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Abstract

We present Birch, a system that applies BERT
to document retrieval via integration with
the open-source Anserini information retrieval
toolkit to demonstrate end-to-end search over
large document collections. Birch implements
simple ranking models that achieve state-
of-the-art effectiveness on standard TREC
newswire and social media test collections.
This demonstration focuses on technical chal-
lenges in the integration of NLP and IR capa-
bilities, along with the design rationale behind
our approach to tightly-coupled integration be-
tween Python (to support neural networks) and
the Java Virtual Machine (to support document
retrieval using the open-source Lucene search
library). We demonstrate integration of Birch
with an existing search interface as well as in-
teractive notebooks that highlight its capabili-
ties in an easy-to-understand manner.

1 Introduction

The information retrieval community, much like
the natural language processing community, has
witnessed the growing dominance of approaches
based on neural networks. Applications of neu-
ral networks to document ranking usually involve
multi-stage architectures, beginning with a tra-
ditional term-matching technique (e.g., BM25)
over a standard inverted index, followed by a
reranker that rescores the candidate list of docu-
ments (Asadi and Lin, 2013).

Researchers have developed a panoply of neural
ranking models—see Mitra and Craswell (2019)
for a recent overview—but there is emerging evi-
dence that BERT (Devlin et al., 2019) outperforms
previous approaches to document retrieval (Yang
et al., 2019c; MacAvaney et al., 2019) as well
as search-related tasks such as question answer-
ing (Nogueira and Cho, 2019; Yang et al., 2019b).

We share with the community Birch,1 which in-
tegrates the Anserini information retrieval toolkit2

with a BERT-based document ranking model that
provides an end-to-end open-source search en-
gine. Birch allows the community to replicate
the state-of-the-art document ranking results pre-
sented in Yilmaz et al. (2019) and Yang et al.
(2019c). Here we summarize those results, but our
focus is on system architecture and the rationale
behind a number of implementation design deci-
sions, as opposed to the ranking model itself.

2 Integration Challenges

The problem we are trying to solve, and the focus
of this work, is how to bridge the worlds of infor-
mation retrieval and natural language processing
from a software engineering perspective, for appli-
cations to document retrieval. Following the stan-
dard formulation, we assume a (potentially large)
corpus D that users wish to search. For a keyword
query Q, the system’s task is to return a ranked
list of documents that maximizes a retrieval met-
ric such as average precision (AP). This stands in
contrast to reading comprehension tasks such as
SQuAD (Rajpurkar et al., 2016) and many formu-
lations of question answering today such as Wiki-
QA (Yang et al., 2015) and the MS MARCO QA
Task (Bajaj et al., 2018), where there is no (or min-
imal) retrieval component. These are better char-
acterized as “selection” tasks on (pre-determined)
text passages.

Within the information retrieval community,
there exists a disconnect between academic re-
searchers and industry practitioners. Outside of a
few large organizations that deploy custom infras-
tructure (mostly commercial search engine com-
panies), Lucene (along with the closely-related

1http://birchir.io/
2http://anserini.io/

http://birchir.io/
http://anserini.io/
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projects Solr and Elasticsearch) has become the de
facto platform for building real-world search ap-
plications, deployed at Twitter, Netflix, eBay, and
numerous other organizations. However, many re-
searchers still rely on academic systems such as
Indri3 and Terrier,4 which are mostly unknown
in real-world production environments. This gap
hinders technology transfer and the potential im-
pact of research results.

Even assuming Lucene as a “common denom-
inator” that academic researchers learn to adopt,
there is still one technical hurdle: Lucene is im-
plemented in Java, and hence runs on the Java Vir-
tual Machine (JVM). However, most deep learn-
ing toolkits today, including TensorFlow and Py-
Torch, are written in Python with a C++ backend.
Bridging Python and the JVM presents a technical
challenge for NLP/IR integration.

3 Birch

3.1 Anserini

Anserini (Yang et al., 2017, 2018) represents an at-
tempt to better align academic researchers with in-
dustry practitioners by building a research-focused
toolkit on top of the open-source Lucene search
library. Further standardizing on a common plat-
form within the academic community can foster
greater replicability and reproducibility, a growing
concern in the community (Lin et al., 2016).

Already, Anserini has proven to be effective and
has gained some traction: For example, Nogueira
and Cho (2019) used Anserini for generating can-
didate documents before applying BERT to rank-
ing passages in the TREC Complex Answer Re-
trieval (CAR) task (Dietz et al., 2017), which led
to a large increase in effectiveness. Yang et al.
(2019b) also combined Anserini and BERT to
demonstrate large improvements in open-domain
question answering directly on Wikipedia.

3.2 Design Decisions

The architecture of Birch is shown in Figure 1,
which codifies a two-stage pipeline architecture
where Anserini is responsible for retrieval, the out-
put of which is passed to a BERT-based reranker.
Since our research group has standardized on Py-
Torch, the central challenge we tackle is: How
do we integrate the deep learning toolkit with
Anserini?

3https://www.lemurproject.org/
4http://terrier.org/
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Figure 1: Architecture of Birch, illustrating a tight
integration between Python and the Java Virtual Ma-
chine. The main code entry point is in Python, which
calls Anserini for retrieval; candidate documents from
Anserini are then reranked by our BERT models.

At the outset, we ruled out “loosely-coupled”
integration approaches: For example, passing in-
termediate text files is not a sustainable solution in
the long term. It is not only inefficient, but inter-
change formats frequently change (whether inten-
tionally or accidentally), breaking code between
multiple components. We also ruled out integra-
tion via REST APIs for similar reasons: efficiency
(overhead of HTTP calls) and stability (imperfect
solutions for enforcing API contracts, particularly
in a research environment).

There are a few options for the “tightly-
coupled” integration we desired. In principle, we
could adopt the Java Virtual Machine (JVM) as
the primary code entry point, with integration to
the Torch backend via JNI, but this was ruled out
because it would create two separate code paths
(JVM to C++ for execution and Python to C++
for model development), which presents maintain-
ability issues. After some exploration, we de-
cided on Python as the primary development en-
vironment, integrating Anserini using the Pyjnius
Python library5 for accessing Java classes. The
library was originally developed to facilitate An-
droid development in Python, and allows Python
code to directly manipulate Java classes and ob-
jects. Thus, Birch supports Python as the main
development language (and code entry point, as
shown in Figure 1), connecting to the backend
JVM to access retrieval capabilities.

3.3 Models

Our document ranking approach is detailed in Yil-
maz et al. (2019) and Yang et al. (2019c). We fol-
low Nogueira and Cho (2019) in adapting BERT
for binary (specifically, relevance) classification
over text. Candidate documents from Anserini

5https://pyjnius.readthedocs.io/

https://www.lemurproject.org/
http://terrier.org/
https://pyjnius.readthedocs.io/
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2011 2012 2013 2014

Model AP P@30 AP P@30 AP P@30 AP P@30
QL 0.3576 0.4000 0.2091 0.3311 0.2532 0.4450 0.3924 0.6182
RM3 0.3824 0.4211 0.2342 0.3452 0.2766 0.4733 0.4480 0.6339
MP-HCNN (Rao et al., 2019) 0.4043 0.4293 0.2460 0.3791 0.2896 0.5294 0.4420 0.6394
BiCNN (Shi et al., 2018) 0.4293 0.4728 0.2621 0.4147 0.2990 0.5367 0.4563 0.6806

Birch 0.4697 0.5040 0.3073 0.4356 0.3357 0.5656 0.5176 0.7006

Table 1: Results on test collections from the TREC Microblog Tracks, comparing BERT with selected neural
ranking models. The first two blocks of the table contain results copied from Rao et al. (2019).

are processed individually. As model input, we
concatenate the query Q and document D into a
text sequence [[CLS], Q, [SEP], D, [SEP]], and
then pad each text sequence in a mini-batch to N
tokens, where N is the maximum length in the
batch. The [CLS] vector is then taken as input
to a single layer neural network. Starting from a
pre-trained BERT model, we fine-tune with exist-
ing relevance judgments using cross-entropy loss.
BERT inference scores are then combined with the
original retrieval scores, in the simplest case, using
linear interpolation.

In this simple approach, long documents pose
a problem since BERT wasn’t specifically de-
signed to perform inference on long input texts.
We present a simple solution: inference is applied
over each sentence in a candidate document and
sentence-level evidence is aggregated for ranking
documents as follows:

Sf = a · Sdoc + (1− a) ·
n∑

i=1

wi · Si (1)

where Sdoc is the original document score and
Si is the i-th top-scoring sentence according to
BERT; a and wi’s are parameters that need to be
learned. In practice, we only consider up to the
three top-scoring sentences in each document.

The intuition behind this approach comes from
Zhang et al. (2018b,a), who found that the “best”
sentence or paragraph in a document provides a
good proxy for document relevance. From a dif-
ferent perspective, we are essentially implement-
ing a form of passage retrieval.

4 Retrieval Results

4.1 TREC 2011–2014 Microblog Tracks

As originally reported in Yang et al. (2019c), Birch
was evaluated on tweet test collections from the
TREC Microblog Tracks, 2011 to 2014 (Lin et al.,

2014). Since tweets are short, relevance judg-
ments can be directly used to fine-tune the BERT
model (Section 3.3). For evaluation on each year’s
dataset, we used the remaining years for fine-
tuning, e.g., tuning on 2011–2013 data, testing on
2014 data. Additional details on the fine-tuning
strategy and experimental settings are described
in Yang et al. (2019c).

At retrieval (inference) time, query likelihood
(QL) with RM3 relevance feedback (Nasreen
et al., 2004) was used to provide the initial pool
of candidates (to depth 1000). Since tweets are
short, we can apply inference over each candidate
document in its entirety. The interpolation weight
between the BERT scores and the retrieval scores
was tuned on the validation data.

Experimental results are shown in Table 1,
where we present average precision (AP) and pre-
cision at rank 30 (P@30), the two official met-
rics of the evaluation (Ounis et al., 2011). The
first two blocks of the table are copied from Rao
et al. (2019), who compared bag-of-words base-
lines (QL and RM3) to several popular neural
ranking models as well as MP-HCNN, the model
they introduced. The results of Rao et al. (2019)
were further improved in Shi et al. (2018); in all
cases, the neural models include interpolation with
the original document scores. We see that Birch
yields a large jump in effectiveness across all Mi-
croblog collections.

4.2 TREC 2004 Robust Track

In addition to searching short social media posts,
we also examined a “traditional” document re-
trieval task over newswire articles. For this, we
used the test collection from the TREC 2004 Ro-
bust Track (Voorhees, 2004), which comprises 250
topics over a newswire corpus of around 500K
documents. Here, we provide a summary of Yil-
maz et al. (2019), which contains more detailed



22

Model AP P@20 NDCG@20
BM25+RM3 0.2903 0.3821 0.4407

1S: BERT 0.3676 0.4610 0.5239
2S: BERT 0.3697 0.4657 0.5324
3S: BERT 0.3691 0.4669 0.5325

Table 2: Results on Robust04, where nS denotes com-
bining scores from the top n sentences in a document.

descriptions of our approach and presents experi-
ments on more test collections.

The additional challenge with ranking newswire
articles is the lack of training data to fine-tune
the BERT models, since relevance judgments are
provided at the document level. That is, in the
standard formulation of document ranking, a doc-
ument is considered relevant if any part of it is
relevant—but documents are typically longer than
the lengths of text BERT was designed to handle.
The surprising finding of Yilmaz et al. (2019) is
that BERT models fine-tuned with the Microblog
test collections in Section 4.1 can be directly ap-
plied to rank newswire documents, despite the dif-
ferences in domain (social media posts vs. news
articles). Furthermore, it appears that out-of-
domain passage-level relevance judgments fortu-
itously available, such as the MS MARCO passage
dataset (Bajaj et al., 2018) and the TREC CAR
dataset (Dietz et al., 2017), are also beneficial.

Thus, it appears that BERT is able to learn
cross-domain, sentence-level notions of relevance
that can be exploited for ranking newswire doc-
uments. Table 2 presents an extract of results
from Yilmaz et al. (2019) for Robust04, where we
find that the best results are achieved by first fine-
tuning on MS MARCO and then on the Microblog
data. Scores from BERT are then combined with
document scores (BM25+RM3) based on Eq (1).
The notation “1S”, “2S”, and “3S” refer to ag-
gregating scores from the top one, two, and three
sentences, respectively. Including more sentences
doesn’t help and ranking is already quite good if
we just consider the top-scoring sentence. This re-
sult, surprisingly, suggests that document ranking
can be distilled into relevance prediction primarily
at the sentence level. Based on the meta-analysis
by Yang et al. (2019a), this is not only the highest
known AP reported on the Robust04 dataset for
neural models, but also exceeds the previous best
known AP score of 0.3686, which is a non-neural
method based on ensembles.

5 Demonstration

We demonstrate the integration of Birch with the
search frontend from HiCAL (Abualsaud et al.,
2018b) and interactive Google Colab notebooks.

5.1 HiCAL
The goal of the HiCAL system6 is to help human
assessors efficiently find as many relevant doc-
uments as possible in a large document collec-
tion to achieve high recall on a search task. The
system comprises two main components: a Con-
tinuous Active Learning (CAL) model (Cormack
and Grossman, 2014) and a search model. In the
CAL model, a machine-learned classifier selects
the most likely relevant document or paragraph
for the assessor to judge; judgments are then fed
back to retrain the classifier. In the current Hi-
CAL implementation, Anserini provides the back-
end search capabilities.

For the TREC Common Core Tracks in 2017
and 2018, a small group of researchers used
HiCAL to find and judge relevant documents.
The runs generated based on their assessments
achieved the highest AP scores among all the
submitted runs for two consecutive years (Zhang
et al., 2017; Abualsaud et al., 2018a). The effec-
tiveness of the system was further demonstrated in
Zhang et al. (2018a).

We further augment the Anserini backend for
HiCAL with Birch in two ways: First, HiCAL can
directly take advantage of improved rankings pro-
vided by BERT. Second, the top-scoring sentences
can be highlighted in the document to aid in as-
sessment. A sample screenshot is shown in Fig-
ure 2. For query 336 “black bear attacks” from Ro-
bust04, we show part of the highest-scoring docu-
ment LA081689-0039 with one of the top three
sentences (according to BERT) highlighted.

5.2 Interactive Colab Notebooks
We present Google Colab7 notebooks that make it
possible for anyone to reproduce our end-to-end
document retrieval pipeline in an interactive man-
ner.8 We make all our data and pre-trained mod-
els available, although users may also opt to re-
build them from scratch; the Colab GPU backend
enables fine-tuning BERT models directly in the
notebook environment.

6https://github.com/hical
7https://colab.research.google.com/
8To ensure long-term availability, sample notebooks are

linked from the main Birch repository.

https://github.com/hical
https://colab.research.google.com/


23

Figure 2: Screenshot of HiCAL using Birch to identify
the most relevant sentences in a document retrieved for
the query “black bear attacks”.

Our notebooks are set up to allow relevance
scores to be computed for an entire test collection
in batch, and also to support interactive querying.
When the user issues a query through the interac-
tive notebook, candidate documents from the cor-
pus are first retrieved using Anserini. A sentence-
level dataset is created on the fly from the initial
ranking by splitting each document into its con-
stituent sentences. Each sentence is fed into our
BERT model to obtain a relevance score. These
relevance scores are then aggregated with docu-
ment scores to rerank the candidate documents,
per Eq (1). The notebook setting allows a user to
step through each part of the process and examine
intermediate results to gain a better understanding
of our approach.

In addition, we have implemented two meth-
ods to visualize the relevant documents for a given
query from a test collection, hopefully conveying
even more insights. First, we generate a table that
displays the document scores juxtaposed with the
BERT scores of constituent sentences. Sentences
with low document scores but high BERT scores
(and vice versa) are highlighted, allowing the user
to examine the relative contributions of exact term
matching and semantic matching, as contributed
by BERT. Second, we incorporate bertviz,9 an
open-source tool for visualizing attention in trans-
former models, to explore the interaction between
multiple attention heads. In Figure 3, we show a
sentence with a high BERT score in a document
retrieved for query 322 “international art crime”
from Robust04. Note that this sentence does not

9https://github.com/jessevig/bertviz

Figure 3: Screenshot of attention visualization for a
sentence with a high BERT score from a document re-
trieved for the query “international art crime”. Note the
lack of exact matches with query terms.

contain any of the query terms, but yet appears
to be relevant. If we examine the attention vi-
sualization for the query term “crime”, we see
that the model attends to obviously-related terms
like “thieves”, “demand”, and “ransom”, illustrat-
ing the semantic knowledge that is captured in the
BERT model.

6 Conclusions

This paper describes the system architecture and
motivation behind a straightforward application
of BERT to document ranking, via sentence-level
inference and simple score aggregation. With
the implementation of this system, we have also
overcome the technical challenge of integrating a
Lucene-based backend on the JVM with PyTorch
to enable development in an environment NLP
researchers and practitioners are already familiar
with. The fruits of our labor are released in an
open-source system for the community to continue
explorations in search-related tasks with BERT.
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