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Abstract

How do adjectives project from a noun to its
parts? If a motorcycle is red, are its wheels
red? Is a nuclear submarine’s captain nu-
clear? These questions are easy for humans
to judge using our commonsense understand-
ing of the world, but are difficult for com-
puters. To attack this challenge, we crowd-
source a set of human judgments that answer
the English-language question “Given a whole
described by an adjective, does the adjective
also describe a given part?” We build strong
baselines for this task with a classification ap-
proach. Our findings indicate that, despite the
recent successes of large language models on
tasks aimed to assess commonsense knowl-
edge, these models do not greatly outperform
simple word-level models based on pre-trained
word embeddings. This provides evidence that
the amount of commonsense knowledge en-
coded in these language models does not ex-
tend far beyond that already baked into the
word embeddings. Our dataset will serve as a
useful testbed for future research in common-
sense reasoning, especially as it relates to ad-
jectives and objects.

1 Introduction

We investigate the commonsense inference of the
transitivity of an attribute of a whole object to its
component parts. To illustrate this targeted reason-
ing by example, “is a sharp knife’s handle sharp?”
The ability to perform commonsense inference of
this type enables a more complete understanding
of the physical world and therefore may find use
in a variety of tasks in pragmatics and at the inter-
face of vision and language. Consider generating
a story in which a slow car goes to the shop to get
a new part. If the new part is a windshield, the car
remains slow, whereas if the new part is an engine,

*Research conducted while author was at USC/ISI

the car may now be fast. This knowledge may also
help a visual agent reason about unseen objects: it
knows a brick house does not have a brick door
without needing to see the door.

The past few years have seen a raft of data sets
intended to test our ability to construct models
with an understanding of commonsense knowl-
edge. Standout examples are the Stanford Natu-
ral Language Inference (SNLI) and related Multi-
Genre Natural Language Inference (MNLI) cor-
pora (Bowman et al., 2015; Williams et al.,
2018), the SemEval-2018 commonsense shared
task (Ostermann et al., 2018), the Rochester Story
Completion (ROCStories) corpus (Mostafazadeh
et al., 2016), and the Situations with Adversar-
ial Generations (SWAG) grounded inference cor-
pus (Zellers et al., 2018). After their release, very
large language models (LMs) were able to reach or
surpass human-level performance on SNLI (Peters
et al., 2018) and SWAG (Devlin et al., 2018).

However, researchers have found inadequacies
in these datasets and the models trained on them.
Despite the strong performance of recent systems
on SNLI (e.g., Chen et al., 2017; Parikh et al.,
2016), Glockner et al. (2018) show that by making
trivial changes to the test set, these methods suf-
fered. Further, Pavlick and Callison-Burch (2016)
show that state-of-the-art models for natural lan-
guage inference fail on a task requiring only rea-
soning over adjective-noun relations. Relatedly,
in the shared task to predict sentence endings of
ROCStories, Schwartz et al. (2017) show that by
incorporating style features, with only the answer
choices as input, it is possible to reach near state-
of-the-art performance. These results point to im-
plicit bias baked into the data sets.

Rudinger et al. (2017) demonstrate similar sys-
tematic and social bias in SNLI, attributing it to
the fact that hypothesis sentences were written by
crowd workers. The SWAG data set was specif-
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Figure 1: Visual annotation interface, excluding overall instructions.

ically constructed in an adversarial way with this
in mind, but may be disadvantaged by the fact that
continuation sentences are generated by comput-
ers. This may lead to patterns that are hard to
detect but can nevertheless be picked up by other
language models. We avoid the issue of elicita-
tion bias by first collecting candidates grounded in
natural sources of text and images, and then gath-
ering only scaled judgments from crowd workers,
as was done by Zhang et al. (2017).

To understand how to build truly intelligent
agents, we should strive to create datasets with
as little exploitable bias as possible, and to fur-
ther investigate the landscape of current perfor-
mance. We contribute a dataset which provides
a focused evaluation, based on a specific task in
commonsense reasoning. Gathering and validat-
ing data from crowd workers, we evaluate a num-
ber of approaches to performing these inferences,
a three-way lexical entailment problem. We find
that simple word embedding-based models per-
form adequately, but beneath humans, on this task,
with recent large LM approaches (Devlin et al.,
2018; Radford et al., 2018) providing only slight
improvement over the purely lexical approach.

2 Related Work

Other researchers have constructed datasets in-
vestigating similar ideas in commonsense reason-
ing. Forbes and Choi (2017) develop a dataset
and methods for inferring physical commonsense
knowledge from verb usage, showing it is possible
to learn the physical implications of unseen verbs

from a small seed set. Zhang et al. (2017) create
a large dataset for general commonsense inference
in the form of premise-hypothesis pairs, equipped
with ordinal labels ranging from “impossible” to
“very likely”. We adopt much of their methodol-
ogy but for a targeted subset of commonsense rea-
soning. The SemEval 2018 Task 10 on Capturing
Discriminative Attributes (Krebs et al., 2018) de-
scribes a similar lexical reasoning task involving
triplets of words, though it focuses on finding at-
tributes that distinguish two concepts, while in our
work the adjective may well apply to both part and
whole.

Past work has also evaluated commonsense ca-
pabilities in neural models. Pavlick and Callison-
Burch (2016) investigate the related problem of
entailment in adjective-nouns, and show surpris-
ing negative results for neural NLI models. Wang
et al. (2018) showed that models based on distribu-
tional semantics without explicit external knowl-
edge perform poorly at predicting physical plausi-
bility of actions.

Lucy and Gauthier (2017) investigate percep-
tual properties of distributional embeddings and
suggest that part–whole properties like has legs
are well encoded by embeddings. This may help
explain why the simple word-based MLP models
perform well without other sources of context. Rei
et al. (2018) introduce an effective neural architec-
ture for learning word-embedding based models
for graded lexical entailment. Prior work (Bulat
et al., 2016; Fagarasan et al., 2015) utilizes em-
beddings to predict real-world perceptual proper-
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Whole Part Adjective Label NLI premise NLI hypothesis

armchair arm black Probably On the back of the president’s
quaint black armchair there was
emblazoned a half-sun, brilliant
with its gilded rays.

The armchair’s
arm is black.

vanity mirror white Impossible A door to a bathroom half open
and a white vanity.

The vanity’s mirror
is white.

bench support wooden Unrelated In front of me about five feet
distance, stood a wooden bench.

The bench’s sup-
port is wooden.

Table 1: Example triples and retrieved premise sentences, with labels, used for training word embedding-based
models and language model fine-tuning.

ties, and we expect an approach that leverages this
will help solve this task, but we leave it to future
work.

3 Candidate collection

We seek to annotate examples of (whole, part,
adjective) triples with answers to the question:
“Does an 〈adjective〉 〈whole〉 have an 〈adjective〉
〈part〉?” As a major part of our contribution,
we provide an annotated dataset that is visu-
ally grounded, with relations mined from Visual
Genome (Krishna et al., 2017) and Google Syn-
tactic N-grams (Goldberg and Orwant, 2013). We
provide an overview here, with details in Ap-
pendix A.

3.1 Part–whole relations

Visual Genome (VG) is a large dataset of images
annotated with objects, their attributes, and the re-
lations between them. We start by considering all
relationships in the VG dataset where the predi-
cate is an underspecified has relation. We count
the number of images in which a pair of objects
appear in a has relation, and keep only those pairs
appearing in at least three distinct images.

3.2 Adjectives

We gather adjectives from both Google Syntactic
N-grams and VG. From Syntactic N-grams, we
count the occurrences of an adjective modifying a
noun with the amod relation. We remove common
non-attributive (e.g., awake) and non-descriptive
(e.g., first) adjectives using manually constructed
lexicons. Then, for each whole noun, we gather
its five most common adjectival modifiers, as well
as its five most common adjective attributes from

Visual Genome. Through pilot studies we ob-
served that without further filtering, annotations
were highly skewed towards non-entailment, thus
we achieve a more balanced dataset by filtering out
adjectives that are never observed attached to the
part.

4 Collecting human annotations

We crowdsource annotations on Amazon Mechan-
ical Turk (AMT) for each (whole, part, adjective)
triple as follows:

4.1 Task overview

For each part–whole pair, we sample three ran-
dom images from VG that contain the pair, and
draw bounding boxes around both objects, pro-
vided by VG annotations. We present these to
workers simply to provide context for the part–
whole pair, since early tests showed that with-
out visual cues workers often have trouble under-
standing the overall problem. Then, we ask a se-
ries of questions that each associates the pair with
an adjective. To encourage the worker to imag-
ine the prototypical version of the objects rather
than the specific ones shown,1 we use the template
“Consider any 〈whole〉, not the particular ones pic-
tured”. Specific questions have the form: “If the
〈whole〉 is 〈adjective〉, which of the following is
true?” The answers describe whether it is “impos-
sible”, “unlikely”, “unrelated”, “likely”, or “guar-
anteed” that the identified part is also described by
the adjective. The answers use causal language to
encourage “conditional plausibility” thinking, as
described by Zhang et al. (2017). This also al-
lows for the “unrelated” answer, which covers spu-

1This is a necessary downside of displaying visual cues.



6055

Label Percentage

Guaranteed 44.2
Probably 19.8
Unrelated 23.7
Unlikely 5.6
Impossible 6.6

Table 2: Final label distribution

rious examples, such as a black guitar’s cord being
black, where the cord is likely black, but not as a
result of the guitar being black. We also give an
option for the worker to mark that one of the pair-
wise relations is nonsensical.

4.2 Qualification task

After manually annotating some examples, and
conducting two AMT pilot studies, we found a
non-trivial margin between our own agreement
and that of workers, as measured by the quadratic-
weighted Cohen’s κ . To alleviate this, we fol-
lowed Zhang et al. (2017) and conducted a pi-
lot study to gather a pool of qualified workers.
We launched a pilot task with two gold examples
from each class on which our manual annotations
agreed, and recruited 300 crowd workers to label
them. By setting a κ threshold on agreement with
the gold examples at 0.7, this resulted in 106 qual-
ified workers, whom we requested to perform the
rest of the annotations. We collected at least three
annotations per triple. An example annotation in-
terface is shown in Figure 1.

4.3 Filtering and statistics

From the total of 20,284 triples annotated, we fil-
ter out 4,040 (19.9%) that were reported to con-
tain an invalid triple. We further remove instances
without a majority vote from the workers. This
results in a set of 13,684 triples with an inter-
annotator agreement (quadratic-weighted Cohen’s
κ) of 0.624. (For reference, Zhang et al. (2017)
report κ = 0.54 for general commonsense infer-
ence.) The label distribution is shown in Table 2.
The dataset has 728 unique part nouns, 873 unique
whole nouns, and 553 unique adjectives.

5 Inference baselines

We now describe several basic approaches for
solving these commonsense inference problems,
which we intend as a baseline to be built upon by

future work. Formally, models answer the ques-
tion: Given (1) a noun denoting a whole object
that has (2), a component part also denoted by a
noun, does (3), an adjective that describes 1 also
describe 2? The data is first split into training, val-
idation, and test sets consisting of 70%, 10%, and
20% of the data respectively. Model selection and
tuning details are described in Appendix C.

5.1 Word embedding models

We approach the problem as categorical classifi-
cation and train a multi-layer perceptron (MLP)
model to classify inputs consisting of word em-
beddings for the whole, part, and adjective words.
The MLP takes as input the concatenation of these
three word embeddings, obtained from GloVe
(Pennington et al., 2014), and applies a single hid-
den layer with ReLU activation before the final
softmax layer which predicts the class label.

5.2 Adjective projection as NLI

As we want to evaluate strong yet simple pre-
existing language understanding models on this
task, we now describe a method for obtaining
the direct prediction described above via conver-
sion to a form suitable for inference in the style
of the SNLI and MNLI datasets (Bowman et al.,
2015; Williams et al., 2018), which consist of
premise and hypothesis sentence pairs. We first
form simple hypothesis sentences from the tuples
using the fixed template “The 〈whole〉’s 〈part〉 is
〈adjective〉.” We then retrieve premise sentences
that describe a 〈whole〉 〈adjective〉. An example
for (bicycle, old) is “He rode an old bicycle and
brought fruits and vegetables home from China-
town.” We retrieve context sentences from five re-
sources: Project Gutenberg books2, the Gigaword
news corpus (Parker et al., 2011), SNLI, MNLI,
and MSCOCO image captions (Lin et al., 2014);
premise sentence selection is described fully in
Appendix D and examples are shown in Table 1.

5.3 Fine-tuning language models

We apply transfer learning from two recently de-
veloped large contextualized LMs to this task.
Both are state-of-the-art on NLI and common-
sense tasks.

Specifically, we test OpenAI GPT (Radford
et al., 2018), and BERT (Devlin et al., 2018).

2https://gutenberg.org

https://gutenberg.org
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OpenAI GPT is a unidirectional model that pre-
dicts the next word, while BERT is bidirectional
and predicts randomly missing words, as well as
the next sentence. Both train on the BooksCor-
pus, with BERT additionally trained on English
Wikipedia. Both models are fine-tuned to perform
NLI by applying a linear layer to the model’s final
output at one position of the input. The models
are then trained in a multi-task way for the infer-
ence task and the language modeling objective(s),
updating the whole network.

Method Accuracy

Majority baseline 0.430
Majority-per-part baseline 0.485
GloVe embeddings 0.651

OpenAI GPT (Radford et al., 2018) 0.666
BERT (Devlin et al., 2018) 0.667

Human performance 0.785

Table 3: Test set results for multi-class prediction

Test set results for these methods are in Table 3.
We also provide performance by two simple base-
lines, the first of which always predicts the ma-
jority class (“guaranteed”). To choose the second
baseline, we evaluated choosing the majority class
for the given whole, part, or adjective. Of these,
predicting the majority-per-part had the best vali-
dation set performance, so we report that result on
test.

We observe that the best model that operates on
just word embeddings is within≈ 0.02 of both lan-
guage models in absolute accuracy points, and the
best performing model still lags behind human ac-
curacy3 by nearly 0.12 absolute points, suggesting
work remains to be done on incorporating this va-
riety of common sense into intelligent models.

6 Conclusion

Inspired by recent commonsense dataset construc-
tion efforts and the speed with which researchers
develop highly performant models for them, we
develop a dataset that evaluates a type of inference
that is specific but that agents with commonsense
should be able to solve. We show that state-of-the-
art language models perform well, but that models
using just pretrained word embeddings perform

3Measured using the triplet, not NLI, version of the data.

comparably, and both fall short of human accu-
racy. We release our dataset to provide a challeng-
ing commonsense reasoning task for the commu-
nity.
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