when the Sun’s energy warms
ocean water?
Answer The water evaporates.
Before
[not gold] an ocean is a kind of body of water
[not gold] temperature or heat energy is a property of ob-
jects or weather and includes ordered values of cold or
cool or warm or hot
[not gold] coral lives in the ocean or warm water
After
[not gold] an ocean is a kind of body of water
[rp 2 & rg 1] boiling or evaporation means change from
a liquid into a gas by adding heat energy
[rp 3 & rg 6] the sun transfers solar energy or light energy
or heat energy from itself to the planets or Earth through
sunlight

Before affixation, none of the valid explanation
sentences are retrieved among the top 3. After af-
fixation, however, two valid explantion sentences
get reranked among the top 3 10 owing to enabled
matches with the QA words “Sun’s” and “evapo-
rates” based on their trigram prefixes.

As hypothesized earlier, we found Concept-
Net’s semantic knowledge preventing semantic

10rp and rg stand for predicted rank and gold rank, respec-
tively.

96

drift in several instances. This is illustrated in the
example below.

Question In which part of a tree does photosynthesis
most likely take place?
Answer leaves
Before
[rp 1 & rg 1] a leaf performs photosynthesis or gas ex-
change
[rp 5 & rg 2] a leaf is a part of a green plant
[rp 10 & rg 3] a tree is a kind of plant
After
[rp 1 & rg 1] a leaf performs photosynthesis or gas ex-
change
[rp 3 & rg 2] a leaf is a part of a green plant
[rp 7 & rg 3] a tree is a kind of plant

In the example, with additional knowledge such
as that “plant” has a ConceptNet conceptual class
“photosynthetic organism” enables higher rerank-
ing for the second and third explanation sentences
since one of the focus concepts in the question is
photosynthesis.

We find the ConceptNet relations as features en-
able making connections between the question and
answer. These connections enable a more accurate
reranking of those explanation sentences that rely
on information from both the question and the cor-
rect answer closer to the top. Consider the follow-
ing example.

Question Cows are farm animals that eat only plants.
Which of these kinds of living things is a cow?
Answer Herbivore
Before
[rp 3 & rg 6] an animal is a kind of living thing
[rp 5 & rg 1] herbivores only eat plants
After
[rp 2 & rg 1] herbivores only eat plants
[rp 5 & rg 6] an animal is a kind of living thing

For the above example, from ConceptNet we
obtain the lexical relations “herbivore IsA ani-
mal”, “cow RelatedTo animal”, and “an animal
Desires eat” which lexically links the explanation
sentence with the question and the correct answer.
We attribute the application of such relations as
the reason for the correct reranking of the two sen-
tences in terms of precedence and their proximity
to the gold rank.

5.2.1 Negative Results
Apart from the features depicted above, we also
considered WordNet (Miller, 1998) for additional
lexical expansion to facilitate matches for the
(q, a, e) triplets based on linguistic relations such
as synonymy, hypernymy, etc., but did not ob-
tain improved system performance. Further, fea-
tures computed from the word embeddings, viz.

Word2vec (Mikolov et al., 2013), Glove (Pen-
nington et al., 2014), and ConceptNet Number-
batch (Speer et al., 2017), as averaged vectors also
did not improve our model scores.

Finally, while the hybrid system via the rerank-
ing rules addresses lexical ordering between can-
didate explanation sentences, they still cannot
handle eliminating intermediate explanation sen-
tences that may not be semantically meaningful to
the QA. This is illustrated in the representative ex-
ample below.11

Question Jeannie put her soccer ball on the ground on
the side of a hill. What force acted on the soccer ball to
make it roll down the hill?
Answer gravity
[rf 3 & rh 1] gravity is a kind of force
[rf 21 & rh 3] gravity or gravitational force causes ob-
jects that have mass or substances to be pulled down or to
fall on a planet
[rf 4 & rh 14] a ball is a kind of object
[rf 7 & rh 17] to cause means to make

The example shows that the reranked result
from the hybrid system follows the order in the
gold data, however, not consecutively. Sentences
extraneous to the explanation such as “the ground
is at the bottom of an area”, “a softball is a kind
of ball”, etc., are still in between gold explanation
sentences in the reranked results.

6 Conclusions

We employed a hybrid approach to explanation
sentence ranking for Elementary Science QA con-
sisting of a feature-rich LTR system followed by a
series of 11 rules. When evaluated on the MIER-
19 official test data, our approach achieved an
mAP of 39.4%.

An immediate extension to this system would
be to encode the dependencies between explana-
tion sentences as features. While the pairwise LTR
model tackles this dependency to some extent, we
hypothesize that explicit modeling of features be-
tween explanation sentences should produce sig-
nificantly improved scores.

Acknowledgments

We would like to thank the MIER-19 organizers
for creating the corpus and organizing the shared
task. We would also like to thank the anonymous
reviewers for their helpful suggestions and com-
ments.

11rf and rh stand for ranking by features and the hybrid
system, respectively.

97

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In ACL.

Lisa Bauer, Yicheng Wang, and Mohit Bansal. 2018.
Commonsense for generative multi-hop question an-
swering tasks. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4220–4230.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Turney, and Daniel
Khashabi. 2016. Combining retrieval, statistics, and
inference to answer elementary science questions.
In Thirtieth AAAI Conference on Artificial Intelli-
gence.

Peter Clark, Philip Harrison, and Niranjan Balasubra-
manian. 2013. A study of the knowledge base re-
quirements for passing an elementary science test.
In Proceedings of the 2013 workshop on Automated
knowledge base construction, pages 37–42. ACM.

Charles J Fillmore. 1976. Frame semantics and the na-
ture of language. Annals of the New York Academy
of Sciences, 280(1):20–32.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing qa as building and ranking
intersentence answer justifications. Computational
Linguistics, 43(2):407–449.

Peter Jansen and Dmitry Ustalov. 2019. TextGraphs
2019 Shared Task on Multi-Hop Inference for Ex-
planation Regeneration. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-13), Hong
Kong. Association for Computational Linguistics.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton T. Morrison. 2018.
Worldtree: A corpus of explanation graphs for
elementary science questions supporting multi-hop
inference. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC).

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 217–226. ACM.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI.

Hugo Liu and Push Singh. 2004. Conceptneta practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In EMNLP.

Debjit Paul and Anette Frank. 2019. Ranking and se-
lecting multi-hop knowledge paths to better predict
human needs. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3671–3681.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. ArXiv,
abs/1611.01603.

Robyn Speer, Joshua Chin, and Catherine Havasi.
2017. ConceptNet 5.5: An open multilingual graph
of general knowledge. pages 4444–4451.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Computa-
tional linguistics, 37(2):351–383.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-Semantic Parsing with
Softmax-Margin Segmental RNNs and a Syntactic
Scaffold. arXiv preprint arXiv:1706.09528.

A Appendix

Rule 1: Match with uni- or bigram answers.
if answer is a unigram or bigram then

rerank all explanation sentences containing
the answer to the top

end if
Rule 2: Match with named entities.

if explanation sentence contains named entities
identified by [A-Z][a-z]+([A-Z][a-z]+)+ then

rerank the explanation sentence to the bottom
if neither the question or answer contain the
explanation’s named entities

98

end if
Rule 3: Match with energy insulator common-
sense knowledge.

if explanation contains wax or rubber or brick
or down feathers as “energy insulator” then

rerank the explanation to the bottom if nei-
ther the question or answer contain “energy
insulator”

end if
Rule 4: Match with “increase” or “decrease”
commonsense knowledge.

if explanation contains “increase” or “decrease”
then

rerank the explanation to the bottom if neither
the question or answer contains “increase” or
“decrease”

end if
Rule 5: Rerank explanation sentences with un-
related entities to the QA.

By this rule, we identify pairs of entities that
are unrelated and rerank all explanation sentences
containing an unrelated entity mention to the bot-
tom of the list. For instance, if the QA is about
“planets”, then all explanation sentences about
“fern” can be reranked to the bottom as it unlikely
for any discussion to exist that relates “planets”
and the “fern” plant. Similarly, if a QA is about
“puppies”, then all explanation sentences about
“peas” can be reranked to the bottom.

To form pairs of unrelated entities, first, we cre-
ate lists of living and nonliving entities using the
KINDOF explanation table type (one among 61
explanation tables with a few shown in Table 2),
where sentences are of the pattern “[LHS] is a
kind of [RHS]”. These lists as created in a recur-
sive manner. For instance, to create the list of liv-
ing entities, we begin with all sentences where the
RHS=“living thing” and add the LHS value to the
list. In the next step, we substitute in the RHS the
new found living entities extracted in the previous
step. Again, we add the new LHS values to the list
of living entities. This process, i.e. substituting
new entities in the RHS and extracting the entity in
the LHS, continues until the list of living entities
no longer changes. As a simple example, given “a
plant is a kind of living thing”, in step 1, we add
plant to the list of living entities. In step 2, given
“peas are a kind of plant”, we add peas to the list
of living entities. The lists for non-living entities
are created in a similar manner, with the starting
pattern using RHS=“nonliving thing”.

Once weve obtained these lists, we obtain all
pairwise combinations of living, non-living, and
living and non-living entities. We identify the
pairs of unrelated entities by filtering out all pairs
of entities that have appeared in training and de-
velopment data. We also manually filter out ad-
ditional entities that we recognize could be re-
lated. Using this list, we rerank the explanation
sentences as follows.

if question or answer contain an entity in the list
of unrelated entity pairs then

rerank all explanation sentences containing
the second element of the pair to the bottom
of the list

end if
Rule 6: Singular form matched in explanation
sentences with plural unigram answers.

if a unigram answer is in plural then
rerank all explanation sentences containing
its singular form to the top of the list follow-
ing explanation sentences containing the ex-
act plural match

end if
Rule 7: Rerank explanation sentences with
other color words than the answer.

if an answer contains a color word then
rerank all explanation sentences about other
colors in the form “[other color] is a kind of
color” to the bottom of the list

end if
Rule 8: Rerank KINDOF explanation sen-
tences with entities not present in the QA.

if QA does not contain generic living entity
types such as “plants”, “animal”, “organism” or
“human” then

rerank all KINDOF explanation sentences to
the bottom relating entities not expressed in
the either the question or answer

end if
Rule 9: Rerank explanations from table types
not considered in training and development
data based on six QA types and overall.

We identify six QA types: “Which”, “When”,
and “What” questions; questions beginning with
“Some”; questions beginning with indefinite arti-
cle “A”; and those beginning with definite article
“The”. For each of these six QA types, we iden-
tify the table types that are never used to gener-
ate explanations in training and development data.
Additionally, we identify table types never used to

99

generate explanations in the training and develop-
ment set overall.

if QA is in one of the six types or overall then
rerank all explanation sentences from the
never used table types for the particular type
of QA to the bottom of the list

end if
Rule 10: Match based on alternative sense of
the word “makes”

if QA contains the word “makes” (e.g., “What
makes up most of a human skeleton?”) then

rerank all explanation sentences from the
SYNONYMY table type of “make” with al-
ternative word senses to the bottom of the
list (e.g., “to make something easier means
to help”)

end if
Rule 11: Rerank based on gerund or participle
answer words.

if answer contains gerund or participle words,
i.e. “ing” words then

rerank all explanation sentences from the
SYNONYMY table type containing gerund
or participle words other than the answer
“ing” word to the bottom of the list

end if

100

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 101–117
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over
Chains of Facts for Explainable Multi-hop Inference

Ameya Godbole1∗, Rajarshi Das1∗,
Manzil Zaheer2, Shehzaad Dhuliawala3, Andrew McCallum1

1University of Massachusetts, Amherst,
2Google Research, 3Microsoft Research, Montreal
{agodbole, rajarshi, mccallum}@cs.umass.edu

manzil@zaheer.ml, shehzaad.dhuliawala@microsoft.com

Abstract

This paper describes our submission to the
shared task1 on “Multi-hop Inference Expla-
nation Regeneration” in TextGraphs workshop
at EMNLP 2019 (Jansen and Ustalov, 2019).
Our system identifies chains of facts relevant
to explain an answer to an elementary science
examination question. To counter the prob-
lem of ‘spurious chains’ leading to ‘semantic
drifts’, we train a ranker that uses contextual-
ized representation of facts to score its rele-
vance for explaining an answer to a question.
Our system2 was ranked first w.r.t the mean av-
erage precision (MAP) metric outperforming
the second best system by 14.95 points.

1 Introduction

Machine reading comprehension (MRC), the abil-
ity of computing systems to read and understand
text, has been a long-standing goal of natural lan-
guage understanding. Question answering (QA)
provides a natural way of testing a models capa-
bility to comprehend text — by probing it with
queries about information present in the text. Re-
search in MRC has seen rapid progress in recent
years, with systems matching or out-performing
human performance in many QA datasets (Chen
et al., 2016; Devlin et al., 2018; Yang et al., 2019;
Liu et al., 2019). However, a series of recent work
has demonstrated the brittleness of these systems
showing that they perform shallow pattern match-
ing (Jia and Liang, 2017; Kaushik and Lipton,
2018; Chen and Durrett, 2019).

QA models that can provide explanations be-
hind its answers can give us better insights into
this brittleness. More importantly, it has also been
shown that providing explanations for an an-
swer also increases how much a user trusts the

1https://github.com/umanlp/tg2019task
2https://github.com/ameyagodbole/multihop_

inference_explanation_regeneration

A balance is used for measuring mass;weight of an object; of a substance

A graduated cylinder is used to measure volume of a liquid; of an object

A graduated cylinder is a kind of instrument for measuring volume of liquids or
objects

Comparing requires measuring

Marble is a kind of object; material

A student wants to compare the masses and volumes of three marbles. Which
two instruments should be used?
Answer: Balance and graduated cylinder

Figure 1: A subgraph of facts from the WorldTree cor-
pus that explains the answer to the question.

model (Herlocker et al., 2000; Dzindolet et al.,
2003; Ribeiro et al., 2016). Therefore, as more of
these models are deployed into real-world appli-
cations, providing explanations should be a neces-
sary component of every QA system.

In this paper, we describe the system that we
submitted to the shared task on “Multi-hop In-
ference Explanation Regeneration”. Our model
scores chains of facts (sentences) relevant to ex-
plain an answer to an elementary science exam
question. Given the question and its answer, we
use a standard information retrieval (IR) system
to retrieve a set of starting facts from the given
corpus. We adopt the “explanation graphs” rep-
resentation proposed by Jansen et al. (2018), in
which sentences can be viewed as nodes in a graph
and two nodes are connected if they have a lexical
overlap between them. Therefore, finding the ex-
planation for a question can be viewed as finding
the ‘relevant subgraph’ within the bigger graph of
facts and the explanation corresponds to the nodes
(facts) comprising the subgraph. For example, fig-
ure 1 shows a subgraph of facts explaining the an-
swer to the given question.

We decompose the problem of finding the sub-
graph into finding the chain of relevant nodes that
are important to answering the question and then

101

A student wants to compare the masses and volumes of three marbles. Which two instruments should be used?
(A) Balance and graduated cylinder (B) Centimeter ruler and thermometer (C) Graduated cylinder and centimeter ruler (D) Thermometer and balance

Question

WorldTree corpus

TF-IDF
- centimeter is a unit of measurement
- temperature is a measure of heat energy
- tape measure is a kind of tool…...
…….and 41 others

- eating food that contains pesticides can have a
negative impact on humans
- a human can pedal a bicycle
- humans discarding waste in an environment
causes harm to that environment
…….and 92 others

- state of matter has no impact on mass
- gravitational forces causes objects that
have mass to be pulled down
- gram is a kind of unit for measuring mass
….and 35 others

- each of the moon’s phases usually occurs once per month
- butterfly can live for one month
- months are a unit for measuring time
…...and 8 others

a. Get top-K sentences
via TF-IDF

b. Get all outgoing edges from the retrieved
sentences in the graph. Each sentence is connected
to all the facts in the corresponding boxes (via lexical
overlap).

a graduated cylinder is used to measure volume of a liquid; of an object

a rain gauge is a kind of graduated cylinder

a student is a kind of human

a balance is used for measuring mass;weight of an object; of a substance

a new season occurs once per three months

…… and K-5 more initial set of sentences

Outgoing facts

Figure 2: Overview of our approach. Given a question and its answer, we find a set of initial relevant facts via a
simple TF-IDF retriever. Next, from each of this relevant fact, we look at other outgoing facts (shown in the colored
boxes). Note that, there are a lot of outgoing facts and most of them are spurious w.r.t the given question. Using
the annotations provided, we train a supervised ranker to identify the relevant chains needed to explain an answer.

combining the top-ranked chains to reconstruct the
explanation subgraph. Starting with the initial set
of nodes (facts) returned by the IR system, we look
at all the facts that can be hopped from them. How-
ever as can be seen from figure 2, most of these
chains of facts are not relevant for answering the
question and are hence ‘spurious’ in nature. For
example, combining the two facts (that are con-
nected via lexical overlap) “a graduated cylinder
is used to measure volume of a liquid” and “cen-
timeter is a unit of measurement” does not provide
a valid explanation for the question. Models, at-
tempting to do reasoning over such spurious chain
of facts often fall into the phenomenon of ‘se-
mantic drift’ (Fried et al., 2015). To counter such
spurious chains, we use the annotations provided
in the WorldTree corpus (Jansen et al., 2018) to
train a re-ranker that scores whether a pair of facts
is relevant to answer a question. Our re-ranker
encodes a pair of facts with the question and
obtains question-aware contextualized representa-
tion from a pre-trained BERT (Devlin et al., 2018)
language model. We also find that an even sim-
pler model that scores each facts independently
(instead of a chain) is also very competitive and a
combination of both the models performs the best.
Overall our simple technique achieves a score of
56.25% MAP score outperforming the second best
entry by 14.95 points.

2 Task

Given a question and the correct answer, the task
is to find a set of sentences that explain the an-
swer to the question. The task can easily be trans-
formed into a ranking setup where the goal is to
rank the relevant facts over all other facts present
in the corpus. The evaluation metric used for the
task is the widely used and robust mean average
precision (MAP) metric.
Data: The data in the shared task comes from the
WorldTree corpus that contains elementary sci-
ence questions from the ARC corpus (Clark et al.,
2018). A key feature of the WorldTree corpus is
that it contains detailed annotation stating whether
a fact is a part of the explanation for each ques-
tion. Following our prior graphical representation,
these sentences form an ‘explanation subgraph’.
Although, we do not use this, but the corpus also
contains annotations about whether a fact is ‘cen-
tral’, or provides ‘grounding’ or serves as a ‘lexi-
cal glue’ for explaining the answer to the question.

3 Model

Our model consists of two major components —
(a) a simple IR system that retrieves the initial set
of evidence facts from the corpus and serves as
a starting point for further exploration and (b) a
BERT based ranker that scores a pair of facts w.r.t
a question (and the correct answer). For our cur-

102

rent system, the IR component is a simple tf-idf
based retriever that takes in the concatenation of
question and the correct answer string and returns
the top-k ranked facts in the corpus. Although we
find that this simple retriever is effective, our de-
sign is agnostic to the choice of the retriever and
can be replaced with any sophisticated IR system.

The retrieved facts will often miss key facts
that are required for explaining an answer. This
could be because there is no lexical overlap be-
tween the fact and the question, or because the rel-
evant facts are just ranked low. For example, as
shown in figure 2, two important explanatory facts
were missed by the initial IR system (“Computing
requires measuring” (‘central’) and “Marble is a
kind of object; material” (‘grounding’)). However,
we note that if we also consider the outgoing facts
from all the retrieved sentences, then the recall
of the system increases significantly. For exam-
ple, on considering all the 1-hop neighbors from
the top 25 initial facts retrieved by tf-idf, 94.48%
of ground truth facts were covered for a question,
on average3. This motivated us to consider reason-
ing over a chain of facts together. Reasoning over
chains of facts has also been shown to be an effec-
tive technique for reasoning over knowledge bases
(Lao et al., 2011; Neelakantan et al., 2015; Das
et al., 2017, 2018, inter-alia).

In our graphical representation, edges are as
a result of lexical overlap between sentences. In
making edges between facts, we ignore the stop
words and “filler” words that were added in the an-
notation process. Despite this the resulting graph
is very dense, and hence, each node is associated
with many neighbors and not all of the facts are
important for answering the question. These kind
of spurious chain of facts is responsible for leading
to wrong inference and often goes out of context
w.r.t the question leading to semantic drifts (Fried
et al., 2015). Analogous problems due to spuri-
ous facts can be seen in learning semantic parser
from denotations (Guu et al., 2017) and in rein-
forcement learning (Sutton, 1984; Agarwal et al.,
2019). The density of the graph also makes it in-
tractable to use more than 1-hop chains and a bet-
ter (sparser) graph representation will be neces-
sary to make full use of the path ranker.

To counter the problem of spurious chains, we
use the annotations present in the WorldTree cor-
pus. Specifically, a chain of facts is a positive train-

3For 75.66% of questions, all the ground truth facts were
present in the set of 1-hop neighbors of top 25 tf-idf facts.

[CLS] a student wants to compare the
masses and volumes of three marbles.
which two instruments should be used?
balance and graduated cylinder [SEP] a
graduated cylinder is used to measure
volume of a liquid; of an object. [SEP]
centimeter is a unit of measurement

B
E

R
T E

ncoder

C
LS

Linear (768X
768)

Linear (768X
2)

S
oftm

ax

Figure 3: Architecture of the fact encoder. The ques-
tion, answer and the chain of facts are concatenated to-
gether and fed to a BERT encoder to form query-aware
contextualized representation. The representation cor-
responding to the [CLS] token is then fed to another
feed-forward network.

ing example, if all the facts present in the chain are
relevant to the question. For example, the chain
(“A balance is used for measuring mass, weight
of an object”, “Marble is kind of an object”) is a
positive training example, since both the individ-
ual facts are relevant for the question in figure 1.
However, the chain (“A balance is used for mea-
suring mass, weight of an object”, “A graduated
cylinder is a object”) is considered as a spurious
chain for the same question.

To encode the chain of facts, we use the
power of contextualized representation from a
pre-trained BERT language model (Devlin et al.,
2018). As shown in figure 3, we form the query-
dependent representation of a chain of facts by
concatenating the question, correct answer and the
facts in the chain. After encoding with a BERT

model, we use the representation corresponding to
the [CLS] token as the intermediate representation
which is then fed to a 2-layer feed-forward net-
work to output a score. We use a simple binary
cross entropy loss to train the network.

Our model scores chain of facts and therefore
we need a way of propagating the scores to indi-
vidual facts to create a ranked list. We follow the
simple strategy of assigning the same score to each
individual fact in the chain. The same fact can also
occur in multiple chains. In that case, a fact is as-
signed the maximum score it gets from any chain.

We also tried a variant of our model that does
not consider a chain of facts but treats and scores
fact independently. Such models have been found
to be effective for information retrieval (Nogueira
and Cho, 2019). In this model, we concatenate the
query and an individual fact and compute the rel-
evance score for each fact in the corpus. Although
simple, a drawback of this model is that it will not
scale to a large corpus of facts. However, since
the WorldTree corpus contains only around 5000

103

facts, we were able to exhaustively evaluate it. As
we will show in the next section, this model is ex-
tremely competitive.

4 Experiments

For all experiments, the BERT encoder is initial-
ized with the pre-trained BERT-BASE-UNCASED

model available in the Python package PYTORCH-
TRANSFORMERS4. For training, learning rate was
initialized to 3e−5, batch size of 60 and maximum
sequence length of 90 (for batching). During eval-
uation, we increased the sequence length to 140.
The entire model was fine-tuned for 1 epoch. We
used Adam optimizer (Kingma and Ba, 2014) with
linear learning rate decay. For generating the paths
during training, the top 25 facts obtained by tf-idf
based ranker were used. We used the implementa-
tion of TfidfVectorizer present in SCIKIT-LEARN

(Pedregosa et al., 2011). For all our experiments,
we consider chains up to length 2.

For evaluation, we report results using top 25
and top 50 tf-idf ranked facts. Using 50 starting
facts improves the coverage of our method5 but
the this results in about 10,000+ chains per ques-
tion making it difficult to scale. We concatenate
the correct answer choice with the question. We
did this because we observed that the score of tf-
idf based ranker is best when given only the cor-
rect choice. This makes intuitive sense since the
ranker is distracted by the wrong choices and in
most examples, the remaining choices are not nec-
essary to answer the question. Our approach does
not guarantee ranking of all possible facts present
in the corpus. To obtain a ranking of all facts, we
appended the facts that were missed in the order
that they appear in the tf-idf ranking.

4.1 Baselines
We report the tf-idf based ranking scores as base-
lines. We experimented with three variants based
on which answer choices were present in the
query. We report the score of the ‘no choices’ vari-
ant because in a realistic setting, the correct an-
swer will not be present at test time.

We consider a variant of our model that ranks
individual facts directly rather than paths (BERT

Re-ranker in the Table 1). This is the model pro-
posed in (Nogueira and Cho, 2019) but instead of

4https://github.com/huggingface/
pytorch-transformers

5For 88% (75.66%) of questions, all the ground truth facts
were present in the set of 1-hop neighbors from top 50 (top
25) tf-idf facts.

Model MAP

TF-IDF (no choices) 0.1927
TF-IDF (all choices) 0.2440
TF-IDF (correct choice) 0.3012

BERT Re-ranker 0.5611

Path ranker (k=25) 0.5352
Path ranker (k=50) 0.5529

Ensemble ranking (k=25) 0.5810
+ Postprocessing 0.5827
Ensemble ranking (k=50) 0.5829
+ Postprocessing 0.5846

Table 1: MAP score on the development set. Perfor-
mance of our model (Path ranker) and ensemble are re-
ported for two variants; using top-25 and top-50 tf-idf
retrieved facts as starting points

re-ranking a subset of facts, we use it to rank all the
facts. The Re-ranker was initialized and trained in
the same way as our model. We found that a model
fine-tuned for 3 epochs worked best. This is an
extremely competitive model and outperforms our
Path-ranker model. As noted before, this is not a
scalable approach and can not be applied to a large
corpus of facts.

We also perform a type of ensemble ranking.
For every question, the ranking of Path ranker
is used until the probability output of the model
drops below 0.5. At this point, we append the rank-
ing of the BERT Re-ranker. The intuition behind
this scheme is that we consider the ranking of the
Path ranker only when it is confident (prob ≥ 0.5)
and then fall back to the BERT re-ranker. Empiri-
cally, as seen in table 1, this heuristic is very effec-
tive. In addition, we perform a post processing step
to move duplicate facts to the end of the ranking6.
This post-processing also gave a slight improve-
ment 7.

4.2 Performance on the hidden test set
Our submission during the test phase of the shared
task corresponds to a constrained version of the
final model. Also, the initial set of facts are The
test set performance is reported in Table 2.

4.3 Error Analysis
We perform extensive error analysis (in Appendix
I) on the 23 questions in the development set

6There are few duplicate facts present in the dataset (with
unique fact-ids)

7In the appendix, we refer to ranking generated by the
ensemble followed by post-processing as ‘Mix’ for brevity

104

Model/Participant MAP

Our model 0.5625

pbanerj6 0.4130
redken 0.4017

Table 2: MAP score on the hidden test set.

where our model performed poorly (MAP≤ 0.25).
We find that 2 of the 23 errors resulted due

to the pre-processing step of removing the wrong
choices. These questions required reasoning by
eliminating answer candidates. In 5 of the 23 er-
rors, (in our opinion) our model brings up alterna-
tive sentences (to the top) that provide sufficient
explanation. In all other cases, when the model
outputs a poor ranking, it usually outputs seman-
tically similar facts but these facts are not neces-
sary/helpful for completing the reasoning.

We would like to emphasize question 23 in Ap-
pendix I which proves the need for scoring chains
rather than individual facts (“The snowshoe hare
sheds its fur twice a year. In the summer, the fur
of the hare is brown. In the winter, the fur is white.
Which of these statements best explains the advan-
tage of shedding fur? (A) Shedding fur keeps the
hare clean. (B) Shedding fur helps the hare move
quickly. (C) Shedding fur keeps the hares home
warm. (D) Shedding fur helps the hare blend into
its habitat”). In this question, understanding that
brown fur is in fact an adaptation to hide from
predators and not meant for warmth is dependent
on making a link that the hare lives in forests
which have brown bark. Although our model per-
forms better than tf-idf on this question, since the
reasoning chain is longer than one hop, the perfor-
mance is poor overall.

In appendix II, we also note examples where
hopping over multiple facts is necessary. BERT-
re-ranker scores relevant facts low when they have
low lexical overlap with the question. However,
our model uses chain of connected facts to iden-
tify that there are relevant to the question.

5 Conclusion

We describe our entry to the shared task on
‘Multi-hop Inference Explanation Regeneration’.
We present a system that reasons over chains of
facts to reconstruct a subgraph of facts that ex-
plains an answer to the question. Our system is the
winning entry to the shared task outperforming the
second best system by 14.95 points in MAP score.

Acknowledgements

This work is funded in part by the Center for
Data Science and the Center for Intelligent In-
formation Retrieval, and in part by the National
Science Foundation under Grant No. IIS-1514053
and in part by the International Business Ma-
chines Corporation Cognitive Horizons Network
agreement number W1668553 and in part by the
Chan Zuckerberg Initiative under the project Sci-
entific Knowledge Base Construction. Any opin-
ions, findings and conclusions or recommenda-
tions expressed in this material are those of the
authors and do not necessarily reflect those of the
sponsor.

References
Rishabh Agarwal, Chen Liang, Dale Schuurmans, and

Mohammad Norouzi. 2019. Learning to generalize
from sparse and underspecified rewards. In ICML.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In ACL.

Jifan Chen and Greg Durrett. 2019. Understanding
dataset design choices for multi-hop reasoning. In
NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2018.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning. In ICLR.

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew McCallum. 2017. Chains of reasoning
over entities, relations, and text using recurrent neu-
ral networks. In EACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Mary T Dzindolet, Scott A Peterson, Regina A Pom-
ranky, Linda G Pierce, and Hall P Beck. 2003. The
role of trust in automation reliance. International
journal of human-computer studies.

Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mi-
hai Surdeanu, and Peter Clark. 2015. Higher-
order lexical semantic models for non-factoid an-
swer reranking. TACL.

105

Kelvin Guu, Panupong Pasupat, Evan Zheran Liu,
and Percy Liang. 2017. From language to pro-
grams: Bridging reinforcement learning and maxi-
mum marginal likelihood. In ACL.

Jonathan L Herlocker, Joseph A Konstan, and John
Riedl. 2000. Explaining collaborative filtering rec-
ommendations. In CSCW.

Peter Jansen and Dmitry Ustalov. 2019. TextGraphs
2019 Shared Task on Multi-Hop Inference for Ex-
planation Regeneration. In TextGraphs-13, EMNLP.

Peter A Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton T Morrison. 2018. Worldtree:
A corpus of explanation graphs for elementary sci-
ence questions supporting multi-hop inference. In
LREC.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In EMNLP.

Divyansh Kaushik and Zachary C Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks. In
EMNLP.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ni Lao, Tom Mitchell, and William Cohen. 2011. Ran-
dom walk inference and learning in a large scale
knowledge base. In EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base completion. In ACL.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explaining
the predictions of any classifier. In KDD.

Richard Stuart Sutton. 1984. Temporal Credit Assign-
ment in Reinforcement Learning. Ph.D. thesis, Uni-
versity of Massachusetts Amherst. AAI8410337.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

106

6 Appendix I: Model error analysis (AP ≤ 0.25)
This section contains examples from the development set where the final model performs poorly.
1 mercury sc 401652
Question: Before large trees could grow on Earth, what had to happen first? (A) Rocks were eroded to
form soil. (B) Molten rock warmed Earth’s interior. (C) Earth’s gravity accumulated to modern levels.
(D) Volcanoes exploded to form mountaintop lakes.
Correct Answer: A
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
soil is formed by rocks eroding as CENTRAL 23 19 2 19
a plant requires soil for survival; to grow CENTRAL 3 64 6 61
a tree is a kind of plant GROUNDING 1501 10 32 10

MAP 0.1407 0.0840 0.3090 0.0840

Analysis:

• TF-IDF does better because the first relevant fact is ranked higher. However, the low TFIDF fact is
ranked much lower than in the learned models

• Reranker output consists of facts related to soil erosion, which although have similar context, dont
answer the question

• Path ranker by itself has a much better MAP but due to low confidence, its ranking is disregarded in
the mixture result. The top results are lexical glue sentences connected to the questions and mostly
related to erosion again

2 mercury sc 400058
Question: The small stone plant has leaves that look like pebbles or stones. This characteristic helps
the plant (A) attract insects for pollination. (B) produce a large number of seeds. (C) absorb water and
nutrients. (D) avoid being eaten by animals.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
looking like is similar to camouflaging as LEXGLUE 135 32 552 30
camouflage is a kind of adaptation for hiding in an
environment

CENTRAL 4026 233 4358 229

helping something has a positive impact on that
something

LEXGLUE 317 1 257 2

an adaptation; an ability has a positive impact on
an animal’s; living thing’s survival; health; ability
to reproduce

CENTRAL 1279 88 24 86

camouflage is a kind of protection against preda-
tors; from predators; against consumers

CENTRAL 4027 67 4375 65

consumers eat other organisms CENTRAL 3866 1043 235 1032
a plant is a kind of organism GROUNDING 23 57 2 55
In the food chain process an animal has the role of
consumer which eats producers;other animals for
food

CENTRAL 205 145 148 142

avoiding predators; escaping predators; avoiding
consumers is a kind of protection

CENTRAL 4100 276 4137 272

an adaptation is a kind of characteristic GROUNDING 110 115 1723 112
An example of camouflage is when an organism
looks like its environment

CENTRAL 214 173 47 170

rock means stone LEXGLUE 7 87 18 85
a pebble is a kind of small rock GROUNDING 208 33 560 31
an ecosystem contains nonliving things CENTRAL 2622 590 3412 581
rock is a kind of nonliving thing GROUNDING 4870 538 135 531

MAP 0.0283 0.1193 0.0676 0.0876

Analysis:

• The annotation for the question marks too many facts as relevant. It is possible to generate a smaller
set of facts as sufficient to answer then question

107

– Establish rock is non-living: pebble is a kind of small rock; rock means stone; rock is a kind of
nonliving thing; nonliving, non-living, die is the opposite of living, alive, live

– Establish consumer eat living things: consumers eat other organisms; an organism is a living
thing; a plant is a kind of organism

– Establish that the plant is trying to camouflage: looking like is similar to camouflaging as;
camouflage is a kind of protection against predators; from predators; against consumers

• Final ranking gathers facts related to adaptation and food chains near the top

3 mcas 2011 5 17673
Question: Jose has two bar magnets. He pushes the ends of the two magnets together and then he lets
go. The magnets move quickly apart. Which of the following statements best explains why this happens?
(A) The north poles of the two magnets are facing each other. (B) One magnet is a north pole and one
magnet is a south pole. (C) The ends of magnets repel each other but the centers attract. (D) One magnet
is storing energy and one magnet is releasing energy.
Correct Answer: A
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a magnet contains a north pole; south pole CENTRAL 1118 4 14 6
if a pole is facing a pole of the same direction then
those two poles will repel each other

CENTRAL 5 41 10 41

repel means move away LEXGLUE 971 1740 56 1719
apart means away LEXGLUE 137 11 79 11
north is a kind of direction GROUNDING 117 84 28 84

MAP 0.0495 0.1111 0.0969 0.0944

Analysis:

• The mixed results ranks facts related to magnetism and separated object as top choices. They are
similar in content but not necessary to answer the question

4 mercury sc 411306
Question: Some different types of plants have characteristics in common. Which characteristic do most
plants share? (A) the size of their roots (B) the shape of their leaves (C) the color of their flowers (D) the
structure of their cells
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a plant is made of plant cells CENTRAL 2554 8 15 8
a plant cell is box-like in shape CENTRAL 172 41 29 40
structure is similar to shape LEXGLUE 53 31 136 30
shape is a kind of characteristic CENTRAL 51 29 64 28

MAP 0.0191 0.0971 0.0530 0.0991

Analysis:

• None of the valid ground truth facts in top 25 TF-IDF ranking meaning that the path ranker has bad
starting points

• The mixed results ranks facts related to cells, structure and characteristics as top choices. They have
similar context but are not necessary to answer the question

5 vasol 2011 5 3
Question: To make an electromagnet, a conductor should be coiled around - (A) a glass tube (B) an iron
nail (C) a roll of paper (D) a wooden stick
Correct Answer: B
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
an electromagnet contains a wire; cylindrical fer-
rous metal

ROLE 22 8 11 8

ferrous metals contain iron ROLE 51 18 23 18
MAP 0.0423 0.1181 0.0889 0.1181
108

Analysis:

• The top 2 facts ranked by the model are “iron nails are made of iron” and “an electromagnet is
formed by attaching an iron nail wrapped in a copper wire to a circuit”. These are sufficient to
answer the question but not marked as ground truth.

6 mercury sc lbs10789
Question: All of the following can become fossils except (A) bones. (B) shells. (C) teeth. (D) rocks.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
fossil means preserved remains of organisms CENTRAL 2671 1 3 1
skeletal system is made of bones NE 2429 1540 3418 1503
a skeletal system is a part of an animal NE 2256 1506 919 1469
an animal is a kind of organism CENTRAL 1221 43 39 41
a shell is a part of some animals NE 2133 4328 285 4249
a tooth is a kind of bone NE 2308 3819 3308 3742
rock is a kind of nonliving thing CENTRAL 2098 25 24 23
nonliving; non-living; die is the opposite of living;
alive; live

LEXGLUE 1117 2242 130 2387

an organism is a living thing CENTRAL 3294 178 64 175
MAP 0.0021 0.1318 0.0698 0.1331

Analysis:

• This question is a case where having all the choices is necessary to gather relevant facts. This is
a known weakness in the preprocessing step which only keeps the correct choices. Because the
rankers only see the query “All of the following can become fossils except rocks” they cannot gather
facts related to bones, teeth and shells. This is reflected by very poor TF-IDF ranks

• Top ranked facts in the final results relate to fossil formation and rock formation. Again, because of
the same reason mentioned before, the ranker never sees the other choice terms

7 mdsa 2009 5 16
Question: Students visited the Morris W. Offit telescope located at the Maryland Space Grant Observa-
tory in Baltimore. They learned about the stars, planets, and moon. The students recorded the information
below. Star patterns stay the same, but their locations in the sky seem to change. The sun, planets, and
moon appear to move in the sky. Proxima Centauri is the nearest star to our solar system. Polaris is a
star that is part of a pattern of stars called the Little Dipper. Which statement best explains why the sun
appears to move across the sky each day? (A) The sun revolves around Earth. (B) Earth rotates around
the sun. (C) The sun revolves on its axis. (D) Earth rotates on its axis.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
the Earth rotating on its axis causes the sun to
appear to move across the sky during the day

CENTRAL 1 18 25 15

the sun rises in the east BACKGROUND 39 23 87 20
the sun sets in the west BACKGROUND 48 7 21 7

MAP 0.3713 0.1281 0.0540 0.1421

Analysis:

• Just one fact (”the Earth rotating on its axis causes the sun to appear to move across the sky during
the day”) is sufficient to actually answer the question

• Top results are “if a human is on a rotating planet then other celestial bodies will appear to move
from that human’s perspective”, “a star is a kind of celestial object; celestial body”, “stay the same
means not changing”, “a telescope is used for observing stars;planets;moons;distant objects; the
sky; celestial objects”, “the Earth rotates on its axis on its axis”, “the Sun is the star that is closest
to Earth”. This looks like a reasonable explanation set

109

8 mdsa 2010 5 18 Question: Wind is a natural resource that benefits the southeastern shore of the
Chesapeake Bay. How could these winds best benefit humans? (A) The winds could blow oil spills into
the bay. (B) The winds could be converted to fossil fuel. (C) The winds could blow air pollution toward
land. (D) The winds could be converted to electrical energy.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a windmill converts wind energy into electricity CENTRAL 80 75 192 74
electricity means electrical energy LEXGLUE 32 3 7 3
electricity is used as an energy source by electrical
devices

CENTRAL 125 33 5 33

electrical devices are used for industrial purposes;
household purposes by humans

CENTRAL 372 142 79 140

to help; to benefit means to be of use LEXGLUE 2 10 15 10
MAP 0.1291 0.1425 0.1525 0.1428

Analysis:

• Model spuriously ranks “a human is a kind of animal” at 2 and “person is synonymous with human”
at 3. All other top facts relate to energy, wind and shore. Again the model has captured context but
not found facts that answer the question

9 mercury sc 400862
Question: A wire is wrapped around a metal nail and connected to a battery. If the battery is active, the
nail will (A) vibrate. (B) create sound. (C) produce heat. (D) become magnetic.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
an electromagnet is a kind of electric magnet GROUNDING 3328 18 26 19
a electromagnet is formed by attaching an iron nail
wrapped in a copper wire to a circuit

CENTRAL 4 9 52 10

iron is a kind of metal GROUNDING 22 86 30 86
creating a simple circuit requires a wire; battery CENTRAL 7 30 35 30
if battery in an electromagnet is active then the nail
in the electromagnet will become magnetic

CENTRAL 1 1 14 6

MAP 0.4224 0.3161 0.0917 0.1432

Analysis:

• Top ranked fact is “metal is sometimes magnetic”. The model pushes useful sentences away by
ranking unnecessary synonymy sentences higher

10 vasol 2009 5 10
Question: A student is hiking through a forest taking pictures for science class. Which picture would
most likely be used as an example of human impact on Earth? (A) A trail built by cutting down trees
(B) A river eroding away the riverbank (C) A bird nest made of dead branches (D) A group of butterflies
landing on flowers
Correct Answer: A
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
cutting down trees has a negative impact on an
ecosystem; organisms living in an ecosystem

CENTRAL 10 3 5 3

clearing a forest means humans cutting down the
trees

CENTRAL 7 38 38 37

building usually requires cutting down trees BACKGROUND 11 27 9 27
the Earth contains many ecosystems CENTRAL 530 41 52 40

MAP 0.1558 0.1460 0.1445 0.1471

Analysis:

• Model output shows that it has captured context but again does not mark facts required to explain
answer higher

110

11 mcas 2002 5 6
Question: Hummingbirds can hover in the air and fly very quickly. This benefits the hummingbird in all
of the following except (A) quickly escaping predators. (B) easily reaching flowers. (C) staying in one
place to drink nectar. (D) keeping eggs warm.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
some animals move quickly to escape predators NEG 160 2294 241 2275
flying is a kind of motion air GROUNDING 410 12 5 12
motion; movement means moving; to move LEXGLUE 4541 155 425 150
avoiding predators; escaping predators; avoiding
consumers is a kind of protection

LEXGLUE 3423 3832 621 3770

protecting something means preventing harm to
that something

LEXGLUE 4077 1033 1271 1025

harming something has a negative impact on; effect
on that something

LEXGLUE 4325 390 4488 384

negative impact is the opposite of positive impact LEXGLUE 1125 76 2346 73
a positive impact is a benefit LEXGLUE 3862 2 3968 5
a hummingbird can reach flowers by hovering in
the air

NEG 2 37 26 36

hummingbirds eat nectar CENTRAL 9 25 63 24
a flower is a source of nectar CENTRAL 2769 89 182 86
an animal needs to eat food for nutrients CENTRAL 3545 365 85 359
an animal; living thing requires nutrients for sur-
vival

CENTRAL 3946 151 71 148

requiring is similar to needing help LEXGLUE 4740 24 4786 23
to help; to benefit means to be of use LEXGLUE 3281 9 3830 10
to hover means to stay in place in the air NEG 1 13 2 2

MAP 0.1503 0.1470 0.0847 0.1651

Analysis:

• Since this is a question requiring elimination of choices, the preprocessing step of removing the
wrong answer choices harms the model. Subsequently all relevant facts corresponding to incorrect
choices are pushed to the end

12 nceoga 2013 5 15
Question: Which body system sends electrical signals to all other body systems? (A) circulatory system
(B) digestive system (C) muscular system (D) nervous system
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
the nervous system sends observations in the form
of electrical signals to the rest of the body

CENTRAL 1 6 6 6

MAP 1.0000 0.1667 0.1667 0.1667

Analysis:

• The model output ranks “nervous system is an electrical; electric conductor”; “the nervous system
is a kind of body system”; “the nervous system contains nerves”; “the nervous system is a part of the
body of an animal”; “the nervous system is the vehicle for controlling the body”. This is surprising
since it ignores the near-perfect lexical overlap between question and ground truth

13 mercury sc 401598
Question: Which action does a kitten learn from its mother? (A) how to grow (B) how to meow (C) how
to hunt mice (D) how to nurse milk
Correct Answer: C
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
hunting; scavenging is a kind of skill GROUNDING 3883 46 28 45
skills are learned characteristics CENTRAL 4507 11 41 12
hunting is a kind of action CENTRAL 8 5 3 3

MAP 0.0421 0.1490 0.1593 0.1889

111

Analysis:

• The model output contains a lot of synonymy-like facts but not facts about mice and hunting

14 mcas 2016 5 7 Question: Which of the following happens only during the adult stage of the life
cycle of a frog? (A) A frog lays eggs. (B) A frog swims in water. (C) A frog begins to lose its tail. (D) A
frog begins to develop lungs.
Correct Answer: A
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
some adult animals lay eggs CENTRAL 28 4 4 4
a frog is a kind of animal GROUNDING 4 3 3 3
An example of reproduction is laying eggs CENTRAL 85 32 16 31
reproduction occurs during adulthood CENTRAL 267 182 84 179
adulthood is a stage in the life cycle process CENTRAL 12 246 97 242

MAP 0.1179 0.1938 0.2240 0.1946

Analysis:

• Top ranked facts are “an egg is a stage in the life cycle process of some animals”; “frogs lay eggs”;
“a frog is a kind of animal”; “some adult animals lay eggs”

• Spurious sentences like “a female insect lays eggs during the adult stage of an insect’s life cycle”
appear in the ranking

15 mercury sc 415366
Question: Trees need oxygen. Roots close to the surface of the ground take in the oxygen the tree needs.
Which organisms help trees get oxygen? (A) woodpeckers making holes in the tree (B) earthworms
making holes in the ground near the tree (C) mushrooms growing at the base of the tree (D) squirrels
eating walnuts on the ground near the tree
Correct Answer: B
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
earthworms create tunnels in soil CENTRAL 144 30 22 28
to create means to make LEXGLUE 1475 197 2444 193
a tunnel is a kind of hole LEXGLUE 3265 110 147 107
soil is a part of the ground outside LEXGLUE 34 278 170 274
tunnels in soil loosen that soil CENTRAL 1924 83 11 80
the looseness of soil increases the amount of oxy-
gen in that soil

CENTRAL 22 297 5 292

plants absorb nutrients; water; oxygen from soil
into themselves through their roots

CENTRAL 63 9 7 9

taking in something means receiving; absorbing;
getting something

LEXGLUE 1956 587 33 581

a tree is a kind of plant GROUNDING 46 3 168 3
an earthworm is a kind of animal CENTRAL 2760 1 3319 1
an animal is a kind of organism GROUNDING 2354 21 3051 20
to make something easier means to help LEXGLUE 330 450 1715 444
getting something increases the amount of that
something

LEXGLUE 1024 1040 51 1033

MAP 0.0247 0.2044 0.1058 0.2066

Analysis:

• Model ranks sentences related to roots, plants and earthworms near the top. It gathers sentences
with low TF-IDF overlap but misses facts required to complete the reasoning process

16 mdsa 2007 5 39
Question: Students are learning about the natural resources in Maryland. One group of students re-
searches information about renewable natural resources in the state. The other group researches infor-
mation about nonrenewable natural resources in the state. The resources the students investigate include
plants, animals, soil, minerals, water, coal, and oil. Which of the following human activities negatively
affects a natural resource? (A) fishing in a lake (B) using water to produce electricity (C) planting native

112

plants along a lakeshore (D) directing runoff from cropland into a lake
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
water is a kind of natural resource GROUNDING 6 11 1 11
a lake is a kind of body of water GROUNDING 1448 370 7 364
runoff contains chemicals; fertilizer; pollutants;
pesticides from cropland

CENTRAL 194 2 19 2

to impact means to affect LEXGLUE 4482 7 7 7
cropland is used for farming by humans BACKGROUND 744 35 93 35
pollution is when humans pollute the environ-
ment with pollutants

CENTRAL 1590 47 525 46

pollution has a negative impact on the environ-
ment; air quality

CENTRAL 1504 65 239 64

a body of water is a kind of environment GROUNDING 1186 18 22 18
MAP 0.0247 0.2101 0.2149 0.2107

Analysis:

• TF-IDF is distracted by the initial chunk of text in the question. This text does not add any value to
the actual question

• Top 5 outputs of our model are “runoff is when cropland water enters; runs off into bodies of water”;
“runoff contains chemicals; fertilizer; pollutants; pesticides from cropland”; “runoff is a kind of
water”; “harming something has a negative impact on; effect on that something”; “waste has a
negative impact on the environment”. This shows that our model has in fact ignored the distractors

17 mercury sc 400612
Question: The surface of Earth changes constantly from weathering and erosion. Compared to Earth,
there is little weathering and erosion on the Moon because of (A) the lack of gravity on the Moon. (B)
the thin atmosphere on the Moon. (C) the lack of air and water on the Moon. (D) the lack of living
creatures on the Moon.
Correct Answer: C
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
the moon does not contain air; water CENTRAL 36 4 17 5
if something does not contain something else then
that something lacks that something else

LEXGLUE 4201 15 23 14

rocks; soil; materials interacting with wind; mov-
ing water over long periods of time causes weath-
ering

CENTRAL 192 51 94 50

wind means moving air LEXGLUE 811 173 64 170
soil erosion means soil loss through wind;water;
animals

CENTRAL 153 23 23 22

lack is similar to low; little LEXGLUE 38 1 3 3
MAP 0.0214 0.3344 0.1164 0.2108

Analysis:

• TF-IDF is distracted by facts relating to the definition of weathering, and the relation between the
Earth and the moon

• Our model actually ranks the top 2 facts as “the Moon has less water; air than Earth”; “weathering
is a kind of erosion” which are both correct and useful for answering the question. It also ranks
“soil erosion is when wind; moving water; gravity move soil from fields; environments” at rank 9.
These would be sufficient facts to answer the question. This example shows an occurrence where
the annotation/ranking process actually misses valid supporting facts

18 mcas 1998 4 8
Question: Where would it be MOST dangerous to work with electric tools? (A) in a garage (B) beside a
swimming pool (C) near a television or computer (D) in a cool basement

113

Correct Answer: B
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a swimming pool contains water CENTRAL 1 3 1 1
water is an electrical; electric energy; thermal; ther-
mal energy conductor

CENTRAL 93 15 5 5

sending electricity through a conductor causes
electricity; electric current to flow through that
conductor

CENTRAL 102 313 1313 310

nervous system is an electrical; electric conductor CENTRAL 42 714 1482 708
if one electrical conductor contacts another elec-
trical conductor then electricity will flow through
both conductors

CENTRAL 1817 975 1247 969

the nervous system is a part of the body of an ani-
mal

CENTRAL 2809 3828 1014 3777

if electricity flows through; is transferred through
the body of an animal then that animal is electro-
cuted

CENTRAL 1784 25 11 24

electrocution causes harm to an organism CENTRAL 519 26 45 25
an animal is a kind of organism GROUNDING 4833 59 20 57
harm means danger LEXGLUE 3695 12 10 13
electric devices require electrical energy to func-
tion

CENTRAL 35 19 57 18

device means tool LEXGLUE 3709 115 225 113
MAP 0.1043 0.1322 0.2199 0.2127

Analysis:

• The fact that the nervous system conducts electricity is needed to show that the animal/human
body will conduct electricity. The facts ranked low by our model are the ones related to the nervous
system. Most likely the model implicitly assumes this since it has observed the fact that “if electricity
flows through; is transferred through the body of an animal then that animal is electrocuted”

19 mercury sc 401294 Question: The shape of plants’ leaves that survive well in a rainy climate are
most often (A) red and shiny. (B) wide and flat. (C) thick and waxy. (D) sharp and narrow. Correct
Answer: B Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
as the size of a leaf increases , the amount of sun-
light absorbed by that leaf will increase

CENTRAL 506 99 53 97

width is a property of size; shape and includes or-
dered values of narrow; wide

CENTRAL 5 78 2 76

as flatness of a leaf increases , the amount of sun-
light that leaf can absorb will increase

CENTRAL 954 11 17 12

flatness is a property of a surface; the shape of an
object and includes ordered values of uneven; flat

CENTRAL 6 9 5 10

a leaf is a kind of object GROUNDING 2220 19 11 18
a surface is a part of an object GROUNDING 2240 520 31 516
a leaf absorbs sunlight to perform photosynthesis CENTRAL 4734 207 494 204
a leaf is a part of a green plant GROUNDING 3033 6 98 7
a plant requires photosynthesis to grow; survive CENTRAL 74 237 77 234
rainy means often raining LEXGLUE 3 10 4 11
as the amount of rain increases in an environment ,
available sunlight will decrease in that environment

CENTRAL 245 150 91 147

a climate is synonymous with an environment LEXGLUE 20 1 3 2
the decrease of something required by an organism
has a negative impact on that organism’s survival

CENTRAL 953 482 352 478

a plant is a kind of organism GROUNDING 2125 15 201 15
large leaves are a kind of adaptation for absorbing
sunlight

CENTRAL 36 47 242 46

larger means greater; higher; more in size LEXGLUE 2089 83 66 81
an adaptation; an ability has a positive impact on
an animal’s; living thing’s survival; health; ability
to reproduce

CENTRAL 4088 41 115 40

negative impact is the opposite of positive impact LEXGLUE 1598 115 3030 234
MAP 0.0979 0.2486 0.2634 0.2147

114

Analysis:

• This question has too many supporting facts and a smaller subset of these facts is sufficient to
answer the question i.e. establish that flat and wide leaves absorb more sunlight, rainy climate means
shortage of sunlight and hence flat and wide leaves is a useful characteristic.

• The ground truth facts ranked lowest by our model are “a surface is a part of an object“, “the
decrease of something required by an organism has a negative impact on that organism’s survival”
which we feel are extraneous. The top ranked facts relate to leaves and their shapes.

20 csz 2007 5 csz10148
Question: Above a continent, a warm air mass slowly passes over a cold air mass. As the warm air begins
to cool, clouds form. What will most likely happen next? (A) Rain will fall. (B) Hurricanes will form.
(C) Lightning will strike. (D) Hail will form.
Correct Answer: A
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a warm front is when warm air mass rises and
passes over a cold air mass

CENTRAL 1 1 3 3

a warm front causes cloudy and rainy weather CENTRAL 214 143 9 142
cloudy means the presence of clouds in the sky BACKGROUND 242 26 130 26
clouds are formed by water vapor rising and con-
densing

CENTRAL 361 10 7 11

water vapor cooling causes that water vapor to
condense

CENTRAL 1413 317 28 316

precipitation is when rain;snow;hail fall from
clouds to the Earth;ground

GROUNDING 33 3 4 4

MAP 0.1849 0.3624 0.3218 0.2190

Analysis:

• This is a case where mixing actually leading to worse performance than the individual models

• The fact “a warm front causes cloudy and rainy weather” is necessary to eliminate hail from con-
sideration and this is missed by the model. The actual model outputs relate to cloud formation and
precipitation but this one fact is ranked very low

21 mdsa 2011 5 6
Question: Planets in our solar system have different solar years. Which statement explains the cause of
an Earth solar year? (A) Earth rotates around the sun. (B) Earth revolves around the sun. (C) The sun
rotates around Earth. (D) The sun revolves around Earth.
Correct Answer: B
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a complete revolution of the Earth around the sun
takes 1; one year; solar year; Earth year

CENTRAL 1 6 4 5

a revolution is when something revolves around
something else

LEXGLUE 41 8 10 7

MAP 0.5244 0.2083 0.2250 0.2428

Analysis:

• The top results for our model are “the Earth revolves around the sun”; “Earth is a kind of planet”;
”revolving around something means orbiting that something”; “the solar system contains the moon”;
“a complete revolution of the Earth around the sun takes 1; one year; solar year; Earth year”. These
sufficiently answer the question.

• It should be noted that TF-IDF had a better score than the other models

22 timss 2007 4 pg90
Question: Sue measured how much sugar would dissolve in a cup of cold water, a cup of warm water,
and a cup of hot water. What did she most likely observe? (A) The cold water dissolved the most sugar.

115

(B) The warm water dissolved the most sugar. (C) The hot water dissolved the most sugar. (D) The cold
water, warm water and hot water all dissolved the same amount of sugar.
Correct Answer: C
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
greatest means largest; highest; most ROLE 136 63 1940 62
temperature; heat energy is a property of objects;
weather and includes ordered values of cold; cool;
warm; hot

CENTRAL 40 6 37 6

hot means high in heat energy; temperature LEXGLUE 125 10 52 10
as temperature increases , the ability of that liquid
to dissolve solids will increase

CENTRAL 177 60 22 60

high is similar to increase LEXGLUE 4268 54 1174 54
water is a kind of liquid GROUNDING 21 2 2 2
sugar is a kind of solid GROUNDING 15 15 20 15

MAP 0.0487 0.2434 0.1356 0.2436

Analysis:

• The central fact “as temperature increases , the ability of that liquid to dissolve solids will increase”
has very low TF-IDF overlap. The path ranker actually does a good job of bringing this fact and the
2 GROUNDING facts to the top 25. However, its output is disregarded due to the mixing threshold.

• The reranker model is distracted by the facts relating to temperature, heat and the process of dis-
solving

23 mdsa 2011 5 20
Question: The snowshoe hare sheds its fur twice a year. In the summer, the fur of the hare is brown. In
the winter, the fur is white. Which of these statements best explains the advantage of shedding fur? (A)
Shedding fur keeps the hare clean. (B) Shedding fur helps the hare move quickly. (C) Shedding fur keeps
the hare’s home warm. (D) Shedding fur helps the hare blend into its habitat.
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
shedding is when an animal loses hair;fur;skin CENTRAL 4 24 3 3
a hare is similar to a rabbit LEXGLUE 16 8 4 4
some rabbits live in forests CENTRAL 2761 278 103 276
a rabbit is a kind of animal GROUNDING 1566 10 7 12
a forest contains plants; trees GROUNDING 4040 288 4195 286
bark is a protective covering around the trunk of;
branches of a tree

GROUNDING 1002 1336 732 1330

bark is usually brown in color GROUNDING 240 522 478 518
snow is white in color GROUNDING 239 15 14 16
An example of camouflage is when something
changes color in order to have the same color as
its environment

CENTRAL 210 21 53 22

coloration is a kind of adaptation for hid-
ing;camouflage

CENTRAL 2806 96 257 95

coloration means a thing’s color LEXGLUE 4537 137 28 136
help means advantage LEXGLUE 236 9 1492 11
blending in is synonymous with hiding LEXGLUE 2207 1 2795 6
habitat is similar to environment LEXGLUE 586 19 1625 20
an environment means an area LEXGLUE 4491 31 4935 31
the color of an environment means the color of the
things that environment contains

LEXGLUE 73 116 194 115

MAP 0.0352 0.2507 0.1279 0.2449

Analysis:

• Answering this question properly requires connecting the following facts: “a hare is similar to a
rabbit”, “some rabbits live in forests”, “a forest contains plants; trees”, “bark is a protective covering
around the trunk of; branches of a tree”, “bark is usually brown in color” to the question text. Note
that the intermediate facts have little to no term overlap with the question.

116

• Our model is able to get “a hare is similar to a rabbit” but misses the rest of the facts. This is not a
limitation in the model itself but in the actual inference time computation (we only hop out one fact
during evaluation).

7 Appendix II: Positive examples

This sections contains examples of questions where Path Ranker performs better than all other models.
1 timss 2011 4 pg90

Question: Water that has its salt removed before it can be used as drinking water is most likely to have
come from (A) underground (B) a river (C) a lake (D) a sea
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
the ocean contains large amounts of salt water CENTRAL 23 5 2 2
sea means ocean LEXGLUE 4090 93 3 3
animals usually require removing salt from wa-
ter for drinking

BACKGROUND 1 1 1 1

MAP 0.3626 0.4774 1.0000 1.0000

2 mercury sc 401244
Question: Which rock type is most useful in studying the history of living organisms? (A) basalt (B)
marble (C) granite (D) limestone
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
limestone is a kind of sedimentary rock GROUNDING 81 298 1 1
nearly all fossils are found in sedimentary rock CENTRAL 150 306 12 297
fossils are formed when layers of sediment cover
the remains of organisms over time

CENTRAL 156 107 131 103

sedimentary rocks are formed from sediment com-
pacting; cementing together

CENTRAL 4357 1662 32 1647

history occurred a long time ago CENTRAL 22 5 3 3
a type is synonymous with a kind LEXGLUE 14 2 2 2
something from long ago can be used for studying
history

CENTRAL 1 3 4 4

useful means good to use LEXGLUE 5 6 9 7
MAP 0.2431 0.3160 0.6669 0.6001

Analysis: Notice that the facts “nearly all fossils are found in sedimentary rock” and “sedimentary
rocks are formed from sediment compacting; cementing together” only have the word rock in common
with the question and correct answer. Yet the Path ranker ranks them higher than the other models. It
reaches them via the paths [‘limestone is a kind of sedimentary rock’, ‘nearly all fossils are found in
sedimentary rock’] and [‘limestone is a kind of sedimentary rock’, ‘sedimentary rocks are formed from
sediment compacting; cementing together’]

3 mercury sc 415541
Question: Which of these objects will most likely float in water? (A) glass marble (B) steel ball (C) hard
rubber ball (D) table tennis ball
Correct Answer: D
Ground truth facts:

Text Role TF-IDF Reranker Path Ranker Mix
a ball is a kind of object CENTRAL 1476 4 1 1
an tennis ball contains air CENTRAL 4 1 2 2
something that contains air is usually buoyant CENTRAL 4562 688 11 677
buoyant means able to float in a liquid or gas CENTRAL 11 8 19 8
water is a kind of liquid GROUNDING 55 31 94 29

MAP 0.0980 0.4023 0.5073 0.5041

Analysis: Notice that the fact “something that contains air is usually buoyant” has no word in common
with the question and correct answer. Yet the Path ranker ranks it higher than the other models. It reaches
the fact via the path [‘an tennis ball contains air’, ‘something that contains air is usually buoyant’].

117

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 118–123
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Joint Semantic and Distributional Word Representations
with Multi-Graph Embeddings

Pierre-Daix Moreux∗
Ubisoft Entertainment SA

pierre.daix-moreux@ubisoft.com

Matthias Gallé
Naver Labs Europe

matthias.galle@naverlabs.com

Abstract

Word embeddings continue to be of great use
for NLP researchers and practitioners due to
their training speed and easiness of use and
distribution. Prior work has shown that the
representation of those words can be improved
by the use of semantic knowledge-bases. In
this paper we propose a novel way of com-
bining those knowledge-bases while the lexi-
cal information of co-occurrences of words re-
mains. It is conceptually clear, as it consists
in mapping both distributional and semantic
information into a multi-graph and modifying
existing node embeddings techniques to com-
pute word representations. Our experiments
show improved results compared to vanilla
word embeddings, retrofitting and concatena-
tion techniques using the same information, on
a variety of data-sets of word similarities.

1 Motivation

Word embeddings revolutionized NLP through the
use of lookup dictionaries that provided contin-
uous representations of words. While surpassed
recently by token-based (contextual) embeddings,
word embeddings continue to be popular because
they are faster to train, can be used plug-and-
play by a multitude of machine learning sys-
tems, with storing a database of embeddings for
sole requirement. This makes them particularly
attractive for domain-specific embeddings (e.g.,
privacy policies (Harkous et al., 2018), oil and
gas (Nooralahzadeh et al., 2018) or sentiment
analysis (Sarma et al., 2018).

The most popular word embeddings are trained
purely with a distributional prior: words occurring
in a similar context should have a similar repre-
sentation. It is well known that the quality of word
embeddings can be improved by injecting seman-
tic knowledge in the form of curated databases

∗Work done while at Naver Labs Europe

of relationships between words. However, it is
less clear how these two types of knowledge can
be mixed. Existing approaches work mostly by
fine-tuning them afterwards (Mrkšic et al., 2016;
Faruqui et al., 2014) through additional semantic
constraints from lexical databases, such as Word-
Net (Miller, 1995). Although some joint learning
approaches have been proposed, the way that the
semantic knowledge is injected is not straightfor-
ward as the original data-structure is very different
(sequences and graphs).

In this paper we propose to represent the co-
occurrence relationship of words as a graph. Such
a representation opens up natural ways of merg-
ing this lexical graph with the semantic graph
incorporating new edges with different types.
Our experiments show that graph embeddings of
the resulting nodes (words) outperform not only
pure distributional-based embeddings, but also
retrofitted and concatenated ones, on standard
word similarity tasks.

The main contributions of this paper are:

• Combining two types of knowledge into one
structure represented as a multi-graph.

• Tailoring optimization methods from graph
embeddings to include edge types.

• Experimental results showing that they out-
perform existing methods on a standard word
similarity task. The gap is higher when less
lexical training data is available.

2 Related Work

Continuous embeddings of words rely on two rep-
resentations per word w: one considering it as to-
ken (~vw), and another one considering it as context
of another token (~v ′c). When using pointwise mu-
tual information of the co-ocurrences matrix (Levy
and Goldberg, 2014), this happens implicitly as

118

the final matrix is square. Alternatively, when us-
ing a matrix reduction technique (eg: SVD), the
second non-diagonal matrix (which is discarded
most of the time) can be considered as a contex-
tual view of the tokens.

In more modern word embeddings, like
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014), such a representation is ex-
plicit, and the final representation is either one
of the two or a combination of them (for a dis-
cussion on the impact of different combinations
see (Duong et al., 2016)).

2.1 Node embeddings

This dual representation becomes even more im-
portant when considering graph embeddings. To
find a self-supervised optimization function that
induces a representation of nodes, two different
goals are formalized (Tang et al., 2015): ho-
mophily, stating that close nodes should have a
similar representation (McPherson et al., 2001),
and structural similarity, aiming to have simi-
lar representations for words that have a similar
neighbourhood (Fortunato, 2010). The LINE al-
gorithm (Tang et al., 2015) creates node embed-
dings optimized for either of those two. When op-
timizing for homophily, the loss function consists
in maximising their first order similarity:

sim(~vi, ~vj) (1)

As in previous work, we will define the similar-
ity as the logistic function, work in log-space and
define for simplicity :

sim(~vi, ~vj) = log
1

1 + e−~vi·~vj
(2)

Optimizing for structural similarity is achieved
by focusing on the second order similarity, going
through the contextual embedding, by maximis-
ing:

sim(~vi, ~v
′
j) (3)

For two nodes with shared neighbourhoods, op-
timizing this will force their representations to
be similar. While LINE uses the alias table
method (Li et al., 2014) to optimize either Eq. 1 or
Eq. 3, word2vec uses a context window of fixed-
size c to maximize Eq. 3.

2.2 Incorporating semantic knowledge
Combining lexical and semantic information from
a knowledge-graph – for word embeddings – is
not straightforward as they consist in two differ-
ent representations.

One line of research uses knowledge-graphs
to modify word embeddings obtained through
pure distributional, lexical approaches afterwards.
Faruqui et al. (2014) do so by maximising first or-
der similarity (Eq. 1) of two words marked as syn-
onyms in a semantic graph. In order to not disrupt
the embedding space, this is regularized with a
term insisting that the new embeddings should not
be too far apart from the original ones. On top of
this Mrkšic et al. (2016) add also antonyms, push-
ing the representations of two antonyms apart.

Another line of research, closer to our proposi-
tion, is to incorporate semantic knowledge at train-
ing time. Liu et al. (2015) do so through using or-
dinal constraints (similarity of synonyms should
be higher than of non-synonyms). Many other
works trained co-occurrences together with syn-
onyms (Yu and Dredze, 2014; Bian et al., 2014;
Kiela et al., 2015) or even other terms. However,
those methods treat synonyms equally to context
words and do not modify the similarity between
them. They are therefore optimized through sec-
ond order similarity as well.

Our main contribution consists in (i) defin-
ing this problem through a conceptually simple
multi-graph data structure and (ii) treating differ-
ent edges types with different similarity (first or
second order).

3 Joint Learning of Semantic and
Lexical Embeddings

Our proposal is to construct a graph that contains
both the lexical information of co-occurrence of
words, as well as the semantic information con-
tained in knowledge graphs. We construct a multi-
edge graph, where each edge belongs to one of
a predefined class. Here, we report results using
three classes:

• lexical: we add an edge or increment its
weight between node vi and vj every time
word i occurs in the same window (of pre-
defined size c) than word j

• synonym: words i and j are connected when-
ever any of their senses belongs to the same
synset from WordNet.

119

• antonym: words i and j are connected when-
ever any of their senses are antonyms accord-
ing to WordNet.

In this paper, we will uniformly sample a syn-
onym from the set of synonyms of a word. We
define Si and Ti to respectively be the set of all
synonyms and antonyms of word i.

For a node (word) vi, we will model its relation
with one of its synonyms using first order proxim-
ity:

sim(~vs, ~vi) (4)

where s ∈ Si.
Using the multi-edge graph setting, we run an

experiment where, when possible, we also include
an antonym as an additional first order negative ex-
ample, uniformly sampled from the antonyms set
Ti of a word. For training, we use negative sam-
pling (N(v)) and end up with the following ob-
jective which we train with stochastic gradient de-
scent:

sim(~v ′j · ~vi) +
k∑

n=1

E
vn∼N(v)

(
sim

(
−~v ′n · ~vi

))

+ sim(~vs · ~vi) +
k∑

n=1

E
vn∼N(v)

(sim (−~vn · ~vi))

+ sim(−~va · ~vi) +
k∑

n=1

E
vn∼N(v)

(sim (−~vn · ~vi))

where s ∈ Si and a ∈ Ti.
This objective function accounts for both types

of similarity during learning.

4 Results

We trained our embeddings on 25 millions of
lines from the english One Billion Word Cor-
pus (Chelba et al., 2013). For any word, we
used WordNet to include its set of synonyms and
antonyms when needed. As usual, we compute
the cosine similarity between the embeddings for
each word and compare the Spearman correlation
of that similarity with human scores evaluating the
extent to which those two words are similar (syn-
onyms) or related.

Datasets compiling scores for explicitly evalu-
ating similarity include SimLex-999 (Hill et al.,
2015), RG-65 (Rubenstein and Goodenough,
1965) and MC-30 (Miller and Charles, 1991).
For comparison purposes, we include also EN-
MTURK-771 (Guy Halawi, 2012), which rather

deals with evaluating word pairs’ relatedness.
WordSimilarity-353 (Finkelstein et al., 2001)
(EN-WS-353-SIM) is less clear on whether it eval-
uates similarity or relatedness, as in contrast to its
title, human participants were asked “to estimate
the relatedness of the words”. Lofi (2015) or Asr
et al. (2018) provide good introductions to the dif-
ference between evaluating similarity versus relat-
edness.

Table 1 summarizes the different results ob-
tained with our joint learning approach (with and
without antonyms), separate results for first order
and second order representations, and word2vec
(skip-gram with negative sampling) with and with-
out retrofitting. It also includes results obtained
with concatenated representations learned from
optimizing first order proximity of synonyms with
second order embeddings (as proposed in Tang
et al. (2015)).

Concatenation surpasses the retrofitting tech-
nique in terms of Spearman correlation scores. It
requires however much more training time, as an
additional embedding is required for each new se-
mantic relationship.

In any case, the joint learning approach we
propose outperforms any kind of method on
datasets evaluating similarity. For instance, the
Spearman correlations we obtain on SimLex-999,
when solely including synonyms, improve on
the word2vec baseline by over 11%. Including
antonyms increases this difference in performance
up to 17% on this particular dataset.

Our attempt at shifting our vector space towards
a similarity nudged one seems confirmed by our
performance on EN-MTURK-771. Indeed, purely
distributional vectors obtain here better Spearman
correlation scores.

We also benchmarked the learning curve with
an increasing amount of lexical data. In Figure 1,
we plot the Spearman correlations obtained when
training with an increasing chunk of the 1 Bil-
lion Word Corpus, comparing jointly-learned vec-
tors with concatenated, LINE second order and
word2vec (vanilla and retrofitted) embeddings.

Figure 1 illustrates that provided with Word-
Net, the joint learning approach is better equipped
to learn representations when less lexical training
data is available. Indeed, higher Spearman cor-
relation scores are obtained from the beginning.
In addition to this, including antonyms further in-
creases the observed gap.

120

Method en-simlex-999 en-rg-65 en-mc-30 en-mturk-771 en-ws-353-sim

w2v 0.402 0.603 0.605 0.629 0.713
w2v retrofitted 0.444 0.667 0.653 0.620 0.689
LINE second order 0.378 0.562 0.604 0.571 0.685
LINE first order 0.304 0.533 0.516 0.536 0.642
Concat. Syn. 0.471 0.643 0.673 0.551 0.703
Joint Learning (Syn.) 0.516 0.726 0.771 0.573 0.742
Joint Learning (Syn. + Ant.) 0.580 0.705 0.749 0.570 0.675

Table 1: Spearman correlations between human-based judgements and similarity obtained using different embed-
dings learned on more than 634 millions of tokens. “Concat. Syn.” stands for results obtained when concatenating
to second order representations, first order embeddings of synonyms. “Syn.” and “Syn. + Ant.” stand for the
inclusion of synonyms and antonyms during joint learning

Word pair - relation GloVe w2v Joint Learning (Syn. + Ant.) LINE second order

(coffee, cup) - relatedness 0.335 0.333 0.133 0.207
(cheap, expensive) - antonymy 0.545 0.512 -0.504 0.556
(period, epoch) - meronymy 0.199 0.274 0.272 0.348
(torso, trunk) - synonymy 0.257 0.481 0.766 0.447

Table 2: Cosine similarity measures for different word pairs.

Figure 1: Spearman correlation scores over SimLex-
999 obtained for different embeddings on an increasing
amount of lexical data. “J.-L.” stands for joint-learning.

To illustrate the impact the joint learning ap-
proach has on the embeddings space, Table 2 pro-
vides examples showing the impact our approach
has on the cosine similarity of different kinds of
word pairs.

We observe that while the cosine similarity of
the related word pair decreases, the similarity of
two synonyms greatly increases in comparison to
the antonym pair’s similarity, which turns nega-
tive. Interestingly, the similarity of the two pro-
vided meronyms does not show any great differ-

ence with respect to the one provided by distribu-
tional methods.

5 Conclusion

We proposed a novel way of combining the lexi-
cal information of co-occurrences with that of se-
mantic knowledge bases. Our method maps all
those sources of information into a multi-graph
and modifies existing node embeddings technique
so that they treat edges of different types differ-
ently. We claim that our proposal is conceptu-
ally simpler than existing proposals which either
use the information from the semantic graph to
finetune the word embeddings obtained through
lexical information, or combine the information
in some other indirect way. Instead of this, our
method formalizes an objective to include novel
edge types. In our experiments we presented re-
sults using three types of edges. In addition to
obtaining better results when measured on a stan-
dard word similarity task, our method is less data-
greedy: it obtains better results with much less
training data than other methods. This can be
interesting in particular for the creation of in-
domain word embeddings, where curated knowl-
edge graph exists. Thus, using a multi-graph al-
lows for an easy way of incorporating additional
types of information. In particular, we are consid-

121

ering multi-lingual embeddings through the inclu-
sion of bilingual dictionaries which connect nodes
(words) of different languages.

References
Fatemeh Torabi Asr, Robert Zinkov, and Michael

Jones. 2018. Querying word embeddings for sim-
ilarity and relatedness. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 675–684.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for word embed-
ding. In Joint European conference on machine
learning and knowledge discovery in databases,
pages 132–148. Springer.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR, abs/1312.3005.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2016. Learning crosslingual
word embeddings without bilingual corpora. arXiv
preprint arXiv:1606.09403.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons.
arXiv preprint arXiv:1411.4166.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Santo Fortunato. 2010. Community detection in
graphs. Physics reports, 486(3-5):75–174.

Evgeniy Gabrilovich Yehuda Koren Guy Halawi,
Gideon Dror. 2012. Large-scale learning of word re-
latedness with constraints. KDD, pages 1406–1414.

Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian
Schaub, Kang G Shin, and Karl Aberer. 2018. Poli-
sis: Automated analysis and presentation of privacy
policies using deep learning. In 27th {USENIX} Se-
curity Symposium ({USENIX} Security 18), pages
531–548.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Process-
ing, pages 2044–2048.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Aaron Q Li, Amr Ahmed, Sujith Ravi, and Alexan-
der J Smola. 2014. Reducing the sampling com-
plexity of topic models. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 891–900.
ACM.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015. Learning semantic word embeddings
based on ordinal knowledge constraints. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1501–
1511.

Christoph Lofi. 2015. Measuring semantic similarity
and relatedness with distributional and knowledge-
based approaches. Information and Media Tech-
nologies, 10(3):493–501.

Miller McPherson, Lynn Smith-Lovin, and James M
Cook. 2001. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–
444.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes, 6(1):1–28.

Nikola Mrkšic, Diarmuid OSéaghdha, Blaise Thom-
son, Milica Gašic, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In Proceedings of NAACL-HLT,
pages 142–148.

Farhad Nooralahzadeh, Lilja Øvrelid, and Jan Tore
Lønning. 2018. Evaluation of domain-specific word
embeddings using knowledge resources. In Pro-
ceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC-
2018).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

122

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Prathusha K Sarma, Yingyu Liang, and William A
Sethares. 2018. Domain adapted word embeddings
for improved sentiment classification. In ACL.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, pages 1067–1077. International World Wide
Web Conferences Steering Committee.

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 545–550.

123

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 124–133
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Evaluating Research Novelty Detection: Counterfactual Approaches

Reinald Kim Amplayo and Seung-won Hwang and Min Song
Yonsei University

Seoul, South Korea
{rktamplayo, seungwonh, min.song}@yonsei.ac.kr

Abstract

In this paper, we explore strategies to evaluate
models for the task research paper novelty de-
tection: Given all papers released at a given
date, which of the papers discuss new ideas
and influence future research? We find the
novelty is not a singular concept, and thus in-
herently lacks of ground truth annotations with
cross-annotator agreement, which is a major
obstacle in evaluating these models. Test-of-
time award is closest to such annotation, which
can only be made retrospectively and is ex-
tremely scarce. We thus propose to compare
and evaluate models using counterfactual sim-
ulations. First, we ask models if they can dif-
ferentiate papers at time t and counterfactual
paper from future time t + d. Second, we ask
models if they can predict test-of-time award
at t + d. These are proxies that can be agreed
by human annotators and easily augmented
by correlated signals, using which evaluation
can be done through four tasks: classification,
ranking, correlation and feature selection. We
show these proxy evaluation methods comple-
ment each other regarding error handling, cov-
erage, interpretability, and scope, and thus al-
together contribute to the observation of the
relative strength of existing models.

1 Introduction

Research paper novelty detection can be defined
as follows: Given the full-text content of the pa-
per, determine if the paper is novel or not. When
comparing the novelty of two papers, we assume
that only the texts (i.e., abstract, body, and ref-
erence sections) are shown and that both papers
are published at the same time, and the venue is
not known. This task is essential because while
previous works on plagiarism detection (Harris,
2002; Lukashenko et al., 2007), citation recom-
mendation (He et al., 2010; Ji et al., 2017), and
reviewer assignment (Long et al., 2013; Liu et al.,

2014) help in the administrative part of the re-
view process, automatically detecting paper nov-
elty can speed up the paper reviewing. Also, from
the viewpoint of paper readers, it helps in filter-
ing out non-novel papers from the large number of
papers being published every day.

Despite its importance, this direction of re-
search has not been explored as much. We argue
that this is because it is hard to evaluate these mod-
els. An obvious solution is to create an evalua-
tion dataset which contains papers that are labeled
with their novelty. However, acquisition of this
dataset is practically impossible, because of sev-
eral aspects. First, novelty is not a singular con-
cept, and captures diverse aspects, being yet to be
seen with respect to previous knowledge and in-
novative to have impact on future publication. As
a result, collecting novelty judgment from review-
ers (e.g., from reviewing papers) as ground-truth,
would have low cross-annotator agreement, espe-
cially when the qualification and background of
reviewers are diverse. Second, one ideal solution
is to create a dataset of test-of-time awarded pa-
pers, which are selected by widely-known highly
qualified experts in the field, based on its impact
after more than ten years since its publication.
However, this process takes too long since we need
to wait for ten years to determine if a paper stands
the test of time or not.

In this paper, we explore evaluation methods
which do not use gold labels for comparison, as
similarly done in other NLP tasks: such as auto-
mated essay scoring (Burstein et al., 2004) and
representation learning (Schnabel et al., 2015).
Specifically, we consider the following counter-
factual simulations, in place of human annota-
tions: First, we ask models if they can differentiate
papers at time t and counterfactual paper from fu-
ture time t + d, where d is a large time gap. We
found human annotators agree counterfactual pa-

124

Classification

Ranking

…

2011 2012 2015

<nov() nov()

nov(μ2011) nov(μ2012) nov(μ2015) nov(μ2016)< < <

2016

(a) Evaluation through time

April 2011 papers

cites: 0 cites: 5 cites: 73 cites: 621

Regression

Feature selection

nov(μ2011) nov(μ2012) nov(μ2015) nov(μ2016)< < <

acccitation_prediction(μ20) acccitation_prediction(μ2011)< + nov()

(b) Evaluation through impact

Figure 1: Intuition behind our proposed evaluation
metrics for research paper novelty detection, where
nov(·) is the novelty detection model.

per from future is more novel, which suggest this
time proxy simulation can capture one aspect of
novelty. Second, we ask models if they can predict
test-of-time award at t+ d. As test-of-time award
is a sparse signal, we augment with future cita-
tions, which we empirically observe to correlate
with the award signal. Using this impact proxy,
we evaluate whether the model can differentiate
papers with high citations and those with fewer ci-
tations in the future. Through this, novelty detec-
tion can be treated as four NLP tasks: classifica-
tion, ranking, correlation, and feature selection, as
shown in Figure 1. Throughout the paper, we ex-
plain why and in what conditions we can evaluate
models through these proxies.

2 Novelty Detection in Texts

Text novelty detection is a task to identify the
set of relevant and noel texts from an ordered set
of document swithin a certain topic (Voorhees,
2004). Text novelty is defined as providing new
information that has not yet been found in any
of the previously seen sentences. Most systems
(Blott et al., 2004; Zhang et al., 2007) used TF-
IDF metric as an importance value. Other nov-
elty detection systems used entities such as named
entities as features (Jaleel et al., 2004; Tsai and

Zhang, 2011).
Unlike text novelty, research paper novelty is

rather complex. While there is no clear and precise
definition, Kaufer and Geisler (1989) attempted to
describe research paper novelty into the points be-
low:

1. Static: Novelty in a research paper is less a
property of ideas than a relationship among
research communities and ideas. It is less an
individual trait than the consistency of the pa-
per to the research community and structure.

2. Dynamic: Novelty in a research paper is de-
fined by how much the introduction of this
paper “changes” the overall relationship.

• Research papers are novel if they mas-
tered a set of conventions which en-
ables the research community to use
past ideas and go beyond in the future.
• Novelty in a research paper is a short-

hand for the standards used to contribute
to the growth of a specific disciplinary
research community.
• Novelty in a research paper is a balance

between the inertia of past ideas and the
drive to contribute to the ideas.

The above description tells us that novelty in
normal texts and research papers are not the same.
While in normal texts, it is necessary that there
is new information to be considered novel, in re-
search papers, the relationship among various re-
search entities (e.g., authors, ideas, contents, etc.)
are more important, as also shown in the literature
(Ding et al., 2013, 2014; Song and Ding, 2014;
Amplayo and Song, 2016). We thus argue, and
show in our experiments, that novelty detection
models that use entity-based features are more ef-
fective for research paper novelty detection.

3 Novelty Detection Models

Most models for novelty detection can be de-
scribed in two parts, First, a feature extraction
module is used to select useful features. Second,
a novelty scoring module is used to output a score
that represents how novel the text is.

3.1 Feature Extraction Modules
We summarize the feature extraction methods in
Figure 2. There are two types of features: Nor-
mal text features are features that are commonly

125

used in novelty detection for text which are not re-
search papers. Citation features are features that
make use of citation information (i.e., the refer-
ence section) that are usually available in research
papers.

Normal Text Features Feature extraction from
normal text include TF-IDF features (Blott et al.,
2004) and word co-occurrence features (Gamon,
2006). Since these methods are primarily used to
detect novelty in normal texts, they do not con-
sider the existence of the relationship between cit-
ing and cited papers.

• tfidf (Blott et al., 2004; Zhang et al.,
2007): product of the term frequency and the
logarithm of the inverse of the relative docu-
ment frequency.

• cooccur (Gamon, 2006): transforms text
into a graph using the fact that two words
within a window size are connected with an
edge and extracts twenty-one features based
on the node and edge statistics (e.g., number
of new edges, ratio of node to edge, etc.).

Citation Features Feature extraction from cita-
tion information uses the idea that there is a direct
relationship between the cited paper and the cit-
ing paper (Amplayo et al., 2018). Instead of using
co-occurrence graphs, as in cooccur, these mod-
els use citation graphs to extract the features from
the paper, where information from cited and citing
papers are connected using a directed edge. There
are two kinds of citation features: (a) Metadata-
based citation features, in which we create an edge
between two metadata information such as authors
and papers, and (b) Entity-based citation features
(Amplayo and Song, 2016), in which we create
an edge between two entities extracted from the
text content, such as keywords, latent topics, and
words. Features are then obtained using the same
method as in (Gamon, 2006).

• paper: simple citation graph where the
nodes are papers and the edges are citation
relationships between the papers: If paper a
cites paper b then an edge from b to a exists.

• author: simple citation graph where the
nodes are authors and the edges are citation
relationships from the authors of the cited pa-
per to the authors of the citing paper.

• keyword: a citation graph where the nodes
are RAKE-generated keywords (Rose et al.,
2010) extracted from the citing and cited in-
formation1, and the edges are connected from
the cited keywords to the citing keywords.

• topic: a citation graph where the nodes
are LDA topic vectors (Blei et al., 2003) ex-
tracted from both the citing and cited infor-
mation, and the edges are connections from
the cited to citing topics.

• word: a citation graph where the nodes are
lowercased and lemmatized nouns from both
citing information and cited information.

3.2 Novelty Scoring Module

The features extracted by the models described
above can be compared over a common novelty
detector. Majority of previous work use autoen-
coders, neural networks that are used to learn ef-
ficient codings in an unsupervised manner. When
used as a novelty detector (Japkowicz et al., 1995),
autoencoders encode the input features x into en-
codings and try to decode an output x′ such that x
and x′ are equal.

This idea can also be leveraged to detect re-
search paper novelty as well. First, we train the
autoencoder using features extracted from papers
of the training data. The papers in the training data
are papers from the past and represent the current
known research ideas and communities. Then at
test time, for each unseen paper p, we extract its
input feature xp using the feature extraction mod-
ule. The autoencoder accepts xp as input, and
outputs x′p. The novelty score of the paper is the
closeness of xp and x′p, which is calculated as the
root of the sum of the squared difference of xp
and x′p. If xp and x′p are nearly identical, then
the features extracted from paper p have already
been expected by the model; thus p is not novel.
Otherwise, p contains new information and hence
is considered novel. The autoencoder is then re-
trained to include the current paper p for the next
unseen paper.

4 Dataset of Research Papers

We gathered computer science research papers as
an evaluation dataset from arXiv, an online repos-

1Hereon, the citing information refers to the abstract of
the paper, while the cited information refers to the snippet
containing the corresponding in-text citation

126

Input Paper:
Normal text features Citation features

tfidf

cooccur

…

w1
w2

w3 …

linguistic
typology

studies

current graph paper graph

+

feature
extraction

• number of new edges
• number of added background edges
• number of background edges
• number of background vertices
• number of connecting edges
• sum of weights on new edges

…

metadata-based (author, paper)

…

a1
a2

a3 …

RCottorell
JEisner

PLadefoged

current graph paper graph

+

feature
extraction

• number of new edges
• number of added background edges
• number of background edges
• number of background vertices
• number of connecting edges
• sum of weights on new edges

…

IMaddieson

entity-based (keyword, topic, word)

…

k1
k2

k3 …

human language

phonological …

phonemes

current graph paper graph

+

feature
extraction

• number of new edges
• number of added background edges
• number of background edges
• number of background vertices
• number of connecting edges
• sum of weights on new edges

…

acoustic space

Citations:

…

current papers

TF-IDF

linguistic 0.32

typology 0.54

studies 0.12

the 0.01

…

Figure 2: The feature extraction methods used by different novelty detection models. We only show author and
keyword as examples for metadata-based and entity-based citation features, respectively, for conciseness.

itory that covers a wide range of computer sci-
ence subfields and has a total of forty subcate-
gories, ranging from Artificial Intelligence to Sys-
tems and Control. This repository is a good source
of a variety of papers that are accepted or re-
jected by conferences and journals, and may con-
tain ideas already presented in the past. Each pa-
per has its information such as the title, author
names, submission date and abstract, and its full
text in PDF format. We additionally collected the
published date information and citation count in-
formation from the same tool. The data gathered
consists of papers from the year 2000 to 2016. We
divided the data into seed data (year 2000-2005)2,
training data (year 2006-2010) and test data (year
2011-2016).

5 Counterfactual Simulation on Time

We first evaluate research paper novelty detection
models using counterfactual simulations on time.
The intuition behind this idea is that, when papers
from t and t+d are presented to human annotators,
they would agree on the latter to be more novel
(Section 5.1). Once this holds, we can evaluate as
classification between t and t + d (Section 5.2),

2The seed data is needed by models using citation fea-
tures (Amplayo et al., 2018). Other models use both seed and
training data for training.

or ranking (Section 5.3) among clusters of papers
ground by a specific time period.

5.1 Preliminary analysis

To test our intuition, we performed a prelimi-
nary experiment as follows. We collected pairs of
similar papers from ACL 2011 and ACL 2016; we
used similarity scores from averaged pretrained
word2vec word vectors (Mikolov et al., 2013) to
pair the papers. We asked four senior graduate stu-
dents who major in natural language processing to
judge which among the pair is more novel or not.
To perform a transparent experiment, we did not
reveal the data collection process and only show
the title and the abstract of the papers. We gave
annotators three choices: (A) choose paper A, (B)
choose paper B, and (C) no idea.

The results show that 42.5% of the time the
graduate students selected the 2016 papers, while
the 2011 papers were selected only 8.5% of the
time. This indicates that time can be used as
a proxy for novelty detection. In the remaining
49.0% of the time however, the students had no
idea which paper is more novel. We posit that
this is because they are only experts on a small
sub-area of NLP, which additionally shows the dif-
ficulty of creating an expert-annotated evaluation
set for the problem.

127

Model Accuracy
tfidf 55.56
cooccur 56.49
author 59.46
paper 59.48
word 59.90
keyword 61.11
topic 78.19

Table 1: Accuracies of different models on the time
classification task.

5.2 As a Classification Task

Intuition As mentioned above, the first condi-
tion is that the difference between publication
times of non-novel and novel papers should be
large. Using this, we can reduce the research pa-
per novelty detection task into a classification task,
where the task is to classify if a paper is novel or
not. Given a large time difference d, the papers
published in the past time t are given a “not novel”
label while papers published in time t+d are given
a “novel” label. If a classification model trained
using the novelty scores extracted from a novelty
detection model can easily distinguish papers from
different groups, then the model performs well.

Setup We use the 2011 test data as papers pub-
lished in time t and the 2016 test data as papers
published in time t+ d, where the time difference
d is five years. Moreover, we extract features us-
ing novelty detection models trained only until the
year 2010 training data. That is, we do not retrain
using 2011 papers to extract features from 2016
papers. We then train a logistic classifier using the
extracted features as input and the novelty label as
output. We evaluate the classifier by calculating its
accuracy using 10-fold cross validation. We report
the average accuracy of the ten subsamples. Note
that since the classifier does not have information
regarding the publication date, it tries to classify
papers knowing that all of them are published at
the same time (i.e., end of 2010).

Results The classification accuracies are re-
ported in Table 1. Results show that among
the competing models, topic performs the best
in terms of accuracy. All entity-based mod-
els perform better than other competing mod-
els, and among these models, word performs
the worst. This is because some words may not
carry novel information specific to the research
field. The metadata-based models, author and
paper, perform similarly but perform worse than

Model 1 year 6 months 3 months 1 month
tfidf -0.029 -0.100 -0.099 -0.001
cooccur 0.771 0.682 0.549 0.384
author 0.543 0.536 0.362 0.177
paper 0.771 0.882 0.859 0.821
word 1.000 0.982 0.911 0.835
keyword 1.000 0.945 0.930 0.863
topic 1.000 0.991 0.986 0.979

Table 2: Ranking results. Spearman correlation coeffi-
cient ρ for each period each novelty detection models
in comparison. Bold-faced numbers are the best scores.

the entity-based models. Finally, tfidf and
cooccur perform the worst among all models.
Note that the lower bound accuracy where we as-
sume all papers are not novel is 55.56%. tfidf
model performs eqaully with the lower bound,
which shows that the classifier trained using TF-
IDF features is not able to distinguish novel and
non-novel papers.

5.3 As a Ranking Task

Intuition The second condition mentioned
above is that evaluation through time should be
done in clusters of papers, instead of individual
papers, which are grouped by publication time.
Using this condition, we can reformulate the
novelty detection task into a ranking task, where
we are tasked to rank the clusters by their pub-
lication time, using the average novelty score of
papers in the cluster. Formally, let P1, P2, ..., Pn

be the sequential sets of papers grouped by given
multiple publication time period t1, t2, ..., tn.
Then, the average novelty scores of the papers
in the groups should be sequentially increasing,
i.e., µ(P1) < µ(P2) < ... < µ(Pn), where µ(P)
stands for the average novelty scores of research
papers in set P . We can then use a correlation
function to measure the monotonicity between
the relationship of the period and the mean of the
papers in that period.

Setup In this setup, we use four types of publica-
tion time periods, i.e., 1 year, 6 months, 3 months,
and 1 month. We extract features using models
trained until the year 2010 training data to view
all papers as papers published at the same time.
Through this setup, the model does not have in-
formation regarding the publication date. Hence
it ranks papers knowing that all of them are pub-
lished at the same time (i.e., end of 2010). We use
all the test data from years 2011 to 2016 and di-
vide them according to the different periods. We

128

Scenario BEST #cites ave. #cites % below
A 210 76.8 92.0%
B 34 25.0 86.3%

Table 3: Results of preliminary analysis for the impact
proxy. The BEST refers to the best paper.

calculate the Spearman rank-order correlation co-
efficient ρ as the rank-order correlation function.

Results The results are shown in Table 2. Over-
all, the entity-based models perform the best
among all competing models. Interestingly, all
entity-based models show a perfect correlation co-
efficient when using a 1-year time period. Among
the entity-based models, topic performs the best
on all periods. One interesting result is that as
the period gets smaller (i.e., from annually to
monthly), the correlation coefficient gets smaller.
We argue that this is because as the period gets
smaller, the evaluation condition above gets weak-
ened and thus evaluation gets unreliable. The
tfidf produces a negative correlation, which
means the novelty scores are decreasing and thus
contradicts to the intuition described above.

6 Counterfactual Simulation on Impact

Another way to evaluate research paper nov-
elty detection models is performing counterfactual
test-of-time prediction at time t. However, award
annotation at t+d is sparsely annotated to very few
papers. We observe the number of citation counts
the paper is correlated with award prediction, to
augment citation for impact proxy. As a specific
example, if both papers a and b are published at
the same time, and paper a received more citations
than paper b, then paper a is more novel than b.
Through this, we can evaluate models both intrin-
sically by assuming the number of citation count
correlates with the novelty of the paper (Section
6.2) and extrinsically by using the novelty scores
as features for the citation count prediction task
(Section 6.3).

6.1 Preliminary Analysis
To test our idea, we performed a preliminary ex-
periment to check if novelty correlates with cita-
tions with the condition that they are published
at the same time. We considered papers that re-
ceived best paper awards as a rough estimate of a
paper that is more novel than papers published at
the same time. We looked at two different scenar-
ios: (A) ACL 2011 best paper versus other ACL

Model 1-Month 3-Month 5-Month AVG
tfidf -0.043 -0.013 0.014 -0.014
cooccur 0.066 0.098 0.018 0.060
author 0.070 0.128 0.023 0.074
paper 0.079 0.097 0.034 0.070
word 0.123 0.076 0.045 0.081
keyword 0.332 0.461 0.271 0.355
topic 0.137 0.204 0.093 0.145

Table 4: Correlation results. Pearson correlation coef-
ficient between different novelty detection models and
citation counts. Bold-faced values are top three values.

2011 papers (total of 163 papers), and (B) ICML
2011 best paper versus 300 arXiv papers3 with up-
load dates closest to the ICML best paper.

We compared the best paper and other papers
using two methods. First, we calculated the aver-
age number of citations of other papers and com-
pared it with the number of citations of the best
papers. Second, we also calculated the percentage
of papers with citations below the number of cita-
tions of the best paper. Results are shown in Table
3. Results show that in both scenarios, both papers
have higher citations than average. Moreover, at
least 86.3% of the papers have a lower number of
citations than the best paper. This shows that cita-
tions can be used as a proxy for novelty detection.

6.2 As a Correlation Task
Intuition We use citation counts as labels to per-
form evaluation, assuming that the novelty score
correlates with the citation count of the paper. One
condition must be considered: Papers should al-
ready be mature, that is, enough time should have
been given to the paper to be exposed to the re-
search community. Using these assumptions, we
can simplify the task into a correlation task where
we check the relationship between the novelty
scores and the citation counts.

Setup To assure paper maturity, papers pub-
lished recently are not used for evaluation. In-
stead, we use papers that are published approxi-
mately five years before the time data gathering
was done, i.e., since we gathered the data on April
2016, we use papers that are published near the
April 2011 date. We consider three sizes of win-
dows: 1-month window where we consider only
April 2011 papers, and 3/5-month windows where
we can consider March to May 2011 papers and

3We use arXiv papers for comparison not only for the di-
versity of scenarios but also since most ICML 2011 papers
(including the best paper) were uploaded to arXiv before the
conference started.

129

February to June 2011 papers, respectively. We
use the Pearson correlation coefficient as the eval-
uation metric. We also report the average correla-
tion.

Results We show the correlation coefficient
scores of all competing models in Table 4. The ta-
ble shows that the entity-based models outperform
all the other models. Among them, keyword
performs the best on all window sizes. tfidf
performs the worst among the models, garnering
negative correlation when the window size is 1/3-
month, which means that the novelty scores pro-
duced by the model do not correspond to the cita-
tion count.

6.3 As a Feature Selection Task

Intuition We evaluate the novelty detection
models by measuring their contribution to the ci-
tation count prediction task, where we are given
a paper and its information, and we are tasked to
predict the number of citations the paper receive
after a particular given time. Previous works have
attempted to use content features (Yan et al., 2011;
Chakraborty et al., 2014) to solve the task. We ar-
gue that the novelty scores can also be treated as
content features, and the novelty detection model
that produces the most useful content feature can
be regarded as the best model for the citation count
prediction task. Using this intuition, we can refor-
mulate the task as a feature selection task.

Setup Following Yan et al. (2011), we perform a
feature selection study on the novelty scores pro-
duced by all competing models. Specifically, we
look at the performance of a citation count predic-
tion model, both (a) when only one novelty score
is isolated as a single feature, and (b) when the
same novelty score is dropped and all other nov-
elty scores are used as features. We use five typ-
ical models for citation count prediction: linear
regression (LR), k-nearest neighbors (KNN), deci-
sion trees (DT), support vector machines (SVM),
and multilayer perceptron (MLP). To train these
models, for each year from 2011 to 2015, we use
the first five months as training data, and the sixth
month as test data, obtaining five training and test
datasets. We use the coefficient of determination
R2 as the evaluation metric. Finally, we also re-
port the average of results on the five datasets.

Results The results are shown in Table 5.
keyword performs the best among all models,

having scores included in the best three scores
for all cases. topic also performs well, having
nine out of ten scores in the top three. Interest-
ingly, both author and word perform compara-
bly, having six and five out of ten scores in the top
three, respectively. We posit that this is due to pre-
vious findings (Yan et al., 2011; Chakraborty et al.,
2014) that author-based features (e.g., h-index, au-
thor rank) are informative when predicting citation
counts. authormay have learned author-specific
biases in its novelty scores. Finally, tfidf per-
forms the worst, consistently having a zero score
on all classifiers when used in isolation. This
means that tfidf does not carry any important
signal to predict citation counts.

7 Discussions

The evaluation metrics are complementary to
each other We compared existing models using
four evaluation methods. These evaluation meth-
ods have different characteristics that complement
each other. For one thing, evaluation through
time prefers topically new papers, thus evaluation
would be problematic on published papers that are
off-topic or published at a low-tier conference or
journal. However, this problem would not exist
when evaluating through impact, because off-topic
and low-tier papers normally do not have lots of
citations. Moreover, evaluation through citation
prefers papers that have many citations, hence it
can be problematic on less impactful yet highly
cited papers, such as survey papers. This is not
a problem when evaluating through time, because
the topics discussed in survey papers are not new.

The individual tasks also complement each
other. For example, the classification task provides
a direct comparison of individual paper novelty
since evaluation is done at paper-level, while the
ranking task is not very interpretable since evalua-
tion is done in groups. However, the classification
task is not able to evaluate papers between two pe-
riods t and t+d, while the ranking task makes use
of all data. It is therefore recommended that all
four evaluation methods are used for evaluation.

Novelty in normal texts and research papers
are different The results from different evalu-
ation methods presented in the paper consistently
show that models which are originally used for de-
tecting novelty in normal text, especially tfidf,
do not perform well in the task. This contradicts
to previously reported strong results (Voorhees,

130

Classifier tfidf cooccur author paper word keyword topic
when feature is isolated

LR 0.000 0.007 0.091 0.082 0.042 0.104 0.086
KNN 0.000 0.007 0.010 0.002 0.003 0.027 0.015
DT 0.000 0.002 0.000 0.000 0.038 0.023 0.003
SVM 0.000 0.007 0.084 0.082 0.042 0.104 0.086
MLP 0.000 0.006 0.100 0.083 0.075 0.091 0.090

when feature is dropped
LR 0.110 0.110 0.111 0.120 0.109 0.083 0.108
KNN 0.038 0.044 0.045 0.038 0.036 0.035 0.026
DT 0.067 0.067 0.039 0.067 0.000 0.055 0.060
SVM 0.114 0.115 0.107 0.119 0.113 0.098 0.104
MLP 0.107 0.105 0.107 0.105 0.103 0.104 0.098

Table 5: Feature selection results. R2 score of each feature (novelty score) when in isolation and when dropped
from an all-features model. When in isolation, the larger R2 is, the better. When dropped, the smaller R2 is, the
better. Bold-faced values are top three values per row.

2004) on normal text novelty detection task, where
the model obtained state of the art performance.
This supports the fact that the novelty in normal
texts and in research papers is different. Since in-
formation in a research paper is often not com-
pletely new, the tfidf model always gives a
small novelty score to newer papers, which ex-
plains the negative results.

Entity-based citation graphs are better feature
extractors On all evaluation metrics, models
with features extracted from entity-based citation
graphs, i.e. keyword and topic obtain the best
performance. One possible explanation to this is
that features extracted from entity-based citation
graphs best reflect the changes brought upon by
the paper on the relationship between entities in
the background knowledge (Ding et al., 2013).
This is defined as the static and dynamic nature of
research paper novelty in Section 2. On the other
hand, normal text novelty detection models cap-
ture features that are different from research paper
novelty, and metadata-based citation graph mod-
els capture only the static nature of research paper
novelty.

Limitations in models and evaluation One ma-
jor limitation of the existing methods is that they
do not consider the possible existence of biases
from other factors. For example, an application
of a basic machine learning model on other non-
computing fields such as philosophy or psychol-
ogy may have different intensities of novelty de-
pending on the field of the venue where the pa-
per is published. Also, papers from multidisci-
plinary fields can receive more citations because
two or more research communities are reading
them. These factors may affect the evaluation pre-

sented in this paper.
Regarding evaluation, expert-annotated labels,

though difficult to acquire in scale, are still more
desirable than our suggested estimates. The ideal
way to create this dataset is to gather papers eval-
uated for the test of time award, an award given
to papers published in the past 10 or more years
for their significant contribution by a committee
of influential researchers of the community. This
ensures that the annotators are experts and the pa-
pers have shown a noticeable impact. However,
this method is not efficient as it will need at least
ten years to annotate a small number of papers.
Moreover, this does not include annotations of pa-
pers with less intensity of novelty.

8 Conclusion

We described counterfactual simulations to evalu-
ate the research paper novelty detection task by us-
ing time and impact as proxies. Using these meth-
ods, we evaluate features used in existing models,
to find entity-based citation features, compared to
normal text features, are stronger signals to pre-
dict and explain novelty. We finally provided dis-
cussions on the advantages and disadvantages of
using these evaluation metrics and the future di-
rection of this research.

Acknowledgement

This work is supported by Micrsoft Research Asia.

References

Reinald Kim Amplayo, SuLyn Hong, and Min Song.
2018. Network-based approach to detect novelty of
scholarly literature. Inf. Sci., 422:542–557.

131

Reinald Kim Amplayo and Min Song. 2016. Build-
ing content-driven entity networks for scarce scien-
tific literature using content information. In Pro-
ceedings of the Fifth Workshop on Building and
Evaluating Resources for Biomedical Text Mining,
BioTxtM@COLING 2016, Osaka, Japan, December
12, 2016, pages 20–29.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Stephen Blott, Fabrice Camous, Paul Ferguson,
Georgina Gaughan, Cathal Gurrin, Gareth J. F.
Jones, Noel Murphy, Noel E. O’Connor, Alan F.
Smeaton, Peter Wilkins, Oisı́n Boydell, and Barry
Smyth. 2004. Experiments in terabyte search-
ing, genomic retrieval and novelty detection for
TREC 2004. In Proceedings of the Thirteenth Text
REtrieval Conference, TREC 2004, Gaithersburg,
Maryland, USA, November 16-19, 2004.

Jill Burstein, Martin Chodorow, and Claudia Leacock.
2004. Automated essay evaluation: The criterion
online writing service. AI Magazine, 25(3):27–36.

Tanmoy Chakraborty, Suhansanu Kumar, Pawan
Goyal, Niloy Ganguly, and Animesh Mukherjee.
2014. Towards a stratified learning approach to pre-
dict future citation counts. In IEEE/ACM Joint Con-
ference on Digital Libraries, JCDL 2014, London,
United Kingdom, September 8-12, 2014, pages 351–
360.

Ying Ding, Min Song, Jia Han, Qi Yu, Erjia Yan,
Lili Lin, and Tamy Chambers. 2013. Entitymet-
rics: Measuring the impact of entities. CoRR,
abs/1309.2486.

Ying Ding, Guo Zhang, Tamy Chambers, Min Song,
Xiaolong Wang, and Chengxiang Zhai. 2014.
Content-based citation analysis: The next generation
of citation analysis. JASIST, 65(9):1820–1833.

Michael Gamon. 2006. Graph-based text representa-
tion for novelty detection. In Proceedings of the
First Workshop on Graph Based Methods for Natu-
ral Language Processing, TextGraphs-1, pages 17–
24, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Robert Harris. 2002. Anti-plagiarism strategies for re-
search papers. Virtual salt, 7.

Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and
C. Lee Giles. 2010. Context-aware citation rec-
ommendation. In Proceedings of the 19th Interna-
tional Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010,
pages 421–430.

Nasreen Abdul Jaleel, James Allan, W. Bruce Croft,
Fernando Diaz, Leah S. Larkey, Xiaoyan Li,
Mark D. Smucker, and Courtney Wade. 2004.
Umass at TREC 2004: Novelty and HARD. In

Proceedings of the Thirteenth Text REtrieval Con-
ference, TREC 2004, Gaithersburg, Maryland, USA,
November 16-19, 2004.

Nathalie Japkowicz, Catherine Myers, and Mark A.
Gluck. 1995. A novelty detection approach to clas-
sification. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 95, Montréal Québec, Canada, August 20-25
1995, 2 Volumes, pages 518–523.

Xiaonan Ji, Alan Ritter, and Po-Yin Yen. 2017. Us-
ing ontology-based semantic similarity to facilitate
the article screening process for systematic reviews.
Journal of Biomedical Informatics, 69:33–42.

David S Kaufer and Cheryl Geisler. 1989. Nov-
elty in academic writing. Written Communication,
6(3):286–311.

Xiang Liu, Torsten Suel, and Nasir D. Memon. 2014.
A robust model for paper reviewer assignment. In
Eighth ACM Conference on Recommender Systems,
RecSys ’14, Foster City, Silicon Valley, CA, USA -
October 06 - 10, 2014, pages 25–32.

Cheng Long, Raymond Chi-Wing Wong, Yu Peng,
and Liangliang Ye. 2013. On good and fair paper-
reviewer assignment. In 2013 IEEE 13th Interna-
tional Conference on Data Mining, Dallas, TX, USA,
December 7-10, 2013, pages 1145–1150.

Romans Lukashenko, Vita Graudina, and Janis Grund-
spenkis. 2007. Computer-based plagiarism detec-
tion methods and tools: an overview. In Pro-
ceedings of the 2007 International Conference on
Computer Systems and Technologies, CompSysTech
2007, Rousse, Bulgaria, June 14-15, 2007, page 40.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111–
3119.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. pages 1–20.

Tobias Schnabel, Igor Labutov, David M. Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015, pages 298–307.

Min Song and Ying Ding. 2014. Topic Modeling: Mea-
suring Scholarly Impact Using a Topical Lens, pages
235–257. Springer International Publishing, Cham.

Flora S. Tsai and Yi Zhang. 2011. D2S: document-to-
sentence framework for novelty detection. Knowl.
Inf. Syst., 29(2):419–433.

132

Ellen M. Voorhees. 2004. Overview of TREC 2004. In
Proceedings of the Thirteenth Text REtrieval Con-
ference, TREC 2004, Gaithersburg, Maryland, USA,
November 16-19, 2004.

Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan,
and Xiaoming Li. 2011. Citation count prediction:
learning to estimate future citations for literature. In
Proceedings of the 20th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011,
pages 1247–1252.

Kuo Zhang, Juan Zi, and Li Gang Wu. 2007. New
event detection based on indexing-tree and named
entity. In SIGIR 2007: Proceedings of the 30th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
Amsterdam, The Netherlands, July 23-27, 2007,
pages 215–222.

133

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 134–139
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Do Sentence Interactions Matter? Leveraging Sentence Level
Representations for Fake News Classification

Vaibhav, Raghuram Mandyam Annasamy, Eduard Hovy
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

mysteryvaibhav@gmail.com, rannasam@cs.cmu.edu, hovy@cmu.edu

Abstract

The rising growth of fake news and misleading
information through online media outlets de-
mands an automatic method for detecting such
news articles. Of the few limited works which
differentiate between trusted vs other types of
news article (satire, propaganda, hoax), none
of them model sentence interactions within a
document. We observe an interesting pattern
in the way sentences interact with each other
across different kind of news articles. To
capture this kind of information for long news
articles, we propose a graph neural network-
based model which does away with the need
of feature engineering for fine grained fake
news classification. Through experiments, we
show that our proposed method beats strong
neural baselines and achieves state-of-the-art
accuracy on existing datasets. Moreover, we
establish the generalizability of our model by
evaluating its performance in out-of-domain
scenarios. Code is available at https:
//github.com/MysteryVaibhav/
fake_news_semantics.

1 Introduction

In today’s day and age of social media, there
are ample opportunities for fake news production,
dissemination and consumption. Rashkin et al.
(2017) break down fake news into three categories,
hoax, propaganda and satire. A hoax article typi-
cally tries to convince the reader about a cooked-
up story while propaganda ones usually mislead
the reader into believing a false political or so-
cial agenda. Burfoot and Baldwin (2009) defines
a satirical article as the one which deliberately
exposes real-world individuals, organisations and
events to ridicule.

Previous works (Rubin et al., 2016; Rashkin
et al., 2017) rely on various linguistic and hand-
crafted semantic features for differentiating be-
tween news articles. However, none of them try

(a) Trusted (b) Satirical

Figure 1: TSNE visualization (Van Der Maaten, 2014)
of sentence embeddings obtained using BERT (Devlin
et al., 2019) for two kind of news articles from SLN.
A point denotes a sentence and the number indicates
which paragraph it belonged to in the article.

to model the interaction of sentences within the
document. We observed a pattern in the way sen-
tences cluster in different kind of news articles.
Specifically, satirical articles had a more coherent
story and thus all the sentences in the document
seemed similar to each other. On the other hand,
the trusted news articles were also coherent but the
similarity between sentences from different parts
of the document was not that strong, as depicted
in Figure 1. We believe that the reason for such
kind of behaviour is the presence of factual jumps
across sections in a trusted document.

In this work, we propose a graph neural
network-based model to classify news articles
while capturing the interaction of sentences across
the document. We present a series of experi-
ments on News Corpus with Varying Reliabil-
ity dataset (Rashkin et al., 2017) and Satirical
Legitimate News dataset (Rubin et al., 2016).
Our results demonstrate that the proposed model
achieves state-of-the-art performance on these
datasets and provides interesting insights. Experi-
ments performed in out-of-domain settings estab-
lish the generalizability of our proposed method.

134

Dataset Trusted (# Docs) Satire (# Docs) Hoax (# Docs) Propaganda (# Docs)

LUN-train GN except ‘APW’ and ‘WPB’ (9,995) The Onion (14,047) American News (6,942) Activist Report (17,870)
LUN-test GN only ‘APW’ and ‘WPB’ (750) The Borowitz Report, Clickhole (750) DC Gazette (750) The Natural News (750)

SLN The Toronto Star, The NY Times (180) The Onion, The Beaverton (180) - -
RPN WSJ, NBC, etc (75) The Onion, The Beaverton, etc (75) - -

Table 1: Statistics about different dataset sources. GN refers to Gigaword News.

Figure 2: Proposed semantic graph neural network based model for fake news classification.

2 Related Work

Satire, according to Simpson (2003), is compli-
cated because it occupies more than one place in
the framework for humor, proposed by Ziv (1988):
it clearly has an aggressive and social function,
and often expresses an intellectual aspect as well.
Rubin et al. (2016) defines news satire as a genre
of satire that mimics the format and style of jour-
nalistic reporting. Datasets created for the task of
identifying satirical news articles from the trusted
ones are often constructed by collecting docu-
ments from different online sources (Rubin et al.,
2016). McHardy et al. (2019) hypothesized that
this encourages the models to learn characteristics
for different publication sources rather than char-
acteristics of satire. In this work, we show that
our proposed model generalizes to articles from
unseen publication sources.

Rashkin et al. (2017) extends Rubin et al.
(2016)’s work by offering a quantitative study of
linguistic differences found in articles of differ-
ent types of fake news such as hoax, propaganda
and satire. They also proposed predictive mod-
els for graded deception across multiple domains.
Rashkin et al. (2017) found that neural methods
didn’t perform well for this task and proposed to
use a Max-Entropy classifier. We show that our
proposed neural network based on graph convo-
lutional layers can outperform this model. Re-
cent works by Yang et al. (2017); De Sarkar et al.
(2018) show that sophisticated neural models can
be used for satirical news detection. To the best
of our knowledge, none of the previous works rep-
resent individual documents as graphs where the
nodes represent the sentences for performing clas-

sification using a graph neural network.

3 Dataset and Baseline

We use SLN: Satirical and Legitimate News
Database (Rubin et al., 2016), RPN: Random Po-
litical News Dataset (Horne and Adali, 2017) and
LUN: Labeled Unreliable News Dataset Rashkin
et al. (2017) for our experiments. Table 1 shows
the statistics. Since all of the previous methods
on the aforementioned datasets are non-neural, we
implement the following neural baselines,

• CNN: In this model, we apply a 1-d CNN
(Convolutional Neural Network) layer (Kim,
2014) with filter size 3 over the word em-
beddings of the sentences within a document.
This is followed by a max-pooling layer to
get a single document vector which is passed
to a fully connected projection layer to get the
logits over output classes.

• LSTM: In this model, we encode the doc-
ument using a LSTM (Long Short-Term
Memory) layer (Hochreiter and Schmidhu-
ber, 1997). We use the hidden state at the
last time step as the document vector which
is passed to a fully connected projection layer
to get the logits over output classes.

• BERT: In this model, we extract the sen-
tence vector (representation corresponding
to [CLS] token) using BERT (Bidirectional
Encoder Representations from Transform-
ers) (Devlin et al., 2019) for each sentence
in the document. We then apply a LSTM
layer on the sentence embeddings, followed

135

by a projection layer to make the prediction
for each document.

4 Proposed Model

Capturing sentence interactions in long documents
is not feasible using a recurrent network because
of the vanishing gradient problem (Pascanu et al.,
2013). Thus, we propose a novel way of encod-
ing documents as described in the next subsection.
Figure 2 shows the overall framework of our graph
based neural network.

4.1 Input Representation
Each document in the corpus is represented as
a graph. The nodes of the graph represent the
sentences of a document while the edges repre-
sent the semantic similarity between a pair of sen-
tences. Representing a document as a fully con-
nected graph allows the model to directly capture
the interaction of each sentence with every other
sentence in the document. Formally,

eij = Similarity(si, sj) (1)

We initialize the edge scores using BERT (De-
vlin et al., 2019) finetuned on the semantic textual
similarity task1 for computing the semantic sim-
ilarity (SS) between two sentences. Refer to the
Supplementary Material for more details regard-
ing the SS model. Note that this representation
drops the sentence order information but is better
able to capture the interaction between far off sen-
tences within a document.

4.2 Graph based Neural Networks
We reformulate the fake news classification prob-
lem as a graph classification task, where a graph
represents a document. Given a graphG = (E,S)
where E is the adjacency matrix and S is the sen-
tence feature matrix. We randomly initialize the
word embeddings and use the last hidden state of a
LSTM layer as the sentence embedding, shown in
Figure 2. We experiment with two kinds of graph
neural networks,

4.2.1 Graph Convolution Network (GCN)
The graph convolutional network (Kipf and
Welling, 2017) is a spectral convolutional opera-
tion denoted by f(Z l, E|W l),

Z l+1 = f(Z l, E|W l) (2)

f(Z l, E|W l) = σ(EZ lW l) (3)
1Task 1 of SemEval-2017

Here, Z l is the output feature corresponding to the
nodes after lth convolution. W l is the parameter
associated with the lth layer. We set Z0 = S.
Based on the above operation, we can define ar-
bitrarily deep networks. For our experiments, we
just use a single layer unless stated otherwise. By
default, the adjacency matrix (E) is fully con-
nected i.e. all the elements are 1 except the di-
agonal elements which are all set to 0. We set E
based on semantic similarity model in our GCN +
SS model. For the GCN + Attn model, we just add
a self attention layer (Vaswani et al., 2017) after
the GCN layer and before the pooling layer.

4.2.2 Graph Attention Network (GAT)
Veličković et al. (2018) introduced graph atten-
tion networks to address various shortcomings of
GCNs. Most importantly, they enable nodes to
attend over their neighborhoods’ features without
depending on the graph structure upfront. The key
idea is to compute the hidden representations of
each node in the graph, by attending over its neigh-
bors, following a self-attention (Vaswani et al.,
2017) strategy. By default, there is one attention
head in the GAT model. For our GAT + 2 Attn
Heads model, we use two attention heads and con-
catenate the node embeddings obtained from dif-
ferent heads before passing it to the pooling layer.
For a fully connected graph, the GAT model al-
lows every node to attend on every other node and
learn the edge weights. Thus, initializing the edge
weights using the SS model is useless as they are
being learned. Mathematical details are provided
in the Supplementary Material.

4.3 Hyperparameters
We use a randomly initialized embedding matrix
with 100 dimensions. We use a single layer LSTM
to encode the sentences prior to the graph neural
networks. All the hidden dimensions used in our
networks are set to 100. The node embedding di-
mension is 32. For GCN and GAT, we set σ as
LeakyRelU with slope 0.2. We train the models for
a maximum of 10 epochs and use Adam optimizer
with learning rate 0.001. For all the models, we
use max-pool for pooling, which is followed by a
fully connected projection layer with output nodes
equal to the number of classes for classification.

5 Experimental Setting

We conduct experiments across various settings
and datasets. We report macro-averaged scores in

136

Figure 3: Attention heatmaps generated by GAT for 2-way classification. Left: Trusted, Right: Satire.

Model Precision Recall

CNN 67.5 67.5
LSTM 82.2 81.4
BERT 78.1 78.1
SoTA* (Rubin et al., 2016) 88.0 82.0

Our Models

GCN 85.9 85.0
GCN + SS 86.4 86.3
GCN + Attn 87.1 86.9
GCN + Attn + SS 87.8 87.8
GAT 86.2 86.1
GAT + 2 Attn Heads 89.1 88.9

Table 2: 2-way classification results on SLN. *n-fold
cross validation (precision, recall) as reported in SoTA.

all the settings.

2-way classification b/w satire and trusted
articles: We use the satirical and trusted news
articles from LUN-train for training, and from
LUN-test as the development set. We evaluate
our model on the entire SLN dataset. This is
done to emulate a real-world scenario where we
want to see the performance of our classifier on
an out of domain dataset. We don’t use SLN for
training purposes because it just contains 360
examples which is too little for training our model
and we want to have an unseen test set. The best
performing model on SLN is used to evaluate the
performance on RPN.

4-way classification b/w satire, propaganda,
hoax and trusted articles: We split the LUN-
train into a 80:20 split to create our training and
development set. We use the LUN-test as our out
of domain test set.

6 Results

Table 2 shows the quantitative results for the two
way classification between satirical and trusted
news articles. Our proposed GAT method with 2
attention heads outperforms SoTA. The semantic

Model LUN-dev LUN-test

CNN 96.48 54.04
LSTM 88.75 55.05
BERT 95.07 54.87
SoTA* (Rashkin et al., 2017) 91.0 65.0

Our Models

GCN 96.76 65.0
GCN + Attn 97.57 67.08
GAT 97.28 65.51
GAT + 2 Attn Heads 97.82 66.95

Table 3: 4-way classification results for different mod-
els. We only report F1-score following the SoTA paper.

similarity model does not seem to have much im-
pact on the GCN model, and considering the com-
puting cost, we don’t experiment with it for the
4-way classification scenario. Given that we use
SLN as an out of domain test set (just one over-
lapping source, no overlap in articles), whereas
the SoTA paper (Rubin et al., 2016) reports a 10-
fold cross validation number on SLN. We believe
that our results are quite strong, the GAT + 2 Attn
Heads model achieves an accuracy of 87% on the
entire RPN dataset when used as an out-of-domain
test set. The SoTA paper (Horne and Adali, 2017)
on RPN reports a 5-fold cross validation accuracy
of 91%. These results indicate the generalizability
of our proposed model across datasets. We also
present results of four way classification in Table
3. All of our proposed methods outperform SoTA
on both the in-domain and out of domain test set.

To further understand the working of our pro-
posed model, we closely inspect the attention
maps generated by the GAT model for satirical and
trusted news articles for the SLN dataset. From
Figure 3, we can see that the attention map gen-
erated for the trusted news article only focuses
on two specific sentence whereas the attention
weights are much more distributed in case of a
satirical article. Interestingly enough the high-
lighted sentences in case of the trusted news ar-
ticle were the starting sentence of two different

137

paragraphs in the article indicating the presence of
similar sentence clusters within a document. This
opens a new avenue for understanding the differ-
ences between different kind of text articles for fu-
ture research.

7 Conclusion

This paper introduces a novel way of encoding ar-
ticles for fake news classification. The intuition
behind representing documents as a graph is moti-
vated by the fact that sentences interact differently
with each other across different kinds of article.
Recurrent networks are unable to maintain long
term dependencies in large documents, whereas
a fully connected graph captures the interaction
between sentences at unit distance. The quantita-
tive result shows the effectiveness of our proposed
model and the qualitative results validate our hy-
pothesis about difference in sentence interaction
across different articles. Further, we show that our
proposed model generalizes to unseen datasets.

Acknowledgement

We would like to thank the AWS Educate program
for donating computational GPU resources used in
this work. We also appreciate the anonymous re-
viewers for their insightful comments and sugges-
tions to improve the paper.

Supplementary Material

The supplementary material is available2 along
with the code which provides mathematical details
of the GAT model and few additional qualitative
results.

References
Clint Burfoot and Timothy Baldwin. 2009. Automatic

satire detection: Are you having a laugh? In Pro-
ceedings of the ACL-IJCNLP 2009 conference short
papers, pages 161–164. Association for Computa-
tional Linguistics.

Sohan De Sarkar, Fan Yang, and Arjun Mukherjee.
2018. Attending sentences to detect satirical fake
news. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3371–
3380.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
2https://github.com/MysteryVaibhav/

fake_news_semantics/blob/master/
EMNLP2019_TextGraphs_Supplementary.pdf

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Benjamin D Horne and Sibel Adali. 2017. This just in:
fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In Eleventh International AAAI Conference
on Web and Social Media.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Robert McHardy, Heike Adel, and Roman Klinger.
2019. Adversarial training for satire detection: Con-
trolling for confounding variables. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 660–665, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2931–2937.

Victoria Rubin, Niall Conroy, Yimin Chen, and Sarah
Cornwell. 2016. Fake news or truth? using satirical
cues to detect potentially misleading news. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Deception Detection, pages 7–17.

Paul Simpson. 2003. On the discourse of satire: To-
wards a stylistic model of satirical humour, vol-
ume 2. John Benjamins Publishing.

Laurens Van Der Maaten. 2014. Accelerating t-sne us-
ing tree-based algorithms. The Journal of Machine
Learning Research, 15(1):3221–3245.

138

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Fan Yang, Arjun Mukherjee, and Eduard Dragut. 2017.
Satirical news detection and analysis using atten-
tion mechanism and linguistic features. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1979–1989,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Avner Ziv. 1988. Teaching and learning with humor:
Experiment and replication. The Journal of Experi-
mental Education, 57(1):4–15.

139

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 140–150
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Faceted Hierarchy: A New Graph Type to Organize Scientific Concepts
and a Construction Method

Qingkai Zeng†, Mengxia Yu†, Wenhao Yu†, Jinjun Xiong‡, Yiyu Shi†, Meng Jiang†
†Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, Indiana, USA
‡IBM T. J. Watson Research Center, Yorktown Heights, NY USA

†{qzeng, myu2, wyu1, yshi4, mjiang2}@nd.edu,‡jinjun@us.ibm.com

Abstract
On a scientific concept hierarchy, a parent con-
cept may have a few attributes, each of which
has multiple values being a group of child con-
cepts. We call these attributes facets: clas-
sification has a few facets such as applica-
tion (e.g., face recognition), model (e.g., svm,
knn), and metric (e.g., precision). In this
work, we aim at building faceted concept hi-
erarchies from scientific literature. Hierar-
chy construction methods heavily rely on hy-
pernym detection, however, the faceted rela-
tions are parent-to-child links but the hyper-
nym relation is a multi-hop, i.e., ancestor-to-
descendent link with a specific facet “type-of”.
We use information extraction techniques to
find synonyms, sibling concepts, and ancestor-
descendent relations from a data science cor-
pus. And we propose a hierarchy growth algo-
rithm to infer the parent-child links from the
three types of relationships. It resolves con-
flicts by maintaining the acyclic structure of a
hierarchy.

1 Introduction

Concept hierarchies play an important role in
knowledge discovery from scientific literature.
Concepts are expected to be organized in a hi-
erarchical structure like chapters-to-sections-to-
subsections in textbooks. In this work, we propose
a new representation of scientific concept hierar-
chy, called faceted concept hierarchy. Under this
hierarchy, the links should not only carry parent-
to-child relations but also the semantic relations
(facets) between the concepts. Figure 1 presents a
part of the faceted hierarchy in Data Science. The
parent node is “classification” and the child con-
cepts of it are excepted to be grouped into three
facets, each of which has three child-concepts.
One example of the faceted relation we define is
as follows:

parent(“classification”, “svm”): “models”,

support_vector
_machines; svm

decision
_trees

fraud
_detection

text
_categorization

k_nearest
_neighbor; knn classification face

_recognition

precision recall
f1_measure;
f1_score

models

metrics

applications

machine_learning

python spark tensorflow regression clustering ……

tools problems

Figure 1: The idea of faceted concept hierarchy
from Data Science publications: For student learn-
ing, concepts are expected to be organized in a hi-
erarchical structure. For example, here the nine
child-concepts of “classification” (in dashed line
blocks) should be grouped into three facets (“mod-
els”, “applications”, and “metrics”).

which is more complete than “type-of” relations in
the works that focused on taxonomy or ontology
induction (Liang et al., 2017; Gupta et al., 2017;
Zhang et al., 2018; Liu et al., 2018) like this:

type-of (“svm”, “classification model”).

The basic units of the hierarchy include concept
nodes and their parent-to-child relations. Three
types of essential structural relations are expressed
in paper texts and can be used to infer the parent-
to-child relations. The relation types include (1)
synonym (concept names on the same node), (2)
sibling (concept nodes having the same parent),
and (3) ancestor-to-descendant (nodes on the di-
rect descending line). The task of hierarchy con-
struction has three challenges. First, there is no
sufficient human annotated data or available dis-
tant supervisory sources to feed into (deep) learn-
ing models. It is necessary to extract the concepts
and relations in an unsupervised manner. Second,
the extracted relations could be noisy at the long
tail of the frequency distribution. When inferring
the parent-to-child relations, the algorithm should
consider the trustworthiness of the synonym, sib-

140

ling, and ancestor relations. Also, it is important to
detect redundant or conflicting relations (links) on
the hierarchy. Third, it requires a joint process of
clustering child-concepts into the parent concept’s
facets and identifying words as facet indicators.

We propose a novel framework HiGrowth that
grows faceted hierarchies from literature data. The
framework has five modules: (M1) scientific con-
cept extraction, (M2) concept typing, (M3) hierar-
chical relation extraction, (M4) hierarchy growth,
and (M5) facet discovery. The M1–M3 NLP mod-
ules were implemented in an unsupervised man-
ner. First, we use two complementary keyphrase
mining tools to extract concepts: one is rule-based
and the other is a statistical learning method. Sec-
ond, we use a KNN-based method, simple and ef-
fective, to assign types (e.g., $Problem, $Method)
to the concepts. Third, we use textual patterns
to extract the hierarchical relations (i.e., synonym,
sibling, and ancestor). To address the second chal-
lenge, we design an efficient algorithm that grows
a concept hierarchy by scanning the set of relation
tuples (sorted by their frequency from the high-
est to the lowest) just once and inferring parent-
to-child relations. This algorithm will be able to
identify unnecessary, invalid, and redundant links
during the process of hierarchy growth in spite of
serious noise at the long tail. Finally, we use a
word clustering method to discover the facets of
every parent concept and assign child concepts to
each of the facets.

Thirty-two junior/senior students who took the
Data Science course in Spring 2018 were asked
to manually label the parent-child concept pairs.
We finalize a set as ground-truth if the pair was la-
belled by more than half of the participants. The
F1 score of building the parent-to-child links is
0.73. The F1 score of 2-hop paths is 0.69. Both
precision values are above 0.99, showing that the
links in the hierarchy are precise because of the
careful design of the growth algorithm, but the
pattern-based methods have limitations of finding
all possible relations.

2 HiGrowth – Part I: Information
Extraction Components (M1 – M3)

2.1 Data Description

We collected full text, all sections including ab-
stract, introduction, and experiments, of 5,850 pa-
pers in the proceedings of ACM SIGKDD 1994–
2015, IEEE ICDM 2001–2015, The Web Confer-

Table 1: Neighboring words for concept typing.
Type Triggers on the left Triggers on the right
$Problem problem, problems task, tasks, demands
$Method methods method, model, algorithm
$Object number function
$Metric measure, terms measures, scores, values

support_vector_machine;
support_vector_machines;

SVM; SVMs

synonym(“support
_vector_machines”,
“SVMs”)

sibling(“precision”,
“recall”)

ancestor(“machine
_learning”, “SVM”)

precision recall

machine_learning

SVM

…
…

…

descendant

childchi
ld

Figure 2: Three types of hierarchical relations.

ence 2001–2015 and ACM WSDM 2008–2015.

2.2 M1: Scientific Concept Extraction

We use phrase mining tools, AutoPhrase (Shang
et al., 2018) & SCHBase (Adar and Datta, 2015),
to extract scientific concepts from data science
papers. AutoPhrase adopted distant supervision
and large-scale statistical techniques; SCHBase
focused on a tendency to expand keyphrases by
adding terms, coupled with a pressure to abbrevi-
ate to retain succinctness in academic writing.

2.3 M2: Concept Typing

We use a simple but effective method to clas-
sify the concepts into four types: $Problem (e.g.,
“fraud detection”), $Method (e.g., “svm”), $Ob-
ject (e.g., “frequent patterns”), and $Metric (e.g.,
“accuracy”). We assume that the neighboring non-
stop word indicates the concept’s type, for exam-
ple, the trigger word “problem” in the sentence
“. . . the problem of fraud detection” suggests that
“fraud detection” is a $Problem. We manually se-
lect a set of 20 trigger words that indicate concept
types when they appear left/right next to the con-
cepts. Table 1 shows a few examples. If in the text
one concept has a left/right neighboring word in
the set, the corresponding type gets one vote. For
each concept, we count the votes on every type and
use the strategy of majority voting (MajVot) to de-
termine the predicted type (i.e., the most voted).

2.4 M3: Hierarchical Relation Extraction

In order to find the relations in an unsupervised
manner on the scientific text, we use textual pat-
terns, mainly Hearst Patterns (Hearst, 1992), to

141

accurately extract three types of hierarchical rela-
tions, where X and Y are two concept names:
• synonym(X , Y), if X and Y will be included

in the same concept node on the hierarchy;
• sibling(X , Y), if the concept nodes of X and
Y will have the parent node;
• ancestor(X , Y), if there will be a path from

the concept node of X to the node of Y .
Note that synonym and sibling relations are sym-
metric, while ancestor-to-descendant is asymmet-
ric (see Figure 2).
Find synonym(X , Y). Two ideas to find synonym
concepts: First, the plural form of a noun or noun-
phrase concept can be considered as a synonym,
for example, we have synonym(“SVM”, “SVMs”)
and synonym(“decision tree”, “decision trees”).
Second, the abbreviation inside of parentheses
can be considered as a synonym of the full
name preceding the parenthesis. We have syn-
onym(“support vector machines”, “SVMs”) from
text “. . . Support Vector Machines (SVMs). . . ”.
Find ancestor(X , Y). Hearst patterns such as
• X such as {Y1, Y2, . . . , (and|or)} Yn,
• X {,} including {Y1, Y2, . . . , (and|or)} Yn,

have been often used to find “isA” relation or
called hypernym for taxonomy construction: Yi
(e.g., “dog”) is a kind of X (e.g., “mammal”).
However, we expect to extract faceted hierarchi-
cal relations such as
• ancestor(“machine learning”, “SVM”): models;
• ancestor(“machine learning”, “classification”): tasks;
• ancestor(“classification”, “SVM”): models;

instead of
• isA(“machine learning models”, “SVM”);
• isA(“machine learning tasks”, “classification”);
• isA(“classification models”, “SVM”),

if the text contains
• . . .machine learning models such as SVM. . . ;
• . . .machine learning tasks such as classification. . . ;
• . . . classification models such as SVM. . . ,

especially when “machine learning” has been ex-
tracted as a concept. Note that we are not confi-
dent to say every relation given by pattern match-
ing is parent-to-child. We denote the relation as
ancestor. We expect that “machine learning” con-
nects to “SVM” through “classification” on the hi-
erarchy instead of a direct connection.

Therefore, we modify the patterns as below:
• X <pl> such as {Y1, . . . , (and|or)} Yn,
• X <pl> including {Y1, . . . , (and|or)} Yn,

where <pl> is the plural form of a noun or noun
phrase, e.g., “models” and “tasks”. We extract an-
cestor(X , Yi) from the above patterns. We will

X
AX DX

Y
AY DY

PX

PY

CX

CY

child
child

descendant desce
ndant

child
child

descendant desce
ndant

synonym(X, Y) sibling(X, Y) ancestor(X, Y)

— PX ∩PY≠ ∅ Y ∈DX
ó X ∈AY

PX ∩PY≠ ∅
OR Y ∈DX
OR X ∈DY

Y ∈DX
OR X ∈DY

PX ∩PY≠ ∅
ORCX ∩CY≠ ∅
OR X ∈DY

If matched none of the above conditions, then

the hierarchy H with the relation between X and Y.
UPDATE

PASS
(no need to
add)

STOP
(should not
add)

Figure 3: Check if the relation is unnecessary
(“PASS”) or invalid (“STOP”) for updatingH.

infer concrete parent-to-child relations and parent
concept’s facets in the next section.
Find sibling(X , Y). Shorter patterns in which the
ancestor concept names are missing occur more
frequently in the text, for example:
• (<pl>) such as {Y1, Y2, . . . , (and|or)} Yn,
• (<pl>) including {Y1, Y2, . . . , (and|or)} Yn,

and other patterns like
• Y1, Y2, . . . , and|or (other) <pl>.
We extract sibling(Yi, Yj) from these patterns.

The number of sibling relations is more than the
number of the ancestor relations, and the sibling
relations, e.g., sibling(“precision”, “recall”), bring
useful information to hierarchy induction, say, Yi
and Yj have the same parent concept node.

We use the strategy of majority voting to choose
one relation type for each pair of concepts. We as-
sume that a pair of concepts can have no or only
one relation among synonym, sibling, and ances-
tor. However, the relational extractions may still
be noisy due to the long tail. Next we discuss how
to construct a high-quality concept hierarchy from
a set of the three types of relations with noise.

3 HiGrowth – Part II: Hierarchy Growth
(M4) and Facet Discovery (M5)

3.1 M4: The Hierarchy Growth Algorithm

Given a set of relations rel(X , Y) and their sup-
port (i.e., frequency), construct a hierarchy H in
which the links are directional indicating parent-

142

X, Y ∉ H

Y ∉ HXAX DX

XAX DX YAY DY

X, YAX DX

X, Y
AX
∪
AY

DX
∪
DY

X, Y

(a) GrowH with symmetric synonym(X , Y).

X, Y ∉ H

Y ∉ HX
PX

X
NIL

Y
child

child

chil
d

descendant X
PX chil

d

descendant

Y
child

X
PX chil

d

descendant

Y
PY chil

d

descendant XPX
∪
PY

chil
d

descendant

Y
child

des
cen
dan

teliminate NILs

(b) GrowH with symmetric sibling(X , Y).
X, Y ∉ H

Y ∉ HX

X Ydescendant

X Ydescendant

YX ∉ H YX descendant

X Y YX descendant

remove redundant links

(c) GrowH with asymmetric ancestor(X , Y).

Figure 4: Hierarchy growth with a new relation.

X

A

ch
ild
/de
sc
en
da
nt

Y

child/descendant

descendant

A

X

ch
ild
/de
sc
en
da
nt

Y

descendant

X

Y

de
sc
en
da
nt

A

child/descendant

�
descendant
�

descendant
�

Figure 5: Remove redundancy when adding ances-
tor(X , Y) to the hierarchy.

to-child relations between concepts, where rel ∈
{synonym, sibling, ancestor}. H should have no
unnamed nodes, and have no unnecessary or in-
valid or redundant links. Specifically, the unnec-
essary means that the relation is correct but it does
not contain extra information for the hierarchy.
We will define these characteristics when we in-
troduce each step of it in details. An overview of
the algorithm comes as below.
• InitializeH as empty;
• Scan the relations from the highest support to

the lowest:
– Check if the relation is unnecessary or

invalid to be added into H (see Fig-
ure 3). Skip it if yes.

A
NIL

X
child

child

Y
C

B
child

child

A
NIL

X
child

Y
C

Bchild

A

Xch
ild

Y
C

B

child
sibling(X, Y)

eliminate NILs
if non-NIL exists

X
NIL

Y
child

child

A de
sce
nd
an
t

X
NIL

Y
child

A ch
ild

X
A

Y
child

child

specialize
descendant
to child eliminate NILs

When adding a new sibling relation into the hierarchy:

When post-processing descendant relations in the hierarchy:

de
sc
en
da
nt

Figure 6: Two scenarios that NIL nodes can be
eliminated when finalizing the hierarchy.

– Grow the hierarchy H with this relation
(see Figure 4).

– Remove redundant links when the rela-
tion is ancestor (see Figure 5).

• Narrow down ancestor relations to parent-to-
child when the scan completes (see Figure 6).

We denote different sets of connected nodes
given a concept node X as below (see Figure 3):
• PX is the set of parent nodes of X: there is

at least one direct link from ∀Z ∈ PX to X;
• CX is the set of child nodes of X: there is at

least one direct link from X to ∀Z ∈ CX ;
• AX is the set of ancestor nodes of X: there

is at least one path but no direct link from
∀Z ∈ AX to X;
• DX is the set of descendant nodes ofX: there

is at least one path but no direct link from X
to ∀Z ∈ DX .

Check if a relation is invalid (Figure 3). Given a
new relation synonym(X , Y), if there has been any
other relation between X and Y such as ancestor
(i.e., X ∈ DY or Y ∈ DX) or sibling (i.e., PX ∩
PY 6= ∅), this new relation is invalid to be added
to the H. Given sibling(X , Y), if X and Y have
at least one parent, we skip; if there has been an
ancestor relation between X and Y , the sibling
relation is invalid. Given ancestor(X , Y), if there
has been path from X to Y (i.e., Y ∈ DX), we
skip it; if there has been a sibling relation (i.e.,
PX ∩ PY 6= ∅) or a descendant relation (i.e., X ∈
DY), the ancestor relation is invalid.
Grow the hierarchyH with a new relation (Fig-
ure 4). We sort valid relations by their frequen-
cies. For synonym(X , Y), we merge node X and
Y in H: if neither was in H, we create a new iso-
lated node named “X , Y ”; if one of them existed
in H, we update the name of the existing node as
“X , Y ”; if both existed, we merge their ancestor
nodes as the new ancestor nodeAX ∪AY , and we

143

Table 2: Data science concept examples extracted
by two complementary phrase mining tools.

Keyword Count Keyphrase Count
clustering 22,607 data mining 8,120
classification 19,488 machine learning 4,195
accuracy 18,108 feature selection 3,320

(a) AutoPhrase finds quality keywords/phrases of good
statistical features (e.g., frequency, concordance).

Keyword Count Keyphrase Count
SVM 5,774 least squares support vector machine 4
LDA 3,548 root-mean-square error 3
AUC 2,542 block coordinate gradient descent 1

(b) Some typical examples of acronyms and abbreviation
expansions found by SCHBase.

merge their descendant nodes as the new descen-
dant node DX ∪ DY .

For sibling(X , Y), if neither of the concepts ex-
isted, we create a “NIL” node as the parent node
to each concept node; if one of them existed, for
each parent node in PX , we add Y as a child node
of it; if both existed, we merge their parent nodes
as the parent node of each and eliminate the NILs.

For ancestor(X , Y), we add a descendant link
from X to Y . When X and Y are in H, we elimi-
nate the NILs and remove the redundant links.

When adding a new relation sibling(X , Y), we
merge their parent nodes. If there has been at least
one non-NIL node in the set of parent nodes, we
remove the NILs. When adding an ancestor node
of either X or Y , if they share a NIL parent node,
we remove the NIL node.
Remove redundant links when growing with
ancestor(X , Y) (Figure 5). On the concept hi-
erarchy, we allow only one path from an ancestor
node to a descendant node. Therefore, when we
add a new ancestor(X , Y), there are three situa-
tions of having a redundant link. First, if there has
been a path from X to Y , the new relation is re-
dundant. For example, suppose on H, A (“svm”)
is a descendant node of X (“classification”) and
Y (“ls-svm”) is a descendant node of A (“svm”).
Then a new relation ancestor(“classification”, “ls-
svm”) is actually inferable so it is redundant. We
do not add it to the hierarchy. For the other two
situations, we also remove the existing, redundant
link in the hierarchy.

3.2 M5: Facet Word Discovery using Context
Word Clustering

For each parent node, we decompose a 3-order
tensor, child node by type of child node by con-
text word, in which each entry is the count of
the context word (e.g., “models”) used in the pat-

Table 3: Performance of concept typing.
Accuracy (True/False)

MajVot 0.874 (188/27)
MajVot+Grouping 0.963 (207/8)

Table 4: False type predictions in red.
Concept Prediction Ground Truth
topic model $Method $Method
topic models (synonym) $Problem $Method
mean absolute error $Metric $Metric
area under the curve (sibling) $Method $Metric

(a) MajVot: 27 false predictions.

Concept Prediction Ground Truth
frequent patterns $Object $Object
principal components $Method $Object
information gain $Metric $Object
cluster analysis $Method $Problem

(b) MajVot+Grouping: 8 false predictions.

terns (e.g., “$Problem:classification models such
as $Method:naı̈ve bayes and $Method:svm”) that
indicate the semantic relation between the parent
node (e.g., “classification”) and child node (e.g.,
“svm”). The decomposition assigns a cluster of
context words to each group of child nodes. We
consider the most frequent context word in the
cluster as the facet of the child nodes group. We
find three groups of context words:
• {“algorithm(s)”,“model(s)”,“method(s)”,

“approach(es)”, “technique(s)”. . . };
• {“application(s)”,“problem(s)”,“task(s)”. . . };
• {“measure(s)”,“metric(s)”. . . }.

4 Experiments

We conduct experiments to answer three ques-
tions: (1) Are the three NIP modules effective in
extracting hierarchical relations? (2) Does the hi-
erarchy growth algorithm generate a hierarchy of
better quality than existing methods? Are NIL
nodes and redundant link removal necessary? (3)
What does the result hierarchy look like?

4.1 Results on Three IE Components

M1: Scientific concept extraction. Table 2
shows examples of data science concepts the tools
extracted. The learning module in AutoPhrase can
segment words and phrases of good statistical fea-
tures like high frequency. There is often no am-
biguity when we lowercase them but the phrase
lengths tend to be short. SchBase has a different
philosophy: it looks for abbreviation expansions
that could be long and of very low frequency. We
show some case studies in Table 2. For result of

144

Table 5: Number of concepts of each type.
$Problem $Method $Object $Metric

Count (predicted) 52 104 9 50
Count (ground truth) 53 100 13 49

Table 6: Number of relations for each type.
synonym sibling ancestor

unique concept pairs 41 234 138
extractions 1,966 1,379 381

AutoPhrase, some 1-gram and n-gram high qual-
ity phrase are in Table 2a. For results of SchBase,
some acronyms and typical abbreviation expan-
sions we selected are in Table 2b. With these two
complementary tools, we harvest a collection of
215 data science concepts.
M2: Concept typing. Table 3 shows that the
accuracy of concept typing (a 4-class classifi-
cation task) is 0.874. Table 4a gives two of
the 27 MajVot’s false predictions. We observe
that some synonym/sibling concept names like
“topic model” and “topic models” have inconsis-
tent predicted types due to the sparsity of their
neighboring words. Therefore, we leverage the
synonym/sibling relations discovered in the next
subsection to group the related concept names
together and determine their type based on the
neighboring words of all the concepts in the group
(called MajVot+Grouping). The accuracy is im-
proved significantly to 0.963. Table 4b shows
three of the 8 false cases among 215 predictions.
Table 5 shows the number of concepts of each type
we have for hierarchy induction.
M3: Hierarchical relation extraction. Table 6
gives the number of relation tuples we extracted
for each type. The relation synonym has the high-
est number of extractions while sibling gives the
most unique concept pairs.

4.2 Results on Hierarchy Quality Evaluation

Evaluation metrics. Based on the manually la-
belled parent-to-child relations, we evaluate the
quality of the resulting hierarchy with three stan-
dard IR metrics, precision, recall, and F1 score,
on extracting concept pairs that have a 0-hop path
(i.e., synonyms), a 1-hop path (i.e., “parent-to-
child” relation), and a 2-hop path (i.e., ancestor
relation as parent’s parent). A higher score means
better performance.
Baseline method. It is not fair to compare with
taxonomy construction methods because we are
targeting a different problem, that is to generate
a concept hierarchy of facets with three kinds of

Table 7: Comparing HiGrowth with baselines on
building hierarchy from data science literature.

Method Path Precision Recall F1
0-hop 1.0 .5034 .6697

TAXI 1-hop 1.0 .4004 .5719
2-hop 1.0 .1831 .3095

HiGrowth 0-hop 1.0 .5294 .6923
w/o “NIL” 1-hop .9482 .4583 .6179

2-hop .9499 .3038 .4603
0-hop 1.0 .5294 .6923

HiGrowth 1-hop .9926 .5781 .7307
2-hop .9987 .5253 .6885

hierarchical relations. Therefore, we choose to
compare with a hierarchy induction method, called
TAXI (Panchenko et al., 2016), and we feed it with
all the relations we mined so that we only com-
pare on the performance of hierarchy induction al-
gorithms. However, TAXI has no module to con-
sider the sibling relations but we have the “NIL”
mechanism. TAXI goes through all the relations
several times, removes cycles, and links discon-
nected components to the root, while we consider
the relation weights and generate the hierarchy in a
growth manner for one scan. Therefore, compared
with TAXI, HiGrowth is a more efficient algorithm
on generating a facet concept hierarchy.

Quality analysis. As shown in Table 7, Hi-
Growth consistently outperforms TAXI on all three
kinds of paths: it improves synonym detection by
3.4%, parent relation extraction by 27.8%, and 2-
hop ancestor relation extraction by from 0.31 to
0.69. Actually, the HiGrowth variant that disabled
the generation and removal of “NIL” node can
still outperform TAXI because the hierarchy grows
with relations from the most confident to the least
confident. With the “NIL” nodes, HiGrowth im-
proves the 1-hop relation by 18.3% and 2-hop re-
lation by 49.6%. This shows that it is important to
carefully consider the sibling relations.

4.3 Results on Removing Redundant Links

Figure 7 presents redundant links that HiGrowth
skipped or removed when adding a new relation
ancestor(X , Y) for each of the three situations, re-
spectively. The most common situation is that, we
have ancestor(A,X) and ancestor(A, Y) in the hi-
erarchy, and now we have a new link to specify the
relation between X and Y , two descendants of A.
IfX is an ancestor of Y , we remove the redundant
link ancestor(A, Y). We can see a few examples
of the 93 redundant relations. A is a more gen-

145

X

A

ch
ild
/de
sc
en
da
nt

Y

child/descendant

descendant

A

X

ch
ild
/de
sc
en
da
nt

Y

descendant

X

Y

de
sc
en
da
nt

A

child/descendant

�

descendant
�

descendant
�

X A Y
data_mining classification naïve_bayes
data_mining classification decision_trees
data_mining classification support_vector_

machines
data_mining dimensionality_

reduction
principal_comp
onent_analysis

… … …
ensemble boosting adaboost

A X Y
data_science data_mining clustering
data_science machine_

learning
logistic_
regression

data_science data_mining outlier_
detection

data_science machine_
learning

random_
forests

… … …
machine_
learning

supervised_
learning

neural_
networks

classification decision_tree CART
classification decision_tree C4.5

X Y A
data_mining frequent_pattern

_mining
fp-growth

data_mining frequent_pattern
_mining

apriori

7

93

2

Figure 7: The redundant links that the HiGrowth algorithm removed during hierarchy construction.

eral (ancestor-level) concept. The frequency of A
is often higher than the frequency of X or Y . The
weights of ancestor(A,X) and ancestor(A, Y) are
bigger than the weight of ancestor(X , Y). So the
latter relation will be added to the hierarchy when
the other two have been on the hierarchy.

4.4 Visualizing the Concept Hierarchy

Figure 8 presents the concept hierarchy that Hi-
Growth extracted from the Data Science publica-
tions. The hierarchy is not very large but still
not visible in one page, so we enlarge three parts
of the hierarchy, including (1) a set of concepts
as the “measures” facet of “binary classification,”
(2) the “applications” and “algorithms” facets
of the concept “classification,” and (3) the “al-
gorithms” of “community detection,” the “tech-
niques” of “matrix factorization,” and the “meth-
ods” of “feature extraction” and “dimensionality
reduction.” We represent the relations of syn-
onyms by adding different surface names for same

entities in one node. For example, “topic models”
and “topic model” are merged into one node in
Figure 8 because they have the same semantic
meaning.

5 Related Work

5.1 Scientific Concept Extraction

Scientific concept extraction is a fundamental
task (Yu et al., 2019; Jiang et al., 2019). It has been
widely studied on multiple kinds of text sources
such as web documents (Parameswaran et al.,
2010), business documents (Ménard and Ratté,
2016), clinical documents (Jonnalagadda et al.,
2012), material science documents (Kim et al.,
2017), and computer science publications (Upad-
hyay et al., 2018). The phrase mining technolo-
gies have been evolving from noun phrase anal-
ysis (Evans and Zhai, 1996) to recently popular
representation learning methods (Mikolov et al.,
2013; Pennington et al., 2014). Here we combined

146

two methodologies that have been demonstrated to
be effective in Science IE (Gábor et al., 2018).

5.2 Hierarchical Relation Extraction

There has been unsupervised methods on hyper-
nym discovery and synonym detection (Weeds
et al., 2014): In this work, we combine precise tex-
tual patterns, not only the syntactic patterns (Snow
et al., 2005) but also the typed patterns (Nakashole
et al., 2012; Li et al., 2018; Wang et al., 2019)
to find synonyms and hypernyms. We consider
hypernyms carefully as ancestor-to-descendant in-
stead of parent-to-child relations. Synonyms are
on the same node, and hypernyms are connected
via one- or multi-hop path. Moreover, we extract
the sibling relations which precisely describe the
nodes on the same level. All the three types of
relation tuples are important for inferring concept
hierarchies.

5.3 Hierarchy Construction and Population

There are two kinds of hierarchy construction
methods: one is taxonomy or ontology induc-
tion that infers “isA” relations by machine learn-
ing models (Kozareva and Hovy, 2010; Wu et al.,
2012; Yang et al., 2015; Cimiano and Staab,
2005), and the other is topical hierarchy discovery
that organizes phrases into topical groups and then
infers hierarchical connections between the topi-
cal groups (Wang et al., 2015; Jiang et al., 2017).
For the first kind of approaches, researchers used
syntactic contextual evidence (Anh et al., 2014),
belief propagation for population (Bansal et al.,
2014), and embedding-based inference (Fu et al.,
2014; Nguyen et al., 2014). For the second
part, poincaré embedding and ontology embed-
ding methods have been proposed to learn node
representations from existing hierarchies (Nickel
and Kiela, 2017; Chen et al., 2018).

None of the existing approaches aimed at infer-
ring parent-to-child relations based on the three
types of hierarchical relations (i.e., synonym,
ancestor-to-descendant, and sibling). We propose
a novel hierarchy growth algorithm that addresses
the issues of noisy, redundant, and invalid links.

6 Conclusions

This paper presented the HiGrowth method that
constructs a faceted concept hierarchy from litera-
ture data. The major focus is on growing a hierar-
chy from three kinds of hierarchical relations that

were extracted by pattern-based IE and weighted
by their frequency. The hierarchy growth algo-
rithm handles unnecessary, invalid and redundant
links, even the relation set is noisy at the long tail.

Acknowledgements

This work was supported by Natural Science
Foundation Grant CCF-1901059.

147

da
ta
_s
ci
en
ce

re
co
m
m
en
da
tio
n,
re
co
m
m
en
de
r_
sy
st
em
s

ch
ild

da
ta
_m
in
in
g

ch
ild

m
ac
hi
ne
_l
ea
rn
in
g

ch
ild

kn
ow
le
dg
e_
di
sc
ov
er
y

ch
ild

vi
su
al
iz
at
io
n

ch
ild

ar
tifi
ci
al
_i
nt
el
lig
en
ce

ch
ild

D
C
G
,d
is
co
un
te
d_
cu
m
ul
at
iv
e_
ga
in
,d
is
co
un
te
d_
cu
m
ul
at
iv
e_
ga
in
_m
ea
su
re

M
A
P,
m
ea
n_
av
er
ag
e_
pr
ec
is
io
n

ch
ild

M
R
R
,m
ea
n_
re
ci
pr
oc
al
_r
an
k

ch
ild

N
D
C
G
,n
or
m
al
iz
ed
_d
is
co
un
te
d_
cu
m
ul
at
iv
e_
ga
in
,n
or
m
al
iz
ed
_d
is
co
un
te
d_
cu
m
ul
at
iv
e_
ga
in
_m
ea
su
re

ch
ild

ne
ur
al
_n
et
w
or
ks

pe
rc
ep
tro
n

ch
ild

ar
tifi
ci
al
_n
eu
ra
l_
ne
tw
or
ks

ch
ild

N
/A

cl
os
eg
ra
ph

ch
ild

gs
pa
n

ch
ild

F1
,f-
m
ea
su
re
,f-
sc
or
e,
f1
-m
ea
su
re
,f1
-s
co
re
,f1
_m
ea
su
re

m
ac
ro
-f
1,
m
ac
ro
_f
1

ch
ild

m
ic
ro
-f
1,
m
ic
ro
_f
1

ch
ild

te
ns
or
_d
ec
om
po
si
tio
n,
te
ns
or
_f
ac
to
riz
at
io
n

PA
R
A
FA
C

m
et
ho
ds

re
gr
es
si
on
,re
gr
es
si
on
_a
na
ly
si
s

ch
ild

de
ci
si
on
_t
re
e,
de
ci
si
on
_t
re
es

ba
gg
in
g

ch
ild

to
pi
c_
m
od
el
,to
pi
c_
m
od
el
s

LD
A
,la
te
nt
_d
iri
ch
le
t_
al
lo
ca
tio
n,
lo
gi
st
ic
_r
eg
re
ss
io
n

ch
ild

lin
k_
pr
ed
ic
tio
n

pr
ec
is
io
n

ch
ild

te
xt
_c
at
eg
or
iz
at
io
n

su
pp
or
t_
ve
ct
or
_m
ac
hi
ne
,su
pp
or
t_
ve
ct
or
_m
ac
hi
ne
s,s
vm
,sv
m
s

ch
ild

bo
ot
st
ra
pp
in
g

ch
ild

cl
as
si
fic
at
io
n

al
go
rit
hm
s

al
go
rit
hm
s

ap
pl
ic
at
io
ns

bi
na
ry
_c
la
ss
ifi
ca
tio
n

ap
pl
ic
at
io
ns

en
se
m
bl
e,
en
se
m
bl
es

al
go
rit
hm
s

ra
nd
om
_f
or
es
t,r
an
do
m
_f
or
es
ts

al
go
rit
hm
s

N
B
,n
ai
ve
_b
ay
es

al
go
rit
hm
s

C
4.
5

al
go
rit
hm
s

k_
ne
ar
es
t_
ne
ig
hb
or
,k
nn

al
go
rit
hm
s

C
A
RT

al
go
rit
hm
s

ba
ye
si
an
_n
et
w
or
ks

al
go
rit
hm
s

lin
ea
r_
sv
m

al
go
rit
hm
s

im
ag
e_
cl
as
si
fic
at
io
n

ap
pl
ic
at
io
ns

ID
3

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

m
ea
su
re
s

m
ea
su
re
s

se
ns
iti
vi
ty

m
ea
su
re
s

sp
ec
ifi
ci
ty

m
ea
su
re
s

re
ca
ll

m
ea
su
re
s

N
M
I,n
or
m
al
iz
ed
_m
ut
ua
l_
in
fo
rm
at
io
n

m
ea
su
re
s

A
U
C
,a
re
a_
un
de
r_
cu
rv
e,
ar
ea
_u
nd
er
_t
he
_c
ur
ve

m
ea
su
re
s

ac
cu
ra
cy

m
ea
su
re
s

pu
rit
y

m
ea
su
re
s

f1
_s
co
re

m
ea
su
re
s

m
ea
su
re
s

cl
us
te
rin
g

de
ns
ity
-b
as
ed
_c
lu
st
er
in
g

al
go
rit
hm
s

k-
m
ea
ns
,k
-m
ea
ns
_c
lu
st
er
in
g

al
go
rit
hm
s

SV
D
,si
ng
ul
ar
_v
al
ue
_d
ec
om
po
si
tio
n

al
go
rit
hm
s

hi
er
ar
ch
ic
al
_c
lu
st
er
in
g

al
go
rit
hm
s

sp
ec
tra
l_
cl
us
te
rin
g

al
go
rit
hm
s

db
sc
an

al
go
rit
hm
s

k-
m
ed
oi
ds

al
go
rit
hm
s

N
M
F,
no
n-
ne
ga
tiv
e_
m
at
rix
_f
ac
to
riz
at
io
n,
no
n_
ne
ga
tiv
e_
m
at
rix
_f
ac
to
riz
at
io
n,
no
nn
eg
at
iv
e_
m
at
rix
_f
ac
to
riz
at
io
n

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

fr
eq
ue
nt
_i
te
m
se
t_
m
in
in
g

ap
rio
ri

al
go
rit
hm
s

fp
-g
ro
w
th

al
go
rit
hm
s

ec
la
t

al
go
rit
hm
s

cl
os
et

al
go
rit
hm
s

m
at
rix
_f
ac
to
riz
at
io
n

te
ch
ni
qu
es

PM
F,
pr
ob
ab
ili
st
ic
_m
at
rix
_f
ac
to
riz
at
io
n

te
ch
ni
qu
es

PC
A
,p
rin
ci
pa
l_
co
m
po
ne
nt
_a
na
ly
si
s,p
rin
ci
pa
l_
co
m
po
ne
nt
s_
an
al
ys
is

te
ch
ni
qu
es

co
or
di
na
te
_d
es
ce
nt

te
ch
ni
qu
es

te
ch
ni
qu
es

m
et
ho
ds

bo
os
tin
g

m
et
ho
ds

m
et
ho
ds

se
m
i-s
up
er
vi
se
d,
se
m
i-s
up
er
vi
se
d_
le
ar
ni
ng
,se
m
i_
su
pe
rv
is
ed
_l
ea
rn
in
g

su
pe
rv
is
ed
,su
pe
rv
is
ed
_l
ea
rn
in
g

te
ch
ni
qu
es

te
ch
ni
qu
es

m
ea
su
re
s

un
su
pe
rv
is
ed
,u
ns
up
er
vi
se
d_
le
ar
ni
ng

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

M
A
E,
m
ea
n_
ab
so
lu
te
_e
rr
or

M
LE
,m
ax
im
um
_l
ik
el
ih
oo
d_
es
tim
at
io
n

SV
R
,su
pp
or
t_
ve
ct
or
_r
eg
re
ss
io
n

ad
ab
oo
st

m
et
ho
ds

m
et
ric
s

R
M
SE
,ro
ot
-m
ea
n-
sq
ua
re
_e
rr
or
,ro
ot
_m
ea
n_
sq
ua
re
_e
rr
or
,ro
ot
_m
ea
n_
sq
ua
re
d_
er
ro
r

m
et
ric
s

as
so
ci
at
io
n_
ru
le
_m
in
in
g

co
m
m
un
ity
_d
et
ec
tio
n

al
go
rit
hm
s

do
cu
m
en
t_
cl
us
te
rin
g

te
ch
ni
qu
es

ou
tli
er
_d
et
ec
tio
n

an
om
al
y_
de
te
ct
io
n

G
SP

pr
efi
xs
pa
n

di
m
en
si
on
al
ity
_r
ed
uc
tio
n

m
et
ho
ds

fe
at
ur
e_
se
le
ct
io
n

in
fo
rm
at
io
n_
ga
in

m
ea
su
re
s

gi
ni
_i
nd
ex

m
ea
su
re
s

se
qu
en
tia
l_
pa
tte
rn
_m
in
in
g

al
go
rit
hm
s

al
go
rit
hm
s

SP
A
D
E

al
go
rit
hm
s

lin
k_
re
co
m
m
en
da
tio
n

fe
at
ur
e_
ex
tra
ct
io
n

m
et
ho
ds

m
et
ho
ds

si
m
ila
rit
y_
se
ar
ch

lin
ea
r_
re
gr
es
si
on

sp
am
_d
et
ec
tio
n

fr
au
d_
de
te
ct
io
n

as
so
ci
at
io
n_
m
in
in
g

ap
pr
oa
ch
es

m
in
in
g_
as
so
ci
at
io
n_
ru
le
s

m
ul
ti-
cl
as
s_
cl
as
si
fic
at
io
n

m
ul
ti-
la
be
l_
cl
as
si
fic
at
io
n

ke
rn
el
_k
-m
ea
ns

en
tit
y_
re
co
gn
iti
on

m
ul
tic
la
ss
_c
la
ss
ifi
ca
tio
n

TP
R
,tr
ue
_p
os
iti
ve
_r
at
e,
tru
ep
os
iti
ve
_r
at
e

FP
R
,fa
ls
e-
po
si
tiv
e_
ra
te
,fa
ls
e_
po
si
tiv
e_
ra
te

SG
D
,st
oc
ha
st
ic
_g
ra
di
en
t_
de
sc
en
t

ch
ild

le
as
t_
sq
ua
re
s_
su
pp
or
t_
ve
ct
or
_m
ac
hi
ne
,ls
-s
vm

ch
ild

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

te
ch
ni
qu
es

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

ta
sk
s

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

al
go
rit
hm
s

C
SG
D
,c
on
st
ra
in
ed
_s
to
ch
as
tic
_g
ra
di
en
t_
de
sc
en
t

ch
ild

Figure 8: The resulting faceted concept hierarchy we extracted from Data Science publications, nodes
mean the entities with different surface names (synonyms).

148

References
Eytan Adar and Srayan Datta. 2015. Building a scien-

tific concept hierarchy database (schbase). In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 606–
615.

Tuan Luu Anh, Jung-jae Kim, and See Kiong Ng. 2014.
Taxonomy construction using syntactic contextual
evidence. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 810–819.

Mohit Bansal, David Burkett, Gerard De Melo, and
Dan Klein. 2014. Structured learning for taxon-
omy induction with belief propagation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1041–1051.

Muhao Chen, Yingtao Tian, Xuelu Chen, Zijun Xue,
and Carlo Zaniolo. 2018. On2vec: Embedding-
based relation prediction for ontology population. In
Proceedings of the 2018 SIAM International Confer-
ence on Data Mining, pages 315–323. SIAM.

Philipp Cimiano and Steffen Staab. 2005. Learning
concept hierarchies from text with a guided agglom-
erative clustering algorithm. In Proceedings of the
ICML 2005 Workshop on Learning and Extending
Lexical Ontologies with Machine Learning Meth-
ods.

David A Evans and Chengxiang Zhai. 1996. Noun-
phrase analysis in unrestricted text for information
retrieval. In Proceedings of the 34th annual meeting
on Association for Computational Linguistics, pages
17–24. Association for Computational Linguistics.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1199–1209.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haifa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
679–688.

Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl
Aberer. 2017. Taxonomy induction using hypernym
subsequences. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Man-
agement, pages 1329–1338. ACM.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of

the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Compu-
tational Linguistics.

Tianwen Jiang, Ming Liu, Bing Qin, and Ting Liu.
2017. Constructing semantic hierarchies via fusion
learning architecture. In China Conference on Infor-
mation Retrieval, pages 136–148.

Tianwen Jiang, Tong Zhao, Bing Qin, Ting Liu,
Nitesh V Chawla, and Meng Jiang. 2019. The role
of “condition”: A novel scientific knowledge graph
representation and construction model. In Proceed-
ings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 1634–1642. ACM.

Siddhartha Jonnalagadda, Trevor Cohen, Stephen Wu,
and Graciela Gonzalez. 2012. Enhancing clini-
cal concept extraction with distributional semantics.
Journal of biomedical informatics, 45(1):129–140.

Edward Kim, Kevin Huang, Adam Saunders, Andrew
McCallum, Gerbrand Ceder, and Elsa Olivetti. 2017.
Materials synthesis insights from scientific literature
via text extraction and machine learning. Chemistry
of Materials, 29(21):9436–9444.

Zornitsa Kozareva and Eduard Hovy. 2010. A
semi-supervised method to learn and construct tax-
onomies using the web. In Proceedings of the
2010 conference on empirical methods in natural
language processing, pages 1110–1118. Association
for Computational Linguistics.

Qi Li, Meng Jiang, Xikun Zhang, Meng Qu, Timothy P
Hanratty, Jing Gao, and Jiawei Han. 2018. Truepie:
Discovering reliable patterns in pattern-based infor-
mation extraction. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1675–1684. ACM.

Jiaqing Liang, Yi Zhang, Yanghua Xiao, Haixun Wang,
Wei Wang, and Pinpin Zhu. 2017. On the transitivity
of hypernym-hyponym relations in data-driven lexi-
cal taxonomies. In Thirty-First AAAI Conference on
Artificial Intelligence.

Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu.
2018. On interpretation of network embedding via
taxonomy induction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 1812–1820.
ACM.

Pierre André Ménard and Sylvie Ratté. 2016. Concept
extraction from business documents for software en-
gineering projects. Automated Software Engineer-
ing, 23(4):649–686.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

149

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: a taxonomy of relational
patterns with semantic types. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1135–1145. As-
sociation for Computational Linguistics.

Viet-An Nguyen, Jordan L Ying, Philip Resnik, and
Jonathan Chang. 2014. Learning a concept hier-
archy from multi-labeled documents. In Advances
in Neural Information Processing Systems, pages
3671–3679.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in neural information processing
systems, pages 6338–6347.

Alexander Panchenko, Stefano Faralli, Eugen Ruppert,
Steffen Remus, Hubert Naets, Cédrick Fairon, Si-
mone Paolo Ponzetto, and Chris Biemann. 2016.
Taxi at semeval-2016 task 13: a taxonomy induc-
tion method based on lexico-syntactic patterns, sub-
strings and focused crawling. In SemEval-2016,
pages 1320–1327.

Aditya Parameswaran, Hector Garcia-Molina, and
Anand Rajaraman. 2010. Towards the web of con-
cepts: Extracting concepts from large datasets. Pro-
ceedings of the VLDB Endowment, 3(1-2):566–577.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R Voss, and Jiawei Han. 2018. Automated
phrase mining from massive text corpora. IEEE
Transactions on Knowledge and Data Engineering,
30(10):1825–1837.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in neural information pro-
cessing systems, pages 1297–1304.

Prajna Upadhyay, Ashutosh Bindal, Manjeet Kumar,
and Maya Ramanath. 2018. Construction and ap-

plications of teknowbase: a knowledge base of com-
puter science concepts. In Companion Proceedings
of the The Web Conference 2018, pages 1023–1030.
International World Wide Web Conferences Steering
Committee.

Chi Wang, Jialu Liu, Nihit Desai, Marina Danilevsky,
and Jiawei Han. 2015. Constructing topical hi-
erarchies in heterogeneous information networks.
Knowledge and Information Systems, 44(3):529–
558.

Xueying Wang, Haiqiao Zhang, Qi Li, Yiyu Shi, and
Meng Jiang. 2019. A novel unsupervised approach
for precise temporal slot filling from incomplete and
noisy temporal contexts. In The World Wide Web
Conference, pages 3328–3334. ACM.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259. Dublin City University and Association
for Computational Linguistics.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q
Zhu. 2012. Probase: A probabilistic taxonomy for
text understanding. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management
of Data, pages 481–492. ACM.

Shuo Yang, Yansong Feng, Lei Zou, Aixia Jia,
and Dongyan Zhao. 2015. Taxonomy induction
and taxonomy-based recommendations for online
courses. In Proceedings of the 15th ACM/IEEE-CS
Joint Conference on Digital Libraries, pages 267–
268. ACM.

Wenhao Yu, Zongze Li, Qingkai Zeng, and Meng
Jiang. 2019. Tablepedia: Automating pdf table read-
ing in an experimental evidence exploration and an-
alytic system. In The World Wide Web Conference,
pages 3615–3619. ACM.

Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen,
Meng Jiang, Brian Sadler, Michelle Vanni, and Ji-
awei Han. 2018. Taxogen: Constructing topical
concept taxonomy by adaptive term embedding and
clustering. In KDD.

150

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 151–158
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Graph-Based Semi-Supervised Learning for
Natural Language Understanding

Zimeng Qiu†,‡, Eunah Cho‡, Xiaochun Ma‡, William M. Campbell‡
† Electrical & Computer Engineering Department, Carnegie Mellon University

‡ Amazon Alexa AI
zimengq@andrew.cmu.edu, {eunahch,mxiaochu,cmpw}@amazon.com

Abstract

Semi-supervised learning is an efficient
method to augment training data automati-
cally from unlabeled data. Development of
many natural language understanding (NLU)
applications has a challenge where unlabeled
data is relatively abundant while labeled data
is rather limited.

In this work, we propose transductive graph-
based semi-supervised learning models as well
as their inductive variants for NLU. We evalu-
ate the approach’s applicability using publicly
available NLU data and models. In order to
find similar utterances and construct a graph,
we use a paraphrase detection model. Results
show that applying the inductive graph-based
semi-supervised learning can improve the er-
ror rate of the NLU model by 5%.

1 Introduction

Natural language understanding (NLU) technol-
ogy is an important component for a dialog sys-
tem and is commonly used in voice assistants (e.g.,
Amazon Alexa, Google Home, Siri). An NLU
system takes recognized speech input and pro-
duces intent, domain, and slots for the utterance to
support the user request (Tur and De Mori, 2011).
For example, for a user request “turn off the lights
in living room” the NLU system might generate
domain Device, intent Light-Control, and
slot values of “off” for OffTrigger and “living
room” for Location.

It is crucial for an NLU system to be able to add
further support and improve performance in an in-
cremental manner. An efficient method for this is
semi-supervised learning (SSL), especially when
only small amount of labeled data is available.
In contrast with supervised learning algorithms,
SSL algorithms can improve their performance by
leveraging information in unlabeled data. Some
recent results (Laine and Aila, 2017; Miyato et al.,

2019; Tarvainen and Valpola, 2017) have shown
that semi-supervised learning could reach perfor-
mance of purely supervised learning in certain sce-
narios.

Currently, most NLU models rely on the utter-
ance text and its annotation to learn domain, in-
tent, and slots of the utterance. However, this does
not scale to unlabeled data. In this work, we aim to
find and represent the relationship between labeled
and unlabeled data in a non-Euclidean space, a
graph, for SSL. We show that graph-based SSL
is a high-performant method which improves an
NLU model by leveraging unlabeled data.

In order to represent the labeled and unlabeled
data in a graph, we used a paraphrase detection
model. Nodes and edges in the graph represent
utterances and paraphrase relations respectively.
Given the constructed graph, a transductive graph
model was applied for node classification, which
in our case is intent classification (IC) for each
utterance. We used an NLU Slot Gated Model
(SGM) (Goo et al., 2018) to obtain slot labels. Ex-
periments on the SNIPS data set show that we can
achieve 5% error reduction on the slot error rate.

The rest of the paper is structured as follows:
Section 2 reviews work related to our approach.
Section 3 describes the graph-based SSL methods
we propose in this paper followed by a descrip-
tion of the paraphrase measures used to construct a
graph. Section 5 describes the experimental setup.
We share results and analysis in Section 6. Section
7 shows conclusions.

2 Related Work

Over the past few years, many deep learning ap-
proaches have been extended to NLU tasks—e.g.,
intent classification and slot filling (Liu and Lane,
2016). Manual annotation is costly. Thus, recent
work has turned to SSL in order to achieve similar

151

Figure 1: TGCN model architecture.

performance with much less manually annotated
data compared to purely supervised learning.

Aliannejadi et al. (2017) applies graph-based
supervised learning of Conditional Random Fields
(CRF) for Spoken Language Understanding
(SLU) on unaligned data.

Lan et al. (2018) proposes an adversarial multi-
task learning method by merging a bidirectional
language model (BLM) and a slot tagging model
(STM). As a secondary objective, the BLM is used
to learn generalized and unsupervised knowledge
with abundant unlabeled data and improve the per-
formance of STM on unseen data samples.

Cho et al. (2019a) generates paraphrases and
uses them to enhance the training set in a semi-
supervised learning setting for NLU. The aug-
mented data is used jointly for domain classifica-
tion, intent classification and slot filling.

The recent rise of neural networks has brought
significant advances in a large number of machine
learning tasks. While deep learning techniques
have achieved huge success, their performance on
non-Euclidean data is not as good as on Euclidean
data. The complexity of graph structures is a sig-
nificant challenge to most of existing deep learn-
ing algorithms and this complexity has drawn the
attention of community to extend deep learning al-
gorithms to graph data which in turn inspired var-
ious methods for Graph Neural Networks (GNN)
(Kipf and Welling, 2017; Velickovic et al., 2018;
Yang et al., 2018; Zhang et al., 2018a; Tran, 2018;
Xinyi and Chen, 2019).

GNNs can be applied in a supervised, semi-
supervised, or purely unsupervised manner for dif-
ferent tasks. For instance, graph convolutional
networks (GCN) (Kipf and Welling, 2017) could
be used in a semi-supervised way for node-level
classification (Kipf and Welling, 2017), in a su-
pervised way for graph-level classification (Zhang
et al., 2018b; Ying et al., 2018; Pan et al., 2016,

2017), and in an unsupervised way for graph em-
bedding (Hamilton et al., 2017; Kipf and Welling,
2016; Pan et al., 2018; Yang et al., 2018).

To the best of our knowledge, our work is the
first approach to apply a text-based graph struc-
ture for SSL for NLU. We evaluate our method on
a publicly available data set in order to show its
applicability.

3 Graph Methods

We propose two transductive graph models for
semi-supervised learning NLU tasks, Text Graph
Convolutional Network (TGCN) and Text Graph
Beam Search (TeGrabS), as well as their induc-
tive versions, Pseudo labeling with TGCN (PL-
TGCN) and Pseudo labeling with TeGrabS (PL-
TeGrabS).

3.1 Transductive Models
In a semi-supervised learning setting,
we have the following data sets, D =
{Xtrain,Xunlabeled,Xtest}. In inductive sce-
narios, labels of Xtest and Xunlabeled are unknown
to model, and the model sees Xunlabeled during
training but Xtest is unseen. In transductive
scenarios, the model sees Xtest and Xunlabeled at
training time.

In our task, transductive models learn para-
phrase patterns among utterances from a given
graph, then they are applied as auxiliary models
in the NLU model pseudo-labeling pipeline. By
doing this, we make the determination of input ut-
terances labels become a parametric function of
the features and thus obtain inductive variants of
transductive models.

3.1.1 TeGrabS
Similar to beam search, TeGrabS is a heuristic
method. For a starting node n, the algorithm keeps
track of k separate transitions; for each transition

152

Auxiliary
model

Unlablled	data

Lablled	data
Unlablled	data

predictions

NLU	model

training	set
X2

X4

X1

X3

Figure 2: Inductive semi-supervised learning pipeline.

at each time step, random sample a node from the
current node’s neighbors as the next node. The
sampling process can be regarded as a Markov
chain: the transition is represented by hop from
one node to another with the weight of the edge
between two nodes is the transition probabilities.

p(n′|n) =Wn,n′ (1)

where n′ is a candidate for next node, Wn,n′ is
weight of edge between n and n′. Probability of a
whole transition is modelled as equation below:

p(n0, n1, · · · , nm) =

m−1∏

i=0

Wi,i+1 (2)

If a transition does not have available next node
candidates (i.e., the current node does not have any
neighbors), this transition will be stopped and the
beam width is reduced by 1. The beam search
will be terminated when all transitions either meet
the maximum number of hops limit or are stopped
due to the current node not having any neighbors.
Pseudocode of TeGrabS is shown as Algorithm ??
in the Appendix.

3.1.2 TGCN
GCN has been commonly applied on graph data
in recent years (Kipf and Welling, 2017; Hamilton
et al., 2017; Zhang et al., 2018b; Ying et al., 2018;
Pan et al., 2016, 2017; Kipf and Welling, 2016;
Pan et al., 2018; Yang et al., 2018). However, to
the best of our knowledge, few researchers have
attempted to use it for text graphs.

Here we propose our GCN-based transduc-
tive text-graph semi-supervised learning model,
TGCN. The model architecture is shown in Fig-
ure 1. The input is a text graph including nodes
{X1, X2, · · · , Xi} and edges where each node
represents a unique utterance. We use an embed-
ding layer followed by LSTM cells as a feature
extractor; Xij , Eij and Hij are token, word em-
bedding, and LSTM hidden state for j-th word in

i-th utterance, respectively.

Ei =
1

n

∑

w∈Xi

Ew (3)

where n is the length of utteranceXi. We compute
the average sum of each token’s hidden state in
utterance as the node feature.

Hi =
1

n

n∑

j=0

Hij (4)

Inspired by the original GCN architecture de-
sign (Kipf and Welling, 2017), the features are fed
into a two-layer graph convolution network. The
first graph convolution layer is followed by ReLU
units,

F (l+1) = σ(D̃−
1
2 ÃD̃−

1
2F (l)W (l)) (5)

where Ã = A + IN is the adjacency matrix of
the undirected graph with self-connections added,
IN is the identity matrix, D̃ii =

∑
j Ãij and W (l)

is a layer-specific trainable weight matrix. σ(·)
is an activation function, which is ReLU in our
case. F (l) is the matrix of activations in l-th layer,
F (0) = H .

And the output of second graph convolution
layer is passed through a softmax layer to get dis-
tribution over all classes per node.

Y = Softmax(F (2)) (6)

3.2 Inductive Models
Usage of transductive models is limited to cer-
tain test cases that have been seen by model dur-
ing training. For an NLU system to support user
queries, it is crucial to be able to generalize to un-
seen data. Thus, we use our proposed transduc-
tive models as an auxiliary model in an inductive
semi-supervised learning pipeline, which is shown
as Figure 2.

The input of pipeline is the combination of a
few labeled utterances Xtrain and a large amount

153

of unlabeled data Xunlabeled as mentioned in pre-
vious section. We apply paraphrase detection
model on both Xtrain and Xunlabeled to find pair-
wise paraphrase relations between utterances. De-
tails of the paraphrase detection model is given in
Section 4.

For each utterance, we first find all its para-
phrases as adjacency lists. We then build graph
based on the adjacency lists. Transductive mod-
els (TeGrabS, TGCN, etc.) are applied as auxil-
iary model as shown in the graph, to predict labels
for unlabeled data Xunlabeled from both labeled
data and graph structure. Finally, predictions of
Xunlabeled are fed into NLU model training set to
re-train the NLU model and test on the unseen test
set.

Based on the transductive TeGrabS and
TGCN, here we propose their inductive variants,
named Pseudo-Labeling with Text-Graph Beam
Search (PL-TeGrabS) and Pseudo-Labeling
with TextGCN (PL-TGCN) where TeGrabS and
TGCN are used as auxiliary models in the afore-
mentioned inductive semi-supervised learning
pipeline, respectively.

4 Paraphrase Detection for Graph
Construction

In this work, we leveraged paraphrase learning to
find potential paraphrases in the data set and con-
struct a graph. In real-world applications, this
could be obtained from analyzing usage pattern,
such as repetition or rephrase of user requests. In
this work, we apply the paraphrase classification
model on the NLU utterances to retrieve the para-
phrase pairs within the data. We then construct the
graph where paraphrases are connected.

In this section, we explain how the paraphrase
model is trained as well as the construction of the
graph.

4.1 Paraphrase Embedding Learning

In order to obtain embedding for paraphrases, we
used a word averaging model. In this approach,
once a word embedding matrix is learned, we av-
erage them over a sequence:

g(x) =
1

n

n∑

i

W xi
w (7)

where Ww is a word embedding matrix. Parame-
ters are learned by minimizing an objective func-

tion with a margin, as described in Wieting et al.
(2016a).

For embedding learning, we used the PPDB-S
data set (Pavlick et al., 2015), which comprises 1.5
million paraphrase pairs.

4.2 Paraphrase Classification
Using the embeddings, we trained a model that
outputs a score as an indicative for the pair to be
paraphrases of each other. In the model, we used
the embedding approach described in Section 4.1
and obtain an embedding e for each utterance. For
a pair of utterances u1 and u2, we combine their
embeddings in the following way:

h = [eu1 , eu2 , |eu1 − eu2 |, eu1 × eu2] (8)

where we concatenate each utterance’s embed-
ding, element-wise difference and product be-
tween the two.

We then used a fully-connected network to out-
put the probability for two utterances being para-
phrases. We used two 100-dimension hidden lay-
ers with ReLU activation (Nair and Hinton, 2010)
for the task. Further details of the embedding
learning and classification model can be found in
Cho et al. (2019b).

To train the paraphrase classification model, we
used a back-translated paraphrase corpus (Wiet-
ing and Gimpel, 2017). For positive examples, we
randomly selected 1.4M paraphrase pairs from the
corpus. For negative examples, we randomly pair
up utterances within the corpus so that the utter-
ances in the pair are not paraphrases of each other.
In the end, we obtained 2.8M pairs of data, with
balanced positive and negative labels.

Using the method above leads to an F-score of
98.39 on a test set with balanced 20K pairs. Note
that the performance of classification model is ex-
pected to regress when applied on the target task
data, due to the domain mismatch between the
sizable, publicly available paraphrase corpus (Wi-
eting and Gimpel, 2017) and the NLU task data
(Coucke et al., 2018).

In this work, we consider paraphrase pairs
whose score returned by the model is higher than
a threshold θ = 0.99. Detailed statistics on the
constructed graph can be found in Section 6.

5 Experimental Setup

In this section, we discuss the experimental setup
used in this work. First, we describe the data sets

154

Intent Utterances with slot labels
searchFlight find me a flight from [origin](Paris) to [destination](New York)
searchFlight I need a flight leaving [date](this weekend) to [destination](Berlin)
searchFlight show me flights to go to [destination](new york) leaving [date](this evening)

Table 1: Examples of the SNIPS Dataset.

Figure 3: Intent distribution in SNIPS Train, SSL, Dev and Test sets.

No. Utterances
Train 1,310
SSL candidate (unlablled) 11,774
Dev 700
Test 700

Table 2: SNIPS data statistics.

used for training and evaluating the suggested SSL
approach. We also describe the NLU model used
in this work, followed by description on the com-
parative systems.

5.1 Data

To evaluate the proposed model, experiments were
performed on SNIPS dataset (Coucke et al., 2018),
which is collected from the SNIPS personal voice
assistant. This data comes with a pre-cut train,
dev, and test sets, which contain 13,084, 700 and
700 utterances respectively. There are 72 slot la-
bels and 7 intent types for the training set. Ex-
ample utterances from the SNIPS data is shown in
Table 1.

Designing a real-world application often faces
with a challenge where there is an abundant
amount of unlabeled data, but only a limited
amount of labeled data. In order to simulate this
scenario, we split the training data portion further,
so that only 10% of the labeled training data is
used for model training. The rest 90% of the la-
beled training data would be considered as candi-
dates for SSL. Thus, we did not rely on the an-
notated labels in the SSL portion of the training
data, but consider this as an unlabeled data and try

to learn them from SSL process. Overall dataset
statistics is given in Table 2, intent distributions in
Train, SSL, Dev and Test set are shown in Figure
3.

5.2 NLU System Description

The NLU model we used is a Slot-Gated attention-
based bidirectional long short-term memory
Model (SGM) (Goo et al., 2018). In our setting,
the full-attention setup was used, which achieves
the best performance in the paper. We used the
default hyper-parameters from the code base. For
TGCN and TeGrabS, graph structure was used to
determine intent labels of unlabelled SSL candi-
dates. Then, since Slot-Gated model leverages in-
tent classification results to make slot predictions,
graph SSL actually also helps in filling slots.

5.3 Comparative systems

In order to explore the effectiveness of the SSL ap-
proaches we discuss in this work, we rely on two
comparative systems. First system (“Baseline”)
is trained only on training data in Table 2, with-
out applying SSL. In the second system Pseudo
Labelling Baseline (“PL-Baseline”), we applied
SSL, more specifically, pseudo labelling, but with-
out leveraging the graph structure. For this sys-
tem, we first trained the Baseline then infer labels
for unlabeled data Xunlabeled with Baseline. Af-
ter giving Xunlabeled pseudo labels, we put it into
NLU model training set, along with Xtrain, to re-
train NLU model.

155

What	is	the	weather	forecast	

tomorrow	in	french

What	s	the	weather	forecast	

for	seychelles

What	s	the	temperature	

today	in	griffin

What	s	the	weather	like	in	serbia

What	s	the	humidity	right	

now	in	aguila

Figure 4: Excerpt of constructed graph using SNIPS data. Graph is constructed to represent utterance similarity
using a paraphrase measure.

Model IC Acc. IC F1 Slot F1 SER

Baseline* 92.57 92.52 59.30 67.43
PL-Baseline 92.86 92.03 59.61 68.71
PL-TGCN 93.14 92.48 63.95 63.86
PL-TeGrabS 73.43 72.95 58.02 73.71

Table 3: Transductive results on SNIPS data. *Baseline for Snips dataset is Slot Gated Modeling (Goo et al., 2018).

5.4 Evaluation
We report IC accuracy, F1 score, slot F1 and Slot
Error Rate (SER) as metrics to measure the perfor-
mance of the models.

SER is a metric used to combine intent classifi-
cation accuracy and the slot classification accuracy
in a single score. It is defined as:

SER =
S + I +D

S +D + C

where S is number of substitution errors for intents
or slots, I is the number of insertion errors for in-
tents or slots, D is the number of deletion errors
for intents or slots, and C is the number of correct
slots and intents.

6 Results

In this section, we first discuss the constructed
graph using paraphrase measures. We then report
the inductive SSL performance with graph meth-
ods as auxiliary models.

6.1 Constructed Graph
The paraphrase graph is built based on the train
and SSL candidate set as we discussed in previ-
ous sections. Figure 4 is a part of the constructed
graph, from which we can observe paraphrase pat-
terns among connected components. We have also
confirmed that neighbors in this excerpt share the

same intent (GetWeather) as well as similar
slots.

The whole graph contains 12,895 nodes (which
indicates that there are duplicates in SNIPS
dataset), 52,876 edges when we set the paraphrase
threshold θ = 0.99.

6.2 Inductive Results
We evaluated baselines and our proposed models
on the SNIPS dataset. Intent classification and slot
filling experiment results are shown in Table 3.

We can observe that PL-TGCN outperformed
other models on intent classification accuracy.
However, this model is slightly defeated by base-
line on intent classification F1-score. Our anal-
ysis revealed that PL-TGCN tends to predict
more utterances into AddToPlaylist instead
of PlayMusic, compared to baseline. Since
AddToPlaylist is the biggest intent class in
test set (124/700), more predictions in this class
will certainly raise accuracy, but will do little harm
to F1-score, given that we are reporting F1-score
averaged from all classes. However, though Base-
line did good job in not assigning more false pos-
itives to AddToPlaylist, it is more likely to
assign utterances in AddToPlaylist to other
classes, which is actually not good. Therefore,
we can conclude that PL-TGCN achieved best per-
formance on intent classification in general. It
boosted the performance of slot filling through slot

156

gate in SGM, leading to a great reduction on SER.

7 Conclusion and Future Work

In this work, we proposed transductive graph-
based semi-supervised learning models as well as
their inductive variants for NLU. In order to find
similar utterances and construct a graph, we use
a paraphrase detection model. To the best of our
knowledge, our work is the first approach to ap-
ply text based graph structure for an SSL of NLU.
We evaluate our method’s applicability on publicly
available data and model. Results show that ap-
plying the inductive graph-based semi-supervised
learning can reduce the error rate of the NLU
model by 5%.

In the future, we will extend our work on other
public datasets, explore methods to directly pre-
dict slots with transductive graph models. We will
also make further research on applying other SSL
techniques, e.g. iterative bootstrapping, instead of
pseudo-labelling.

References
Mohammad Aliannejadi, Masoud Kiaeeha, Shahram

Khadivi, and Saeed Shiry Ghidary. 2017. Graph-
based semi-supervised conditional random fields
for spoken language understanding using unaligned
data. CoRR, abs/1701.08533.

Eunah Cho, He Xie, and William M Campbell. 2019a.
Paraphrase generation for semi-supervised learning
in nlu. In Proceedings of the Workshop on Meth-
ods for Optimizing and Evaluating Neural Language
Generation, pages 45–54.

Eunah Cho, He Xie, John Lalor, Varun Kumar, and
William M Campbell. 2019b. Efficient semi-
supervised learning for natural language understand-
ing by optimizing diversity.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint slot
filling and intent prediction. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 2
(Short Papers), pages 753–757.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 1024–1034.

Thomas N. Kipf and Max Welling. 2016. Variational
graph auto-encoders. CoRR, abs/1611.07308.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings.

Samuli Laine and Timo Aila. 2017. Temporal ensem-
bling for semi-supervised learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Ouyu Lan, Su Zhu, and Kai Yu. 2018. Semi-supervised
training using adversarial multi-task learning for
spoken language understanding. In 2018 IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing, ICASSP 2018, Calgary, AB,
Canada, April 15-20, 2018, pages 6049–6053.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech 2016, 17th Annual
Conference of the International Speech Communica-
tion Association, San Francisco, CA, USA, Septem-
ber 8-12, 2016, pages 685–689.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2019. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning. IEEE Trans. Pattern Anal.
Mach. Intell., 41(8):1979–1993.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina
Yao, and Chengqi Zhang. 2018. Adversarially reg-
ularized graph autoencoder for graph embedding.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden., pages
2609–2615.

Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long,
and Chengqi Zhang. 2017. Task sensitive feature
exploration and learning for multitask graph classi-
fication. IEEE Trans. Cybernetics, 47(3):744–758.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang,
and Philip S. Yu. 2016. Joint structure feature explo-
ration and regularization for multi-task graph classi-
fication. IEEE Trans. Knowl. Data Eng., 28(3):715–
728.

157

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 425–430.

Antti Tarvainen and Harri Valpola. 2017. Mean teach-
ers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning
results. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 1195–1204.

Phi Vu Tran. 2018. Learning to make predictions on
graphs with autoencoders. In 5th IEEE Interna-
tional Conference on Data Science and Advanced
Analytics, DSAA 2018, Turin, Italy, October 1-3,
2018, pages 237–245.

Gokhan Tur and Renato De Mori. 2011. Spoken lan-
guage understanding: Systems for extracting seman-
tic information from speech. John Wiley & Sons.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Towards universal paraphrastic sen-
tence embeddings. International Conference on
Learning Representations (ICLR).

John Wieting and Kevin Gimpel. 2017. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. arXiv
preprint arXiv:1711.05732.

Zhang Xinyi and Lihui Chen. 2019. Capsule graph
neural network. In 7th International Conference
on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019.

Zhilin Yang, Junbo Jake Zhao, Bhuwan Dhingra,
Kaiming He, William W. Cohen, Ruslan Salakhut-
dinov, and Yann LeCun. 2018. Glomo: Unsuper-
vised learning of transferable relational graphs. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pages 8964–8975.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xi-
ang Ren, William L. Hamilton, and Jure Leskovec.
2018. Hierarchical graph representation learning
with differentiable pooling. In Advances in Neural
Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems

2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 4805–4815.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Ir-
win King, and Dit-Yan Yeung. 2018a. Gaan: Gated
attention networks for learning on large and spa-
tiotemporal graphs. In Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intel-
ligence, UAI 2018, Monterey, California, USA, Au-
gust 6-10, 2018, pages 339–349.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and
Yixin Chen. 2018b. An end-to-end deep learning
architecture for graph classification. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 4438–
4445.

158

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 159–163
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Graph Enhanced Cross-Domain Text-to-SQL Generation

Siyu Huo
IBM Research, USA
siyu.huo@ibm.com

Tengfei Ma
IBM Research AI, USA
tengfei.ma1@ibm.com

Jie Chen
MIT-IBM Watson AI Lab, USA

chenjie@us.ibm.com

Maria Chang
IBM Research AI, USA
maria.chang@ibm.com

Lingfei Wu
IBM Research AI, USA

wuli@us.ibm.com

Michael Witbrock
University of Auckland

m.witbrock@auckland.ac.nz

Abstract

Semantic parsing is a fundamental problem
in natural language understanding, as it in-
volves the mapping of natural language to
structured forms such as executable queries
or logic-like knowledge representations. Ex-
isting deep learning approaches for seman-
tic parsing have shown promise on a variety
of benchmark data sets, particularly on text-
to-SQL parsing. However, most text-to-SQL
parsers do not generalize to unseen data sets in
different domains. In this paper, we propose
a new cross-domain learning scheme to per-
form text-to-SQL translation and demonstrate
its use on Spider, a large-scale cross-domain
text-to-SQL data set. We improve upon a
state-of-the-art Spider model, SyntaxSQLNet,
by constructing a graph of column names for
all databases and using graph neural networks
to compute their embeddings. The resulting
embeddings offer better cross-domain repre-
sentations and SQL queries, as evidenced by
substantial improvement on the Spider data set
compared to SyntaxSQLNet.

1 Introduction

Text-to-SQL translation is currently one of the
most important tasks in semantic parsing. It
involves mapping natural language sentences to
SQL queries that can be executed on associated
database tables. Most text-to-SQL data sets have
two very important limitations: (1) they mostly
contain only very simple SQL queries, and (2)
they use the same databases (and often identical
SQL queries) for training and testing. Finegan-
Dollak et al. (2018) demonstrated that text-to-SQL
parsers that perform well on existing benchmarks
do not generalize well to unseen SQL queries, as
measured by experiments on modified data sets
where no two identical SQL queries appear in both
the training and testing sets. The Spider data set
(Yu et al., 2018c) was developed to address these

limitations by including a large number of com-
plex programs, databases with multiple tables, and
by ensuring that the SQL queries and databases
that appear in the training set do not also appear in
the testing set. In this way, Spider can be used as a
better measure of a model’s ability to produce un-
seen complex programs and to generalize to new
domains.

The Spider data set has led to the development
of complex, cross-domain semantic parsers, such
as SyntaxSQLNet (Yu et al., 2018b). In prior
work, cross-domain semantic parsing referred to
the ability to generalize among different logi-
cal forms (Su and Yan, 2017). For the text-to-
SQL task, however, cross-domain semantic pars-
ing refers to the ability to generalize across dif-
ferent queries and databases. Very recently, Syn-
taxSQLNet (Yu et al., 2018b) was proposed to
solve this task by introducing a SQL-specific syn-
tax tree-based decoder, with a SQL generation
path history and table-aware column attention en-
coder. For better cross-domain performance, it
employs a data augmentation method to generate
more diverse training examples across databases.
However, creating this augmented data is expen-
sive and time-consuming. It requires grouping the
SQL patterns and then manually editing the se-
lected SQL patterns and their corresponding lists
of questions.

In this paper, we propose a new approach to en-
hance cross-domain learning in text-to-SQL sys-
tems. In most existing systems, selecting entries
from available databases is one of the most im-
portant components. When experimenting with
baselines, Yu et al. (2018c) observed that most of
the component matching errors (that is, compo-
nents of the predicted SQL query do not match
those of the gold query) were caused by errors
in column prediction. A good representation of
the columns in the databases should lead to accu-

159

rate matching between queries and columns. Our
idea is to connect all tables and databases across
domains via shared column names, so that the
column name representation can use information
across domains for better generalization. We im-
plement this idea by constructing a database graph
and using a graph neural network to encode the
columns. In this way, we obtain higher quality
column embeddings, which lead to more accurate
column matching and better SQL generation.

2 Related Work

Many semantic parsers have been developed to
translate natural language text into structured,
symbolic forms, including abstract meaning rep-
resentation (Lyu and Titov, 2018), executable pro-
grams (e.g. Python, Lisp, Bash) (Allamanis et al.,
2015; Rabinovich et al., 2017; Yin and Neubig,
2017; Liang et al., 2017; Lin et al., 2018), and
SQL queries (Dong and Lapata, 2018; Yu et al.,
2018b,a; Xu et al., 2017).

For text-to-SQL parsing, the work most closely
related to ours is SyntaxSQLNet (Yu et al., 2018b),
which is the state-of-the-art approach for the Spi-
der data set (Yu et al., 2018c). SyntaxSQLNet
extends prior text-to-SQL models, such as SQL-
Net (Xu et al., 2017) and TypeSQL (Yu et al.,
2018a), by encoding both local information from
column names and global information from ta-
ble names. The primary difference between Syn-
taxSQLNet and our work is that we use a novel
column embedding technique that additionally in-
cludes a graph of the tables, connected through
shared column names.

3 Problem Formulation

We focus on the cross-domain SQL generation
task within the Spider data set (Yu et al., 2018c).
Spider consists of 10,181 questions and 5,693
unique complex SQL queries on 200 databases
with multiple tables, covering 138 different do-
mains.

Specifically, in the data set each natural lan-
guage query Q is associated with a corresponding
SQL query S and a database DB. The database
contains multiple tables T , and each table contains
multiple columns C. The task of SQL genera-
tion is to generate S given only Q and DB. For
cross-domain learning, the databases for training
and testing are separate, so that one can test the

generalization ability of the models to unseen do-
mains.

4 Method

Our model is based on the framework of Syn-
taxSQLNet (Yu et al., 2018b) but extends it with
our approach for generating column embeddings.
We first briefly introduce the SyntaxSQLNet sys-
tem, and then present the proposed graph-based
column embedding method.

4.1 Background of SyntaxSQLNet

For the SQL generation task, one is given a natural
language sentence and a database and is asked to
generate the corresponding SQL query. Therefore,
one may use an encoder to encode the sentence
and table columns in the database and use a de-
coder to generate the SQL query. In SyntaxSQL-
Net, the sentence is encoded by a bi-directional
LSTM (BiLSTM), while each column in the table
is encoded by using a simple scheme called table-
aware column representation. The scheme takes
the list of words in the table name and the column
name, as well as the type information of the col-
umn, as input to a BiLSTM and outputs the final
state as the column representation. This approach
incorporates both the global table information and
the local column information.

To better leverage SQL structures, SyntaxSQL-
Net uses an SQL specific tree-based decoder
with SQL path histories. It decomposes the de-
coder into a set of recursive modules: IUEN,
KW, COL, OP, AGG, Root/Terminal, AND/OR,
DESC/ASC/LIMIT, and HAVING. Each module
deals with different SQL components. For ex-
ample, the KW module predicts keywords from
WHERE, GROUP BY and ORDER BY, and the
COL module predicts columns. For details of the
other modules, see (Yu et al., 2018b). In this work,
we focus on improving the COL module.

The recursive modules in SyntaxSQLNet are
combined to form the whole generation process.
Specifically, when the decoder generates the SQL
query, it first determines which module to invoke,
and then uses that module to predict the next SQL
token. For each module, the input encoding goes
through an attention computation, before being
used to make the prediction of the next token. For
example, in the COL module, the prediction is
computed by the using following equations:

160

Table 1: Example Databases

Database Table Name Column Names

department store
customers customer id customer name customer address

customer orders order id customer id order date
coffee shop shop shop id address num of staff

P num
COL = P

(
Wnum

1 Hnum
Q/COL

> +Wnum
2 Hnum

HS/COL
>
)

P val
COL = P

(
Wval

1 Hval
Q/COL

>
+Wval

2 Hval
HS/COL

>

+ Wval
3 HCOL

>
)
,

where “num” means the number of columns, “val”
means the index(es) of the column(s), “Q” means
question, “HS” means path history, “COL” means
column, P(U) = softmax(V tanh(U)) is a
probability distribution given score U and param-
eter V, the W’s are learnable parameters, and
the H1/2’s are conditional embeddings defined as
H1/2 = softmax(H1WH>2)H1.

4.2 Database Graph Construction
4.2.1 Motivation
For a good accuracy of the final SQL genera-
tion, every module needs to perform well. How-
ever, the COL module is a significant bottleneck
of the system. When reproducing the results from
SyntaxSQLNet, we find that its accuracy is only
slightly above 50%, while other modules gener-
ally achieve 90%. SyntaxSQLNet gains gener-
alizability across domains through encoding both
global and local information by simply using all
the words from the table name, column name, and
column data type. There are two problems with
this approach. First, no explicit ordering exists
for these words; hence, the use of BiLSTM to en-
code them seems less justified. Second, although it
adds the global information from table names for
better column name embedding, the table names
are completely independent of other tables and
databases, and therefore it incorporates little infor-
mation from other domains.

Our idea is to use a graph to connect the column
names across all tables and databases and compute
representations of them by using a graph neural
network. In this way, the information of different
domains is passed to each other, so that one can
learn a better column embedding that generalizes
across domains.

Our approach is relevant to those that use neural
networks for domain adaptation; see, e.g., Pareja
et al. (2019) who adapt the graph neural network
model for data at different time steps. However,
our approach is conceptually different from these
methods, because we do not map the tasks to a
new domain but rather, learn a better representa-
tion of the table elements through leveraging all
domain information. Another related work that
also uses GNN for sementic parsing is the very re-
cently published Bogin et al. (2019), but the graph
therein is an abstraction of the database schema,
as opposed to being a tool for producing column
representations as in our work.

4.2.2 Graph Construction
We construct a graph to connect all column names
across tables and databases. To encode more infor-
mation, we also include the table names and col-
umn data types as additional nodes in the graph.
In order to obtain more connections and reduce
unseen phrases, we split the names into words,
so that different tables and databases share more
nodes. Specifically, our database graph is con-
structed as follows:

1. Every column name is separated into a set of
words and the words are used as nodes in the
graph.

2. Within each table, we connect all word nodes
to each other.

3. For each table, we include the words of table
name as additional nodes, and connect them
with all column name words in that table.

4. Different tables and databases are thus con-
nected through shared words.

5. We also add column data types as additional
nodes and connect them with corresponding
column name words.

In Table 1 and Figure 1 respectively, we show
an example of the databases and the graph con-

161

Figure 1: An example of the constructed graph for
databases in Table 1. Orange nodes are words in the
table names and blue nodes are words in the column
names. For simplicity, column data types are not in-
cluded in this example.

structed for them. Clearly, in the graph, two differ-
ent databases are connected through shared words,
such as id and address.

4.2.3 Graph Encoding
We encode the nodes in the graph by using a 2-
layer graph convolutional network (GCN) (Kipf
and Welling, 2016). After we obtain the node
embeddings for all nodes, for every table col-
umn we combine the embeddings of the words
of the corresponding table name, column name,
and column data type to get the overall repre-
sentation of the column. We call this approach
subgraph pooling. In details, assume that we
have a table name TN , column name words
C1, C2, C3, and column data type TP . We first
use the pre-trained GloVe vectors (Pennington
et al., 2014) to initialize the embedding of each
node: ETN , EC1 , EC2 , EC3 , ETP . With the graph
convolutional network, we obtain corresponding
embedding vectors GTN , GC1 , GC2 , GC3 , GTP .
For subgraph pooling, we first concatenate the
original GloVe vectors and the newly learned
embedding vectors, then do averaging over all
nodes for this column, and finally map it to
another lower-dimensional space: H(∗) =
Wh[Meanω(E(ω)||G(ω))], where || denotes con-
catenation, ω ∈ TN,C1, C2, C3, TP and Wh is
a learnable parameter. Afterwards, we replace the
BiLSTM encoding in SyntaxSQLNet byH(∗) and
continue the SyntaxSQLNet decoding process.

5 Experiments

5.1 Experimental Setting

We use the Spider data set and follow the set-
ting of Yu et al. (2018c). The data set is split

into 7,000/1,034/2,147 train/development/test ex-
amples, and the databases are correspondingly
split into 146/40/20 for train/development/test.
The models are evaluated by exact matching accu-
racy with the provided test script Yu et al. (2018c).
Since we made no changes to the modules other
than COL, we do not compare the component
matching accuracy as in Yu et al. (2018b). Instead,
we include the accuracy of the COL module as an
additional metric to better interpret the effects of
the proposed graph encoding method.

For GCN (Kipf and Welling, 2016), we used
the inductive version. That is, in the training
phase we only construct the graph from the train-
ing databases, but for testing we connect the
test databases with the training ones and use the
learned GCN parameters for embedding computa-
tion.

5.2 Results

Method Matching acc. COL acc.
Seq2seq+attention 1.8% NA

SQLNet 10.9% NA
SyntaxSQLNet 18.9% 53.5%

SyntaxSQLNet +
Data Augmentation 24.8% 61.9%

GNN-SQL 22.0% 57.0%

Table 2: Comparison of different methods with respect
to final exact matching accuracy and COL module ac-
curacy on development set. The results of SyntaxSQL-
Net were run by ourselves using the provided system.

From the table we see that the COL module
accuracy is 3.5% higher than that in SyntaxSQL-
Net, without performing any modification to other
modules. The final accuracy is also 3.1% higher
than SyntaxSQLNet without data augmentation.
Although our final matching accuracy is lower
than the data augmented SyntaxSQLNet (22.0%
vs 24.8%), we have demonstrated the usefulness
of the improved COL module and the potential for
reducing the need and effort of labeling additional
augmented data.

6 Conclusion

In this paper we propose a new graph-based
method for cross-domain text-to-SQL genera-
tion. As opposed to data augmentation in Syn-
taxSQLNet, we construct a graph to connect all

162

columns across tables and databases, yielding bet-
ter generalizablity of the column representation
and SQL generation. Experimental results on Spi-
der demonstrates the superiority of our method
over SyntaxSQLNet without data augmentation.

References
Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and

Yi Wei. 2015. Bimodal modelling of source code
and natural language. In International Conference
on Machine Learning, pages 2123–2132.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Representing schema structure with graph neural
networks for text-to-sql parsing. In ACL.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 731–742.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improv-
ing text-to-sql evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. In 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
pages 23–33. Association for Computational Lin-
guistics (ACL).

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC-2018).

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei
Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim
Kaler, and Charles E. Leiserson. 2019. EvolveGCN:
Evolving graph convolutional networks for dynamic
graphs. Preprint arXiv:1902.10191.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1139–1149.

Yu Su and Xifeng Yan. 2017. Cross-domain seman-
tic parsing via paraphrasing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1235–1246.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 588–594.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domain text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1653–1663.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018c. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

163

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 164–171
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Reasoning Over Paths via Knowledge Base Completion

Saatviga Sudhahar, Ian Roberts and Andrea Pierleoni
Healx, Cambridge, UK

{saatviga.sudhahar, ian.roberts, andrea.pierleoni}@healx.io

Abstract
Reasoning over paths in large scale knowledge
graphs is an important problem for many ap-
plications. In this paper we discuss a sim-
ple approach to automatically build and rank
paths between a source and target entity pair
with learned embeddings using a knowledge
base completion model (KBC). We assembled
a knowledge graph by mining the available
biomedical scientific literature and extracted
a set of high frequency paths to use for val-
idation. We demonstrate that our method is
able to effectively rank a list of known paths
between a pair of entities and also come up
with plausible paths that are not present in
the knowledge graph. For a given entity pair
we are able to reconstruct the highest ranking
path 60% of the time within the top 10 ranked
paths and achieve 49% mean average preci-
sion. Our approach is compositional since any
KBC model that can produce vector represen-
tations of entities can be used.

1 Introduction

A large amount of work has been dedicated in the
past on Knowledge base completion (KBC) which
is an automated process that adds missing facts
that can be predicted from existing ones already
in the Knowledge base. This is crucial for the use
of large Knowledge bases in many downstream
applications. However explaining the predictions
given by a KBC algorithm is quite important for
several real world use cases. For example in rec-
ommender systems, a knowledge graph of users,
items and their interactions are used to recommend
an item to a user based on the user’s interactions
on several items. The ability to explain and rea-
son on the decision is of critical importance to add
knowledge to recommender systems. Similarly in
a knowledge graph consisting human biological
data such as genes, drugs, symptoms and diseases,
it is crucial to know which gene and symptoms

were involved in predicting a drug for a disease.
This requires automatic extraction and ranking of
multi-hop paths between a given source and a tar-
get entity from a knowledge graph.

Previous work has focused on using path in-
formation in knowledge graphs for KBC known
as path-based inference (Lao et al., 2011; Gard-
ner et al., 2014; Neelakantan et al., 2015; Das
et al., 2017b), in which a model is trained to pre-
dict missing links between a given pair of enti-
ties taking as input several paths that existed be-
tween them. Paths are ranked according to a scor-
ing method and used as features to train the model.
Embedding-based inference models (Bordes et al.,
2013; Lin et al., 2015; Nickel et al., 2011; Socher
et al., 2013; Trouillon et al., 2016) for KBC learn
entity and relation embeddings by solving an op-
timization problem that maximises the plausibility
of known facts in the knowledge graph. A third
set of models bridge path-based and embedding-
based inference with deep-reinforcement learning
for reasoning in knowledge graphs (Xiong et al.,
2017; Das et al., 2017a; Lin et al., 2018; Song
et al., 2019). All these models address various
objectives. They try to predict missing links in a
graph by ranking the target entities given a query
entity, infer new relations between entity pairs
given a set of multi-hop input paths between those
pairs or infer target entities while also reason-
ing on paths identified. Our work is inline with
the third objective in which we propose a simple
approach that combines embedding-based mod-
els with a path building and ranking strategy to
come up with the most probable explanations for
a given prediction from a source to target. The
problem can be formulated as follows: Given a
source entity e1 and target entity e2 the goal is
to first come up with a set of meaningful paths
P (e1, e2) = {p1, p2....pn} connecting e1 and e2.
P (e1, e2) can contain known and predicted edges

164

as given by the embedding-based model. Ranking
of the paths is given by,

Re1e2 = fΘ(e1, e2|P (e1, e2)) (1)

where fΘ denotes the underlying model with pa-
rameters Θ, and Re1e2 presents the ranking of the
paths.

Table 1 shows two examples of ranked 1-hop
paths for query types, ‘Gene-Phenotype-Disease’
and ‘Gene-Drug-Disease’. In the first example,
given a predicted fact that Gene ‘Carbonic An-
hydrase 1 (CA1)’ is associated with Disease ‘Is-
chemia’, the most probable explanations can be
generated by building such paths between the en-
tities. Gene ‘CA1’ is linked to Phenotypes ‘Hy-
pothermia’, ‘Neuronal loss’ and ‘Hyperglycemia’
and these Phenotypes are linked with Disease ‘Is-
chemia’ and therefore reasoning on the fact that
Gene ‘CA1’ is associated with Disease ‘Ischemia’.
Similarly in second example Gene ‘Bruton ty-
rosine kinase (BTK)’ is associated with Disease
‘Chronic lymphocytic leukemia’ since the Drugs
‘Ibrutinib’ and ‘Acalabrutinib’ are found to be
linked with Gene ‘BTK’ and the Disease. Our
method is able to extract such paths and rank them
providing the ability to reason on predictions.

From a knowledge graph data set, we initially
train an embedding-based KBC model that can
predict target entities given a source, relation pair.
The KBC model is then used to build a set of 1-
hop paths between a given source and target entity
and paths are ranked according to a scoring func-
tion. Any embedding based KBC model capable
of producing separate vector representations of en-
tities can be used for training in our method. Our
approach is quite suitable for downstream applica-

Gene Phenotype Disease
CA1 Hypothermia Ischemia
CA1 Neuronal loss Ischemia
CA1 Hyperglycemia Ischemia
Gene Drug Disease
BTK Ibrutinib Chronic

lymphocytic leukemia
BTK Acalabrutinib Chronic

lymphocytic leukemia

Table 1: Example paths for query types ‘Gene-
Phenotype-Disease’, ‘Gene-Drug-Disease’ showing
the ability to reason over 1-hop.

tions since it only requires training the model once
with the whole data set and does not involve any
additional training overhead. We discuss two main
experiments in the paper, Experiment 1 showing
the model’s ability to reconstruct the highest rank-
ing path in the set of retrieved ranked paths in spite
of not seeing it during training and Experiment
2 that proves the ranking capability alone of the
trained model with known paths. We show that
our method is able to reconstruct the highest rank-
ing path 60% of the time in the top 10 ranked paths
for a given set of entity pairs also achieving 49%
mean average precision. There is almost a 3-fold
increase in the ranking correlation between pre-
dicted ranks and ground truth ranks of a longer list
of known paths when compared to random. To our
knowledge this is the first paper that is focused on
trying to use path ranking to identify relevant enti-
ties bridging a pair of known entities and therefore
not directly comparable with other approaches.

The paper is organised as follows: Section 2 dis-
cusses related work in this area; Section 3 shows
details of how the data sets of triples and paths be-
tween entity pairs were generated and elaborates
on model path construction and path scoring for
ranking the paths; Section 4 discusses the statis-
tics of the data sets; Section 5 shows and discusses
experimental results on the model’s ability to re-
cover paths and ranking in experiment 1 and rank-
ing alone of known paths in experiment 2. Section
6 concludes the work and discusses possible future
directions.

2 Related Work

One of the first path building approach in literature
is the Path-Ranking Algorithm (PRA) (Lao and
Cohen, 2010; Gardner et al., 2013, 2014) which
uses random walk with restarts to rank entities in
a graph relative to a source entity. Random walks
constrained to follow a set of edge types are per-
formed in the graph to produce relational feature
weights. The weights are combined to predict the
probability that a relation between a source, target
entity pair using a per-target relation binary classi-
fier. The bottleneck of this method is the explosion
of the feature space when there are millions of dis-
tinct paths obtained from random exploration and
the fact that it relies on a binary classifier per target
relation which is not scalable.

Guu et al. (2015) proposed a method to build
relation paths between entity pairs using composi-

165

tional techniques to address knowledge base com-
pletion and path query answering problems. They
learn representations of nodes and relations by
adapting the scoring functions from pre-existing
KBC models such as TransE (Bordes et al., 2013)
and RESCAL (Nickel et al., 2011). They cannot
use models in which the scoring function cannot
be decomposed in a way to produce separate vec-
tors for a source/relation without the target. In
contrast our method can use any embedding based
KBC model for training. Another limitation in
their work is that they model only a single path be-
tween an entity pair but we model multiple paths.
Toutanova et al. (2015) propose a similar frame-
work and also model intermediate entities in the
path, training a convolutional neural network to
rank a set of target entities given a source and re-
lation pair. Path-RNN (Neelakantan et al., 2015)
is also a compositional model that takes paths be-
tween entity pairs as input and infers new rela-
tions between them. However it uses only the re-
lation information in the path and ignores mod-
elling intermediate entities, and it requires training
a model for each relation type making it not usable
in downstream applications. Das et al. (2017b)
train a high capcity RNN model to infer relations
between entity pairs by taking several multi-hop
paths between them as input and score pool them
using techniques such as averaging across all paths
or the top-k paths.

Recent work in explainable reasoning is used in
recommender systems. Wang et al. (2019) pro-
pose a knowledge-aware path recurrent network to
generate representation for each path by compos-
ing semantics of entities and relations and reason
on paths to infer user preferences for items. Pre-
defined meta-paths and LSTMs have been used
to model the paths between users and items via
breadth-first-search (BFS). Practically this is inef-
ficient and can miss many meaningful paths. To
address these challenges, Song et al. (2019) pro-
posed a deep reinforcement learning based method
that can automatically generate meaningful paths
between a user and item via policy gradient meth-
ods. What we present in this paper is a very simple
approach to come up with a set of most relevant
paths consisting of known and predicted links be-
tween a given source and target entity in a knowl-
edge graph using embedding based models. Its
also possible to extend this approach to use con-
textualised knowledge graph embedding models

(Wang et al., 2018) which learn representations
based on an entire path in the graph rather than
a triple. We believe using this in conjunction with
our method in turn could produce more meaning-
ful paths in the path building process. This is left
for future work.

3 Methodology

3.1 Generating the Data

In this section we discuss how the data set on
which we perform the experiments was gener-
ated. This includes extraction of triples from the
Pubmed abstracts data set using a NLP pipeline
and extraction of 1-hop paths from the triple data
set. The 1-hop path data set is used to construct a
ranked list of paths for 100 entity pairs to generate
ground truth data for the path ranking experiments.

3.1.1 Extracting triples
We used the output of the Open Targets Library
NLP pipeline1 to access all the subject-verb-object
(SVO) triples from the biomedical abstracts re-
leased by PubMed and updated to March 2019, for
a total of more than 29M documents and 540M
SVO triples. From this set we selected only the
SVO triples between entities linked to a specific
biomedical ID, discarding the ones with ‘concept’
entity type and stop words. From the filtered list
we built an undirected weighted knowledge graph
linking each pair of entities identified by a triple
with a weight representing the number of docu-
ments in which the triple was found.

3.1.2 Extracting 1-hop paths
While it is possible to access many knowledge
bases like the one described above in graph format,
to our knowledge there is currently none focused
on building relations spanning more than two enti-
ties. We leveraged the ability to track SVO triples
occurring in the same abstract and built a data set
of paths spanning three entities by making the as-
sumption that if A is related to B, and B is related
to C in the same abstract, then its safe to assume
thatA is related to C viaB. By counting the num-
ber of occurrences of such connected triples across
different documents we are also able to weight the
paths, and thus can generate a ranked lists of paths
starting from source entity A to target entity C by
scoring higher the most frequent paths.

1https://github.com/opentargets/library-beam

166

By combining several 1-hop paths, it is possible
to also build multi-hop paths described within the
same document however, in this data set, even the
2-hop paths are too rare to be used for a test of
statistical significance.

3.2 Model Path Construction
The primary objective of our method is to au-
tomatically build a set of paths between a given
source and target entity pair in a knowledge graph
and rank them using a scoring method to come up
with the most relevant paths connecting the pair.
We first train a 200 dimensional node, relation em-
bedding model with the data set using ProjE. ProjE
is a neural network based KBC model that fills
the missing information in a knowledge graph by
learning joint embeddings of the graph’s entities
and links. Given an input triple 〈h, r, ?〉 the model
can find the optimal ordered list of tail entities and
vice versa.

Let E be the set of all entities and R the set of
all relation types in the data set. For a given entity
pair (e1, e2), we choose the set of suitable rela-
tion types rt ⊂ R to be used and query the trained
model with (e1, rt) and (e2, rt) pairs. The set
of suitable relations types are the ones that agree
with the query type. For entity pair with types,
‘Drug:Disease’, the corresponding query types
are ‘Drug-Gene-Disease ’ or ‘Drug-Phenotype-
Disease’ in our data set. Therefore the method will
choose ‘Drug Gene’, ‘Drug Phenotype’, ‘Dis-
ease Gene’, ‘Disease Phenotype’ relations to per-
form the predictions. This results in a set of top
n predicted tail and head entities et, eh ⊂ E for
each relation type. If the same entity was predicted
again for e1 or e2 but with another relation type
from previous, we retain the relation type produc-
ing the higher prediction rank in the graph. We
create an undirected graph G out of e1, e2, and
the predicted sets of entities et, eh with their rela-
tions. From this graph we extract all 1-hop paths
connecting e1 and e2.

The same approach can be used iteratively to
build multi-hop paths between a pair of entities.
Given the limits of the available dataset, in this
paper we limit the discussion to the 1-hop case.

3.3 Path Scoring
Once the paths are extracted a scoring function is
used to score them for ranking. A path p consists
of a source, target and an intermediate predicted
entity connected by relevant relations. For 1-hop

paths there are two 〈h, t, r〉 pairs along the path.
The score Sp for each path p in the extracted set of
paths P = {p1, p2...pn} is given by,

1. Embed+predrank: sum of the prediction
ranks (R) of the predicted entity in p. Paths with
lowest score are the high ranking ones.

Sp =
∑

h,t,r∈p
R (2)

2. Embed+cosine: sum of the cosine similar-
ities between entity embeddings in p. The most
relevant paths receive higher scores.

Sp =
∑

h,t,r∈p
cos(eh, et) (3)

Embed+predrank score only considers the rank
of the predicted entities as given by the KBC
model while Embed+cosine score uses the actual
learned embedding to score the paths which is
more informative than the previous. In the next
section we show in detail the data set used and the
experiments performed proving the significance of
the path ranking method in two different settings.

4 Data

The data set used for the experiments are con-
structed by extracting relations using a NLP
pipeline from the Pubmed repository as shown in
Section 3.1.1. It consists of 3,025,541 head, rel,
tail triples. Details of this base data set is shown
in Table 2. From this data set we created a set of
100 entity pairs with a ranked list of several one-
hop paths P connecting entity pairs (e1, e2) in the
knowledge graph.

We use two different path data sets for ex-
periments 1 and 2. The details of this data
set is shown in Table 3. Paths extracted are
from query types: ‘Gene-Drug-Disease’, ‘Gene-
Phenotype-Disease’, ‘Drug-Phenotype-Disease’,
‘Anatomy-Phenotype-Disease’, ‘Disease-Drug-
Anatomy’ and ‘Anatomy-Gene-Organism’.
Selection of query types are purely based on
simple and meaningful queries. There are at least
2 paths for each entity pair for experiment 1 and
10 for experiment 2 and they were observed twice
or more in the data. Ranking of paths for each
entity pair are based on how frequent they were
observed in the underlying data set. We assume
most frequently seen paths are reliable and should
rank higher than others. We use this ranking as
ground truth. An archive containing the base data

167

#
triples 3,025,541
entities 38,772
entity types 10
relation types 54
1-hop paths 5.5M

Table 2: Triple Data set statistics.

Exp 1 Exp 2
query types 4 6
avg no of paths 6 33
min no of paths 2 10
total paths 573 3356

Table 3: Path data set statistics used in experiment 1
and 2.

sets with train/test split and ground truth path
ranking data sets for experiment 1 and 2 presented
are available here.2

5 Experimental Results

5.1 Path recovery and ranking

In this experiment we show that the trained KBC
model is able to recover the highest ranking path
in the ground truth among the ranked set of paths
retrieved by our ranking method for entity pairs
in spite of not seeing the links belonging to the
path in the training set. We also report on the
mean average precision (MAP) obtained for top
n number of paths retrieved by the model. From
the ground truth data set we choose one triple in
the top ranking path p1 for each entity pair and
remove that triple from the training set. For exam-
ple, if the highest ranking path is, ‘Drug1-Gene1-
Disease1’ for entity pair ‘Drug1:Disease1’, we
remove one triple from the path which could be
‘Gene1,Disease1,Gene1 Disease1’ from the train-
ing set. We train an embedding model with ProjE
in the resulting data set using the following param-
eters: d 200, epochs 200, lr 0.0001, batchsize 128,
dropout 0.5, lossweight 0.0001. We use a negative
sampling rate of 0.25 and minimise the loss using
adam optimiser.

The trained model is then used to build a set
of ranked paths between the source and target en-
tity pairs as described in section 3.2. What we test

2https://storage.googleapis.com/pubmed-path-
kg/pubmed exp data.zip

here is whether the model is able to recover the
highest ranking path p1 from the ground truth for
each entity pair in the ranked list of paths. Table
4 shows Hits@n (1,10,25,100) which is the num-
ber of times p1 was ranked in the top n ranked
paths out of all entity pairs for scoring func-
tions Embed+predrank and Embed+cosine and re-
ports MAP for the n ranked paths retrieved. We
compare the result with a baseline in which we
build paths by choosing the most similar entity to
the source and target entities by cosine similarity
and rank them based on the total score obtained.
Though it still uses the learned embedding to com-
pute similarities it does not consider any predic-
tions made by the model. Column 1 refers to the
number of top n predictions (100,300 and 500)
that we request from the KBC model.

According to results in Table 4, Embed+cosine
scoring function yields better Hits@n and
MAP@n scores than Embed+pred rank in gen-
eral. When more predictions are requested from
the KBC model, we observe an increase in
the Embed+cosine scores for both Hits@n and
MAP@n. Increasing the number of predictions
in the KBC model, allows for more entities to
be predicted which in turn increases the depth of
path search, therefore leading to a better chance
that p1 could be retrieved for Hits@n and more
correct paths for MAP@n. When using the top
500 predictions, the model is able to recover p1 on
top 26% of the time, within the top 10, 60% of the
time and within the top 25, 67% of the time. The
scores are even higher when more ranked paths
are extracted according to Hits@100. Within 100
and 300 predictions the model is able to achieve
34% and 49% MAP@10 and 31% and 45%
MAP@25 using Embed+cosine scoring. When
compared to the baseline we see the scores for
both Hits@n and MAP@n obtained by our path
building and ranking method is quite significant.
Note that the baseline does not depend on the
number of predictions requested by the model and
hence it remains same for all three settings.

5.2 Path ranking

In this experiment we want to test how good the
model can rank known paths, that consists of
known links between entities in a graph. In order
to do this we retrieve the rank for known paths in
the ground truth as given by the model. We train
a KBC model with ProjE again, but this time the

168

Pred Scoring Hits MAP Hits MAP Hits MAP Hits MAP
@100 @100 @25 @25 @10 @10 @1 @1

100 Embed+predrank 0.36 0.13 0.22 0.14 0.1 0.15 0 0.07
Embed+cosine 0.36 0.27 0.27 0.31 0.23 0.34 0.07 0.26
Baseline 0.01 0 0 0 0 0 0 0

300 Embed+predrank 0.59 0.11 0.22 0.14 0.1 0.15 0 0.06
Embed+cosine 0.86 0.38 0.64 0.45 0.57 0.49 0.26 0.47
Baseline 0.01 0 0 0 0 0 0 0

500 Embed+predrank 0.59 0.11 0.22 0.14 0.1 0.15 0 0.06
Embed+cosine 0.89 0.37 0.67 0.43 0.6 0.47 0.26 0.43
Baseline 0.01 0 0 0 0 0 0 0

Table 4: Hits@n and MAP@n scores for Embed+predrank, Embed+cosine scoring functions comparing to baseline
for top 100, 300, 500 predictions given by KBC model.

model is trained on the whole data set. For each
entity pair in the same test set, the model produces
a set of ranked paths from which we compute the
relative ranking of the known paths in the ground
truth. For example if entity pair (e1, e2) has 15
ranked paths, and our model produced 25 ranked
paths in total, we compute the relative ranking of
only the 15 paths for this test. Our test statistic
is spearman ranking correlation between the ranks
retrieved by the model and the ground truth. The
same test is repeated after randomly permuting
the paths in the ground truth. We also compute
the ranking correlation between the randomly per-
muted set and the actual ground truth. The ground
truth data set used for this experiment has at least
10 ranked paths for each entity pair and on aver-
age has 33 paths per pair as shown in Table 3. We
increased the number of predictions given by the
KBC model to 1500 in this experiment because it
increases the depth of path search and retrieves all
known paths in the ground truth. This was purely
done for evaluation purposes since its important
to compare the rankings of all paths in the ground
truth.

Table 5 shows the Spearman ranking correla-
tion (rs) for Rp-Rt ranks of paths in ground truth
(Rt) and their relative ranking in predicted paths
(Rp), Rp-Rr ranks of randomly permuted paths
(Rr) and their relative ranking in predicted paths
(Rp), Rt-Rr ranks of paths in ground truth (Rt)
and their relative ranking in randomly permuted
paths (Rr). We show rs observed for all entity
pairs (100) in row 1 and for the ones with at least
20 or more paths (67) in row 2. rs decreases with
ranking complexity as we can see but in both cases
rs with the ground truth is better compared to rs

Paths Coverage Rank pair rs
≥10 100 Rp-Rt 0.45

Rp-Rr 0.24
Rt-Rr 0.26

≥ 20 67 Rp-Rt 0.37
Rp-Rr 0.13
Rt-Rr 0.12

Table 5: Spearman ranking correlation (rs) for Rp-Rt

ranks of paths in ground truth and their relative ranking
in predicted paths, Rp-Rr ranks of randomly permuted
paths and their relative ranking in predicted paths, Rt-
Rr ranks of paths in ground truth and their relative
ranking in randomly permuted paths.

with the permuted set showing almost 3-fold (2.8)
increase in the most difficult case. This proves the
significance of the model’s ranking capability.

The ground truth data set used for this experi-
ment is quite scarce and not very well distributed
in terms of ranking. Since ranks are generated
based on frequency of the paths observed, paths
with same frequency get similar rankings. This is
a limitation in the data set. We expect the method
to perform better in cases where there exists larger
number of paths with an evenly distributed rank-
ing. This is left for future work.

Figure 1a plots the ranks of known paths in
ground truth vs their relative rank in predicted
paths and Figure 1b plots the ranks of randomly
permuted paths in the ground truth vs their rela-
tive rank in predicted paths for all entity pairs with
at least 20 or more paths reported in row2 of Table
5. Points in Figure 1a are mostly correlated and
shows a huge tail towards the bottom left indicat-
ing the highest ranking paths are well correlated
between known and predicted ranks. Figure 1b is

169

(a)

(b)

Figure 1: (a) Ranks of known paths in ground truth
vs their relative rank in predicted paths, (b) Ranks of
randomly permuted paths in the ground truth vs their
relative rank in predicted paths for all entity pairs with
at least 20 or more paths.

quite scattered compared to 1a as indicated by re-
sults in Table 5.

6 Conclusion & Future Work

In this paper we proposed a simple method to au-
tomatically build and rank paths between a source
and target entity pair using embedding based
knowledge base completion (KBC) models. To
our knowledge this is the first paper that is fo-
cused on trying to use path ranking to identify
relevant entities bridging a pair of known entities
and hence not directly comparable with other ap-
proaches. To this purpose we built a data set that
allow us to test our hypothesis. We demonstrated
that our method is able to effectively rank known
paths if available and also infer important miss-
ing links between entities during the path building
process, ranking them high when they are signif-
icant. Any embedding based KBC model can be
used after initial training allowing for more flexi-
bility and also less overhead. The number of paths
built between a source and target is dependent on
the number of predictions requested from the KBC
model as the search space for paths increase with
this parameter.

As future work we plan to build a benchmark

data set for multi-hop paths with a smooth dis-
tribution of ranked paths, evaluate the same ap-
proach and also perform an extensive evaluation
with other state-of-the-art KBC models based on
convolutional networks and matrix factorisation
for path construction and ranking. We intend to
also work on extending our method to use contex-
tualised embedding representations to make bet-
ter use of path information in the graph which we
believe will have a positive impact on the current
path building and ranking methodology.

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Za-
heer, Luke Vilnis, Ishan Durugkar, Akshay Kr-
ishnamurthy, Alex Smola, and Andrew McCal-
lum. 2017a. Go for a walk and arrive at the an-
swer: Reasoning over paths in knowledge bases
using reinforcement learning. arXiv preprint
arXiv:1711.05851.

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew McCallum. 2017b. Chains of reason-
ing over entities, relations, and text using recurrent
neural networks. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 132–141, Valencia, Spain. Association
for Computational Linguistics.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy,
and Tom Mitchell. 2014. Incorporating vector space
similarity in random walk inference over knowledge
bases. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 397–406, Doha, Qatar. Association
for Computational Linguistics.

Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel,
and Tom Mitchell. 2013. Improving learning and in-
ference in a large knowledge-base using latent syn-
tactic cues. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 833–838, Seattle, Washington, USA.
Association for Computational Linguistics.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
318–327, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ni Lao and William W Cohen. 2010. Fast query execu-
tion for retrieval models based on path-constrained

170

random walks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 881–888. ACM.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 529–539, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. arXiv preprint arXiv:1808.10568.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI conference on artificial intelli-
gence.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space mod-
els for knowledge base completion. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 156–166, Beijing,
China. Association for Computational Linguistics.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, vol-
ume 11, pages 809–816.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in neural information processing systems,
pages 926–934.

Weiping Song, Zhijian Duan, Ziqing Yang, Hao
Zhu, Ming Zhang, and Jian Tang. 2019. Ex-
plainable knowledge graph-based recommendation
via deep reinforcement learning. arXiv preprint
arXiv:1906.09506.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In In-
ternational Conference on Machine Learning, pages
2071–2080.

Haoyu Wang, Vivek Kulkarni, and William Yang
Wang. 2018. Dolores: Deep contextualized knowl-
edge graph embeddings. CoRR, abs/1811.00147.

Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan
He, Yixin Cao, and Tat-Seng Chua. 2019. Explain-
able reasoning over knowledge graphs for recom-
mendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 5329–
5336.

Wenhan Xiong, Thien Hoang, and William Yang
Wang. 2017. Deeppath: A reinforcement learn-
ing method for knowledge graph reasoning. arXiv
preprint arXiv:1707.06690.

171

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 172–176
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

Node Embeddings for Graph Merging: Case of Knowledge Graph
Construction

Ida Szubert Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, Scotland, UK

k.i.szubert@sms.ed.ac.uk, steedman@inf.ed.ac.uk

Abstract

Combining two graphs requires merging the
nodes which are counterparts of each other.
In this process errors occur, resulting in incor-
rect merging or incorrect failure to merge. We
find a high prevalence of such errors when us-
ing AskNET, an algorithm for building Knowl-
edge Graphs from text corpora. AskNET node
matching method uses string similarity, which
we propose to replace with vector embedding
similarity. We explore graph-based and word-
based embedding models and show an overall
error reduction of from 56% to 23.6%, with a
reduction of over a half in both types of incor-
rect node matching.

1 Introduction

The work we present here is an extension of the
graph building algorithm of AskNET (Harrington
and Clark, 2008). The overall task we consider
is to automatically extract information from text
and integrate it into one resource, a knowledge
graph. In this paper we focus on one aspect of the
AskNET graph building algorithm – the process of
merging document-level graphs into a corpus level
one. We propose improvements which reduce the
rates of two common and non-trivial errors which
arise when matching nodes between two graphs.

Merging two graphs, with an assumption that
they potentially represent overlapping informa-
tion, requires node matching. We need to decide
which nodes should be merged, and this can re-
sult in two types of errors: merging two nodes
even if they do not represent the same thing, or not
merging nodes which do. As an example, Figure
1 shows a sample graph representing information
from a news article and a new sentence together
with its own graph. In merging the two graphs
we could correctly decide to match and merge
the Williams node to the Rowan Williams one. If
we matched to Justin Welby we would merge the

Figure 1: A graph representing a news article about Arch-
bishop appointment and a sentence to be integrated into the
graph. Green dotted arrow shows correct node matching, the
red match leads to spurious merging, and the blue arrow and
node represent no match found and a spurious addition.

nodes incorrectly, resulting in conflation of infor-
mation about two different people. If we did not
find a match at all the result would be the pres-
ence of two nodes representing the same person.
We call the first error spurious merging, and the
second spurious addition.

Both of those problems occur in graphs built
with the AskNET algorithm, which uses string
similarity as a tool for node matching. We propose
to modify the algorithm with using vector embed-
dings instead. We explore word-based and graph-
based ways of obtaining graph node embeddings
and show that both lead to reduction in merging
and addition errors.

2 Methods

In this paper we explore a modification of the
AskNET algorithm. We provide an overview
of the KG-building approach of (Harrington and
Clark, 2008), and a more detailed explanation of
the step which we improve upon.

172

2.1 AskNET

The AskNET system uses a semantic parser
(Boxer (Bos, 2005)) to obtain graph representation
of sentential content in a large corpus and incre-
mentally combines them, first into document level
graphs (DG), and then into one semantic network,
which we are calling a knowledge graph (KG)1.
The central challenge in the process of graph
merging is, as described before, node matching.
In AskNET the matching problem is approached
with an iterative message passing (aka activation
spreading) procedure, the intuition behind which
is to find, for a node nDG from DG, a node nKG

in the KG such that the neighbourhoods of nDG

and nKG in their respective graphs are similar.
Given a node nDG, the algorithm selects a can-

didate set CKG of KG nodes such that it likely
contains the correct matching nKG. Afterwards
in an iterative procedure for each of the DG nodes
the scores of each element of CKG are updated
until convergence. The pre-selection step is cru-
cial for ensuring time and space efficiency of the
algorithm.However it also means that if the qual-
ity of CKG is a limiting factor for the correctness
of the output. If the correct match is not present
in CKG, either spurious merging or addition will
result. Moreover, errors will also arise when CKG

does contain the correct match, but it is easily con-
fused with the rest of the set members.

As Harrington (2009) recognizes, spurious ad-
dition and merging are challenging errors to fix,
and the AskNET algorithm does not attempt it. In
our implementation of AskNET, only about 44%
of nodes are correctly matched, with the rest di-
vided between spurious addition (24%) and merg-
ing(32%). We approach this issue by improving
the candidate node sets with the aim of minimiz-
ing the problems. The task we consider is thus:
given a KG, a DG, and node nDG, produce a set
CKG such that it (1) contains the true match and
(2) minimizes merging and addition errors. In the
approach of (Harrington and Clark, 2008) the se-
lection is based on approximate string matching
between the name associated with nDG and the
names associated with the KG nodes. This sim-
ilarity measure is not reliable in contexts where

1Semantic parses used in AskNET follow a version of
Discourse Representation Theory as implemented by the
Boxer parser; in our replication we represent the information
contained by a sentence with a set of entity-relation triples,
which express all the binary relations involving at least one
named entity

one entity can be called by various names and ti-
tles, as is especially common in news text in which
repetitions are avoided. In our evaluation, only
about 55% of candidate sets generated with string
similarity actually contain a correct match. Our
contribution is investigating the use of vector em-
beddings for candidate node selection. We show
that both word-based and graph-based embedding
models provide a better notion of similarity, and
that combining them brings optimal benefits.

2.2 Dataset

For our experiments we use a subsection of the
NewsSpike corpus (Zhang and Weld, 2013). For
purposes of efficiency and ease of evaluation we
decided to build a KG of around 15k nodes (size
in line with the FB15k dataset (Bordes et al., 2013)
popular in graph embedding literature), which we
achieved by selecting 127,221 documents from
the NewsSpike corpus. We preprocessed the
NewsSpike corpus using the DBPedia entity linker
(Nguyen et al., 2014) which enabled us to identify
the most frequently occurring named entities. We
chose top n named entities such that when a KG
is created of all the documents mentioning those n
entities, the graph has approximately 15k nodes.2

Documents in our dataset are relatively short, av-
eraging 338 words. The average number of named
entities per document is 10.3. We held out 10 ran-
domly selected documents each for development
and test sets, and the rest forms the training set.

2.3 Base KG

The KG used in our experiments is built out of the
training set documents using the original AskNET
algorithm. To obtain graphs representing indi-
vidual sentences we use the semantic parser of
(Reddy et al., 2014) and extract binary relations
from its output. We only use relations which in-
volve at least one named entity. The nodes in
the graph are labeled with a set containing all
strings from the original documents which have
been linked to that node (e.g. a set containing
Rowan Williams, Williams, Rev. Williams, Arch-
bishop of Canterbury). The edges are labeled with
relation names, where the relation set is open and
can include any two place predicate used in the
source documents.

2The graph also includes nodes representing non-named
entities.

173

2.4 Graph-based embeddings

The first way of generating DG and KG node em-
beddings is using a graph embedding method. We
decided to use the GraphSAGE model of (Hamil-
ton et al., 2017) which generates node representa-
tions by taking into account the features of each
node and the structure of it’s neighborhood. This
model, as compared to numerous recent graph em-
bedding models, is particularly well suited to our
use case. It can be trained with an unsupervised
objective, once trained can produce embeddings
for unseen nodes and even nodes in unseen graphs,
and leverages node features, e.g. text attributes.
We train GraphSAGE, in an unsupervised setting3

and mean aggregators, on the base KG. The initial
node features are node degree and mean of one-
hot encoding of the node labels. The model learns
a set of aggregator functions, which not only gen-
erate final embeddings for the KG nodes, but also
for DG nodes in the development and test sets.

2.5 Word-based embeddings

Another approach to obtaining node embeddings
is through word embeddings. We make use of
of the ELMo model for deep contextualized word
representation (Peters et al., 2018). We represent
a node in a KG as an average of the word em-
beddings of every entity that has been resolved to
that node during graph building. In other words,
given a document we generate ELMo embeddings
for every mention of every entity4, and in the DG
a node representing an entity is assigned an em-
bedding which is an average of all the mentions
of that entity. When nodes are merged during in-
tegration of the DG into the KG, the embedding
of the KG node is updated so that it is always an
average of the embeddings of all document-level
nodes resolved to that KG node. For the purposes
of our experiments we perform this embedding ag-
gregation when building the base KG so that em-
beddings for all of its nodes are available. How-
ever, we do not use those embeddings to aid in the
building process.

We use the original large pre-trained ELMo
model (ELMo large), which has been trained on

3with the objective of maximizing the similarity of close
by nodes and minimizing that of distant nodes, where the
closeness is determined by co-occurrence on fixed-length
random walks

4Because of pre-processing the documents in our corpus
with an entity linker we know which word sequences consti-
tute entity names and we treat them as single lexical item.

the same genre as our corpus. For the purposes
of meaningful comparison with the graph-based
embeddings, which cannot be pre-trained, we also
train an ELMo model on our corpus only (ELMo
small and exeriment with the resulting embed-
dings.

2.6 Hybrid embeddings

We expect that the two methods might provide
complementary benefits: GraphSAGE make use
of the structure of the KG, and ELMo accumulate
information from the original texts, including in-
formation which is not present in the KG. We pro-
pose to combine them by using the GraphSAGE
model with initial node features being node degree
and the ELMo large embedding of the node.

3 Experiments

We propose to find the set CKG by evaluating
embedding similarity, rather than string similar-
ity, between embeddings of the nDG and all KG
nodes. We treat the string-similarity method as a
baseline. We expect relying on embedding simi-
larity to result in better candidate sets and in re-
duced number of merging and addition errors.

Regardless of the embedding method, candidate
selection requires us to pick k closest neighbours
for a given node from all of the nodes of the KG.
To do that we use random projection-based ap-
proximate nearest neighbour search algorithm im-
plemented in the Annoy library5. For candidate se-
lection in the original string-based method we use
the SimString library which performs approximate
string matching according to the method proposed
in (Okazaki and Tsujii, 2010), and we define the
similarity between nd and nKG as the edit distance
divided by the length of the shorter of the names.
We use the development set to set k to 7 and string
similarity threshold to 0.36.

For each test document, we build a DG using the
original AskNET method. Each node in that graph
is associated with a set of names and ELMo large
and ELMo small embeddings. Using the Graph-
SAGE and hybrid models trained on the base KG
we assign each node in DG a GraphSAGE and
hybrid embeddings. Then, for each DG node we
find five CKG sets, one for each method, and run
the rest of the AskNEt algorithm for each set to

5https://github.com/spotify/annoy
6We also use the development data to set various AskNET

hyperparameters not discussed in this work

174

errors
good CKG correct merging addition

baseline 54.5 44.2 24.2 31.6
GraphSAGE 67.3 61.8 18.2 20.0
ELMo small 63.6 55.1 19.4 25.5
ELMo large 71.5 64.2 13.9 21.9

hybrid 82.4 76.4 10.9 12.7

Table 1: Node matching results: percentage of CKG con-
taining a correct match (higher is better); percentage of test
nodes correctly resolved (higher is better), spuriously merged
with some KG node and spuriously added to KG as a new
node (lower is better)

recover the one (or none) final match for each
method.

3.1 Evaluation

Evaluation of information graph building methods
is inherently challenging in the absence of gold-
standard KGs. In our experimental setting the base
KG is automatically constructed and as such is
noisy. We then ask how well are different meth-
ods capable of matching DG nodes to the nodes
in the noisy KG. There is no ground truth, and
so our evaluation relies on a human annotator in-
specting the neighbourhoods of the candidate KG
nodes and making a judgment about how likely is
it that they are a match to the DG node. When the
annotator finds no likely matches in the set, they
search the KG (by keywords, names, etc.) to ascer-
tain whether likely matches are present in the KG
at all. The annotator has access to the test set docu-
ments, document-level graphs, and can inspect the
KG.

For each node in a DG in the test set, we man-
ually evaluate the candidate sets produced by the
five methods (baseline, GraphSAGE, ELMo large,
ELMo small, hybrid) and the one (or none) node
returned by the AskNET algorithm as the final
match. There are 165 nodes in the 10 test set doc-
uments.

We evaluate the candidate sets by manually as-
sessing whether any of the candidates can be rea-
sonably considered to be a match, and if so the set
is deemed to be correct. For the final match de-
cision we perform a 3-way classification: correct
KG node selected or correct in choosing no KG
node; incorrect KG node selected and leading to
spurious merging; or incorrectly selecting no KG
node and leading to spurious addition.

4 Results

Overall, both graph- and word-based embedding
similarity outperform string similarity as a candi-

date node selection tool, and the most benefit is to
be had by using a hybrid model. Both the percent-
age of good candidate sets and the percentage of
correct matches are significantly increased. More-
over, the difference between the two measures is
smaller for our proposed methods than for base-
line, indicating that our candidate sets are less con-
founding for the AskNET algorithm.

As can be seen in table 1 word- and graph-
based embedding differ in what kind of confound-
ing candidates they introduce to the sets alongside
the correct match. This is reflected in the different
rates of spurious merging and addition they result
in. GraphSAGE reduces addition more then merg-
ing. Given a node nDG, using GraphSAGE we
select KG nodes whose neighbourhood is similar,
in terms of features and structure, to that of nDG.
This makes it more likely that the correct match
is in CKG, thus reducing spurious addition. How-
ever, the subsequent steps of the AskNET algo-
rithm also rely on estimating the similarity of the
neighborhoods which means that the candidates
selected using this method are easy to confuse.

An opposite tendency can be observed for
ELMo embeddings, where CKG includes entities
mentioned in similar textual context as nDG. If
the correct match is present in the set, it is eas-
ier for the AskNET algorithm to identify it using
the neighbourhood information, because the can-
didates are likely to have diverse neighbourhoods.
Therefore merging mistakes are significantly re-
duced.

5 Conclusions

We show that modern context-aware word embed-
dings and graph-based embeddings can both be
used, separately or in conjunction, to improve KG
building from text. Our experiments show that we
can reduce both of the two difficult problems with
resolving entities to KG nodes: spurious merging
of separate entities into one node and spurious ad-
dition of nodes for entities which are already rep-
resented in the KG. We explore how different em-
bedding methods are better suited to solving one
of the problems than the other, and how combin-
ing them provides synergistic effects. While we
explore the proposed methods from the point of
view of KG creation, the same methods could be
used for other KG-based tasks, e.g. question an-
swering.

175

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Johan Bos. 2005. Towards wide-coverage semantic in-
terpretation. In Proceedings of Sixth International
Workshop on Computational Semantics IWCS, vol-
ume 6, pages 42–53.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
In Advances in Neural Information Processing Sys-
tems, pages 1024–1034.

Brian Harrington. 2009. ASKNet: automatically creat-
ing semantic knowledge networks from natural lan-
guage Text. Ph.D. thesis, Oxford University.

Brian Harrington and Stephen Clark. 2008. Asknet:
Creating and evaluating large scale integrated se-
mantic networks. International Journal of Semantic
Computing, 2(03):343–364.

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. AIDA-light: High-
Throughput Named-Entity Disambiguation. In
Workshop on Linked Data on the Web, pages 1–10,
Seoul, Korea.

Naoaki Okazaki and Jun’ichi Tsujii. 2010. Sim-
ple and efficient algorithm for approximate dictio-
nary matching. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 851–859. Association for Computational Lin-
guistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Congle Zhang and Daniel S Weld. 2013. Harvest-
ing parallel news streams to generate paraphrases of
event relations. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1776–1786.

176

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 177–185
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

DBee: A Database for Creating and Managing Knowledge Graphs and
Embeddings

Viktor Schlegel, André Freitas
Department of Computer Science

University of Manchester
{viktor.schlegel,andre.freitas}@manchester.ac.uk

Abstract

This paper describes DBee, a database to
support the construction of data-intensive AI
applications. DBee provides a unique data
model which operates jointly over large-scale
knowledge graphs (KGs) and embedding vec-
tor spaces (VSs). This model supports queries
which exploit the semantic properties of both
types of representations (KGs and VSs). Addi-
tionally, DBee aims to facilitate the construc-
tion of KGs and VSs, by providing a library of
generators, which can be used to create, inte-
grate and transform data into KGs and VSs.

1 Introduction

Many AI tasks can be summarised into the cy-
cle of collecting data, overlaying a representation
(schema) on the top of the data and performing
learning and inference algorithms, which will even-
tually produce new data or extend the representa-
tion. While in many cases learning and inference
are put at the centre of the stage, managing the data
and the supporting representations are fundamental
parts of the design and delivery of an AI system.

Currently, the prevalence of workflow architec-
tures for many types of AI systems reflects the
emphasis on learning and inference, where data
management becomes a secondary concern. How-
ever, complex AI tasks such as Question Answer-
ing (QA) (Kumar et al., 2016), Text Entailment
(Hashimoto et al., 2016) or Natural Language Infer-
ence are either directly dependent on or can benefit
from the construction of supporting Knowledge
Bases.

Recently, latent and explicit semantic represen-
tations are emerging as fundamental elements for
supporting those tasks, due to their dependency
on commonsense and domain specific knowledge.
Moreover, the recent rise of successful approaches
operating at the neuro-symbolic representation
level (Parisotto et al., 2016; Liang et al., 2016),
demands for a closer dialogue between explicit and

latent models. Word embeddings (Mikolov et al.,
2013) and Knowledge Graphs (lexico-semantic
graphs) (Bollacker et al., 2008) are becoming the
de-facto representation models within different AI
tasks. Moreover, they have complementary proper-
ties, where word embeddings provide more coarse-
grained semantics which are complemented by the
fine-grained semantics of KGs being commonly
used in coordination (Silva et al., 2018; Xie et al.,
2017).

This paper describes DBee, a database for cre-
ating, querying and consuming embeddings and
knowledge graphs. DBee aims to be a database
designed for satisfying recurring demands from AI
applications. DBee provides a seamless layer to
jointly query knowledge graphs and embeddings,
simultaneously exploiting the semantic properties
of both resources, taking into account performance
and scalability aspects. At the centre of the pro-
posed database is the goal of bridging the gap be-
tween data, representation, learning and inference
algorithms, where classifiers and extractors directly
interface with the schema. By design, DBee pro-
vides a declarative layer for data and representation
management in AI systems. Finally, DBee also sup-
ports the combination of different models and rep-
resentations (cross-model and cross-representation
queries) and their customisation.

In the following sections of the paper we mo-
tivate our approach with an initial scenario, dis-
cuss background and and related work, describe
the proposed framework, present the implemented
system by instantiating it for archetypal use cases
and conclude with a discussion outlining the ex-
pected performance, hardware requirements and
current limitations of the system.

2 Motivational Scenario

An AI application engineer wants to build a QA sys-
tem to support investors in NASDAQ companies.
Most of the data relevant for this task such as finan-

177

Figure 1: Architecture and Workflow overview: the overall architecture (blue) supports the implementation of the
motivational scenario (green).

cial reports, blog articles and recent news only exist
in the form of unstructured text. The engineer also
anticipates the benefits of integrating structured
Knowledge Graphs such as DBpedia (Auer et al.,
2007), integrating KGs to the textual data sources.
Realizing the importance of his application to be
able to generate traceable and explainable answers,
he decides to use an explicit internal representa-
tion, such as the graph-based RDF-NL (Cetto et al.,
2018). With the associated chain of classifiers and
extractors available at DBee, he performs open-
information extraction (OIE), Coreference Reso-
lution (CR), Entity Linking (EL) and Rhetorical
Structure Classification (RSC) to obtain the graph
from a chosen set of documents. After the extrac-
tion, the graph is indexed to ensure efficiency for
different types of queries over the graph represen-
tation. In order to support semantic approximation
during the queries, he associates two pre-trained
word embedding models to the KG using the DBee
API and uses the provided set of query primitives to
query the knowledge graph. Deciding to use triples
from the KG as features for a neural stock predictor
model, he uses the DBee API to create input and
answer sets (for a set of pre-defined queries) ready
to be consumed by the automatic differentiation
framework of his choice.

3 Background & Related Work

Current machine learning systems such as Keras
(Chollet et al., 2015), and PyTorch (Paszke et al.,
2017) focus mostly on exposing their user to the
definition of neural architectures, abstracting away
the computation details of automatic differentia-
tion - or trying to learn even those (Jin et al., 2018)
- with TensorFlow (Abadi et al., 2016) being the
most complete suite providing assistance from data
streaming, over training to model serving. Our
approach can be seen as complementary to these
efforts since we aim to provide the infrastructure to
extract, represent and query structured and unstruc-
tured data (with an emphasis on KGs from text and
associated embeddings).

Early efforts in a similar direction include (Sales
et al., 2018), that present a uniform service-based
API for storing, querying and comparing word em-
beddings, pre-computed with varying models and
on different datasets. Another information manage-
ment tool for unstructured data is Apache UIMA
1.

Contemporary machine comprehension systems
based on neural architectures have targeted evalu-
ation settings which have limited document scale
(e.g. SQUAD (Rajpurkar et al., 2016)).

Different works explored the connection be-

1http://uima.apache.org

178

tween distributional semantics and structured
Knowledge Graph representations in the context
of semantic parsing over large-scale RDF graphs
(Freitas and Curry, 2014; Freitas, 2015; Sales et al.,
2016) and approximative abductive reasoning over
commonsense KBs (Freitas et al., 2014, 2013).
Comparatively, DBee focuses on explicit seman-
tic representation models (Knowledge Graphs) ex-
tracted from text.

4 Proposed Framework

To satisfy the emerging need to work with unstruc-
tured text representations, as depicted in the intro-
ductory part of this work, we propose a framework
that supports the extraction and management of
both explicit and latent text representation models
and facilitates the integration with downstream ma-
chine learning based models. DBee was designed
to deliver the following features:

1. Bridging the gap between unstructured
data and semantic representations: Con-
forming data into latent and explicit text repre-
sentations is a primary requirement for many
AI applications. DBee allows users to cre-
ate, reuse and compose a library of text ex-
tractors and classifiers which will be used to
structure and integrate existing unstructured
data. The library includes standard represen-
tation generators such as syntactic and lexical
parsers, open information extractors, named
entity recognisers and linkers and discourse-
level extractors.

2. Multi-representation model: DBee sup-
ports users in experimenting with different
types of explicit and latent semantic represen-
tations and models. Different tasks will re-
quire different types of representation. Users
should be able to query across multiple repre-
sentations.

3. Expressive structured queries and ML in-
tegration: To give its users fine-grained con-
trol over the data and to overlay their own
machine learning algorithms, DBee features
an intuitive query language and seamless inte-
gration with existing machine learning algo-
rithms.

4. Extensibility: Representation schemas and
their supporting generators are extensible and
customisable.

5. Scalability: Operating over large-scale data
sources, large knowledge graphs and em-
beddings require principled query processing
strategies. DBee inherits indexing strategies
from databases and kNN embedding queries
in order to support scaling to large datasets,
memory footprints and storage space require-
ments.

Figure 2: Initial data model

5 The DBee Model

5.1 Data Model

DBee operates over two types of representation:
knowledge graphs and word embeddings.

The underlying knowledge graph data model
uses RDF-NL, an extension of the RDF (Lassila
and Swick, 1999) data model suitable to represent
text as a lexico-semantic Knowledge Graph. RDF-
NL is built upon a sentence representation model
proposed by (Niklaus et al., 2017, 2019, 2018)
which splits complex sentences into simpler linked
clausal and phrasal elements, later splitting these
elements into predicate-argument structures.

The graph data model (Figure 2 (a)) is defined by
a subject-predicate-object (SPO) triple which can
have contextual relations (C) as reifications or can
be linked to other SPO triples. Contextual links can
be named. This data model supports the creation
of versatile sparse graph representations. For ex-
ample, the data model smoothly captures linguistic
predicate-argument structures and phrasal (e.g. ap-
positive), clausal (coordination and subordination),
rhetorical and argumentation relations. Figure 3
shows an example of a concrete knowledge graph
extracted from a sentence.

All SPO nodes are defined by their lexical real-
isation (typically a text chunk) and can be linked
to a canonical identifier in the entity component
of the data model (Figure 2 (b)), which allows an

179

Figure 3: Example generator chain output of the sentence “Asian stocks fell anew and the yen rose to session
highs in the afternoon as worries about North Korea simmered, after a senior Pyongyang official said the U.S. is
becoming ”more vicious and more aggressive” under President Donald Trump .”

entity-centric data integration, such as it is per-
formed by co-reference resolution, entity linking
or word-vector clustering.

The data model is materialised into different
types of supporting indexes in order to enable ef-
ficient and scalable query processing. There are
two main types of indexes associated with the data
model:

• Embedding Indexing (EI): Supports
the efficient querying of embedding spaces (k-
NN similarity queries). By default it uses the
random projections of the locality-sensitive
hashing method proposed by (Charikar,
2002).

• Knowledge Graph Lexical
Indexing (T I): Supports information-
retrieval style keyword search queries over
the KG structure using inverted indexes and
associated weighting schemes (by default,
TF-IDF is used).

5.2 Operations

At the centre of the DBee data model is the ability
to build, transform and combine KGs and Vector
Spaces/Embeddings (VSs).

Different KGs and VSs can be combined us-
ing a view allowing support of querying specific
compositions. Projections (~π) are operators which
build VSs (embeddings) from KGs and unstruc-
tured datasets.

On the top of the views, query operators are de-
fined. View, projections and queries can be chained
together. If called in the middle of a function chain,

these functions serve the purpose of a join in a
sense similar to relational databases. This means
views and projections later in the operation chain
will only operate on the subset of results satisfying
the query defined in the chain so far. This behaviour
is visualized in Figure 5.

The domain-specific query language (DSL) asso-
ciated with DBee includes the following functions:

• query(term, n): This operation re-
trieves up to n best matching candidates from
the view/projection it is being executed upon
with respect to its type. For a projection, for
example, it retrieves n nearest neighbours re-
garding their embeddings, after embedding
the query term using the projection space’s
corresponding embedding function.

• filter(attribute=value | bgp
| conditional statement): This
operation filters are selection operators
(σ) for predicates defined as the function’s
parameters. They can be defined as an
attribute=value form or with the help of basic
graph patterns).

• rank(wrt): This function can be used to
rank a set of results with respect to a given
term by their distance to it in the correspond-
ing vector space.

• top(n), count(): Aggregation operators
will retrieve the top results in up to a given
limit or count them up, respectively. Provided
a name, the result set will consist of attributes
of this name.

180

• create view(name): Creates a new view
with a given name from the current result set.

• create projection(name, using,
features): Similarly, creates a new
projection using a given embedding function
by extracting the features from every result
in the set. Features might be defined simply
by providing a list of attribute names to use
or any callable operation to extract custom
features.

5.3 Representation Generators (g) & Chains
(c)

Representation elements have associated genera-
tors g, which are classifiers, extractors and linkers
which operate over Data, KGs or VSs.

The generators are stored into libraries, typed ac-
cording to their representation function and tagged
with the model metadata (such as training corpus
and evaluation score, architecture and hyperparam-
eter configuration). Generators can be composed
using generator chains. For example, generating
a KG from textual data would typically employ
the chain: gCR ◦ gEL ◦ gOIERDF−NL. As with the
generators, chains can be named and persisted into
libraries.

Generators can also be associated with vector
representations, e.g. gV SW2V . The set of pre-defined
generators currently present at DBee are described
in Table 1.

Figure 1 summarises the main primitives of the
system depicting a schematic high-level compo-
nents diagram of DBee.

Concretely, we propose a pipeline with the fol-
lowing steps: First, using contextualised open in-
formation extraction (Cetto et al., 2018), structured
information is extracted from the unstructured text,
in the form of a set of inter-linked subject-predicate-
object triples, thus yielding a graph. With coref-
erence resolution, the graph is further enriched se-
mantically, linking nodes that refer to the same

Table 1: Library of pre-defined Generators

Symbol Description
gCR Coreference Resolution generator
gELX Entity Linker to the resource X

gNER Named Entity Recognizer
gOIE Open Information Extractor
gπ provider of an embedding function

pi

entity in the text. In a final entity linking step,
recognised entities are connected to existing re-
sources, contextualising them further regarding ex-
isting background knowledge.

The extracted knowledge graph is then serialised
and indexed, while still retaining its logical graph
representation. In particular, we use full-text search
capable databases and nearest neighbour indices
to enable querying and approximation of stored
data using string-based as well as embedding-based
methods.

The API layer features a chainable IDSL to allow
intuitive interaction with the data. Concretely it
is designed to support expressive recurring query
patterns while reducing impedance mismatch.

6 Usage

6.1 Implementation

DBee was conceptualised and implemented as an
extensible Python library. We use the HOCON2

format to enable for easy generator chain defini-
tion and persistence. We provide a pre-defined
chain featuring the contextualised open informa-
tion extraction tool Graphene (Cetto et al., 2018),
the Stanford CoreNLP coreference resolution sys-
tem (Manning et al., 2014) and the entity linker
Spotlight (Mendes et al., 2011) that links recog-
nised entities to DBpedia resources. Furthermore,
we use ElasticSearch3 as the full-text search engine
and Annoy4 to index the embeddings for the kNN
queries.

Note, that following the design goals of exten-
sibility and scalability, the software is not con-
strained to use those specific tools. Even the choice
of generators and storage types is not fixed, as it re-
quires low effort to add a new generator or storage
type, such as a relational database to perform joins
more efficiently, for instance.

6.2 DBee in Code

Listed below are example instantiations illustrat-
ing the usage of the framework exercised on four
exemplar use cases.

6.2.1 Extraction
Code 1 shows the boilerplate code required to in-
stantiate DBee. From a list of Wikipedia article
titles one can query the Wikipedia API and apply

2https://github.com/chimpler/pyhocon
3https://www.elastic.co
4https://github.com/spotify/annoy

181

Figure 4: Example output of a DBee fact query.

TFin KGFinRDF−NL(1)

(2) (2)

(3)

(4)
library

V SGN
w2v

library

V SWSJ
ELMo

TGN TWSJ

πRDF -NL→w2v πRDF -NL→ELMo πRDF -NL→tf -idf

V SFin
w2v V SFin

ELMo

DF⊂Fin
R EI

Fin
ELMo EI

Fin
w2v TI

Fin
tf -idf

qdistsim qapprox qFTS

./ qσ

cRDF -NL = gCR ◦ gEL ◦ gOIE

πELMo→R

Figure 5: Conceptual overview of the code snippets. From unstructured text, using a chain of generators (1) a
knowledge graph is extracted and stored (2) in different indices, which are later queried jointly by the correspond-
ing query types they offer (3) or used to create a data set (4) to train a neural network.

the selected generator chain. The snippet further

main = DBee()
docs = main.get_pipeline("extended").
assemble().
load("wikipedia-nasdaq-100.txt")

{
'()': semantic.OIEGenerator
coref_provider: {
class: graphene.FromRESTProvider
server_address = localhost

}
}

Code Snippet 1: Extraction Example

highlights the definition of a generator as one step
of the chain, using HOCON syntax, with semantics
similar python’s logging module configuration.

6.2.2 Index Creation
From the KG extracted in the previous step, the
storage indices can be populated. The DSL-
level user does not necessarily need to know

kb('nasdaq-100').
using(docs.get_iterator('fact')).
create_view('fact')

kb('nasdaq-100').
view('spo').
create_projection('po',
pi=IndraEmbedder,
features=['predicate', 'object'])

Code Snippet 2: Example of data Storage

the actual name of the data view (’fact’ in
this case) but can obtain it by querying the
class of the corresponding generator type (i.e.
OIEGenerator.provides). Similarly, addi-
tional indices can be constructed and stored from
the representation generated by an already defined
chain or indices - as shown in the example, by util-
ising one of the pre-trained embedding generators
provided by DBee.

182

6.2.3 Querying
Code 3 shows the query equivalent to the natural
language query Which companies have offices in
China?. The query describes the process of filter-
ing the list of initial entities to retain only those of
the type ”company”, switch the data view to facts
(performing a join implicitly), further filtering out
facts, and finally projecting the remaining entities
into the previously created vector space and rank-
ing them by distance to the computed projection
of a given term. An implicit join back to the tex-
tual view is made to retrieve the subjects of the
re-ordered remaining facts.

kb('nasdaq-100')
view('entity').
filter(type='dbo:Company').
view('fact').
filter(label=Spatial, context='China').
view('spo').projection('po').
rank(wrt="have offices").
get('subject')

Code Snippet 3: DSL Querying example

Note that the query uses already
resolved filter predicates for brevity,
one could likewise use the operation
view(’types’).query(’companies’)
to query for the concrete type URI using the
expression obtained from the text - given the view
was constructed beforehand.

6.2.4 ML Integration

kb('nasdaq-100')
view('fact').
as_classification_dataset(
features=bow(["spo", "context.spo"])
labels=onehot("context.label")

)

Code Snippet 4: Dataset Creation Example

Finally, the example in Code 4 shows the cre-
ation of a toy dataset for link type prediction be-
tween two interlinked facts. The user-defined de-
fined bow and onehot functions serve as feature
extractors.

7 Discussion

7.1 Analysis of TFin

While this is not meant to be a thorough empirical
analysis, the following section gives insights into

100 101 102 103 104 105 106
20

25

210

215

220

225

of facts

In
de

x
si

ze
(k

b)

Annoy
Elastic

Figure 6: Index sizes for Annoy and ElasticSearch in-
dices for varying number of facts

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

of facts

In
de

xi
ng

tim
e

(s
)

Annoy
Elastic

Figure 7: Indexing times for Annoy and ElasticSearch
indices

the performance of the system regarding time and
space requirements.

All of the following measurements were carried
out on a notebook featuring an SSD, a dual-core
i5-6200U CPU performing at 2.3GHz and 16 GB
of RAM.

We provide the vector space indexing times and
sizes for a varying number of indexed vectors,
averaged over ten runs. In particular, we index
10n, n ∈ 0..6 embedding vectors using our vec-
tor space storage implementation based on Annoy.
The dimension of the embeddings is 300. For full-

183

text search indices, we performed the same proce-
dure. We populated ElasticSearch indices with
10n, n ∈ 0..6 facts, denormalised according to
the data model, using a single local node. Fig-
ures 6 and 7 shows the result, revealing that index-
ing times and index sizes scale linearly with the
size of the dataset. Axes within the plots are at
logarithmic scale.

The creation of a small dataset from 100
Wikipedia articles yielded 2292 recognised entities,
22633 distinct subject-predicate-object structures
and 39456 contextual links. The total required
storage space was 8.159 MB for the denormalised
textual data stored in ElasticSearch and 148.37 MB
for the stored 300 dimensional word2vec em-
beddings. Running all steps in sequence - from
obtaining the documents up to storing them in co-
responding indices - took approximately 3.5 hours.

It is worth noting that the open information step
takes up most of the processing time. However,
since by design the extraction process does not
require to explore any dependencies between dif-
ferent documents, a speedup factor of up to n can
be assumed for n parallel instantiations of the ex-
traction pipeline.

7.2 Current Limitations & Future Work
In its current version, the software does not support
data insertion or updates due to an implementation
detail of choosing the annoy implementation for
nearest neighbour approximation, in favour of its
speed. There are, however, recent approaches for
nearest neighbour estimation that support dynamic
index updates (Li and Malik, 2017).

Furthermore, the current approach requires dif-
ferent tools to store different data representation
types such as views and projections. One future
direction is to investigate how to build low-level
vector space index support into existing DBMS.

Finally, a rigorous analysis regarding scalabil-
ity, complexity, performance and usability will be
carried out in the future.

7.3 Conclusion
In this paper, we formalised an approach to create
and manage knowledge graphs and embeddings
and to query them jointly and introduced DBee, a
system implementing this approach. We hope to
provide the community with a tool that facilitates
the management, storage and querying of latent
and explicit text representation facilitating its inte-
gration to downstreal ML/AI applications.

Acknowledgements

The authors would like to express their gratitude
towards members of the AI Systems lab at the Uni-
versity of Manchester for many fruitful discussions.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: a system for large-scale ma-
chine learning.. In OSDI, Vol. 16. 265–283.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web. Springer, 722–735.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data. AcM, 1247–1250.

Matthias Cetto, Christina Niklaus, André Freitas,
and Siegfried Handschuh. 2018. Graphene:
Semantically-Linked Propositions in Open Informa-
tion Extraction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics.
Association for Computational Linguistics, 2300–
2311.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory
of computing. ACM, 380–388.

François Chollet et al. 2015. Keras. (2015).

André Freitas. 2015. Schema-agnositc queries over
large-schema databases: a distributional semantics
approach. Ph.D. Dissertation. Digital Enterprise Re-
search Institute (DERI), National University of Ire-
land, Galway.

André Freitas and Edward Curry. 2014. Natural
language queries over heterogeneous linked data
graphs: a distributional-compositional semantics ap-
proach. In 19th International Conference on Intelli-
gent User Interfaces, IUI 2014, Haifa, Israel, Febru-
ary 24-27, 2014. 279–288.

André Freitas, João Carlos Pereira da Silva, Edward
Curry, and Paul Buitelaar. 2014. A Distributional Se-
mantics Approach for Selective Reasoning on Com-
monsense Graph Knowledge Bases. In Natural Lan-
guage Processing and Information Systems - 19th
International Conference on Applications of Natu-
ral Language to Information Systems, NLDB 2014,
Montpellier, France, June 18-20, 2014. Proceedings.
21–32.

184

Andre Freitas, Joao C. P. da Silva, Sean ORiain, and
Edward Curry. 2013. Distributional Relational Net-
works. In AAAI 2013 Fall Symposium on Semantics
for Big Data.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple NLP
tasks. arXiv preprint arXiv:1611.01587 (2016).

Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Effi-
cient Neural Architecture Search with Network Mor-
phism. arXiv preprint arXiv:1806.10282 (2018).

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural
language processing. In International Conference on
Machine Learning. 1378–1387.

Ora Lassila and Ralph R Swick. 1999. Resource de-
scription framework (RDF) model and syntax speci-
fication. (1999).

Ke Li and Jitendra Malik. 2017. Fast k-nearest neigh-
bour search via prioritized dci. arXiv preprint
arXiv:1703.00440 (2017).

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2016. Neural symbolic machines:
Learning semantic parsers on freebase with weak su-
pervision. arXiv preprint arXiv:1611.00020 (2016).

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations. 55–60.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. DBpedia spotlight: shedding
light on the web of documents. In Proceedings of the
7th international conference on semantic systems.
ACM, 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in neural information processing
systems. 3111–3119.

Christina Niklaus, Bernhard Bermeitinger, Siegfried
Handschuh, and Andr Freitas. 2017. A Sentence
Simplification System for Improving Relation Ex-
traction. (2017). arXiv:cs.CL/1703.09013

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2018. A Survey on Open
Information Extraction. In Proceedings of the 27th
International Conference on Computational Lin-
guistics. Association for Computational Linguistics,
Santa Fe, New Mexico, USA, 3866–3878.

Christina Niklaus, Matthias Cetto, André Freitas, and
Siegfried Handschuh. 2019. Transforming Complex
Sentences into a Semantic Hierarchy. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Com-
putational Linguistics, Florence, Italy, 3415–3427.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2016. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855 (2016).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
(2017).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

Juliano Efson Sales, Andre Freitas, Brian Davis, and
Siegfried Handschuh. 2016. A Compositional-
Distributional Semantic Model for Searching Com-
plex Entity Categories. In Proceedings of the Fifth
Joint Conference on Lexical and Computational Se-
mantics. Association for Computational Linguistics,
Berlin, Germany, 199–208.

Juliano Efson Sales, Leonardo Souza, Siamak Barze-
gar, Brian Davis, André Freitas, and Siegfried
Handschuh. 2018. Indra: A Word Embedding
and Semantic Relatedness Server. In Proceedings
of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018). Eu-
ropean Language Resources Association (ELRA),
Miyazaki, Japan.

Vivian Dos Santos Silva, Siegfried Handschuh, and
André Freitas. 2018. Recognizing and Justifying
Text Entailment Through Distributional Navigation
on Definition Graphs.. In AAAI.

Qizhe Xie, Xuezhe Ma, Zihang Dai, and Eduard Hovy.
2017. An interpretable knowledge transfer model
for knowledge base completion. arXiv preprint
arXiv:1704.05908 (2017).

185

Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 186–191
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

A Constituency Parsing Tree based Method for Relation Extraction from
Abstracts of Scholarly Publications

Ming Jiang, Jana Diesner
University of Illinois at Urbana-Champaign
{mjiang17,jdiesner}@illinois.edu

Abstract

We present a simple, rule-based method for
extracting entity networks from the abstracts
of scientific literature. By taking advantage
of selected syntactic features of constituent
parsing trees, our method automatically ex-
tracts and constructs graphs in which nodes
represent text-based entities (in this case, noun
phrases) and their relationships (in this case,
verb phrases or preposition phrases). We use
two benchmark datasets for evaluation and
compare with previously presented results for
these data . Our evaluation results show that
the proposed method leads to accuracy rates
that are comparable to or exceed the results
achieved with state-of-the-art, learning-based
methods in several cases.

1 Introduction

As a public and formal record of original contribu-
tions to knowledge, scientific literature is a critical
resource that promotes the progress of science and
technology in society. To help researchers to com-
prehend the large and growing amount of scien-
tific literature, automated methods can be used to
extract and organize information from corpora of
publications, e.g., in terms of scientific key con-
cepts and their relationships. Leveraging prior
work that has achieved high accuracy for entity
recognition (Lample et al., 2016; Habibi et al.,
2017), in this paper, we focus on identifying ex-
tracting relationships between entities.

Overall, prior studies consider the task of rela-
tion extraction from two perspectives: 1) identi-
fying if a relationship exists between a given pair
of identified entities (Gábor et al., 2018), which
is also the goal with this paper, and 2) further la-
beling or classifying the identified relationships
(Luan et al., 2018a; Mintz et al., 2009).

Prior work has used different methods for re-
lation extraction. Rule-based algorithms primar-
ily rely on lexical patterns, such as word co-
occurrences (Jenssen et al., 2001) and depen-
dency templates (Fundel et al., 2006; Kilicoglu
and Bergler, 2009; Romano et al., 2006). Su-
pervised learning-based methods mainly use ei-
ther feature engineering (Kambhatla, 2004; Chan
and Roth, 2011) or kernel functions (Culotta and
Sorensen, 2004; Zelenko et al., 2003; Bunescu
and Mooney, 2005). Using supervised learning
to detect the existence (and type) of relationships
between concepts in scholarly publications may
further require domain expertise for annotation.
Accounting for the fact that humans tend to use
their background knowledge to identify relations,
Chan and Roth (2010) showed that using external
knowledge, such as Wikipedia, improves the accu-
racy of relation extraction. Recently, deep learn-
ing models have also been used for supervised
learning (Luan et al., 2018a, 2019). For example,
Luan et al. (2019) developed a dynamic span graph
framework based on sentence-level BiLSTM for
multi-task information extraction. Since data an-
notation by humans is expensive, semi-supervised
learning methods, such as the snowball system
(Agichtein and Gravano, 2000), as well as un-
supervised learning, such as clustering methods
(Daelemans and Van den Bosch, 2005; Davidov
and Rappoport, 2008), have also been explored in
prior studies. Though remarkable contributions
have been made, one remaining limitation with
prior machine-learning based work is that these
approaches may involve time and related costs for
parameter optimization and labeling. Moreover,
data-driven training methods may be limited by
the domain specificity of learned models. Finally,
algorithms trained on deep learning models lack
interpretability.

To address the above-mentioned limitations, we

186

Each	component	uses	a	decision	tree	architecture	to	combine	mul0ple	types	of	evidence	about	the	unknown	word.	

Each	component			

		NP	 		VP	

uses	 	a	decision	tree	architecture	

VBZ	 NP	 			S	

		VP	

to	

		TO	 		VP	

combine	

		VB	 		NP	

mul0ple	types	

		NP	 		PP	

		IN	

of	 evidence	

		NP	

		PP	

		IN	

about	 the	unknown	word	

		NP	

Uncle/	Ancestor’s	
Sibling	

Sibling	

⇒ (Each	component	,	uses	,	a	decision	tree	architecture)	
⇒ (a	decision	tree	architecture	,	to	combine	,	mul:ple	types	of	evidence)	
⇒ (mul:ple	types	of	evidence	,	about	,	the	unknown	word)	

component	 A00-1024.9	
decision	tree	architecture	 A00-1024.10	
…	 …	

⇒ (A00-1024.9	,	A00-1024.10)	
⇒ (A00-1024.10	,	A00-1024.11)	
⇒ (A00-1024.11	,	A00-1024.12)	

Each	component	uses	a	decision	tree	architecture	to	combine	mul:ple	types	of	evidence	about	the	unknown	
word.	

Figure 1: An illustrative example of building a constituency-based concept network (CTN) for a sentence.

propose a rule-based concept network construc-
tion method. In the resulting networks, nodes
represent annotated entities per document, and
edges are constructed based on constituency pars-
ing. Our approach is motivated by the observation
that scientific literature typically use formal lan-
guage with clear syntactic structure and compar-
atively fixed word order (e.g., term phrases). In-
spired by prior work that defines a relationship as
either an interaction or an association between two
entities (Jurafsky, 2000), we take advantage of the
structured information provided by constituency
parse trees built for each sentence. More specif-
ically, We capture two types of tuples: 1) (noun
phrase, verb-based connection, noun phrase), and
2) (noun phrase, preposition-based connection,
noun phrase). To avoid over-fitting on the given
domain, our rules are generated on the basis of a
context-free grammar.

We evaluate our method against two benchmark
datasets that have been previously labeled for en-
tities and relations. Our experimental results show
that the proposed constituency-based concept net-
works achieve comparable accuracy to or can even
outperform state-of-the-art, learning-based meth-
ods for identifying entity networks. We find that
relationships of the type used-for and part-of are
better captured by our approach than other types
of relationships. Finally, we describe differences
between domain-level concept networks.

2 Method

The construction of constituency-based concept
network (CTN) has three stages: 1) data pre-
prossessing, 2) the identification of nodes (we
used entities given in annotated data), and of edges
based on a constituency parsing tree, and 3) map-

ping entities from the constituency parsing tree to
labeled entities. Figure 1 provides an illustrative
example of the process of building a CTN for a
sentence.

Data Pre-processing In this stage, we focus on
two aspects. First, we segment each document
into a set of sentences that are the input to con-
stituency parsing. Since scientific texts may have
some long sentences with complex sentence struc-
tures, we further segment sentences by using regu-
lar expressions. Second, we identify the annotated
entities per sentence by extracting the labeled en-
tity id and corresponding entity phrase, as well as
the entities’ index in the sentence.

Node and Edge Identification To generate a
parsing tree for each sentence, we use the Al-
lenNLP constituency parsing (Joshi et al., 2018)
As shown in Figure 1, we extract noun phrases
at the lowest layer (i.e., children are noun-based
end-nodes) as candidates of CTN nodes. We made
this decision to capture unique and specific (to the
sub-field of science) noun phrases from scientific
literature. For linking nodes, we capture keywords
that occur between two adjacent node candidates
in the parse tree. According to the parse tree struc-
ture, these keywords usually occur in two types
of positions: 1) the sibling of a CTN node candi-
date, and 2) the uncle or the ancestor’s sibling of a
potential CTN node. Based on node candidates
and connecting keywords, we generate an edge
if two node candidates are linked by a connect-
ing keyword. One specific issue in this process is
the of-phrase: according to our empirical observa-
tion, we believe that of-phrases (e.g., “computa-
tional model of discourse”) often represent a sin-
gle concept. Based on this assumption, we merge

187

SCIERC SemEval18

#entities 8089 7482
#relations 4716 1595
#relations/doc 9.4 3.2
cross-sentence relations yes no

Table 1: Data statistics.

edge candidates connected by the keyword “of” as
a single CTN node, and remove the original edges.

Entity Mapping We remove nodes that had
been identified by the constituency parsing tree
process described above, but are not labeled as en-
tities in the ground truth data. As shown in Fig-
ure 1, the final output of CTN is a set of nodes
with ids, and edges.

3 Experiments

3.1 Experimental Setup
Data We perform experiments on two publicly
available datasets where humans annotated scien-
tific entities and relations from abstracts of scien-
tific publication. Table 1 provides a brief sum-
mary of both datasets. SemEval18 Dataset has
500 abstracts prepared by Gábor et al. (2018) for
the shared task 7 (subtask 2) of SemEval 2018. All
abstracts in this dataset are from published papers
in the field of computational linguistics. The an-
notated relations are divided into six types of se-
mantic relationships between scientific concepts.
The SCIERC Dataset was provided by Luan et al.
(2018a). This dataset has 500 scientific abstracts
from 12 AI conference/workshop proceedings that
cover five research areas: 1) artificial intelligence
(AI), 2) natural language processing (NLP), 3)
speech, 4) machine learning (ML), and 5) com-
puter vision (CV).

Baselines For the SemEval data, we compared
the results from our network construction method
(CTN) with the official baseline, which was gen-
erated by using a memory-based k-nearest neigh-
bor (k-nn) search (Gábor et al., 2018). The top
three reported submissions in the SemEval leader-
board were: UWNLP (Luan et al., 2018b), ETH-
DS3Labl (Rotsztejn et al., 2018), and SIRIUS-
LTG-UiO (Nooralahzadeh et al., 2018). For
SCIERC, we compared our method with two state-
of-the-art (SOTA) systems: SciIE (Luan et al.,
2018a) and DyGIE (Luan et al., 2019). The origi-
nal outputs from SciIE and DyGIE also identified

Dev Test

P R F1 P R F1

SciIE 62.0 47.7 53.9 66.4 46.7 54.9
DyGIE 55.0 48.6 51.6 63.3 52.2 57.2

CTN (ours) 73.4 47.3 57.5 75.4 46.5 57.5

Table 2: Comparison with previous methods for rela-
tion extraction on SCIERC dataset.

and categorized the type and direction of relations,
and the boundary of entities. Since we do not iden-
tify these elements, we also do not consider them
for comparison.

3.2 Results
Extraction Performance Table 2 and Table 3
compare our concept network CTN with baselines
for SCIERC and SemEval18, respectively. Com-
pared to SOTA on SCIERC, our approach outper-
formed the best previously reported results on both
the development and testing data. Specifically,
CTN achieved a noticeable improvement in preci-
sion (we achieved∼74%) compared to prior meth-
ods, which benefits our F1 value. Further com-
paring each method’s performance on the devel-
opment data versus testing data, we observe that
our rule-based CTN produces more stable or con-
sistent results than the considered, prior, learning-
based methods.

For SemEval18, we find that CTN outper-
formed the baseline by ∼15% (our F1 score was
41.6%), and the third best reported prior result, but
could not come close to the top two prior results.
From the presented results, we conclude that our
rule-based concept network approach can serve as
a strong baseline method for identifying related
entity pairs in scientific texts.

Ablation Study In order to explore the isolated
contribution of each rule considered for adding
edges in the CTN, we conduct an ablation analysis

P R F1

UWNLP - - 50.0
ETH-DS3Lab - - 48.8
SIRIUS-LTG-UiO - - 37.4
SemEval Baseline - - 26.8

CTN (ours) 33.6 54.8 41.6

Table 3: Comparison with previous methods for rela-
tion extraction on SemEval18 dataset.

188

Dev Test

P R F1 P R F1

CTN (ours) 73.4 47.3 57.5 75.4 46.5 57.5

− long sentence segmentation 73.4 47.3 57.5 75.4 46.5 57.5
− of-phrase (merge+remove) 75.1 44.4 55.8 76.0 43.8 55.6
− of-phrase (merge) 74.6 40.7 52.6 76.6 41.3 53.6
− entity id positioning 64.0 31.2 42.0 72.9 32.6 45.1
− all above 64.1 29.0 39.9 73.1 31.0 43.5

Table 4: Ablation study of isolated contribution of each
rule.

SCIERC SemEval18

TP% Total TP% Total

USED-FOR 57.22% 533 PART WHOLE 69.51% 82
PART-OF 50.79% 63 USAGE 59.77% 174
FEATURE-OF 49.15% 59 RESULT 50.00% 16
EVALUATE-FOR 43.96% 91 COMPARE 36.83% 19
HYPONYM-OF 40.30% 67 MODEL-FEATURE 34.25% 73
COMPARE 36.84% 38 TOPIC 0.00% 3
CONJUNCTION 4.88% 123 - - -

Table 5: Accuracy (TP = true positives) per relationship
type on testing data.

by removing each rule from the network construc-
tion process and measuring the overlap between
predicted connections and the ground truth. Ta-
ble 4 shows the results. We observe that the rule
for mapping entity ids for a potentially connected
entity pair has the highest isolated impact. By fur-
ther looking into the ground truth data, we find that
an entity phrase can be labeled by multiple differ-
ent ids, e.g., when the related phrase repeatedly
appears in a document. Therefore, without a map-
ping step, CTN would be prone to considering and
linking such entities as different nodes. Coming
back to of-phrases, we find that not considering
edges between the preposition “of” (i.e., (node 1,
“of”, node 2)) leads to a decrease in recall, which
further indicates our initial recommendation that

of phrases should be merged to represent a single
(scientific) concept.

Relation Type Sensitivity Table 5 shows the
ability of CTN to identify each type of relation-
ship that is labeled in the ground truth data. CTN
does not actually predict relationship type, we
only retroactively compute the accuracy rate per
link type. We observe that usage (used-for) and
part whole (part-of) are identified with the highest
accuracy. Note that these two categories are also
the most frequently occurring ones in the ground
truth data. On the other hand, we find that rela-
tionship type of conjunction and topic association
result in the lowest accuracy. This might be be-
cause we do not consider conjunction words as
keywords that indicate relationships. To under-
stand the comparatively low performance for topic
relationships, we further looked into the context of
the actual entity pairs. Doing so, we found that all
three instance of this link type were expressed by
an of-phrase, where we consider the whole phrase
as a single concept. For example, in the expression
“qualitative analysis of results”, the entity “quali-
tative analysis” is annotated with a topic relation-
ship with the entity “results”.

Network Analysis To understand the character-
istics of the network data that were constructed
with the proposed method in more depth, we fur-
ther built a corpus-level CTN for all texts per do-
main in the SCIERC testing data. Figure 3 shows
two illustrative examples of the networks for the
CV and ML domain, respectively. The node
name represents the extracted entity phrases, node
size represents the weighted degree centrality, and
node colors denote membership in components.

Figure 2: CTN of abstracts from the CV domain. Figure 3: CTN of abstracts from the ML domain.

189

We find that the most central (in terms of degree)
nodes from the CV corpus mainly represent gen-
eral scientific concepts, such as “method”, “algo-
rithm” and “approach”, while in the ML corpus,
key nodes represent domain-specific terms such as
“robust PCA” and “side information”. Compara-
tively, the size of the CTN from the CV domain is
larger than that from the ML domain, which might
be due to different numbers of abstracts in each
domain.

4 Conclusions

In this paper, we have proposed and evaluated
a rule-based network construction method that
leverages constituency parsing to extract rela-
tions between entities in scientific texts. Our
method does not require machine learning or do-
main knowledge. Experiments on two bench-
mark datasets show that the proposed CTN
achieve comparable performance with state-of-
the-art learning-based methods in multiple cases.
Even though our method could not outperform
the two best performing systems built for one of
the considered datasets, our results suggest that
the demonstrated approach can work as a base-
line method for relation extraction. In addition,
we find that entities with a relationship of used-
for and part-of are more likely to be connected
in our network. Based on the corpus-level CTN,
we further saw that key nodes in the networks
based on the CV corpus are mainly general scien-
tific terms, while for the abstracts from the ML do-
main, key nodes represent domain-specific terms.
To improve the construction of CTN in the future,
we plan to consider cross-sentence link formation
and link label detection. Finally, the rules used to
build CTN can further support the development of
learning-based algorithms for relation extraction.

Acknowledgments

This material is based upon work supported by
the U.S. Department of Homeland Security under
Grant Award Number, 2015-ST-061-CIRC01. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies, either expressed or implied, of the U.S. De-
partment of Homeland Security.

References
Eugene Agichtein and Luis Gravano. 2000. Snow-

ball: Extracting relations from large plain-text col-
lections. In Proceedings of the fifth ACM Confer-
ence on Digital Libraries, pages 85–94. ACM.

Razvan C Bunescu and Raymond J Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, pages 724–731.
Association for Computational Linguistics.

Yee Seng Chan and Dan Roth. 2010. Exploiting back-
ground knowledge for relation extraction. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics, pages 152–160. Associ-
ation for Computational Linguistics.

Yee Seng Chan and Dan Roth. 2011. Exploiting
syntactico-semantic structures for relation extrac-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pages 551–
560. Association for Computational Linguistics.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proceed-
ings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 423–429,
Barcelona, Spain.

Walter Daelemans and Antal Van den Bosch. 2005.
Memory-based Language Processing. Cambridge
University Press.

Dmitry Davidov and Ari Rappoport. 2008. Classifi-
cation of semantic relationships between nominals
using pattern clusters. In Proceedings of ACL-08:
HLT, pages 227–235, Columbus, Ohio. Association
for Computational Linguistics.

Katrin Fundel, Robert Küffner, and Ralf Zimmer.
2006. Relexrelation extraction using dependency
parse trees. Bioinformatics, 23(3):365–371.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haifa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
679–688.

Maryam Habibi, Leon Weber, Mariana Neves,
David Luis Wiegandt, and Ulf Leser. 2017. Deep
learning with word embeddings improves biomed-
ical named entity recognition. Bioinformatics,
33(14):i37–i48.

Tor-Kristian Jenssen, Astrid Lægreid, Jan Ko-
morowski, and Eivind Hovig. 2001. A literature net-
work of human genes for high-throughput analysis
of gene expression. Nature Genetics, 28(1):21.

190

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1190–1199, Melbourne, Australia. As-
sociation for Computational Linguistics.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for information extraction. In Proceedings of the
ACL Interactive Poster and Demonstration Sessions,
pages 178–181, Barcelona, Spain. Association for
Computational Linguistics.

Halil Kilicoglu and Sabine Bergler. 2009. Syntactic
dependency based heuristics for biological event ex-
traction. In Proceedings of the BioNLP 2009 Work-
shop Companion Volume for Shared Task, pages
119–127.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018a. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3219–3232, Brussels, Bel-
gium. Association for Computational Linguistics.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2018b. The uwnlp system at semeval-2018 task 7:
Neural relation extraction model with selectively in-
corporated concept embeddings. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 788–792.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3036–3046, Minneapolis, Minnesota.
Association for Computational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language: Volume 2-Volume 2, pages
1003–1011. Association for Computational Linguis-
tics.

Farhad Nooralahzadeh, Lilja Øvrelid, and Jan Tore
Lønning. 2018. Sirius-ltg-uio at semeval-2018 task
7: Convolutional neural networks with shortest de-
pendency paths for semantic relation extraction and
classification in scientific papers. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 805–810.

Lorenza Romano, Milen Kouylekov, Idan Szpektor,
Ido Dagan, and Alberto Lavelli. 2006. Investigating
a generic paraphrase-based approach for relation ex-
traction. In Proceedings of the 11th Conference of
the European Chapter of the Association for Com-
putational Linguistics.

Jonathan Rotsztejn, Nora Hollenstein, and Ce Zhang.
2018. Eth-ds3lab at semeval-2018 task 7: Effec-
tively combining recurrent and convolutional neural
networks for relation classification and extraction.
In Proceedings of The 12th International Workshop
on Semantic Evaluation, pages 689–696.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. Journal of Machine Learning Research,
3(Feb):1083–1106.

191

Author Index

Alt, Christoph, 58
Ammanabrolu, Prithviraj, 1
Amplayo, Reinald Kim, 124
Andrews, Martin, 85
Auer, Sören, 90

Banerjee, Pratyay, 78
Beck, Daniel, 26

Campbell, William, 151
Chang, Maria, 159
Chen, Chen, 52
Chen, Jie, 159
Chia, Yew Ken, 85
Cho, Eunah, 151
Cohn, Trevor, 26

Daix-Moreux, Pierre, 118
Das, Rajarshi, 101
Dhuliawala, Shehzaad, 101
Diesner, Jana, 186
D’Souza, Jennifer, 90

Freitas, André, 42, 177

Gallé, Matthias, 118
Godbole, Ameya, 101
Golshan, Behzad, 52

Haffari, Gholamreza, 26
Harbecke, David, 58
Hennig, Leonhard, 58
Hovy, Eduard, 134
Hübner, Marc, 58
Huo, Siyu, 159
Hwang, Seung-won, 124

Jansen, Peter, 63
Jiang, Meng, 140
Jiang, Ming, 186

Khalife, Sammy, 17

Last, Mark, 32

Ma, Danni, 52

Ma, Tengfei, 159
Ma, Xiaochun, 151
Mandyam, Raghuram, 134
McCallum, Andrew, 101
Miura, Yasuhide, 11
Mulang’, Isaiah Onando, 90

Nemoto, Keiichi, 11

Ohkuma, Tomoko, 11

Pierleoni, Andrea, 164

Qiu, Zimeng, 151

Riedl, Mark, 1
Roberts, Ian, 164

Schlegel, Viktor, 42, 177
Schwarzenberg, Robert, 58
Shi, Yiyu, 140
Song, Min, 124
Steedman, Mark, 172
Sudhahar, Saatviga, 164
Szubert, Ida, 172

Tagawa, Yuki, 11
Tan, Wang-Chiew, 52
Taniguchi, Motoki, 11
Taniguchi, Tomoki, 11
Thayaparan, Mokanarangan, 42

Ustalov, Dmitry, 63

Vaibhav, Vaibhav, 134
Valentino, Marco, 42
Vazirgiannis, Michalis, 17

Witbrock, Michael, 159
Witteveen, Sam, 85
Wu, Lingfei, 159

Xiong, JinJun, 140

Yamamoto, Takayuki, 11
Yu, Mengxia, 140
Yu, Wenhao, 140

193

Zaheer, Manzil, 101
Zeng, Qingkai, 140
Zuckerman, Matan, 32

	Program
	Transfer in Deep Reinforcement Learning Using Knowledge Graphs
	Relation Prediction for Unseen-Entities Using Entity-Word Graphs
	Scalable graph-based method for individual named entity identification
	Neural Speech Translation using Lattice Transformations and Graph Networks
	Using Graphs for Word Embedding with Enhanced Semantic Relations
	Identifying Supporting Facts for Multi-hop Question Answering with Document Graph Networks
	Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs
	Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
	TextGraphs 2019 Shared Task on Multi-Hop Inference for Explanation Regeneration
	ASU at TextGraphs 2019 Shared Task: Explanation ReGeneration using Language Models and Iterative Re-Ranking
	Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Explanation Generation
	Team SVMrank: Leveraging Feature-rich Support Vector Machines for Ranking Explanations to Elementary Science Questions
	Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference
	Joint Semantic and Distributional Word Representations with Multi-Graph Embeddings
	Evaluating Research Novelty Detection: Counterfactual Approaches
	Do Sentence Interactions Matter? Leveraging Sentence Level Representations for Fake News Classification
	Faceted Hierarchy: A New Graph Type to Organize Scientific Concepts and a Construction Method
	Graph-Based Semi-Supervised Learning for Natural Language Understanding
	Graph Enhanced Cross-Domain Text-to-SQL Generation
	Reasoning Over Paths via Knowledge Base Completion
	Node Embeddings for Graph Merging: Case of Knowledge Graph Construction
	DBee: A Database for Creating and Managing Knowledge Graphs and Embeddings
	A Constituency Parsing Tree based Method for Relation Extraction from Abstracts of Scholarly Publications

