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Abstract

We propose a method to improve named entity
recognition (NER) for chemical compounds
using multi-task learning by jointly training
a chemical NER model and a chemical com-
pound paraphrase model. Our method en-
ables the long short-term memory (LSTM)
of the NER model to capture chemical com-
pound paraphrases by sharing the parameters
of the LSTM and character embeddings be-
tween the two models. The experimental re-
sults on the BioCreative IV’s CHEMDNER
task show that our method improves chemi-
cal NER and achieves state-of-the-art perfor-
mance (+1.43 F-score).

1 Introduction

Named Entity Recognition (NER) is one of the
important basic technologies for Natural Lan-
guage Processing (NLP) such as Information
Extraction and Entity Linking. LSTM-CRF
NER models, which combine a conditional ran-
dom field (CRF) and a long short-term mem-
ory (LSTM), have achieved high performance
(Lample et al., 2016; Ma and Hovy, 2016). The
LSTM-CRF models that use a neural language
model (NLM) pre-trained from a large-scale un-
labeled corpus (Akbik et al., 2018; Peters et al.,
2018) have shown state-of-the-art performances
on the CoNLL 2003 shared task (Sang et al.,
2003).

Chemical compound databases are widely used
for investigating properties of chemical com-
pounds or for developing new chemical products.
However, updating the databases by hand is hard
because new findings on chemical compounds are
mainly reported in scientific papers and patents ev-
ery day. Hence, chemical NER has been studied
to recognize chemical compounds from chemical

∗Taiki Watanabe belonged to Ehime University when this
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documents (Leaman et al., 2015; Lu et al., 2015;
Lin et al., 2018).

One of the problems in chemical NER is nota-
tion variants of chemical compounds. For exam-
ple, Phenylalanine has different notations such as
L-β-phenylalanine and (S)-2-Benzylglycine. The
average number of notations of each compound in
PubChem1 is approximately 3.88.2

If these expressions are dealt with differently,
the statistics of the same compound can be dis-
persed, especially for low frequency compounds.
In other words, the more distinct these representa-
tions are, the more difficult identifying chemical
compound entities becomes. However, existing
chemical NER methods do not deal with notation
variants of chemical compounds, derived from the
partial structures or the notation fluctuation pecu-
liar to these chemical compounds.

We propose HanPaNE, which Handles
Paraphrase in NER by utilizing chemical com-
pound paraphrase pairs as multi-task learning.

To train expression identity of different nota-
tions, HanPaNE learns shared parameters between
paraphrases using multi-task learning on NER
and paraphrase generation. This contrasts with
widely used approaches that automatically aug-
ment training data by replacing NEs with other
NEs (Yi et al., 2004). To train paraphrase gener-
ation, we use an attention-based neural machine
translation (ANMT) model (Luong et al., 2015;
Bahdanau et al., 2015) that shares parameters with
the NER model in the translation encoder. The
experimental results on the BioCreative IV ’s
CHEMDNER task (Krallinger et al., 2015) show
that our method achieves the best accuracy (+1.43
F-score).

1https://pubchem.ncbi.nlm.nih.gov/
2We surveyed the average number on May, 2019.
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Figure 1: An overview of the method HanPaNE. The parameters of LS T M( f ), LS T M(b), LS T M(wc) and LS T M(sc)

are shared in NER and paraphrase generation.

2 Proposed Method

Figure 1 shows an overview of the method Han-
PaNE. We first describe our NER and chemical
compound paraphrase model, and then describe
our multi-task learning of the NER and the para-
phrase model.

2.1 NER using Character-level NLM
This section describes the NER model using a
character-level NLM (Akbik et al., 2018), which
is our baseline comparison with our approach.
This model showed state-of-the-art performance
on the CoNLL 2003 shared task.

For this NER model, given an input sentence
w = w1,w2, · · · ,wN , each word wi is converted
into a vector xi represented as the concatenation
of the following three types of embeddings.

• 1) word embeddings obtained by looking up
a parameter matrix.

• 2) CWSE is the hidden state of a BiLSTM
(LS T M(wc)) on the character sequence con-
sisting of a word (Lample et al., 2016).

• 3) CSE is the hidden state of a BiLSTM
(LS T M(sc)) on the character sequence con-
sisting of a whole sentence (Akbik et al.,
2018).

CWSE for a word is the concatenation of the
last hidden states of the forward LSTM and the
backward LSTM of LS T M(wc). CSE for a word

is the concatenation of the hidden state of the
last character of the word for the forward LSTM
of LS T M(sc), and the hidden state of the first
character of the word for the backward LSTM of
LS T M(sc). We note that LS T M(sc) is pretrained
as character-level NLMs with log-likelihood. For
example, a forward LSTM is trained with the fol-
lowing:

P(c1:T ) =
T∏

t=1

p(ct|c1:t−1), (1)

where ct is the t-th character in a sentence.
After obtaining the vector representations of the

input words X = x1, · · · , xN , the hidden state hi

of BiLSTM and the scores of NE tags ei for each
word wi are computed as:

−→hi = LS T M( f )(xi,
−−→hi−1), (2)

←−hi = LS T M(b)(xi,
←−−hi+1), (3)

hi = [−→hi;
←−hi], (4)

ei = Wehi, (5)

where the dimension of hi is d, We ∈ Rk×d is a
weight matrix, and k is the number of NE types to
be identified.

The BiLSTM-CRF+CSE model predicts a
tag sequence with the score matrix P =

(e1, · · · , eN)T ∈ RN×k using CRF. Note that Pi, j is
the score of the j-th tag for the i-th word. In par-
ticular, the probability of the output tag sequence
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y = y1, · · · , yN is calculated as follows:

p(y|w) =
es(w,y)∑

ỹ∈Yw es(w,ỹ) , (6)

s(w, y) =
N∑

i=−1

Ayi,yi+1 +

N∑
i=1

Pi,yi , (7)

where Yw is the set of all possible tag sequences,
A is a matrix of transition scores, Ai, j represents a
score that transits from the i-th tag to the j-th tag,
and y−1 and yN+1 are the special tag for the start of
the sentence and the end of sentence, respectively.

During training, the model maximizes the fol-
lowing equation using the correct tag sequences:

log(p(y|w)) = s(w, y) − log(
∑

ỹ∈Yw

es(w,ỹ)), (8)

where y is the correct tag sequence of w. When
recognizing NEs, the model outputs a tag se-
quence that maximizes the score calculated by the
following equation: y∗ = arg max

ỹ∈Yw

s(w, ỹ).

2.2 Paraphrase Model

We used the ANMT model (Luong et al., 2015;
Bahdanau et al., 2015), which is a standard in ma-
chine translation, as a chemical compound para-
phrase model. The ANMT model converts an
input sequence w into another sequence ytrg =

ytrg
1 , y

trg
2 , · · · , y

trg
T , which is a paraphrase of the in-

put in our model, using an RNN encoder and an
RNN decoder. The RNN encoder converts an in-
put sequence to a multiset of fixed-length vectors,
and then the RNN decoder generates an output se-
quence from the converted fixed length vector. We
use a bidirectional LSTM defined by Eq. (2) and
Eq. (3) as the encoder, and the vector represen-
tations xi as the word embedding vectors of input
sentences. The concatenation of the final hidden
states of the bidirectional LSTM encoder, −→h N of
Eq. (2) and←−h 1 of Eq. (3), was used as the initial
state of the LSTM decoder: s1 = [−→h N ;←−h 1].

The decoder calculates the j-th hidden state
s j as follows: s j = LS T Mdec([v j−1; ŝ j−1], s j−1),
where v j−1 is the word embedding vector of ytrg

j−1,
and ŝ j−1 is the ( j − 1)-th attention vector. Then,
the model calculates the j-th attention vector ŝ j us-
ing the context vector o j: ŝ j = tanh(We[s j : o j]).
where We is a weight matrix and tanh is the hyper-
bolic tangent function. The context vector o j is a

weighted average of the encoder’s hidden states:

o j =

N∑
i=1

α j(i)hi, (9)

α j(i) =
exp(hi · s j)∑N

k=1 exp(hk · s j)
, (10)

where exp is the natural exponential function. The
decoder generates an output based on the probabil-
ity distribution of the j-th token: p(ytrg

j |y
trg
< j ,w) =

softmax(Wsŝ j), where Ws is a weight matrix. The
objective function is defined as follows:

J(θ) = −
∑

(w,ytrg)∈D
log p(ytrg|w), (11)

where D is the training data and θ is the set of
model parameters.

2.3 Handling Paraphrases in NER
Our method, HanPaNE, learns the NER model
described in Section 2.1 and the chemical com-
pound paraphrase model described in Section 2.2
at the same time through multi-task learning. In
the multi-task learning, the character embedding
weight matrix and the LSTM parameters in Eq.
(2), Eq. (3) and the parameters of LS T M(wc) are
shared between the two models. By the parame-
ter sharing, the LSTM part of the NER model is
expected to convert the same compound with dif-
ferent notations into a similar vector expression.
The objective functions of the two models are Eq.
(8) and Eq. (11), respectively.

3 Experiments

3.1 Experimental Settings
We used the BioCreative IV CHEMDNER data
set, which was preprocessed by Luo et al (2018)3.
The word embedding layer with Word2vec and
the character-based NLM were independently pre-
trained from the MEDLINE abstracts from the
PubMed website (PubMedAbs)4. We created Pub-
ChemDic, a set of paraphrases of chemical com-
pounds compiled from PubChem. The number of
dimensions of the word embedding layer, the char-
acter embedding layer, the character LSTM, the
LSTM of the NER model (the LSTM encoder of
the paraphrase model), the LSTM decoder of the
paraphrase model, and the LSTM of the character

3https://github.com/lingluodlut/Att-ChemdNER
4https://www.nlm.nih.gov/databases/download/

pubmed_medline.html



6247

Model Precision Recall F-score
Baseline 92.75 92.15 92.45

VE-P 93.11 91.40 92.25
HanPaNE-P 92.71 91.94 92.32

VE+P 93.15 91.79 92.47
HanPaNE+P (Proposed) 92.81 92.33 92.57

Table 1: Experimental results. +P indicates considera-
tion of paraphrases and -P does not.

NLM are set to 100, 25, 50, 200, 400, and 2048, re-
spectively.

We compared the following methods. “+P” in-
dicates with consideration of paraphrases in Pub-
ChemDic and “-P” indicates without consideration
of paraphrases.

• A BiLSTM-CRF+CSE of (Akbik et al.,
2018) described in Section 2.1 was used as
our Baseline.

• VE-P is a baseline trained with virtual ex-
amples (VEs) created by randomly replac-
ing NEs of training data with chemical
compounds in the PubChemDic similar to
(Yi et al., 2004).

• VE+P is a baseline trained with VEs cre-
ated by replacing NEs of training data with
their corresponding paraphrases in the Pub-
ChemDic.

• HanPaNE-P is a multi-task for NER and
paraphrasing trained with randomly gener-
ated sentence pairs with PubChemDic.

• HanPaNE+P is the proposed method trained
with generated sentence pairs by replacing
NEs in sentences with their corresponding
paraphrases in the PubChemDic.

The baseline was trained with 55,458 sen-
tences of CHEMDNER training data. VE-P was
trained with 110,916 sentences in total consist-
ing of the original CHEMDNER training data and
55,458 sentences automatically generated from
the CHEMDNER training data. VE+P was trained
with 59,033 sentences consisting of 3,575 sen-
tences automatically generated from the original
CHEMDNER training data with paraphrases of
chemical compounds and the original CHEMD-
NER training data.5 For HanPaNE-P and Han-

5VE+P had a smaller number of training data than VE-
P because we only replaced NEs with their paraphrases in-
cluded in PubChemDic.

PaNE+P, we used randomly selected 100,000 sen-
tences from PubMedAbs for training paraphras-
ing and the original CHEMDNER training data for
NER.

For example, for +P, “... Phenylalanine is ...”
are converted into “... L-β-phenylalanine is ...”
and “.. (S)-2-Benzylglycine is ...”, where L-β-
phenylalanine and (S)-2-Benzylglycine are para-
phrases of Phenylalanine. As for -P, “... Pheny-
lalanine is ...” is converted into like “... ethylene
is ....” where ethylene is randomly sampled from
chemical compounds.

3.2 Experimental Results

Table 1 shows the experimental results. We can
see that HanPaNE+P showed the highest accuracy
and HanPaNE+P and VE+P, with consideration of
paraphrases, showed a higher accuracy than Base-
line. In contrast, HanPaNE-P and VE-P, without
consideration of paraphrases, did not. The results
indicate that the use of paraphrases contributed to
improved accuracy.

We also conducted the following two types of
hypothesis testing. The first one is a McNe-
mar paired test on the labeling disagreements of
words assigned by HanPaNE and the others as
in (Sha and Pereira, 2003). All the results ex-
cept for Baseline were significantly different (p <
0.01). The second one is a bi-nominal test used
in (Sasano and Kurohashi, 2008). For this test,
the number of the entities correctly recognized by
only HanPaNE and the number of entities cor-
rectly recognized by only the other method are
counted. Then, based on the assumption that out-
puts have the binomial distribution, we apply a
binomial test. All the results were significantly
different for this test (p < 0.05). These re-
sults showed that HanPaNE works better than aug-
mented training data.

We also evaluated the accuracy on NEs not cov-
ered by training data and PubChemDic. From Ta-
ble 2, we can see that our method also showed the
best performance for both of the NEs not covered
by the training data, PubChemDic and the cov-
ered NEs. The results indicate that our method
contributed to recognizing NEs not covered by
existing large data sets. The training data in-
cludes 8,508 types of chemical terms and covers
60.76% of chemical terms in the test data. Pub-
ChemDic includes 337,289,536 types of chemical
compound names and covers 10.02% of the chem-
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Model Acc.NC Acc.C
Baseline 0.8475 0.9672
VE+P 0.8463 0.9623

HanPaNE+P (Proposed) 0.8510 0.9680

Table 2: Accuracy of NEs covered (Acc.C) or not cov-
ered (Acc. NC) by the training data and PubChemDic.

Table 3: Comparison with best results on BioCreative
IV’s CHEMDNER task.

Method Precision Recall F-score
Leaman et al. (2015) 89.09 85.75 87.39

Lu et al. (2015) 88.73 87.41 88.06
Lin et al. (2018) 92.29 90.01 91.14

This paper 92.81 92.33 92.57

ical terms in the test data. The joint coverage of
both is 61.79%. This means almost 1/3 of the
NEs in the test data are not covered by the training
data and PubChemDic even if these data include
over 337 million names of chemical compounds
and terms.

4 Related Works

BioCreative IV’s CHEMDNER task

Table 3 shows a comparison with the previous
best results. (Leaman et al., 2015) and (Lu et al.,
2015) proposed a feature-based approach to im-
prove the chemical NER performance. (Lin et al.,
2018) proposed a neural network approach that
treats document level information to maintain tag-
ging consistency across sentences. By learning
paraphrasing, our method showed the best accu-
racy on the CHEMDNER task.

Multi-task learning

Multi-task learning is often utilized to lever-
age the performance of NLP systems (Liu et al.,
2015; Luong et al., 2016; Dong et al., 2015;
Hashimoto et al., 2017), including NER. Liu et al.
(2018) and Rei (2017) studied multi-task learn-
ing of sequence labeling with language models.
Aguilar et al. (2018) and Cao et al. (2018) pro-
posed multi-task learning of NER with word seg-
mentation. Peng and Dredze (2017)’s method of
multi-task learning leverages the performance of
domain adaptation. Clark et al. (2018)’s method
utilizes multi-task learning of NER with sev-
eral NLP tasks such as POS tagging and pars-
ing. Crichton et al. (2017) and Wang et al. (2018)

leverage the performance of NER by multi-task
learning of several tasks of biomedical NLP.

5 Conclusions

We proposed a multi-task learning method on an
NER model and a paraphrase model to utilize
paraphrase pairs efficiently. The evaluations on the
BioCreative IV’s CHEMDNER task showed that
our method achieved the best performance.
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