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Abstract
Automatic post-editing (APE), which aims to
correct errors in the output of machine trans-
lation systems in a post-processing step, is an
important task in natural language processing.
While recent work has achieved considerable
performance gains by using neural networks,
how to model the copying mechanism for APE
remains a challenge. In this work, we pro-
pose a new method for modeling copying for
APE. To better identify translation errors, our
method learns the representations of source
sentences and system outputs in an interac-
tive way. These representations are used to
explicitly indicate which words in the system
outputs should be copied, which is useful to
help CopyNet (Gu et al., 2016) better generate
post-edited translations. Experiments on the
datasets of the WMT 2016-2017 APE shared
tasks show that our approach outperforms all
best published results. 1

1 Introduction

Automatic post-editing (APE) is an important nat-
ural language processing (NLP) task that aims
to automatically correct errors made by machine
translation systems (Knight and Chander, 1994).
It can be considered as an efficient way to modify
translations to a specific domain or to incorporate
additional information into translations rather than
translating from scratch (McKeown et al., 2012;
Chatterjee et al., 2015, 2018).

Approaches to APE can be roughly divided into
two broad categories: statistical and neural ap-
proaches. While early efforts focused on statis-
tical approaches relying on manual feature en-
gineering (Simard et al., 2007; Béchara et al.,
2011), neural network based approaches capa-
ble of learning representations from data have

∗Corresponding author: Yang Liu
1The source code is available at https://github.

com/THUNLP-MT/L2Copy4APE

src I ate a cake yesterday
mt Ich esse einen Hamburger
pe Ich hatte gestern einen Kuchen gegessen

Table 1: Example of automatic post-editing (APE).
Given a source sentence (src) and a machine trans-
lation (mt), the goal of APE is to post-edit the erro-
neous translation to obtain a correct translation (pe).
Our work aims to explicitly model how to copy words
from mt to pe (highlighted in bold), which is a com-
mon phenomenon in APE.

shown remarkable superiority over their statisti-
cal counterparts (Varis and Bojar, 2017; Chatter-
jee et al., 2017; Junczys-Dowmunt and Grund-
kiewicz, 2017; Unanue et al., 2018). Most of them
cast APE as a multi-source sequence-to-sequence
learning problem (Zoph and Knight, 2016): given
a source sentence (src) and a machine translation
(mt), APE outputs a post-edited translation (pe).

A common phenomenon in APE is that many
words in mt can be copied to pe. As shown in
Table 1, two German words “Ich” and “einen” oc-
cur in both mt and pe. Note that the positions
of copied words in mt and pe are not necessarily
identical (e.g., “einen” in Table 1). Our analysis
on the datasets of the WMT 2016 and 2017 APE
shared tasks shows that over 80% of words in mt
are copied to pe. As APE models not only need
to decide which words in mt should be copied
correctly, but also should place the copied words
in appropriate positions in pe, it is challenging to
model copying for APE. Our experiments show
that the state-of-the-art APE method (Junczys-
Dowmunt and Grundkiewicz, 2018) only achieves
a copying accuracy of 64.63% (see Table 7).

We believe that existing approaches to APE
(Varis and Bojar, 2017; Chatterjee et al., 2017;
Junczys-Dowmunt and Grundkiewicz, 2017;
Unanue et al., 2018) suffer from two major

https://github.com/THUNLP-MT/L2Copy4APE
https://github.com/THUNLP-MT/L2Copy4APE
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src：I  ate  a  cake  yesterday

pe ：Ich hatte gestern einen Kuchen  gegessen

mt ：Ich esse einen Hamburger

1      0        1             0

generate copy

interact

Figure 1: Learning to copy for APE. Our work is based on two key ideas. As both src and mt play important roles
in APE, the first idea is that src and mt should “interact” with each other during representation learning to better
generate words from src and copy words from mt during inference. The second idea is to predict which target
words in mt should be copied since it is easy to obtain labeled data automatically by comparing mt and pe. The
words to be copied (e.g., “Ich”) in mt are labeled with 1’s and other words (e.g., “esse”) with 0’s.

drawbacks when modeling the copying mecha-
nism. First, the representations of src and mt
are learned separately. APE is a two-source
sequence-to-sequence learning problem in which
both src and mt play important roles. On the one
hand, if src is ignored, it is difficult to identify
translation errors related to adequacy in mt,
especially for fluent but inadequate translations
(e.g., mt in Figure 1). On the other hand, mt
serves as a major source for generating pe since
many words (e.g., “Ich” and “einen” in Figure 1)
are copied from mt to pe. Intuitively, it is likely
to be easier to decide which words in mt should
be copied if src and mt fully “interact” with each
other during representation learning. Although
CopyNet (Gu et al., 2016) can be adapted for
explicitly modeling the copying mechanism in
multi-source sequence-to-sequence learning, the
lack of the interaction between src and mt still
remains a problem.

Second, there is no explicit labeling that indi-
cates which target words in mt should be copied.
Existing approaches only rely on the attention
between the encoder and decoder to implicitly
choose target words to be copied. Given mt and
pe, it is easy to decide whether a target word in
mt should be copied or not. In Figure 1, the
words inmt that should be copied are labeled with
1’s. Other words are labeled with with 0’s, which
should be re-generated from src. These labels can
served as useful supervision signals to help better
copy words from mt to pe, even when CopyNet is
used.

In this work, we propose a new method for mod-
eling the copying mechanism for APE. As shown
in Figure 1, our work is based on two key ideas.
First, our method is capable of learning the rep-
resentations of input in an interactive way by en-
abling src and mt to attend to each other during

representation learning. This might be useful for
deciding when to generate words from src and
when to copy words from mt during post-editing.
Second, it is possible to predict which words in
mt should be copied because it is easy to automat-
ically construct labeled data by comparing mt and
pe. Such predictions can be combined with Copy-
Net to better model copying for APE. Experiments
show that our approach outperforms the best pub-
lished results on the datasets of the WMT 2016-
2017 APE shared tasks.

2 Background

2.1 Multi-source Sequence-to-Sequence
Learning

Multi-source sequence-to-sequence learning has
been widely used in APE in recent years (Junczys-
Dowmunt and Grundkiewicz, 2018; Pal et al.,
2018; Tebbifakhr et al., 2018; Shin and Lee, 2018).
The architecture of multi-source Transformer is
shown in Figure 2(a). It can be equipped with
CopyNet (see Section 2.2) to serve as a baseline
in our experiments. It is worth noting that src and
mt are encoded separately.

Let x = x1 . . . xI be a source sentence (i.e.,
src) with I words, ỹ = ỹ1 . . . ỹK be a transla-
tion output by a machine translation system (i.e.,
mt) with K words, and y = y1 . . . yJ be the post-
edited translation (i.e., pe) with J words. The APE
model is given by

P (y|x, ỹ;θ) =
J∏

j=1

P (yj |x, ỹ,y<j ;θ), (1)

where yj is the j-th target word in pe, y<j =
y1 . . . yj−1 is a partial translation, θ is a set of
model parameters, and P (yj |x, ỹ,y<j ;θ) is a
word-level translation probability.
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Figure 2: (a) The architecture of multi-source Transformer (Junczys-Dowmunt and Grundkiewicz, 2018) equipped
with CopyNet (Gu et al., 2016) and (b) the architecture of our approach. While the existing work learns the
representations of src and mt separately, our approach allows for learning the representations of src and mt in an
interactive way by concatenating them as a single input. In addition, our approach introduces a Predictor module
to explicitly indicate which words in mt should be copied.

The word-level translation probability in Eq. (1)
is computed as

Hsrc = Encodersrc(x,θ), (2)

Hmt = Encodermt(ỹ,θ), (3)

hpe
j = Decoder(y<j ,H

src,Hmt,θ), (4)

P (yj |x, ỹ,y<j ;θ) ∝ exp(hpe
j Wg), (5)

where Encodersrc(·) is the encoder for src,
Hsrc is the real-valued representation of src,
Encodermt(·) is the encoder for mt, Hmt is the
representation of mt, Decoder(·) is the decoder,
hpe
j is the representation of the j-th target word yj

in pe. Wg ∈ Rd×Vy is a weight matrix, d is the
dimension of hidden states, and Vy is the target
vocabulary size.

A limitation of the aforementioned model is that
src and mt are encoded separately without inter-
acting with each other, which might lead to the
inability to find which src word is untranslated
and which mt word is incorrect. For example,
the mt sentence in Figure 1 is fluent and mean-
ingful. Without src, the APE system is unable to
identify translation errors. In addition, the multi-
source Transformer does not explicitly model the
copying betweenmt and pe in neither the Encoder
nor the Decoder.

2.2 CopyNet

CopyNet (Gu et al., 2016) is a widely used method
for modeling copying in sequence-to-sequence
learning. It has been successfully applied to
single-turn dialogue (Gu et al., 2016), text sum-

marization (See et al., 2017), and grammar error
correction (Zhao et al., 2019).

It is possible to extend the multi-source Trans-
former with CopyNet to explicitly model the copy-
ing mechanism, as shown in Figure 2(a). Copy-
Net defines the word-level translation probability
in Eq. (1) as a linear interpolation of copying and
generating probabilities:

P (yj |x, ỹ,y<j ;θ) = γj × P copy(yj)

+ (1− γj)× P gen(yj),
(6)

where P copy(yj) is the copying probability for yj ,
P gen(yj) is the generating probability for yj , and
γj is a gating weight. They are defined as follows:

P copy(yj) ∝ exp(g(Hmt,hpe
j )), (7)

P gen(yj) ∝ exp(hpe
j Wg), (8)

γj = u(Hmt,hpe
j ), (9)

where g(·) and u(·) are non-linear functions. See
(Zhao et al., 2019) for more details.

Copying in APE involves two kinds of deci-
sions: (1) choosing words in mt to be copied and
(2) placing the copied words in appropriate posi-
tions in pe. CopyNet makes the two kinds of deci-
sions simultaneously. We conjecture that if which
words in mt should be copied can be explicitly
indicated, it might be easier for CopyNet to copy
words from mt to pe correctly. Therefore, it is
necessary to design a new method for identifying
words to be copied.
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Figure 3: Interactive representation learning. Concate-
nated to serve as a single input, src and mt attend to
each other during representation learning. Note that
learnable weights of src and mt are shared. Interactive
representation learning is used in both Predictor and
Encoder. For example, copying scores are predicted
based on the learned representations (see Eq. (13)).

3 Approach

Figure 2(b) shows the overall architecture of our
approach. It differs from previous work in two as-
pects. First, we propose to let src and mt “inter-
act” with each other to learn better representations
(Section 3.1). Second, our approach introduces a
Predictor module to predict words to be copied
(Section 3.2). Section 3.3 describes how to train
our APE model.

3.1 Interactive Representation Learning
We propose an interactive representation learn-
ing method by making src and mt attend to each
other. Following Lample and Conneau (2019) and
He et al. (2018), we concatenate src and mt in
the dimension of sentence length with additional
position and language embeddings:

Xi = Etoken[xi] +Epos[i] +Elang[0], (10)

Ỹk = Etoken[ỹk] +Epos[k] +Elang[1], (11)

where Xi is the embedding of the i-th source word
xi, Ỹk is the embedding of the k-th target word ỹk,
and Etoken, Epos, and Elang are the token, position
and language embedding matrices.

As shown in Figure 3, the representation of src
and mt can be learned jointly:

Hinter = Encoderinter([X; Ỹ],θ), (12)

where Encoderinter(·) is the interactive Encoder
and [X; Ỹ] is the concatenation of X and Ỹ in the
dimension of sentence length.

As shown in Figure 2(b), the multi-source En-
coders are replaced by the interactive Encoder,
which enables src andmt to attend to each other.2

We expect that enabling the interactions between
them can help to strengthen the ability of the
model to find which words in src is untranslated
and which words in mt is correct. Note that inter-
active representation learning is used both in Pre-
dictor and Encoder. In the following, we will de-
scribe how to predict which words in mt should
be copied based on these learned representations.

3.2 Predicting Words to be Copied
Givenmt and pe, we can label each word inmt as
0 or 1. We use 1 to denote that the word is to be
copied (e.g. “Ich” and “einen” in Figure 1) and 0
not to be copied (e.g. “esse” and “Hamburger” in
Figure 1). It is possible to use the Longest Com-
mon Sequence (LCS) (Wagner and Fischer, 1974)
algorithm to obtain common sequences between
mt and pe. If the word in mt also appears in
the common sequences, it will be labeled 1; other-
wise, it will be labeled 0. We denote these labels
as l1 . . . lK .

We propose a Predictor module to predict
words to be copied. As discrete labels are non-
differentiable during training, the Predictor mod-
ule outputs copying scores instead for the target
words in mt:

s = sigmoid([Hpred
I+1 ; · · · ;H

pred
I+K ]Ws), (13)

where s ∈ RK×1 is a vector of copying scores
corresponding to the K words in mt, Hpred ∈
R(I+K)×d is the representation of src and mt:

Hpred = Predictor([X; Ỹ];θ), (14)

and Ws ∈ Rd×1 is a weight matrix. Only the
representation of mt (i.e., [Hpred

I+1 ; · · · ;H
pred
I+K ]) is

used for calculating copying scores. 3

As shown in Figure 2(b), copying scores can
be incorporated into three parts of our model: the

2Note that the Predictor and Encoder do not share their
weights because we found that sharing leads to degraded per-
formance in experiments.

3It is also possible to predict which source words in src
should be used to generate non-copied words in pe (e.g.,
“Kuchen” in Figure 1). This can be done by generating ex-
plicit labels using bilingual word alignment. We leave this
for future work.
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Figure 4: Copying scores as scaling masks. The copy-
ing scores are used to modify the attention layers of the
Encoder, Decoder, and CopyNet.

Encoder, the Decoder, and the CopyNet. Inspired
by Yang et al. (2018)’s strategy to integrate local-
ness to self-attention, we propose to incorporate
copying scores into our model by modifying atten-
tion weights involved in the aforementioned three
modules.

The original scaled dot-product attention
(Vaswani et al., 2017) is defined as

energy =
qK>√
d
, (15)

Att(q,K) = softmax(energy), (16)

where q ∈ R1×d is the query vector, K ∈
R(I+K)×d is the key matrix, and energy ∈
R1×(I+K) is the “energy” vector.

As shown in Figure 4, the copying scores can
be used to form a scaling mask on the attention
sub-layer:4

Att(q,K) = softmax
(
energy � [m; s]>

)
,

(17)
where m = {1.0}I is a masking vector corre-
sponding to src and s ∈ RK×1 is the vector of
copying scores calculated by Eq. (13) correspond-
ing to mt. Note that copying scores are used to
only change the attention weights related to mt
while the src part is unchanged.

3.3 Training
The training objective of our approach Lall(θ)
consists of three parts:

Lall(θ) = (1− α)× (Lape(θ) + λ× Lcopy(θ))

+ α× Lpred(θ),
(18)

4Actually, we let “energy” vector minus its minimum
value to keep it non-negative.

where α and λ are hyper-parameters.
The first part is the original log-likelihood loss

function of APE: 5

Lape(θ) = − logP (y|x, ỹ;θ). (19)

The second part is related to the CopyNet:

Lcopy(θ) =
1

K

K∑
k=1

(lk − ck)2, (20)

where lk is the ground-truth label (see Section 3.2)
and ck is a quantity that measures how likely the
k-th word in mt to be copied by CopyNet:

ck =

J∑
j=1

γj × P copy(ỹk). (21)

Note that γ×P copy(y) is the term related to copy-
ing the target word y in Eq. (6).

The third part is a cross-entropy loss related to
the Predictor:

Lpred(θ) = −
K∑
k=1

[
lklog(sk)

+ (1− lk)log(1− sk)
]
,

(22)

where sk is the copying score of the k-th word ỹk
in mt.

Finally, we use an optimizer to find the model
parameters that minimize the overall loss function:

θ̂ = argmin
θ

{
Lall(θ)

}
. (23)

4 Experiments

4.1 Setup
Datasets
We evaluated our approach on the WMT APE
datasets, which often distinguish between two
tasks: phrase-based statistical machine translation
(i.e., PBSMT) and neural machine translation (i.e.,
NMT). All these APE datasets consist of English-
German triplets containing source text (src), the
translations (mt) from a “black-box” MT system
and the corresponding human-post-edits (pe). The
statistics for the WMT APE datasets are shown in
Table 2. In addition to the official dataset, the or-
ganizers also recommend using additional datasets

5For simplicity, we use sentence-level loss functions here.
In practice, we use corpus-level loss functions.
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Category Dataset # Sent.

PBSMT

training set 23,000
dev2016 1,000
test2016 2,000
test2017 2,000

NMT
training set 13,442
dev2018 1,000

Additional

artificial-small 526,368
artificial-big 4,391,180
eSCAPE-PBSMT 7,258,533
eSCAPE-NMT 7,258,533

Table 2: Statistics of the English-German datasets in
the WMT APE task. Note that the NMT official data
only contains training and development sets.

(Junczys-Dowmunt and Grundkiewicz, 2016; Ne-
gri et al., 2014).

We used the WMT official dataset for the PB-
SMT task and the NMT task separately. The arti-
ficial training data (Junczys-Dowmunt and Grund-
kiewicz, 2016) was also used for both tasks. More
precisely, we used the concatenation of the of-
ficial training data and the artificial-small data
to learn a truecasing model (Koehn et al., 2007)
and obtain sub-word units using byte-pair en-
coding (BPE) (Sennrich et al., 2015) with 32k
merges. Then, we applied truecasing and BPE
to all datasets. We oversampled the official train-
ing data 20 times and concatenated them with both
artificial-small and artificial-big datasets (Junczys-
Dowmunt and Grundkiewicz, 2018). Finally, we
obtained a dataset containing nearly 5M triplets
for both tasks. To test our approach on a larger
PBSMT dataset, we used the eSCAPE synthetic
dataset (Negri et al., 2014), which contains 7.2M
sentences. By including the eSCAPE dataset, the
training set is enlarged to nearly 12M sentences.

Hyper-Parameter Settings

For the original Transformer model, CopyNet and
our approach, the hidden size was set to 512 and
the filter size was set to 2,048. The number of indi-
vidual attention heads was set to 8 for multi-head
attention. We set N = Ne = Nd = 6, Np = 3
and we tied all three src,mt, pe embeddings for
saving memory. The embeddings and softmax
weights were also tied. In training, we used Adam
(Kingma and Ba, 2014) for optimization. Each
mini-batch contains approximately 25K tokens.
We used the learning rate decay policy described

α λ TER↓ BLEU↑
0.1 1.0 18.83 72.59
0.5 1.0 18.45 72.83
0.9 0.1 18.89 72.27
0.9 0.5 18.47 72.83
0.9 1.0 18.38 72.99

Table 3: Effect of α and λ. The TER and BLEU scores
are calculated on the WMT 2016 APE official develop-
ment set.

by (Vaswani et al., 2017). In decoding, the beam
size was set to 4. We used the length penalty (Wu
et al., 2016) and set the hyper-parameter to 1.0.
The other hyper-parameter settings were the same
as the Transformer model (Vaswani et al., 2017).
We implemented our approach on top of the open-
source toolkit THUMT (Zhang et al., 2017).6

Evaluation Metrics
We used the same evaluation metrics as the official
WMT APE task (Chatterjee et al., 2018): case-
sensitive BLEU and TER. BLEU is computed by
multi-bleu.perl (Koehn et al., 2007). TER is cal-
culated using TERcom.7

Baselines
We compared our approach with the following
seven baselines:

1. ORIGINAL: the originalmtwithout any post-
editing.

2. COPYNET (Gu et al., 2016; Zhao et al.,
2019): the multi-source Transformer
equipped with CopyNet (see Figure 2(a)).

3. NPI-APE (Vu and Haffari, 2018): a neural
programmer-interpreter approach.

4. MS UEDIN (Junczys-Dowmunt and Grund-
kiewicz, 2018): a multi-source Transformer-
based APE system that shares the encoders of
src and mt. It is the champion of the WMT
2018 APE shared task.

5. USAAR DFKI (Pal et al., 2018): a multi-
source Transformer-based APE system with a
joint encoder that attends over a combination
of two encoded sequences. It is a participant
of the WMT 2018 APE shared task.

6https://github.com/THUNLP-MT/THUMT
7http://www.cs.umd.edu/snover/tercom/
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System
TEST16 TEST17 TEST16+17

TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑
(1) ORIGINAL 24.76 62.11 24.48 62.49 24.62 62.30

WMT 2017 official + artificial (5M)
(2) NPI-APE 22.07 66.67 22.58 65.52 – –
(3) POSTECH 19.14 70.98 19.26 70.50 – –
(4) FBK 18.79 71.48 19.54 70.09 – –
(5) MS UEDINensemble 18.86 71.04 19.03 70.46 – –
(6) COPYNET 18.91 71.64 19.47 70.75 19.19 71.19
(7) Ours 18.39 72.50 18.81 71.35 18.60 71.92
(8) Oursensemble 17.77 73.19 18.41 72.09 18.09 72.62

WMT 2017 official + artificial + eSCAPE (12M)
(9) USAAR DFKI – 68.52 – 68.91 – –
(10) MS UEDINensemble 17.34 73.43 17.47 72.84 – –
(11) COPYNET 18.06 72.77 18.29 71.89 18.18 72.37
(12) Ours 17.45 73.51 17.77 72.98 17.61 73.24
(13) Oursensemble 17.06 74.00 17.37 73.26 17.22 73.62

Table 4: Results on the English-German PBSMT sub-task. “TEST16+17” is the concatenation of “TEST16” and
“TEST17”. MS UEDINensemble and Oursensemble used ensembles of four models.

6. POSTECH (Shin and Lee, 2018): a multi-
source Transformer-based APE system with
two encoders. It is a participant of the WMT
2018 APE shared task.

7. FBK (Tebbifakhr et al., 2018): a multi-source
Transformer-based APE system with two en-
coders. It is a participant of the WMT 2018
APE shared task.

We implemented COPYNET also on top of
THUMT (Zhang et al., 2017). The results of all
other baselines were taken from the corresponding
original papers.

4.2 Effect of Hyper-parameters

We first investigated the effect of the hyper-
parameters α and λ in Eq. (18). As shown in Table
3, using α = 0.9 and λ = 1.0 achieves the best
performance in terms of TER and BLEU on the
WMT 2016 development set, suggesting that both
the Predictor and CopyNet play important roles
in our approach. Therefore, we set α = 0.9 and
λ = 1.0 in the following experiments.

4.3 Main Results

Results on the PBSMT Sub-task
Table 4 shows the results of the PBSMT sub-task.
We used the development set of the WMT 2016

System TER↓ BLEU↑
ORIGINAL 15.08 76.76
POSTECH 14.94 77.26
COPYNET 15.12 77.05
Ours 14.88 77.40

Table 5: Experiments on the WMT 2018 English-
German NMT sub-task. The TER and BLEU scores
are calculated on the WMT 2018 APE NMT sub-task
development set.

APE PBSMT sub-task for model selection for our
approach.

Under the small-data training condition (i.e.,
5M), our single model (i.e., System 7) outperforms
all single-model baselines on all test sets. The su-
periority over COPYNET (i.e., System 6) suggests
that interactive representation learning and incor-
porating copying scores are effective in improving
APE. Our approach that uses the ensemble of four
models (i.e., System 8) also improves over the best
published result (i.e., System 5).

Under the large-data training condition (i.e.,
12M), we find that our single (i.e., System 12) and
ensemble (i.e., System 13) models still outperform
the best single (i.e., System 11) and ensemble (i.e.,
System 10) models of baselines.
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ID
Module DEV16 TEST16+17

Interactive Predictor CopyNet Joint Training TER↓ BLEU↑ TER↓ BLEU↑
1

√
× × × 18.74 72.21 19.11 71.03

2 × ×
√

× 19.33 71.86 19.19 71.19
3 ×

√ √ √
19.11 72.03 19.07 71.30

4
√

×
√

× 18.62 72.42 18.91 71.53
5

√ √
× × 18.53 72.53 18.85 71.54

6
√ √ √

× 18.44 72.96 18.77 71.75
7

√ √ √ √
18.38 72.99 18.60 71.92

Table 6: Ablation study. “Interactive” denotes interactive representation learning (Section 3.1), “Predictor” de-
notes detecting correct words (Section 3.2), “CopyNet” denotes the CopyNet used in our approach (Section 2.2),
and “Joint Training” denotes the combination of three loss functions (Section 3.3).

Results on the NMT Sub-task
Table 5 shows the results on the NMT sub-task.
Besides ORIGINAL and COPYNET, we also com-
pared our approach with POSTECH (Shin and Lee,
2018), which is the only participating system that
released the results on the development set of the
WMT 2018 NMT sub-task.8 We find that our ap-
proach also outperforms all baselines.

4.4 Ablation Study

Table 6 shows the results of ablation study. It is
clear that interactive representation learning plays
a critical role since removing it impairs post-
editing performance (line 3). As shown in line 4,
the Predictor is also an essential part of our ap-
proach. CopyNet and joint training are also shown
to be beneficial for improving APE (lines 5 and
6) but seem to have relatively smaller contribu-
tions than interactive representation learning and
predicting words to be copied.

4.5 Results on Prediction Accuracy

The Predictor is an important module in our ap-
proach as it predicts which words in mt should be
copied. Given the ground-truth labels, it is easy to
calculate prediction accuracy by casting the pre-
diction as a binary classification problem. We find
that the Predictor achieves a prediction accuracy
of 85.09% on the development set.

4.6 Comparison of Copying Accuracies

A target word y in a machine translation ỹ is called
to be correctly copied to an automatic edited trans-
lation ŷ if and only if the positions where y occurs

8As POSTECH only used small data for training, the eS-
CAPE datasets were not used in this experiment for a fair
comparison.

System Accuracy
MS UEDIN 64.63
COPYNET 64.72
Ours 65.61

Table 7: Comparison of copying accuracies.

in ŷ and y (i.e., the ground-truth edited transla-
tion) are identical. Therefore, it is easy to define
copying accuracy to measure how well the copy-
ing mechanism works.

Table 7 shows the comparison of copying ac-
curacies between MS UEDIN, COPYNET, and our
approach. We find that our approach outperforms
the two baselines. However, the copying accuracy
of our approach is almost 20% lower than the pre-
diction accuracy (i.e., 65.61% vs. 85.09%), indi-
cating that it is much more challenging to place
the copied words in correct positions.

4.7 Visualization

Figure 5 gives an example that illustrates how
copying scores influence attention. It shows the
heatmap of the Enc-Dec-Attention, which aver-
ages over 8 different heads. Only the attention
weights beween pe and mt are included. We take
the second layer of Enc-Dec-Attention for exam-
ple. The x-axis represents mt and the y-axis rep-
resents pe. The darker the color, the higher the
copying scores.

We find that words “mit” and “dem” are iden-
tified by the Predictor. Accordingly, the atten-
tion weights corresponding to these words are de-
creased since the columns corresponding to these
words have lighter color. As a result, all words in
mt other than “mit” and “dem” are copied to pe.
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Figure 5: Example of the heatmap of attention and copying scores. The x-axis is mt and the y-axis is pe. The
Predictor successfully detects the incorrect word “mit” and “dem” and gives low copying scores to these words
and then decrease the importance of them in attention. Other words in mt are correctly copied to pe.

5 Related Work

5.1 Multi-source Sequence-to-Sequence
Learning

Recently, multi-source Transformer-based APE
systems (Junczys-Dowmunt and Grundkiewicz,
2018; Pal et al., 2018; Tebbifakhr et al., 2018; Shin
and Lee, 2018) have achieved the state-of-the-art
results on the datasets of the WMT APE shared
task. Our work differs from prior studies by en-
abling interactions between src and mt and ex-
plicitly detecting words to be copied.

5.2 The Copying Mechanism

Zhao et al. (2019) apply CopyNet (Gu et al., 2016)
to grammar error correction. Their approach gen-
erates labels similar to ours, but only uses them
to perform mutli-task learning. Libovický et al.
(2016) first introduce CopyNet to APE but do not
provide a detailed description of their method and
experimental results. We show that interactive
representation learning and explicit indication of
words are important for modeling copying in APE.

5.3 Interactive Representation Learning

Niehues et al. (2016) simply concatenate the out-
put of the PBSMT system and the source sentence
to serve as the input the NMT system without en-
abling multi-layer interactive learning. Lample
and Conneau (2019) used cross-lingual setting to

enable cross-lingual language model pre-training.
We propose to let src and mt fully interact with
each other to make it easier to decide which words
in mt should be copied.

6 Conclusion

We have presented a new method for modeling the
copying mechanism for automatic post-editing.
By making the source sentence and machine trans-
lation attend to each other, representations learned
in such an interactive way help to identify whether
a target word should be copied or be re-generated.
We also find that explicitly predicting words to
be copied is beneficial for improving the perfor-
mance of post-editing. Experiments show that our
approach achieves new state-of-the-art results on
the WMT 2016 & 2017 APE PBSMT sub-tasks.
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