
Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 127–132
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

127

LINSPECTOR WEB: A Multilingual Probing Suite for Word
Representations
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Abstract

We present LINSPECTOR WEB, an open
source multilingual inspector to analyze word
representations. Our system provides re-
searchers working in low-resource settings
with an easily accessible web based probing
tool to gain quick insights into their word
embeddings especially outside of the English
language. To do this we employ 16 sim-
ple linguistic probing tasks such as gender,
case marking, and tense for a diverse set of
28 languages. We support probing of static
word embeddings along with pretrained Al-
lenNLP models that are commonly used for
NLP downstream tasks such as named entity
recognition, natural language inference and
dependency parsing. The results are visual-
ized in a polar chart and also provided as a
table. LINSPECTOR WEB is available as an
offline tool or at https://linspector.
ukp.informatik.tu-darmstadt.de.

1 Introduction

Natural language processing (NLP) has seen
great progress after the introduction of contin-
uous, dense, low dimensional vectors to repre-
sent text. The field has witnessed the creation of
various word embedding models such as mono-
lingual (Mikolov et al., 2013), contextualized (Pe-
ters et al., 2018), multi-sense (Pilehvar et al.,
2017) and dependency-based (Levy and Goldberg,
2014); as well as adaptation and design of neu-
ral network architectures for a wide range of NLP
tasks. Despite their impressive performance, inter-
preting, analyzing and evaluating such black-box
models have been shown to be challenging, which
even led to a set of workshop series (Linzen et al.,
2018).

Early works for evaluating word representa-
tions (Faruqui and Dyer, 2014a,b; Nayak et al.,
2016) have mostly focused on English and used

either the word similarity or a set of downstream
tasks. However datasets for either of those tasks
do not exist for many languages, word similarity
tests do not necessarily correlate well with down-
stream tasks and evaluating embeddings on down-
stream tasks can be too computationally demand-
ing for low-resource scenarios. To address some
of these challenges, Shi et al. (2016); Adi et al.
(2017); Veldhoen et al. (2016); Conneau et al.
(2018) have introduced probing tasks, a.k.a. di-
agnostic classifiers, that take as input a represen-
tation generated by a fully trained neural model
and output predictions for a linguistic feature of
interest. Due to its simplicity and low computa-
tional cost, it has been employed by many studies
summarized by Belinkov and Glass (2019), mostly
focusing on English. Unlike most studies, Köhn
(2015) introduced a set of multilingual probing
tasks, however its scope has been limited to syn-
tactic tests and 7 languages. More importantly it is
not accessible as a web application and the source
code does not have support to probe pretrained
downstream NLP models out of the box.

Given the above information, most of the lower-
resource non-English academic NLP communities
still suffer from (1) the amount of required hu-
man and computational resources to search for
the right model configuration, and (2) the lack
of diagnostics tools to analyze their models to
gain more insights into what is captured. Re-
cently, Şahin et al. (2019) proposed 16 multilin-
gual probing tasks along with the corresponding
datasets and found correlations between certain
probing and downstream tasks and demonstrated
their efficacy as diagnostic tools. In this paper,
we employ these datasets to develop LINSPEC-
TOR WEB that is designed to help researchers with
low-resources working on non-English languages
to (1) analyze, interpret, and visualize various lay-
ers of their pretrained AllenNLP (Gardner et al.,

https://linspector.ukp.informatik.tu-darmstadt.de
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#Lang #Task-Type Web Offline Static Models Layers Epochs
(Faruqui and Dyer, 2014a) 4 10-WST × × ×

(Nayak et al., 2016) 1 7-DT × × ×
(Köhn, 2015) 7 7-PT × ×

Ours 28 16-PT × × × × × ×

Table 1: Features of previous evaluation applications compared to Ours (LINSPECTOR WEB). #Lang: Number
of supported languages, #Task-Type: Number and type of the tasks, where WST: Word similarity tasks, DT:
Downstream Tasks, PT: Probing Tasks. Static: Static word embeddings and Models: Pretrained downstream
models.

2018) models at different epochs and (2) measure
the performance of static word embeddings for
language-specific linguistic properties. To the best
of our knowledge, this is the first web application
that (a) performs online probing; (b) enables users
to upload their pretrained downstream task mod-
els to automatically analyze different layers and
epochs; and (c) has support for 28 languages with
some of them being extremely low-resource such
as Quechuan.

2 Previous Systems

A now retired evaluation suite for word em-
beddings was wordvectors.org (Faruqui and
Dyer, 2014a). The tool provided evaluation
and visualization for antonyms, synonyms, and
female-male similarity; and later it was updated to
support German, French, and Spanish word em-
beddings (Faruqui and Dyer, 2014b). For a visu-
alization the user could enter multiple tokens and
would receive a 2 dimensional chart to visualize
the cosine distance between the tokens. Therefore
it was limited by the amount of tokens, a human
could enter and analyze. VecEval (Nayak et al.,
2016) is another web based suite for static En-
glish word embeddings that perform evaluation on
a set of downstream tasks which may take several
hours. The visualization is similar to LINSPEC-
TOR WEB reporting both charts and a table. Both
web applications do not support probing of inter-
mediate layers of pretrained models or the addi-
tion of multiple epochs. Köhn (2015) introduced
an offline, multilingual probing suite for static em-
beddings limited in terms of the languages and the
probing tasks. A comparison of the system fea-
tures of previous studies is given in Table 1.

3 LINSPECTOR WEB

Our system is targeted at multilingual researchers
working with low-resource settings. It is designed
as a web application to enable such users to probe
their word representations with minimal effort and

computational requirements by simply uploading
a file. The users can either upload their pretrained
static embeddings files (e.g. word2vec (Mikolov
et al., 2013), fastText (Bojanowski et al., 2016),
GloVe (Pennington et al., 2014)); 1or their pre-
trained archived AllenNLP models. In this ver-
sion, we only give support to AllenNLP, due to its
high usage rate by low-resource community and
being up-to-date, i.e., containing state-of-the-art
models for many NLP tasks and being continu-
ously maintained at the Allen Institute for Artifi-
cial Intelligence (Gardner et al., 2018).

3.1 Scope of Probing

We support 28 languages from very diverse lan-
guage families. 2 The multilingual probing
datasets (Şahin et al., 2019) used in this system are
language-specific, i.e., languages with a gender
system are probed for gender, whereas languages
with a rich case-marking system are probed for
case. The majority of the probing tasks probe
for morpho-syntactic properties (e.g. case, mood,
person) which have been shown to correlate well
with syntactic and semantic parsing for a num-
ber of languages, where a small number of tasks
probe for surface (e.g. word length) or semantic
level properties (e.g. pseudoword). Finally, there
are two morphological comparison tasks (Odd-
/Shared Morphological Feature) aiming to find the
unique distinct/shared morphological feature be-
tween two tokens, which have been shown to cor-
relate well with the NLI task. The current probing
tasks are type-level (i.e., do not contain ambigu-
ous words) and are filtered to keep only the fre-
quent words. These tasks are (1) domain indepen-
dent and (2) contain valuable information encoded
via subwords in many languages (e.g. the Turkish

1
Since our probing datasets are publicly available, fastText embeddings for unknown

words in our dataset can be generated by the user locally via the provided functions in (Şahin
et al., 2019).

2
Arabic, Armenian, Basque, Bulgarian, Catalan, Czech, Danish, Dutch, English, Esto-

nian, Finnish, French, German, Greek, Hungarian, Italian, Macedonian, Polish, Portuguese,
Quechuan, Romanian, Russian, Serbian, Serbo-Crotian, Spanish, Swedish, Turkish and
Vietnamese

wordvectors.org
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Figure 1: Left: Language selection, Middle: Probing task selection, Right: Uploading model.

word gelemeyenlerden “he/she is one of the folks
who can not come” encodes sentence-level infor-
mation). 3

3.2 Features: Models, Layers and Epochs
We support the following classifier architectures
implemented by AllenNLP: BiaffineDependen-
cyParser (Dozat and Manning, 2016), CrfTag-
ger (Sutton et al., 2007), SimpleTagger (Gard-
ner et al., 2018), ESIM (Chen et al., 2017). Bi-
affineDependencyParser and CrfTagger are high-
lighted as the default choice for dependency pars-
ing and named entity recognition by (Gardner
et al., 2018), while ESIM was picked as one of
two available natural language inference models,
and SimpleTagger support was added as the entry
level AllenNLP classifier to solve tasks like parts-
of-speech tagging.

The users can choose the layers they want to
probe. This allows the users to analyze what lin-
guistic information is captured by different lay-
ers of the model (e.g., POS information in lower
layers, semantic information in higher levels). It
is possible to select any AllenNLP encoder layer
for classifiers with token, sentence, or document
based input and models with dual input (e.g.
ESIM: premise, hypothesis) that allow probing of
selected layers depending on their internal archi-
tecture as described in Sec. 4.2. Additionally a
user can specify up to 3 epochs for probing to in-
spect what their model learns and forgets during
training. This is considered a crucial feature as
it provides insights on learning dynamics of mod-
els (Saphra and Lopez, 2019). For instance, a user
diagnosing a pretrained NLI task, can probe for
the tasks that have been shown to correlate well
(Mood, Person, Polarity, and Tense) (Şahin et al.,
2019) for additional epochs, and analyze how their

3Users can choose probing tasks either intuitively or rely
on earlier studies e.g., that show a linguistic feature has been
beneficial for the downstream task. Therefore not every prob-
ing task is needed during a specific evaluation.

performance evolves during training. After the di-
agnostic classifiers are trained and tested on the
specified language, model, layer, and epochs, the
users are provided with (1) accuracies of each task
visualized in a polar chart, (2) a table containing
accuracy and loss for each probing test, and (3)
in case of additional epochs, accuracies for other
epochs are overlaid on the chart and columns are
added to the table for easy comparison as shown
in Fig. 2-Right.

The uploaded model files are deleted immedi-
ately after probing, however the results can be
saved or shared via a publicly accessible URL. The
project is open source and easily extendable to ad-
ditional languages, probing tasks and AllenNLP
models. New languages can be added simply by
adding train, dev, and test data for selected prob-
ing tasks and adding one database entry. Similarly
new probing tasks can be defined following (Şahin
et al., 2019). In case the new tasks differ by input
type, a custom AllenNLP dataset reader and clas-
sifier should be added. It can be extended to new
AllenNLP models by adding the matching predic-
tor to the supported list or writing a custom pre-
dictor if the model requires dual input values (e.g.
ESIM). Finally, other frameworks (e.g. ONNX
format) can be supported by adding a method to
extract embeddings from the model.

4 System Description

LINSPECTOR WEB is based on the Python Django
framework 4 which manages everything related
to performance, security, scalability, and database
handling.

4.1 Frontend
First, the user selects the language of the model
and a number of probing tests they want to per-
form. The probing test selection menu will vary
with the selected language. Next the user has to

4
https://www.djangoproject.com

https://www.djangoproject.com
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Figure 2: Left: Layer selection example, Right: Polar chart result shown for different epochs for pretrained Arabic
BiaffineDependencyParser.

Figure 3: Backend architecture

upload an archived AllenNLP model or a static
embeddings file. The input pipeline is shown in
Fig. 1. The upload is handled asynchronously us-
ing custom AJAX code to support large files, pre-
vent timeouts, and give the user some progress
feedback. The backend detects if an uploaded file
is an archived AllenNLP model and provides a list
of layers if that is the case as shown in Fig. 2-
Left. Probing is handled asynchronously by the
backend. A JSON API endpoint gives progress
feedback to the frontend which displays a progress
bar and the currently executed probing test to the
user. Finally results are displayed in an interac-
tive chart and a table. For the user interface, we
use the Bootstrap framework 5 that provides us
with modern, responsive, and mobile compatible
HTML and CSS. The visualization is done using
the Highcharts library. 6

4.2 Backend

The structure of the backend system is shown in
Fig. 3 and the main components are explained be-
low.

5
https://getbootstrap.com

6
https://www.highcharts.com

Layers: To get a list of layers an archived
AllenNLP model is loaded using a standard
AllenNLP API. Since every AllenNLP classi-
fier inherits from the PyTorch (Paszke et al.,
2017) class torch.nn.Module, we gather
two levels of immediate submodules using
the named children() API. First we ex-
tract high level AllenNLP modules including all
Seq2SeqEncoder, Seq2VecEncoder, and
FeedForwardmodules by testing each submod-
ule for a get input dim() method. Then we
extract low level modules which can be either Al-
lenNLP modules e.g. AugmentedLstm or Py-
Torch modules e.g. Linear by testing for the
attributes input size or in features. All
those modules are then returned as available prob-
ing layers. We require the input dimension later
and since there is no standard API we have to ex-
clude some submodules. 7 Finally we don’t sup-
port models that require additional linguistic infor-
mation such as POS tags.

Getting Embeddings: PyTorch modules allow
us to register forward hooks. A hook is a call-
back which receives the module, input, and out-
put every time an input is passed through the mod-
ule. For AllenNLP models we register such a call-
back to the selected encoding layer. Then each
time a token is passed through the model, it passes
through the encoder and the callback receives the
input vector. The most reliable way to pass to-
kens through a model is using AllenNLP predic-

7By analyzing the AllenNLP codebase and PyTorch
modules used in their sample configurations, we de-
cided to support modules providing their dimension us-
ing get input dim(), input size, or in features;
which may change with future versions of AllenNLP.

https://getbootstrap.com
https://www.highcharts.com
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tors. There is a matching predictor for every model
which are regularly tested and updated. We gather
all tokens from our intrinsic probing data and pass
it through the predictor. For every token the for-
ward hook is called in the background which then
provides us with the vector. The token and vec-
tor are then written to a temporary file. During
the embedding extraction, the progress is reported
back to the frontend periodically in 30 steps. For
static embeddings all lines that match the embed-
ding dimension are written to a temporary file and
malformed data is removed.

Probing: Finally the gathered embeddings are
loaded as a pretrained non-trainable embedding
layer for a single linear layer custom build Al-
lenNLP classifier. The classifier is trained and
evaluated using the intrinsic probing data for the
specified probing test. We use 20 epochs with
early stopping, a patience of 5, and gradient clip-
ping of 0.5. The evaluation accuracy and loss are
then returned. For contrastive probing tasks (Odd-
/Shared Morphological Feature) a similar linear
classifier that takes concatenated tokens as input,
is used.

Asynchronous probing is handled using the
Python Celery framework 8, the RabbitMQ mes-
sage broker 9, and the Eventlet execution pool 10.
When the user starts probing, a new Celery task
is created in the backend which executes all prob-
ing tasks specified by the user asynchronously and
reports the progress back to the frontend. Finally
the results are saved in a PostgreSQL or SQLite-
database using the Django Celery Results applica-
tion.

4.3 Tests
We have trained BiaffineDependencyParser, Crf-
Tagger, SimpleTagger, and ESIM AllenNLP mod-
els for Arabic, Armenian, Czech, French, and
Hungarian with varying dimensions. We have
tested the intrinsic probing data, layer selec-
tion, consistency of metrics, contrastive and non-
contrastive classifiers, and all probing tests for
multiple combinations of languages, dimensions,
and AllenNLP models. Static embeddings are
tested using pretrained fastText files for the same
languages. In addition, the file upload was tested
with files up to 8 GB over a DSL 50k connection.

8
http://www.celeryproject.org

9
https://www.rabbitmq.com

10
https://eventlet.net

4.4 Training Times

The LINSPECTOR WEB server is hosted in uni-
versity data center with a state-of-the-art internet
connection which allows for fast upload speeds.
Therefore, the overall upload speed mostly de-
pends on the users connection. For a single prob-
ing task, embedding extraction, training, and eval-
uation is around a few minutes.

5 Conclusion

Researchers working on non-English languages
under low-resource settings have lacked a tool
that would assist with model selection via
providing linguistic insights, to this date. To
address this, we presented LINSPECTOR WEB,
an open source, web-based evaluation suite with
16 probing tasks for 28 languages; which can
probe pretrained static word embeddings and
various layers of a number of selected AllenNLP
models. The tool can easily be extended for
additional languages, probing tasks, probing
models and AllenNLP models. LINSPECTOR

WEB is available at https://linspector.
ukp.informatik.tu-darmstadt.de
and the source code for the server is released
with https://github.com/UKPLab/
linspector-web along with the installation
instructions for the server. The system is currently
being extended to support contextualized word
embeddings with contextualized probing tasks
using the Universal Dependency Treebanks (Nivre
et al., 2019).
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