
Proceedings of the Second Workshop on Economics and Natural Language Processing, pages 1–9
Hong Kong, November 4. c©2019 Association for Computational Linguistics

1

Extracting Complex Relations from Banking Documents

Berke Oral1,2, Erdem Emekligil1, Seçil Arslan1, and Gülşen Eryiğit2

1R&D and Special Projects, Yapı Kredi Technology
2Department of Computer Engineering, Istanbul Technical University

{erdem.emekligil, secil.arslan}@ykteknoloji.com.tr

{oralbe, gulsen.cebiroglu}@itu.edu.tr

Abstract

In order to automate banking processes (e.g.

payments, money transfers, foreign trade), we

need to extract banking transactions from dif-

ferent types of mediums such as faxes, e-mails,

and scanners. Banking orders may be consid-

ered as complex documents since they con-

tain quite complex relations compared to tra-

ditional datasets used in relation extraction re-

search. In this paper, we present our method

to extract intersentential, nested and complex

relations from banking orders, and introduce a

relation extraction method based on maximal

clique factorization technique. We demon-

strate 11% error reduction over previous meth-

ods.

1 Introduction

Despite recent efforts for digitalization in banking

domain, formal letters (such as orders, petitions,

demands or complaints) still remain as one of the

main communication media in corporate banking.

A mid-to-large scale bank receives millions of or-

ders in a year, most of which are money transfer

requests. Reading and manually processing those

documents require significant amount of human

labour. Moreover, since these documents require

specialized knowledge to be interpreted, employ-

ment and education of trustable personnel is often

difficult. This situation makes the automatization

of the process crucial.

Automatic processing of banking documents is

an Information Extraction (IE) task, where one

seeks to extract structured information from semi-

structured or unstructured texts. This is usually

conducted with pipelined processes. The one used

in this study depicted in Figure 1. The first step is

to extract entities of interest from raw text, in our

case is extracted via Optical Character Recogni-

tion (OCR) system. This can be done with Named

Entity Recognition (NER) algorithms or pattern

OCR

Noisy Text Tagged

with Named Entities

NER

Relation

Extraction
Decoding

Noisy

Text

Relation

Graph
Transactions

Figure 1: Information extraction pipeline.

based methods. Secondly, semantic relations be-

tween extracted entities are predicted with Rela-

tion Extraction (RE) algorithms. Finally, semantic

structures are constructed on top of the relations as

higher order structures such as templates or events.

NER is an important step for many Natural Lan-

guage Processing (NLP) tasks. It is a widely re-

searched area, and current state-of-the-art algo-

rithms (Lample et al., 2016) give satisfactory re-

sults in most situations. RE is considered as a

linguistically higher order task compared to NER,

and proposed algorithms are often tailored to prob-

lems in hand. Majority of research in this area is

focused on extracting binary relations. Although

there are some research dealing with complex re-

lations (McDonald et al., 2005; Peng et al., 2017),

work on nested complex relations as in the case of

banking transactions is scarce.

In this paper, we focus on money transfer re-

quests as the major process type in banking or-

ders. Within these documents, we seek to extract

transactions as our structured information of inter-

est. Each order may contain one or more transac-

tions, which are made of sender and receiver ac-

count numbers, names, bank information as well

as details of transaction process such as the trans-

fer amount and its currency type. In order for a

transaction to be valid, its sender, receiver and pro-

2

cess details should be clearly defined. Thus, in

our system, we abstract these real-world entities

as three main divisions of a transaction: sender, re-

ceiver, and process details. Each of these divisions

contains required (emphasized with bold font in

Figure 2) or optional slots. Sender and Receiver

divisions must either include an Account Number

or IBAN (having either one of these is enough to

address the account). Process Details must contain

transfer Amount and its Currency.

Account No

IBAN

Name

Bank Name

Branch Name

Sender

Account No

IBAN

Name

Bank Name

Branch Name

Branch Code

SWIFT Code

Receiver

Amount

Currency

Expense

Import Type

Invoice

Trx Date

Value Date

ProcessDetails

Transaction

Figure 2: Divisions of a transaction and their slots.

Slots of the divisions should be filled with

named entities extracted from a document. Named

entities related to the same slot might have been

stated multiple times by the author in different

places of the document. For example, the name of

the account holder may occur within both the body

text and the signature part. Additionally, a single

named entity may carry information for multiple

slots belonging to different transactions. For ex-

ample, multiple money transfer orders might have

been given from a single sender account, hence an

entity holding the sender IBAN should be linked to

different transaction slots. Figure 3 provides such

a sample document with two transactions. Private

information were masked on the figure, and ex-

tracted entities were specified with colored boxes.

In this paper, we focus on the relation extrac-

tion and the decoding stages of the pipeline intro-

duced in Figure 1.1 We propose a method that

can automatically extract transaction information

from banking documents by forming nested com-

plex relations using a relation graph. Our algo-

rithm first predicts binary relations between enti-

ties. This forms an undirected graph, where nodes

are entities, and edges are predictions. On this

graph, the algorithm performs series of maximal

1 For the OCR stage of the pipeline, we use Abbyy
Finereader v12 system. For the NER stage, we use an adap-
tation of Lample et al. (2016) for banking documents.

Figure 3: A sample money transfer order document

with two different transactions provided in separate

lines starting with bullets. Best viewed in color.

clique factorization operations to form transac-

tions.

In Section 2, we discuss the previous work on

intersentential complex relations. In Section 3,

we describe a transaction extraction method that

uses maximal cliques in a predicted relation graph

to extract complex relations. Lastly, we discuss

comparable approaches to our method in Section

4, and give our remarks in Section 5.

2 Related Work

In early IE systems (Chinchor, 1998), extract-

ing complex relations (i.e database entries, tem-

plates) was mostly accomplished with rule based

approaches. To the best of our knowledge Chieu

and Ng (2002) was first to extract complex rela-

tions from binary relations using maximal clique

approach. In biomedical domain, McDonald et al.

(2005) extended this approach by adding pre-

dicted probabilities from a trained classifier. Us-

ing geometric mean of the relation probabilities

in cliques, they selected highest scoring cliques

as complex relations. Rather than using maximal

cliques, Wick et al. (2006) used a clustering algo-

rithm to construct complex relations. They trained

a classifier that computes similarity score between

two clusters. Starting from singletons, their clus-

tering algorithm built relation tuples.

Event extraction also deals with complex rela-

tions. In this task, algorithms often detect a trigger

3

Ankara Ulus şubesi TR04 0000 2289 19 iban numaralı

BiLSTM
Layer

Word
Representations

Token
Representations

IBANBRANCHNAME

Figure 4: Entity representations

word for an event, then using the trigger word and

its relations, arguments of an event are filled. Our

approach to transaction extraction is analogous to

event extraction. In our case, the trigger is a group

of amount entities. An interesting approach in

this area is the use of dependency parsing algo-

rithms as means of complex relation extraction

(McClosky et al., 2011; Sprugnoli and Tonelli,

2017; Wang et al., 2018). In literature, closest

work to ours is by Şahin et al. (2018), which uses

a non-projective transition based parser to extract

transactions from banking documents.

Although most of the research in relation ex-

traction literature focused on binary relations from

single sentences, n-ary and document level rela-

tion extraction has become increasingly popular

in recent years. Notably, Peng et al. (2017) pro-

poses a graph LSTM architecture, which runs on

two directed acyclic graphs constructed from syn-

tactic dependency trees of sentences. In these

graphs, syntactic roots of consequent sentences are

linked together. This allows the algorithm to cap-

ture syntactic features between entities in prox-

imate sentences. Later, their model predicts n-

ary relations among fixed number of entities. Jia

et al. (2019) create entity representations from dif-

ferent discourse sizes (document, paragraph, sen-

tence) and predicts relations for each entity tuple

in a document. In this approach, as the number

of entities in document increases, possible n-ary

relations will explode (2n), which makes this ap-

proach for n-ary relation extraction computation-

ally not feasible. However, they merge multiple

mentions of a same entity (e.g same gene men-

tioned in different paragraphs or sentences) into

one representation, which reduces the number of

entities in the relation extraction step. They ar-

gue that this step makes n-ary relation extraction

computationally affordable. In our case, the num-

ber of required slots, the complexity of relation

types, and the existence of multiple mentions re-

ferring to the same transaction slots (occurring un-

der very distinct surface forms also due to OCR

errors) make the task even more challenging.

3 Method

We propose a method to extract transactions from

banking documents, given a sequence of words

and their named entity types.2 It first creates a

representation for each entity within the text, then

predicts an undirected relation for each entity pair.

This creates a fully-connected graph that our de-

coding algorithm uses to construct transactions.

3.1 Relation Extraction

In this section, we describe the architecture and the

training details of our relation extraction model.

Each banking document is provided as a single

sequence to our model, which predicts a relation

type for each entity pair. We use a BiLSTM to cre-

ate contextual representations for our entities and

two entity representations are concatenated then

fed into a multilayer perceptron (MLP) with three

hidden layers to predict relations. This creates

an undirected graph which is represented by ma-

trix R
N×N where N is the number of entities in

a graph. We calculate the cross entropy loss for

2Our named entity types are named as the same with slot
names shown in Figure 2.

4

T R 0 4

Word Embedding (FastText / ELMo)

Named Entity Type Embedding

Word
Representation

Character
Embeddings

BiLSTM
Layer

Figure 5: Word representations

each element of the matrix and take their sum as

document loss.

In banking documents, entities are often formed

of multiple words (e.g., branch name, IBAN en-

tities in Figure 4). Therefore, we need to de-

rive the entity representations from multiple word

representations. As the overall entity representa-

tions, we use the concatenation of forward and

backward LSTM outputs at the entity boundaries

(right boundary token for the forward pass and left

boundary token for the backward pass). Figure 4

visualizes our entity representation. Two dotted

rectangles on the top represent the embeddings for

the two entities branch name and IBAN composed

of 2 and more than 4 tokens respectively. The ar-

rows coming to the dotted rectangles depict the

representations extracted from the entity bound-

aries.

Each word in our model is reprensented as the

concatenation of three vectors: pretrained word

embeddings, character level word representations,

and named entity type embeddings (Figure 5). We

pre-trained our word-embeddings via both Fast-

Text (Bojanowski et al., 2016) and ELMo (Peters

et al., 2018) by using a corpus of 626M words

collected from banking domain. Using the stan-

dard parameters, both models were trained for 10

epochs. FastText embeddings were loaded into

a lookup table. To represent out of vocabulary

(OOV) words in FastText embeddings we used

zero vector with same of the embedding dimen-

sion. Our documents contain plenty of numerical

values crucial for our task such as account num-

bers, amounts, dates etc. Those appear diverse

surface forms, yielding to rare occurrence counts.

We used a word transformation algorithm in order

to represent them with FastText. The algorithm is

used if the number of letters in a word is less than

or equal to the half of the word length. It replaces

the word with a token specifying the count of let-

ters (L), digits (D) and punctuation characters (O)

it contains (see Table 1 for examples). Because

ELMo creates word embeddings from characters,

we did not need to apply this transformation for

ELMo representations. Character level represen-

tation of words are also created again by a BiL-

STM layer similar to Lample et al. (2016). Both

character embeddings and named entity type em-

beddings are initialized randomly and learned dur-

ing training.

Word Token

22/05/2019 <L0D8O2>

TR04 <L2D2O0>

10,000 <L0D5O1>

Table 1: Examples of word transformation algorithm

We implemented our models using Tensorflow

framework. Number of words in documents and

number of characters in words vary for each in-

stance. We used mini-batching during training.

Each word and character padded to longest ele-

ment in the mini-batch with padding tokens so that

each instance has the same sized vector. Sim-

ilarly, since the number of entities in the docu-

ments also varies, we padded the relation matri-

ces in the mini-batches with padding entities and

NONE relations. During training, we did not use

the padded cells in loss calculation. For optimiza-

tion we used Adam (Kingma and Ba, 2015) algo-

rithm with learnin rate of 1e-3. We used annealing

of 0.9 after every epoch. For regularization, we

used dropout (0.5) at the BiLSTM inputs and be-

fore each hidden layer in MLP.

3.2 Relation Structure

In order to correctly extract the transactions within

a money transfer order document, one needs to

correctly determine the transaction count and fill

their slots (Figure 2). This kind of complex struc-

tures may be formulated as binary relations (Mc-

Donald et al., 2005). We defined an undirected re-

lation structure unique to solve money transfer or-

ders where multiple transactions may occur within

a single document and some entity types (e.g.,

name, bankname) are shared between sender and

receiver divisions of a transaction. We defined 5

5

RECEIVER_OF

PROCESS
DETAILS Amount Amount

Currency CurrencyExpense
SAME
DIVISION

SAME
DIVISION

SAME
DIVISION

Currency

SAME
DIVISION

PROCESS
DETAILS

SAME
DIVISION

SENDER
SENDER_OF

RECEIVER

OTHER_DIVISION

Figure 6: An example relational graph containing a transaction.

different relation labels (detailed in Table 2) in or-

der to distinguish the divisions to which the enti-

ties belong within a transaction. For instance, enti-

ties that are connected with RECEIVER OF relation

are either in receiver or process details divisions.

Since possible entity types that reside in sender

and process details divisions do not intersect (Fig-

ure 2), we can distinguish entities of these two di-

visions although the relations are undirected. Be-

low, we describe our algorithm to decode multi-

ple transactions within an order. In Figure 6, we

provide a visualization for the relations within a

single transaction. For simplicity, we provide only

the abstract divisions on the left side of the figure

and the relations between them meaning that en-

tities belonging to these divisions will be related

to the entities of the other division with the men-

tioned relation types. On the right side of the fig-

ure, we zoom into one of the divisions (process de-

tails) where entities belonging to a same division

are connected to each other with SAME DIVISION

relation type. As explained in the previous sec-

tions, named entities occurring within the docu-

Relation Type Description

NONE Entities are not in the same

transaction

SAME DIVISION Entities are in the same division

OTHER DIVISION One entity is in Sender while

other is in the Receiver division

RECEIVER OF One entity is in Receiver while

other is in the Process Details

division

SENDER OF One entity is in Sender while

other is in the Process Details

division

Table 2: Possible relation types and their description

ments might have been stated multiple times by

the author in different places of the document. The

figure depicts (with dashed ellipses) a scenario

where the same currency is repeated (maybe with

slight surface form differences) 3 times within the

order and the amount is repeated 2 times. One

should keep in mind that this is just a visualization

and we actually keep this fully-connected undi-

rected graph as a binary relation matrix R
N×N .

3.3 Extracting Transactions

The first step of our decoding algorithm is to de-

termine the number of possible transactions. In

order to achieve this, the decoding algorithm cre-

ates a sub-graph from amount entities. Since the

entities of different transactions are expected to be

connected with NONE relation type, each maximal

clique of this sub-graph can be said to belong to

different transactions.3 However mistakes in rela-

tion extraction process complicate this. Missing

or extra edges between nodes (i.e., entities in our

case) can result in extra cliques, where many of

their nodes are shared. Algorithm uses cardinal-

ity of maximal cliques to discard possibly wrong

ones. It compares cliques to each other and elimi-

nates the smaller clique if it has a node that inter-

sects with larger clique. If two cliques has same

the cardinality while sharing a node, it randomly

eliminates one of the cliques. The result of this

process is an unconnected set of cliques which are

treated as the roots of separate transactions.

Once the transaction root nodes are discovered,

i.e the amount slots (the process details division)

for each transactions are determined, it becomes

3Although some slots may be shared between transac-
tions, it is a convention that amounts are specified explicitly
for each transaction. In fact, in our data there exist no amount
entities that are shared between transactions.

6

possible to fill the other slots by using the relation

graph. In a perfect world, where all relations are

extracted correctly, this slot filling is very trivial:

each entity value will be written to a slot regard-

ing to the relation type of that entity to the root

node. Due to the errors propagating from the re-

lation extraction stage, we need a decoding algo-

rithm to fill out the missing parts of the transac-

tions. To fill each slot, our algorithm first looks

up all the entities that has matching named entity

types and creates a sub-graph from these if they

are connected to the amount. For example, if we

aim to fill the sender division’s bank name slot for

a transaction, we will extract all bank name en-

tities connected with SENDER OF relation to the

amount entities of that transaction. This time, we

select a maximum clique of the entities connected

with a SAME DIVISION relation and fill the slots

with their values.

Only transactions that contains required slots

(sender and receiver division’s account number or

IBAN slots, process details division’s amount, and

currency slots) are considered as valid transac-

tions. In the last step of our decoding algorithm,

we pruned the outputs transactions that is not con-

taining those required slots.

With the above decoding algorithm, it is possi-

ble that re-occuring entities (with exact or different

surface forms) are assigned to a single slot. One

may use a post-processing stage to select the best

entity value for a slot.4

4 Experimental Results

4.1 Dataset

Our dataset contains 3500 Turkish banking docu-

ments with a total of 4102 transactions. In order

to represent different types of layouts, the dataset

is collected such that each document is from a dif-

ferent customer.5 The dataset contains 51,396 en-

tities and 1.17 transactions per document, 6.7%

percent of them contains multiple transactions. On

average, there are between 1.18 to 2.23 entities per

slot depending on the slot type.

The documents are in image format since they

are received via fax, scanner or email channels.

They contain misrecognized characters, extra or

4The post-processing is crucial for our task since the input
source of our data is OCR and the data is noisy. For example,
we use an IBAN validator at this stage.

5Customers would usually prefer to use their own docu-
ment layout (templates) for their consecutive transaction or-
ders yielding documents with similar layouts.

missing characters or spaces, incorrect token se-

quences and so on due to noisy images and OCR

errors. In our experiments, we randomly selected

600 of these documents (containing 730 transac-

tions in total) as our test set and 400 of them as the

validation set.

4.2 Experiments and Discussions

Our algorithm predicts a relation type for each en-

tity pair in a document. This creates a relation

graph which is represented as an N × N matrix

where N is the number of entities. To evaluate

relation extraction performance, we used F1 mea-

sure. Since the relations are undirected, we used

only the upper triangles of relation matrices in our

evaluations. Since the cells on the diagonal line of

the relation matrix are always expected to contain

SAME DIVISION relations, they are excluded from

the evaluations. Table 3 gives relation extraction

scores of our model both with FastText and ELMo

embeddings. The dataset contains many rarely oc-

curring words due to noisy OCR outputs, espe-

cially in numerical tokens and proper nouns. We

observe that such rare words are handled better by

ELMo.

Relation Label Count
Model w/

FastText

Model w/

ELMo

NONE 16786 74.18 84.97

SAME DIVISION 17948 88.56 93.10

OTHER DIVISION 13000 97.08 95.95

RECEIVER OF 13333 90.26 92.43

SENDER OF 15156 97.27 96.49

Macro Avg 89.47 92.59

Micro Avg 88.88 92.35

Table 3: F1 scores of binary relation extraction step

In order to measure the performance of our

transaction extraction stage, we used a slot level

entity matching evaluation. Entities occurring in

both predicted and gold slots were counted as

true positives, the remaining entities within a pre-

dicted slot were counted as false positives, and

the missed entities of a gold slot were counted as

false negatives. Since each page may contain mul-

tiple transactions, while evaluating the predicted

transactions, we first needed to match them with

gold ones. We computed a similarity score for

each predicted-gold transaction pair in a document

and selected highest scoring pairs. The similar-

7

Rule

Based

Trans.

Based

Model w/

FastText

Model w/

ELMo
S

en
d
er P 80.32 87.21 94.61 96.05

R 60.19 72.42 81.13 82.65

F1 68.60 79.10 87.34 88.79

R
ec

ei
v
er P 78.49 87.07 91.99 92.45

R 56.33 69.00 81.74 83.39

F1 65.29 76.91 86.47 87.58

D
et

ai
ls P 87.56 91.39 94.63 95.33

R 56.14 69.21 85.35 87.25

F1 68.00 78.56 89.70 91.04

O
v
er

al
l P 82.86 89.21 93.86 94.59

R 57.32 70.18 83.35 85.10

F1 67.35 78.41 88.22 89.50

Table 4: Slot level entity matching macro average

scores grouped by divisions.

ity score was geometric mean of entity matching

scores (F1) between required slots (sender’s and

receiver’s account numbers and IBAN, amount,

and currency of transaction). We set a rule where

predicted transactions could not match with gold

transactions if the similarity score was 0, or they

were already matched with other predicted trans-

actions. Unmatched predicted transactions were

counted as wrong, and all of their entities were

counted as false positives during slot level evalua-

tion. Similarly unmatched gold transactions were

counted as missed, and their entities were counted

as false negatives. Table 4 provides slot level en-

tity matching scores grouped by divisions and as

overall.

We compare our method with two models: the

rule based and the dependency based approaches

from Şahin et al. (2018). The rule based method is

derived from banking conventions and some basic

patterns. It chooses the first seen account entity as

sender and remaining ones as receiver. Other enti-

ties are set using a similar logic that also considers

their proximity to divisions. For instance, it can

select the closest currency entity to the amount as

its currency.

We also adapted Şahin et al. (2018)’s depen-

dency parsing method to our data, which resulted

in increased number of entity and relation types.

Since, our dataset contains more entity types (14

vs 7 in Şahin et al. (2018)), during the adaptation,

we needed to add more relation types to the ones in

the original study. This approach uses a transition

based non-projective dependency parsing model

(Nivre et al., 2009) to attach account numbers to

the root of a dependency tree as Sender/Receiver,

and related entities (name, bank name, etc.) to

Sender/Receiver account numbers. Amounts are

attached to receivers while currency and other pro-

cess details are attached to amounts. This ap-

proach makes an assumption that each document

can only have one sender. Since, each receiver car-

ries all the unique entities of a transaction, multi-

ple transactions can easily be constructed.

Rule-based method cannot relate more than

one entity with a slot. As a result, it performs

marginally worse in recall. To correctly fill a slot,

it is enough to find one true entity in the document.

However, since we are working on a text coming

from an OCR system, entities are often misspelled.

Having more than one entity in a slot is advanta-

geous for post-processing steps.

Our model clearly outperforms both the rule-

based and the dependency parsing methods. The

use of ELMo embeddings gives consistent im-

provements in both precision and recall. Although

the dependency parsing model achieves satisfac-

tory results in precision, its performance in recall

is poor. We argue that this is due to the way the

dependency trees are constructed in Şahin et al.

(2018). Each dependent may be attached to one

head, therefore in slots that have multiple true enti-

ties (e.g in cases where sender’s name stated mul-

tiple times), entities are expected to be attached

to each other with a directed dependency relation

(called “SAME”) according to their occurrence or-

der. Then, the first entity within this order is ex-

pected to be attached to its true head. According

to our view, this is kind of a unnecessarily strict

grammar for the semantic problem in hand. In our

investigations over the predicted outputs, we see

that the transition based parser struggle to detect

correct order for SAME relations, thus degrading

its parsing accuracy.

Figure 7 shows the average slot level score

difference between our model (FastText) and

transition-based dependency parsing model. In

slots where there are multiple entities, the differ-

ence in recall is consistently higher than the cases

where we have one entity for a slot. It is also inter-

esting that precision scores of the two methods are

very similar. However, in empty slots, dependency

parsing model has much higher number of false

positives: 702 in the dependency parsing model

vs. 304 in the FastText and 192 in the ELMo mod-

els. We interpret this as LSTMs better ability to

8

Figure 7: Score difference between our model (w/ Fast-

Text embeddings) and transition based parser model.

Horizontal axis shows number of possible entities for a

slot.

learn semantics of pages.

We also counted the number of entity match-

ing errors in order to evaluate the quality of pre-

dicted and matched transactions. Table 5 provides

these statistics (in the upper block) as well as the

numbers of missed and wrong transactions of each

model (in the lower block). Unlike in the slot level

evaluation, performance of the rule based model

is not dramatically worse than the other methods

based on the matched transaction counts, but the

predicted transactions have lower quality. Rule

based model could predict only 14.7% of the trans-

actions with no error in any of their slots, while

this ratio is much higher in other models. Simi-

larly to our slot level evaluations, our models give

better performance than the other two methods,

while the use of ELMo embeddings provides con-

sistent improvements.

5 Conclusion

In this paper, we introduced a method to ex-

tract transactions from banking documents. The

method uses BiLSTM based deep neural network

to predict relations between each entity pairs, and

creates a relation graph. From this graph, our de-

coding algorithm constructs a series of sub-graphs

and applies maximal clique factorization to deter-

mine number of transactions and fill their slots.

We demonstrated that our method is more accu-

rate at predicting transactions and their slots than

previously proposed methods. Moreover, It has a

higher recall rate on slots with multiple entity can-

didates. This allows the use of excess entities in

Errors
Rule

Based

Trans.

Based

Model w/

Fasttext

Model w/

ELMo

0 74 372 454 490

1 52 43 47 40

2 81 70 52 39

3 62 17 21 13

4 80 4 11 7

5 63 5 9 4

6+ 91 12 4 13

Matched 503 539 601 606

Missed 227 191 129 124

Wrong 67 64 27 13

Table 5: Number of entity matching errors in pre-

dicted&matched transactions. Number of matched,

missed, and wrong transactions are also given in bot-

tom rows.

post-processing steps, which can mitigate the mis-

takes of OCR system.

Acknowledgments

This work is supported by The Scientific and Tech-

nological Research Council of Turkey with the

project no TEYDEB 3180571. We would like

to thank our colleagues Mehmet Yasin Akpınar,

Cemil Cengiz, Deniz Engin, and Tuğba Pamay for

their valuable discussions and support.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Hai Leong Chieu and Hwee Tou Ng. 2002. A
maximum entropy approach to information extrac-
tion from semi-structured and free text. In Eigh-
teenth National Conference on Artificial Intelli-
gence, pages 786–791, Menlo Park, CA, USA.
American Association for Artificial Intelligence.

Nancy A. Chinchor. 1998. Overview of MUC-7. In
Seventh Message Understanding Conference (MUC-
7): Proceedings of a Conference Held in Fairfax,
Virginia, April 29 - May 1, 1998.

Robin Jia, Cliff Wong, and Hoifung Poon. 2019.
Document-level n-ary relation extraction with
multiscale representation learning. CoRR,
abs/1904.02347.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://dl.acm.org/citation.cfm?id=777092.777213
http://dl.acm.org/citation.cfm?id=777092.777213
http://dl.acm.org/citation.cfm?id=777092.777213
https://www.aclweb.org/anthology/M98-1001
http://arxiv.org/abs/1904.02347
http://arxiv.org/abs/1904.02347
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

9

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

David McClosky, Mihai Surdeanu, and Christopher D.
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies - Volume 1,
HLT ’11, pages 1626–1635, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Seth Kulick, Scott
Winters, Yang Jin, and Pete White. 2005. Simple
algorithms for complex relation extraction with ap-
plications to biomedical IE. In Proceedings of the
43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 491–498,
Ann Arbor, Michigan. Association for Computa-
tional Linguistics.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with
online reordering. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 73–76, Paris, France. Association
for Computational Linguistics.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5:101–115.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

R. Sprugnoli and S. Tonelli. 2017. One, no one and one
hundred thousand events: Defining and processing
events in an inter-disciplinary perspective. Natural
Language Engineering, 23(4):485–506.

Shaolei Wang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2018. Joint extraction of entities and rela-
tions based on a novel graph scheme. In Proceed-
ings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, pages 4461–4467.
AAAI Press.

Michael Wick, Aron Culotta, and Andrew McCal-
lum. 2006. Learning field compatibilities to extract
database records from unstructured text. In Pro-
ceedings of the 2006 Conference on Empirical Meth-
ods in Natural Language Processing, pages 603–
611, Sydney, Australia. Association for Computa-
tional Linguistics.

Gözde Gül Şahin, Erdem Emekligil, Secil Arslan, Onur
Ağın, and Gülşen Eryiğit. 2018. Relation extrac-
tion via one-shot dependency parsing on intersen-
tential, higher-order, and nested relations. Turkish
Journal of Electrical Engineering & Computer Sci-
ences, 26(2):830–843.

https://doi.org/10.18653/v1/N16-1030
http://dl.acm.org/citation.cfm?id=2002472.2002667
http://dl.acm.org/citation.cfm?id=2002472.2002667
https://doi.org/10.3115/1219840.1219901
https://doi.org/10.3115/1219840.1219901
https://doi.org/10.3115/1219840.1219901
https://www.aclweb.org/anthology/W09-3811
https://www.aclweb.org/anthology/W09-3811
https://transacl.org/ojs/index.php/tacl/article/view/1028
https://transacl.org/ojs/index.php/tacl/article/view/1028
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://doi.org/10.1017/S1351324916000292
https://doi.org/10.1017/S1351324916000292
https://doi.org/10.1017/S1351324916000292
http://dl.acm.org/citation.cfm?id=3304222.3304390
http://dl.acm.org/citation.cfm?id=3304222.3304390
https://www.aclweb.org/anthology/W06-1671
https://www.aclweb.org/anthology/W06-1671
https://pdfs.semanticscholar.org/9d0e/b75f4ee6953c7d6f125c5f355117ca1e80ef.pdf
https://pdfs.semanticscholar.org/9d0e/b75f4ee6953c7d6f125c5f355117ca1e80ef.pdf
https://pdfs.semanticscholar.org/9d0e/b75f4ee6953c7d6f125c5f355117ca1e80ef.pdf

