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Abstract

Stance detection in social media is a well-
studied task in a variety of domains. Nev-
ertheless, previous work has mostly focused
on multiclass versions of the problem, where
the labels are mutually exclusive, and typically
positive, negative or neutral. In this paper, we
address versions of the task in which an ut-
terance can have multiple labels, thus corre-
sponding to multilabel classification. We pro-
pose a method that explicitly incorporates la-
bel dependencies in the training objective and
compare it against a variety of baselines, as
well as a reduction of multilabel to multiclass
learning. In experiments with three datasets,
we find that our proposed method improves
upon all baselines on two out of three datasets.
We also show that the reduction of multilabel
to multiclass classification can be very com-
petitive, especially in cases where the output
consists of a small number of labels and one
can enumerate over all label combinations.

1 Introduction

Stance detection is an established task in the com-
putational linguistics community, and is typically
concerned with whether an utterance (e.g. a tweet)
expresses an attitude (often positive, negative or
neutral) against a target such as an entity e.g. a
politician (Hasan and Ng, 2013; Mohammad et al.,
2016), or another utterance, e.g. a previous tweet
in a thread (Zubiaga et al., 2016). Thus stance de-
tection is an important task for analyzing discourse
in online forums and social media platforms and
is a component in assessing the veracity of claims
(Kochkina et al., 2018).

When the stances are mutually exclusive as in
the aforementioned cases, multiclass classification
is an appropriate formulation for the task. Often,
however, a text may express multiple stances si-
multaneously. Such cases need to be formulated as

Brexit Blog Corpus (Simaki et al., 2018)
Utterance: rivalry between the us and china is
inevitable but it needs to be kept within bounds that
would preclude the use of military force.
Stances: certainty, contrariety, necessity, prediction

US Election Twitter Corpus (Sobhani et al., 2019)
Utterance: voters mean more than super delegates
@sensanders corrupt -> #hillaryclinton spends millions
on msm to discourage #americans voting #sanders
Stances: Clinton: AGAINST, Sanders: FAVOR

Moral Foundations Twitter (Dehghani et al., 2019)
Utterance: blatant racism in #colorado,
#blacklivesmatter http://fb.me/1ibyxmswm
Stances: cheating, harm

Figure 1: Examples from each of the datasets.

multilabel classification (Sorower, 2010), where
an instance can receive multiple, non-mutually
exclusive labels. The most commonly used ap-
proaches to multiclass classification treat the task
by learning models for each label. However, such
approaches do not model dependencies between
the labels explicitly, i.e. that the presence of one la-
bel results in another becoming more or less likely.

In this paper, we investigate multilabel stance
detection in the context of three datasets: the
Brexit Blog Corpus (BBC) (Simaki et al., 2018),
the US Election Tweets Corpus (ETC) (Sobhani
et al., 2019), and the Moral Foundations Twitter
Corpus (MFTC) (Dehghani et al., 2019). Figure 1
shows examples from each dataset where the utter-
ances have been annotated with multiple stances.
In BBC and MFTC, each utterance is annotated
with a variable number of stances, encoded as bi-
nary presence/absence of each possible stance. In
ETC, each utterance has a three-way stance FA-
VOR (positive), AGAINST (negative), or NONE
(neutral) for each of the candidates.

We show that it is possible to improve over
baseline results that employ binary relevance and
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multitask learning, by incorporating label depen-
dencies explicitly with the cross-label dependency
loss (Yeh et al., 2017), originally introduced by
Zhang and Zhou (2006). We also show that a re-
duction of multilabel to multiclass classification
by considering all label combinations, also known
as label powerset, can be very competitive, espe-
cially when the output consists of a small number
of labels and one can enumerate all combinations,
and verify our results with statistical significance
testing. Finally, we improve on the best reported
results on the ETC dataset.

2 Multilabel classification

The most commonly used approach to multilabel
classification encodes the labels so that a single
multilabel classification task is reduced to many
sub-tasks learned independently. E.g. for BBC and
MFTC binary models are learnt for each of the la-
bels that predict the presence or absence of each
label, hence the name Binary Relevance (BR),
which has also been used in image classification
(Boutell et al., 2004). It is straightforward to ex-
tend BR to handle tasks such as ETC where each
position in the output can have more options than
presence/absence, by using multiclass classifiers
instead of binary ones. While it is possible to learn
the models for the subtasks jointly using multi-
task learning (Ruder, 2017), this does not capture
label dependencies in the output directly; instead
it encourages layers of the model before the output
to be learned to benefit all tasks simultaneously.

An alternative encoding method, Label Power-
set (LP), captures dependencies explicitly: each
label combination appearing in the training data is
encoded as a new, unique label, reducing the task
once again to a multiclass classification. However,
LP can introduce an exponentially large number
of new labels, potentially with few training in-
stances, thus exacerbating class imbalance. More-
over, only those label combinations seen in the
data will be available during training; this can be a
particular issue when there is a shortage of repre-
sentative training data.

BR encoding methods ignore label dependen-
cies, and the LP method relies on encoding each
label combination appearing in the training set as
an explicit new label, both methods reducing the
task to binary/multiclass classification. In what
follows, we adopt a middle-ground between BR
and LP methods by incorporating a notion of de-

pendence between the labels in the targets.

3 Cross-label dependency loss

To capture the dependencies among labels in the
output, we follow Yeh et al. (2017) and employ the
cross-label dependency (XLD) loss between vec-
tors y and ŷ:

XLD(y, ŷ) :=
1

|y0||y1|
∑

(p,q)∈y0×y1

exp(ŷp − ŷq)

where y denotes a vector of true (binary) labels of
dimension n, ŷ a vector of predicted label prob-
abilities, y1 are the indices of the 1-labelled el-
ements of y, y0 are the indices of the 0-labelled
elements, and ŷp denotes the pth element of vec-
tor ŷ. Minimising the cross-label dependency loss
is equivalent to maximising the distance between
0- and 1-labelled targets, by penalising the model
when it predicts label pairs that shouldn’t co-exist
for the instance. The intuition is similar to that
of Bayesian Personalized Ranking in collaborative
filtering (Rendle et al., 2009). We add XLD to
cross-entropy loss to define an overall loss func-
tion L(Y, Ŷ):

L(Y, Ŷ) := XEnt(Y, Ŷ) + α
∑

i∈1...m
XLD(Yi, Ŷi)

where XEnt is cross-entropy loss, Yi denotes a
row vector of dimension n, and α ≥ 0 is a hyper-
parameter controlling the contribution of cross-
label dependency loss to the overall loss.

Extending XLD to the ETC dataset is slightly
complicated by the fact that the labels have three
possible values, so we cannot represent a set of
target labels as a binary vector. Firstly, we encode
the labels using a one-hot encoding binary repre-
sentation, so for example, AGAINST = 100,
NONE = 010 and FOR = 001. We then ap-
ply XLD between the two encoded target labels,
y and z, of each tweet, and their predicted label
probabilities ŷ and ẑ respectively, as follows:

XLD(y, z, ŷ, ẑ) =
∑

(p,q)∈y0×z1

exp(ŷp − ẑq)

The above definition is not symmetric since it
compares the 0-labelled positions of the first tar-
get label with the 1-labelled positions of the sec-
ond target label. We re-introduce the symmetry by
defining the overall loss function as:

L(Y,Z, Ŷ, Ẑ) := XEnt(Y, Ŷ) + XEnt(Z, Ẑ)
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+ αL

∑
i∈1...m

XLD(Yi,Zi, Ŷi, Ẑi)

+ αR

∑
i∈1...m

XLD(Zi,Yi, Ẑi, Ŷi)

where αL ≥ 0 and αR ≥ 0 are hyper-parameters
controlling the contribution of the left and right
XLD loss across the targets, respectively.

4 Experimental setup

In our experiments, we use the following multil-
abel stance detection datasets. The BBC dataset
(Simaki et al., 2018) contains 1,2391 utterances
from social media blogs. Each utterance is as-
signed multiple stances by expert annotators from
a set of ten stances. The ETC dataset (Sobhani
et al., 2019) consists of 3 sets of tweets, each as-
sociated with a pair of election candidates in the
US 2016 Election: Donald Trump-Hillary Clinton
(DT-HC), Donald Trump-Ted Cruz (DT-TC), and
Hillary Clinton-Bernie Sanders (HC-BS), contain-
ing 1,722, 1,317 and 1,366 tweets respectively.
The MFTC dataset consists of 35,108 tweets cu-
rated from six2 distinct discourse domains, e.g.
natural disasters, politics, etc. Each tweet is an-
notated with up to 10 labels of moral sentiment.

Hyper-parameter selection is done using 5-fold
cross-validation (CV) on the training set of each
dataset. For the BBC dataset, we split the data
80% into a training set, and 20% holdout test set.
For the ETC dataset, we combine the training and
validation sets already provided to perform CV,
and report on the original test set. For the MFTC
data set, we split the data 80% into a training set,
and 20% holdout test set.

In BBC and MFTC we use the Jaccard Simi-
larity Score (JSS) (Jaccard, 1902) as our scoring
metric:

J(X,Y ) =
y1 ∩ ŷ1

y1 ∪ ŷ1
(1)

JSS gives credit for partial matches, but does not
reward predicting the absence of labels, which is
desirable as most labels for each instance are ab-
sent (e.g. 90% of the instances in BBC and MFTC
have at most two labels). It is less harsh than accu-
racy (Exact Match Ratio) (Sorower, 2010), which
requires the entire label combination to be pre-
dicted correctly. For the ETC dataset, where each

1The original dataset contained 1,682 utterances, but we
removed duplicates occurring in the training and test sets.

2Originally seven but we dropped one domain after con-
sultation with the authors.

tweet is tagged with exactly two stances (i.e. no
absent labels), following Sobhani et al. (2019), we
use the macro-averaged F1-score for FAVOR and
AGAINST, as the scoring metric.

5 Results

In our experiments, we consider models that cap-
ture label dependencies explicitly as well as base-
lines that do not capture these. As our baselines,
we consider binary relevance using FastText (FT)
classifiers (Joulin et al., 2017) for each stance la-
bel in BBC/MFTC and politician in ETC, as well
as a multi-task learning (MTL) approach (Ruder,
2017) where each of the classifiers becomes a task
and they all operate on a shared hidden layer (hard
parameter sharing). As models capturing depen-
dencies, we considered three options: the com-
bination of the cross label dependency loss with
MTL (MTL-XLD), and the combinations of label
powerset with FT and MTL (FT-LP and MTL-LP
respectively). For the latter, each label combina-
tion becomes a task learned jointly with the rest.
Further details on all models and parameter tuning
are in the supplementary material3.

In Table 1 we report the test set results for all
models. The results for the MFTC dataset are av-
eraged across the six discourse domains. Overall,
MTL-LP is the best performing multilabel clas-
sification method across all the datasets. MTL-
LP is also better than the best performing model
Seq2Seq reported in Sobhani et al. (2019) for the
ETC dataset. MTL-XLD improves on the base-
line models for the BBC and MFTC datasets, but
performs slightly worse than MTL on the ETC
dataset. We note that our results for the BBC
and MFTC datasets are not directly comparable
with previous work on BBC (Simaki et al., 2017)
and MFTC (Dehghani et al., 2019), since we
consider the full set of labels, whereas previous
work removed those that were sparser. Our re-
implementation of the logistic regression model of
Simaki et al. (2017), as an additional baseline, re-
sulted in poor performance in the BBC dataset (20
in JSS) and we did not consider it further.

5.1 Bootstrap training experiments

Reporting results on a held out test set is stan-
dard practice, but we also examine the results of

3Code to reproduce our experiments is available
here https://github.com/willferreira/
multilabel-stance-detection

https://github.com/willferreira/multilabel-stance-detection
https://github.com/willferreira/multilabel-stance-detection
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BBC ETC MFTC

FT-BR 39.72 52.24 51.19
MTL 48.57 53.32 53.97

FT-LP 36.20 53.57 55.11
MTL-LP 55.60 55.37 62.98
MTL-XLD 51.33 52.22 60.94

Sobhani (Seq2Seq) NA 54.81 NA

Table 1: Overall results for each dataset and model.

the classifiers for the BBC and MFTC datasets
via bootstrapping (Gorman and Bedrick, 2019).
We bootstrap 30 sample training sets from each
dataset, by random sampling without replacement
80% of the data, retaining the 20% as a test set.
For each sample, we train the MTL, MTL-LP, and
best MTL-XLD model on each bootstrapped train-
ing set, and report the score on the test set. Sum-
mary statistics are shown in Tables 2 and 3. Us-
ing Welch’s t-test4, we cannot reject the null hy-
pothesis (p=0.094) that the mean scores for the
MTL-LP and MTL-XLD models on BBC are the
same, but we can reject the null hypothesis that ei-
ther of them are the same as the MTL baseline.
For the MFTC Baltimore discourse domain, we
cannot reject the null hypothesis (p=0.84) that the
mean scores for the MTL-LP and MTL-XLD are
the same, but we can reject the null that either of
them are the same as the MTL baseline. For the re-
maining domains, we can reject the null hypothe-
sis that the MTL-LP and MTL-XLD means are the
same for ALM (p=6.74e-15), BLM (p=2.3e-13),
Davidson (p=1.8e-24), Election (p=1.6e-17) and
MeToo (p=0.0021). We can also reject the null,
for each domain, that either MLT-XLD or MLT-
LP have the same means as the MTL baseline.

MTL MTL-XLD MTL-LP

mean 45.27 51.58 52.51
std 2.01 1.92 2.28

Table 2: Summary statistics for bootstrap results on
BBC dataset.

5.2 Learning curve experiments

For the BBC and MFTC datasets, we construct
the learning curve for the MTL-LP model against

4https://en.wikipedia.org/wiki/Welch%
27s_t-test

Figure 2: BBC: bootstrapped learning curve.

ALM BLM B’more

MTL mean 65.74 75.56 40.45
std 1.71 1.11 1.82

MTL- mean 72.44 80.77 48.45
LP std 1.53 0.86 1.39
MTL- mean 69.82 78.03 48.52
XLD std 0.90 0.87 1.16

D’son Election MeToo

MTL mean 34.29 60.41 40.92
std 3.41 1.78 1.55

MTL- mean 50.76 68.22 49.56
LP std 2.32 0.98 0.94
MTL- mean 48.76 65.43 48.75
XLD std 3.04 1.04 1.02

Table 3: Summary statistics for bootstrap results on
MFTC dataset domains.

the MTL-XLD model. We sample increasingly
larger fractions of the training sets, train the mod-
els on these fractions, and record the scoring met-
ric on the original holdout test set. The learn-
ing curve for BBC is shown in Figure 2, from
which we can see that the MTL-XLD model is su-
perior to MTL-LP until the training dataset size
is approximately 70% of the original, after which
MTL-LP scores higher than MTL-XLD. The re-
maining learning curves for MFTC are given in
the supplementary material, and show that for dis-
course domains ALM, BLM, Davidson, Election
and MeToo, MTL-LP is superior to MTL-XLD at
all training set sizes, however MTL-XLD is supe-
rior to MTL-LP for the Baltimore domain.

6 Conclusions

In this paper, we focused on multilabel stance
detection and presented experiments on three

https://en.wikipedia.org/wiki/Welch%27s_t-test
https://en.wikipedia.org/wiki/Welch%27s_t-test
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datasets. We demonstrated that taking label
dependencies into account improves the perfor-
mance of classification-based and multi-task base-
lines. In future work, we will explore how to in-
tegrate the textual descriptions of the labels in our
our approach which has been shown to be bene-
ficial in the case of large label sets (Mullenbach
et al., 2018).
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