
Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 259–264
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

259

What’s Wrong with Hebrew NLP?
And How to Make it Right

Reut Tsarfaty Amit Seker Shoval Sadde Stav Klein
Open University of Israel, University Road 1, Ra’anana, Israel
{reutts,shovalsa,amitse,stavkl}@openu.ac.il

Abstract

For languages with simple morphology, such
as English, automatic annotation pipelines
such as spaCy or Stanford’s CoreNLP success-
fully serve AI/DS projects in academia and the
industry. For many morphologically-rich lan-
guages (MRLs), similar pipelines show sub-
optimal performance that limits their applica-
bility for text analysis in research and com-
merical use. The suboptimal performance is
mainly due to errors in early morphological
disambiguation decisions, which cannot be re-
covered later in the pipeline, yielding incoher-
ent annotations on the whole. In this paper
we describe the design and use of the ONLP
suite, a joint morpho-syntactic parsing frame-
work for processing Modern Hebrew texts.
The joint inference over morphology and syn-
tax substantially limits error propagation, and
leads to high accuracy. ONLP provides rich
and expressive output which already serves di-
verse academic and commercial needs. Its ac-
companying demo further serves educational
activities, introducing Hebrew NLP intricacies
to researchers and non-researchers alike.

1 Introduction

NLP pipelines for the automatic annotation of un-
structured texts are at the core of language tech-
nology applications for Data Science, Text Ana-
lytics and Artificial Intelligence. For English, an-
notation pipelines such as spaCy (Honnibal and
Montani, 2017) or Stanford’s CoreNLP (Manning
et al., 2014) successfully deliver the ability to au-
tomatically annotate unstructured texts with their
underlying linguistic structures, including: Part-
of-Speech (POS) Tags, Morphological Features,
Dependency Relations, Named Entities, and so on.
These annotations serve research labs, non-profit
organizations and commercial endeavors in their
quest to make sense of the vast amount of unstruc-
tured data available to them.

Universal processing pipelines such as UDPipe
(Straka et al., 2016) aim to serve a range of other
languages, but unfortunately, their performance
on many morphologically rich languages (MRLs)
(Tsarfaty et al., 2010), and in particular Semitic
languages, is not on a par with their performance
on English. This, in turn, greatly limits their appli-
cability for further research and commercial use.
The main reason for this sub-optimal performance
on Semitic languages is that the pipeline design
inherent in these frameworks is inappropriate for
languages that exhibit extreme morphological am-
biguity in their input stream. This is because errors
made in morphological segmentation and disam-
biguation early on, jeopardize the system accuracy
down the pipeline. For Hebrew, this performance
gap has long been a show-stopper for advancing
Language Technology and Artificial Intelligence
for the Hebrew-speaking community. With this
contribution, we aim to remedy this situation.

In this paper we describe the design and use of
the ONLP system, a joint morphological-syntactic
parsing framework for processing the Semitic
language Modren Hebrew (Henceforth, Hebrew).
The system is accurate, efficient, and provides rich
and expressive output including: Segmentation,
POS tags, Lemmas, Features and Labeled Depen-
dencies. The joint training and inference over the
different layers substantially limits error propaga-
tion, and leads in turn to speed and high accuracy.
Among the technical advantages of the ONLP suite
are its open license, an easy 3-step installation,
and a single package with all elements included
— no need to train or maintain individual compo-
nents separately. The ONLP suite already serves
academic and commercial projects in diverse do-
mains. Its accompanying online demo has fur-
ther proved valuable for educational purposes, ex-
posing CS/NLP and non-CS researchers and engi-
neers to the intricacies of Semitic NLP.



260

2 The Linguistic Challenge

In morphologically-rich languages (MRLs), each
input token may consist of multiple lexical and
functional units (henceforth, morphemes), each of
which serves a particular role in the overall syn-
tactic or semantic representation. In Hebrew, for
example, the token ‘ ‘וכשמהמעבדה! corresponds to
five word tokens in English, each of which car-
rying its distinct role: ‘ו!‘ (and, CC), ‘ ‘כש! (when,
REL), ‘ ‘מְ! (from, IN), ‘ ‘ה! (the, DT), ‘ ‘מעבדה! (lab,
NN).1 This means that in order to process Hebrew
texts, one first needs to segment the Hebrew to-
kens into their constituting morphemes. At the
same time, Hebrew raw tokens are highly ambigu-
ous. A token such as: ‘הקפה!‘ may be interpreted
as ‘ ‘הקפה! (orbit, NN), ‘ ‘ה! + ‘קפה!‘ (the+coffee,
DT+NN), or ‘!Pהק’+ ‘ ’של! + ‘היא!‘ (perimeter of
her, NN+POSS+PRP), etc. This is further com-
plicated by the lack of diacritics in standardized
texts, meaning that most vowels are not present,
and thus out of context no reading is a-priory more
likely than the others. Only in context the correct
interpretation and segmentation become apparent.

These facts create an apparent loop in the de-
sign of NLP pipelines for Hebrew: syntactic pars-
ing requires morphological disambiguation – but
morphological disambiguation requires syntactic
context. This apparent loop has called for the de-
velopment of joint systems rather than pipelines,
for Semitic languages processing (Tsarfaty, 2006;
Green and Manning, 2010). This joint hypothesis
has proven useful for Hebrew and Arabic phrase-
structure parsing (Goldberg and Tsarfaty, 2008;
Green and Manning, 2010; Goldberg and Elhadad,
2011). The ONLP suite is a dependency-based
parsing framework implementing this joint hy-
pothesis, over the entire morpho-syntactic search-
space, as depicted in Figure 1 (More et al., 2019).

3 The Architectural Design

The core of ONLP is YAP (Yet Another Parser),
a morpho-syntactic parser for morphological and
syntactic analysis of Hebrew Texts. YAP re-
implements and extends the structure-prediction
framework of Zhang and Clark (2011). We de-
scribe YAP in detail in More and Tsarfaty (2016)
and More et al. (2019). Here we only provide a
bird’s eye view of the architecture.

1We use the annotation conventions of Sima’an et al.
(2001) that underlie the Hebrew SPMRL scheme http://
www.spmrl.org/spmrl2013-sharedtask.html.

Figure 1: The Joint Morpho-Syntactic Search-Space.
Lattice paths vary in length. Each lattice path can be
assigned an exponential number of dependency trees.

In YAP we embrace the extreme morpholog-
ical ambiguity in Hebrew. That is, we do not
aim to resolve morphological ambiguity via pre-
processing. The input to YAP is the complete Mor-
phological Analysis (MA) of an input sentence x,
termed here MA(x). MA(x) is a lattice structure,
consisting of all possible morphological analysis
possibilities of the input sentence, as seen in the
middle of Figure 1. Each lattice arc is a tuple
specifying the start-index, end-index, the form of
the segment, its part-of-speech, lemma, features,
and the index of the raw token the arc

originated from. An arc in the lattice can serve
as a node in a syntactic dependency tree. Each
contiguous path in the lattice presents one valid
morphological segmentation of the sentence, for
which a dependency tree can be assigned, as in
Figure 1. For each path in the lattice, there is an
exponential number of dependency trees that are
potentially applicable.

We refer to the task of selecting the most
likely lattice-path as Morphological Disambigua-
tion (MD), and to the task of selecting the most
likely dependency tree for a given path as Depen-
dency Parsing (DEP). For an input sentence x, our
goal is to jointly predict a single pair of MD(x)
and DEP(x) that are consistent with one another,
and form the most-likely analysis of the sentence.

The MD component is the transition-based
morphological parser of More and Tsarfaty

http://www.spmrl.org/spmrl2013-sharedtask.html
http://www.spmrl.org/spmrl2013-sharedtask.html


261

(2016), which is formally based on the structure-
prediction framework of Zhang and Clark (2011).
MD accepts a sentence lattice MA(x) as input
and delivers a selected sequence of arcs (mor-
phemes) MD(x) as output. The transition-based
system for MD selects arcs for MD one at a
time. It decodes the lattice using beam-search, and
keeps the K-best paths at each step, scored accord-
ing to morpheme-level and token-level features,
weighted via structured-perceptron learning.

The DEP component is a re-implementation of
the Zhang and Nivre (2011) dependency parser for
English, adapted for Hebrew. We assume an Arc-
Eager transition system and beam-search decod-
ing. Feature weights are learned via the structured
perceptron. We employ a carefully-designed fea-
ture set that reflects linguistic properties of He-
brew such as its rich morphological paradigms,
flexible word-order, agreement, etc. This provides
SOTA results on Hebrew dependency parsing, al-
beit in Oracle (i.e., gold morphology) scenario.

Seen that both the MD and DEP realize the
same formal framework and computational ma-
chinery, we can easily unify them and treat the
morpho-synactic task as a single objective. The
transition systems are combined and the beam-
search decoder interleaves morphological and syn-
tactic decisions. Now morphological decisions
may be affected by syntactic content, and vice
versa. The architecture is depicted in Figure 2.
In More et al. (2019) we compared the perfor-
mance of our joint system to our own pipeline,
and to other parsing systems available for Hebrew.
Our empirical results in More and Tsarfaty (2016);
More et al. (2019) show significant improvements
of YAP’s joint model for both the morphological
and syntactic tasks, over all standalone morpho-
logical or syntactic parsers available for Hebrew.

4 The Annotation Scheme

We deliver automatic morpho-syntactic annota-
tion of Hebrew texts based on the scheme of
the SPMRL Hebrew dependency treebank. The
SPMRL Hebrew scheme employs the labels of
Sima’an et al. (2001) for morphology and POS
tags, and the Unified-SD scheme of Tsarfaty
(2013) for the labeled dependencies.2 Specifically,
we deliver the following annotation layers:

2With an eye for future comparability, we further devel-
oped a conversion algorithm to convert the dependency tree
from Unified-SD to Universal Dependencies (UD).https:
//universaldependencies.org/

Figure 2: A bird’s eye view of the Architecture

Morphological Segmentation The most basic
form of analysis of Hebrew texts is the segmenta-
tion of raw tokens into multiple meaning-bearing
units that we call morphemes.3 Due to ortho-
graphic and phonological processes, some mor-
phemes do not appear explicitly in the surface
form. Our segmentation recovers all morphemes,
both overt and covert. For example, the token
’בבית!‘ (in the house) is segmented as ’ב!‘ + ’ה!‘
+ .’בית!‘

Part-of-Speech (POS) Tags Each morphologi-
cal segment is assigned a single Part-of-Speech tag
category that indicates its syntactic role. The set
of tags used by the system is based on the SPMRL
scheme which in turn adopts the POS labels from
Sima’an et al. (2001) (detailed in our appendix).

Morphological Features Along with the POS
category, we specify for each segment the prop-
erties that are signalled by inflectional morphol-
ogy. The scheme encodes the following prop-
erties: Number [S (Singular) / P (Plural) / D
(Dual)], Gender [F (Female) / M (Male) / F,M
(both)], Person [1 / 2 / 3 / A (All)],4 and Tense
[Past, Present, Future, Imperative, Infinitive].5

Lemmas Each segment is also assigned a
lemma, i.e., the cannonical representation of its
core (uninflected) meaning.6 For Hebrew nouns
and adjectives, the lemma is chosen to be the
Masculine-Singular form. For verbs, the lemma is
in the Masculine-Singular-3per form in Past tense.

3In UD they are called words. In Hebrew NLP they are
called segments. We use morphemes or segments herein.

4A is used in cases where all analyses are valid, such as in
Beinoni form - ’אוכלת!‘ (I/you/she eat.singular.feminine)

5Present-tense verbs and participles are tagged ‘Beinoni’.
6Note that due to high morphological fusion in Hebrew,

simple surface-based stemming will not suffice.

https://universaldependencies.org/
https://universaldependencies.org/


262

Dependency Tree The dependency tree is de-
fined over all morphological segments and an ar-
tificial root node. It consists of a set of labeled
binary relations that indicate the bi-lexical depen-
dencies between segments. Note that the SPMRL
dependency scheme, as opposed to UD, always se-
lects functional heads, rather than lexical heads.
The dependency labeling is based on the scheme
from Tsarfaty (2013), repeated in the appendix.

Lattices As explained in section 3 above, a word
can be segmented into morphemes in multiple
ways, which are constrained by a broad-coverage
lexicon. In addition to the parsed output, we make
available for each input sentence its sentence lat-
tice, i.e. the set of all possible segmentations
for a given sentence, along with all possible mor-
phosyntactic analyses for each arc.

5 Technical Details and Forms of Use

YAP is implemented in the Go language.7 It re-
quires 6GB of RAM to run, and employs a sim-
ple 3-step installation, given in the supplementray
material. The input to the system is a tokenized
sentence, with tokens appearing one per line, and
a line break after every sentence.8 The output is
a dependency tree (where each node in the tree
is a lattice arc) provided in the CoNLL-X format
(Buchholz and Marsi, 2006). YAP is trained on
the Hebrew section of the SPMRL shared task. It
also makes use of the broad-coverage lexicon of
Itai and Wintner (2008) for finding all potential
lattice paths. In case of out-of-vocabulary (OOV)
items, we employ a simple heuristic where we sug-
gest the 10 most-likely analyses of rare tokens ob-
served during training.

Simple Use | Command line From the com-
mand line, one can process one input file at a time,
with a single sentence or more. The input file must
be formatted with a single token per line, and an
empty line denoting the end of every sentence.

Processing a file is done in 2 steps: First, run
Morphological Analysis using ./yap hebma to
generate a sentence lattice containing all possible
morphological breakdowns of each token. YAP
will save the lattice to the file specified via the
-out flag.

7https://golang.org/
8We assume the tokenization convention of MILA (Itai

and Wintner, 2008).

Now you can run joint Morphological Disam-
biguation and Dependency Parsing using ./yap
joint to jointly predict the best lattice path and
corresponding dependency tree. The input to this
command is the output file generated in the pre-
vious step, and there are 3 output files: one con-
taining word segments, one containing the disam-
biguated lattice path, and one containing the com-
plete dependency tree in CoNLL-X format.

Advanced Use | RESTful API YAP can run as a
RESTful server that accepts parse requests. To do
this simply start the server, listening on localhost
port 8000. Now you can call the joint endpoint
with a json object containing the list of tokens to
process in the HTTP data payload. The response
is a json object containing the three output levels
(MA, MD and Dep). You can use jq and sed (or
any other json and line processing tools) to format
the (tab separated value) responses and reassemble
the output. Check our appendix for an illustration.

Educational Use | The Online Demo In 2018
we decided to create an online demo of the system,
for educational purposes: (i) To expose NLP/AI
researchers to NLP capabilities available for He-
brew. (ii) To educate non-CS scientists and engi-
neers who work with Hebrew data (e.g., digital hu-
manities) on text annotations that can potentially
be useful for their applications. (iii) To launch out-
reach activities where we teach what is NLP to the
local community (e.g., school kids).9

To use the demo, simply go to onlp.openu.
ac.il and type a Hebrew sentence in the textbox.
The demo is built with Django and Bootstrap web
frameworks. It sends the user’s Hebrew text input
to the ONLP server, which returns a CoNLL-X for-
matted parse along with the complete sentence lat-
tice. Pre-processing includes pre-morphological
tokenization of the input, where punctuation is be-
ing separated from the tokens. Double quotation
marks are being separated from the word unless
they appear before the last character of the word,
to avoid over-segmentation of acronyms.10 The
tokenized sequence is then passed to the ONLP

server. The CoNLL-X output is then processed
into the following layers: the FORM column is
concatenated and presented as ”Segmented Text”,
and the POS, LEMMA, FEATS and DEPS are pre-

9E.g., https://www.youtube.com/watch?v=
TFwQeoKpznA&feature=youtu.be

10Acronyms in Hebrew are written with a quotation mark
before the last letter, e.g. ’ארה!”ב!‘ (USA) .

https://golang.org/
onlp.openu.ac.il
onlp.openu.ac.il
https://www.youtube.com/watch?v=TFwQeoKpznA&feature=youtu.be
https://www.youtube.com/watch?v=TFwQeoKpznA&feature=youtu.be


263

Tok MA MD POS Lem Feats Deps Joint
Tasks
MILA X X
NITE X X X
Hebrew-NLP X
Adler X X X
Goldberg X

Pipelines
UDPipe X X X X X X X
CoreNLP X X X X X X X
ONLP X X X X X X X X

Table 1: Existing Coverage for Hebrew NLP Tasks

sented in separate accordion tabs. Furthermore,
the demo presents the sentence lattice which is the
input to the joint parser. This is useful for debug-
ging, and for analyzing lexical-coverage in out-of-
domain scenarios.

Expert Use | Out of Domain Scenarios A bot-
tleneck for the system in out-of-domain parsing
scenarios is the coverage of the lexicon. We
rely on a general-purpose lexicon containing over
500K entries. OOV words are treated via heuris-
tics we designed, which are suitable for the gen-
eral case only. However, identifying vocabulary
items accurately may be critical when applying the
parser to new domains with domain-specific infor-
mation (medical, financial, political, etc.). Fortu-
nately, we can extend the system with a domain-
specific lexicon, thus extending the MA coverage.
Due to joint inference, the availability of a bet-
ter suited lexical analysis triggers better lexico-
syntactic decisions on the whole.11

6 Related and Future Work

Hebrew NLP in general and Hebrew parsing in
particular are known to be challenging, due to in-
teresting linguistic properties, the scarcity of an-
notated data, and the small research community
around. So, Hebrew has been seriously under-
studied in NLP. During the early 2000s, the MILA
knowledge center was established, where the two
of the main Hebrew resources for NLP were devel-
oped: the Hebrew treebank (Sima’an et al., 2001)
and the Hebrew Lexicon (Itai and Wintner, 2008).

Morphological Taggers for Hebrew using local
linear-context have been trained on these data and
were made available for free use (Adler and El-
hadad, 2006; Bar-haim et al., 2008). However,
their performance was not on a par with parallel
tools for English and thus insufficient for commer-
cial use. Hebrew dependency parsing was initially

11We discuss how exactly this is executed in the appendix.

provided by Goldberg and Elhadad (2009), but
the parser provided unlabeled dependency, and the
pipeline relied on Adler’s morphological tagger.
This left the predicted dependency trees inaccurate
and unsatisfying. Joint morpho-syntactic models
for constituency-based parsing based on Tsarfaty
(2010) showed good performance on benchmark
data, but was never released for open use.

With the development of the UD treebanks
collection, general frameworks such as UDPipe
(Straka et al., 2016) and CoreNLP (Manning et al.,
2014) have been trained on the Hebrew UD tree-
bank, and made the model available. However,
these models provide performance that is still far
from satisfactory. As we also demonstrate in our
screen-cast,12 these systems make critical mis-
takes, even with the simplest sentences. We con-
jecture that this is due to their inherent pipeline
assumption: initial layers of processing present
many mistakes. due to the extreme morphological
ambiguity, and later layers cannot recover.13 No-
tably, neural-network models utilizing word em-
beddings, (e.g., UDPipe) also lag behind.

Table 1 shows the task-coverage of existing
tools and toolkits for NLP in Hebrew, academic
as well as private initiatives (NITE,Hebrew-NLP).
The task-coverage of the ONLP suite we present
is on a par with international standards (UD-
Pipe, CoreNLP), and its level of performance was
shown to exceed all existing models (More et al.,
2019). We are currently working towards Named-
Entity Recognition as well as Open Information
Extraction, to be added to ONLP in the near future.

7 Conclusion

This paper presents ONLP, a complete language-
processing framework for automatic annotation of
Modern Hebrew Texts. The framework covers
morphological segmentation, POS tags, lemmas
and features, and dependency parsing, predicted
jointly. The system is easy to install and to use,
and we support multiple forms of usage fitting
user-personas with different needs. We hope the
availability of an open-source, accurate, and easy-
to-use system for NLP in Hebrew will benefit the
local NLP open-source community and greatly ad-
vance Hebrew language technology research and
development, in academia and in the industry.

12https://www.youtube.com/watch?v=
H6pvh1x20FQ

13Our detailed qualitative error analysis in More et al.
(2019) indeed confirms this conjecture.

https://www.youtube.com/watch?v=H6pvh1x20FQ
https://www.youtube.com/watch?v=H6pvh1x20FQ


264

Acknowledgements

We thank the NLPH community, in particular
Shay Palachi, Amit Shkolnick and Yuval Fein-
stein, for discussion and insightful comments. We
further thank Avi Bivas (Israel Innovation Author-
ity) and Milo Avisar for promoting NLP initia-
tives in Israel. This research is supported by an
ISF grant (1739/26) and an ERC Starting grant
(677352), for which we are grateful.

References
Meni Adler and Michael Elhadad. 2006. An unsuper-

vised morpheme-based hmm for Hebrew morpho-
logical disambiguation. In ACL. The Association for
Computer Linguistics.

Roy Bar-haim, Khalil Sima’an, and Yoad Winter. 2008.
Part-of-speech tagging of Modern Hebrew text. Nat-
ural Language Engineering, 14(2):223–251.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of CoNLL, pages 149–164.

Yoav Goldberg and Michael Elhadad. 2009. Hebrew
dependency parsing: Initial results. In Proceed-
ings of the 11th International Conference on Parsing
Technologies, IWPT ’09, pages 129–133.

Yoav Goldberg and Michael Elhadad. 2011. Joint He-
brew segmentation and parsing using a PCFGLA lat-
tice parser. In Proceedings of ACL.

Yoav Goldberg and Reut Tsarfaty. 2008. A sin-
gle framework for joint morphological segmentation
and syntactic parsing. In Proceedings of ACL.

Spence Green and Christopher D. Manning. 2010. Bet-
ter Arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of COLING.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Alon Itai and Shuly Wintner. 2008. Language re-
sources for Hebrew. Language Resources and Eval-
uation, 42(1):75–98.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings ACL: system demon-
strations, pages 55–60.

Amir More, Amit Seker, Victoria Basmova, and Reut
Tsarfaty. 2019. Joint transition-based models for
morpho-syntactic parsing: Parsing strategies for
MRLs and a case study from modern Hebrew.
Transactions of the Association for Computational
Linguistics, 7:33–48.

Amir More and Reut Tsarfaty. 2016. Data-driven mor-
phological analysis and disambiguation for morpho-
logically rich languages and universal dependencies.
In Proceedings of COLING, pages 337–348. The
COLING 2016 Organizing Committee.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and N. Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitment Automatique des Langues,
42(2).

Milan Straka, Jan Hajic, and Jana Straková. 2016. Ud-
pipe: Trainable pipeline for processing conll-u files
performing tokenization, morphological analysis,
pos tagging and parsing. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. Euro-
pean Language Resources Association (ELRA).

Reut Tsarfaty. 2006. Integrated morphological and
syntactic disambiguation for modern Hebrew. In
Proceedings ACL-CoLing Student Research Work-
shop, pages 49–54, Stroudsburg, PA, USA. ACL.

Reut Tsarfaty. 2010. Relational-realizational parsing.
Ph.D. thesis.

Reut Tsarfaty. 2013. A unified morphosyntactic
scheme for stanford dependencies. In Proceedings
of ACL.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, San-
dra Kübler, Marie Candito, Jennifer Foster, Yannick
Versley, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(spmrl): What, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 1–12, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105–151.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the ACL, HLT ’11, pages 188–193,
Stroudsburg, PA, USA. ACL.

A Resources
1. Paper Appendix and Supplementary Materials:
https://arxiv.org/abs/1908.05453
2. Github:
https://github.com/OnlpLab/yap
3. Demo - Website:
http://onlp.openu.org.il
4. Demo - Screencast:
https://www.youtube.com/watch?v=
H6pvh1x20FQ
5. API Docker Image:
https://hub.docker.com/r/onlplab/
yap-api
6. SPMRL-to-UD Conversion:
https://github.com/OnlpLab/Hebrew_UD
7. ONLP Lab Website:
http://onlp.openu.org.il/home

http://dblp.uni-trier.de/db/conf/acl/acl2006.html#AdlerE06
http://dblp.uni-trier.de/db/conf/acl/acl2006.html#AdlerE06
http://dblp.uni-trier.de/db/conf/acl/acl2006.html#AdlerE06
http://dl.acm.org/citation.cfm?id=1697236.1697261
http://dl.acm.org/citation.cfm?id=1697236.1697261
https://www.aclweb.org/anthology/Q19-1003
https://www.aclweb.org/anthology/Q19-1003
https://www.aclweb.org/anthology/Q19-1003
http://dl.acm.org/citation.cfm?id=1557856.1557867
http://dl.acm.org/citation.cfm?id=1557856.1557867
http://dl.acm.org/citation.cfm?id=1868771.1868772
http://dl.acm.org/citation.cfm?id=1868771.1868772
http://dl.acm.org/citation.cfm?id=1868771.1868772
http://dl.acm.org/citation.cfm?id=2002736.2002777
http://dl.acm.org/citation.cfm?id=2002736.2002777
https://arxiv.org/abs/1908.05453
https://github.com/OnlpLab/yap
http://onlp.openu.org.il
https://www.youtube.com/watch?v=H6pvh1x20FQ
https://www.youtube.com/watch?v=H6pvh1x20FQ
https://hub.docker.com/r/onlplab/yap-api
https://hub.docker.com/r/onlplab/yap-api
https://github.com/OnlpLab/Hebrew_UD
http://onlp.openu.org.il/home

