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Abstract

In this paper, we establish the effectiveness of
using hard negatives, coupled with a siamese
network and a suitable loss function, for the
tasks of answer selection and answer trigger-
ing. We show that the choice of sampling
strategy is key for achieving improved perfor-
mance on these tasks. Evaluating on recent an-
swer selection datasets - InsuranceQA, SelQA,
and an internal QA dataset, we show that using
hard negatives with relatively simple model ar-
chitectures (bag of words and LSTM-CNN)
drives significant performance gains. On In-
suranceQA, this strategy alone improves over
previously reported results by a minimum of
1.6 points in P@1. Using hard negatives with
a Transformer encoder provides a further im-
provement of 2.3 points. Further, we propose
to use quadruplet loss for answer triggering,
with the aim of producing globally meaning-
ful similarity scores. We show that quadru-
plet loss function coupled with the selection
of hard negatives enables bag-of-words mod-
els to improve F1 score by 2.3 points over pre-
vious baselines, on SelQA answer triggering
dataset. Our results provide key insights into
answer selection and answer triggering tasks.

1 Introduction

Question answering (QA) is an active field of re-
search, drawing attention from the natural lan-
guage processing (NLP) and information retrieval
(IR) community. Selection-based QA is the task
of selecting an answer for a given question, from
a set of candidate answers. Two tasks have been
proposed for selection-based QA. Given a ques-
tion and an answer candidate pool, answer selec-
tion is the task of ranking valid answers higher
than irrelevant answers, where it is assumed that
there is at least one valid answer in the candidate
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pool. Answer triggering, defined for cases where
the candidate pool may or may not have a valid
answer, is the task of finding a valid answer, while
being allowed to abstain.

Recently released datasets (Feng et al., 2015;
Yang et al., 2015; Jurczyk et al., 2016) have
led to significant development in end-to-end neu-
ral network Selection-based QA. These networks
are learned by posing answer selection as ei-
ther a ranking problem or a classification prob-
lem. When posed as a ranking problem, a com-
mon choice is to use a triplet loss defined over
a question, a correct answer and a (usually sam-
pled) negative answer. Triplet loss penalises rela-
tive distances between positive and negative pairs,
making the choice of negatives critical. Recent
progress in image understanding tasks suggests
that learning in ranking tasks can be enhanced
by focusing on sampling strategies in conjunction
with the loss function employed (Hermans et al.,
2017; Chen et al., 2017). In this work, we in-
vestigate the expressive power of siamese archi-
tectures (Bromley et al., 1994) coupled with hard
negatives (i.e., difficult negative samples for the
model being learnt), against more sophisticated
models. Specifically, all our models ignore any
interaction between question and answer represen-
tations, and use a shared encoder to independently
encode questions and answers. Siamese architec-
tures provide low-latency solutions in the presence
of large candidate answer pools (by caching can-
didate representations).

In this paper, we first show that using hard neg-
atives with vanilla neural architectures improves
over previously reported results on InsuranceQA
answer selection task (Feng et al., 2015). The pro-
posed strategy achieves P@1 of 73.3%, as com-
pared to the previously reported 71.1% (dos San-
tos et al., 2016). Further, using a Transformer en-
coder coupled with the proposed strategy achieves
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P@1 of 75.6%. Next, we propose the use of
quadruplet loss (Chen et al., 2017) for answer trig-
gering. We show that by employing online selec-
tion of hard negatives with quadruplet loss, bag-
of-words models improve upon previous baselines
on SelQA answer triggering task (Jurczyk et al.,
2016). The proposed strategy achieves an F1 score
of 53.21, as compared to the previously reported
50.89 (Jurczyk et al., 2016).

We note that the performance gains demon-
strated in this paper are obtained with a restricted
class of models. Specifically, we restrict to
siamese networks, and don’t model any interac-
tion between question and answer representations.
The previously reported results which we compare
against use architectures that are not restricted to
be siamese, and model the interaction between
question and answer representations.

2 Related Work

For answer selection, CNN, LSTM and LSTM-
CNN architectures (Tan et al., 2015; dos Santos
et al., 2016), trained with a triplet loss, have been
explored. Recent focus has been on designing the
interaction layer, between a question and a candi-
date answer, through various models of attention
(Yu et al., 2014; Rao et al., 2016; Zhou et al., 2015;
Zhang et al., 2017; Bian et al., 2017). Compare-
aggregate architectures have also been studied as
sentence matching models and applied to answer
selection (Wang and Jiang, 2016; Wang et al.,
2017). Similarly, for answer triggering, different
architectural changes have been proposed (Zhao
et al., 2017; Acheampong et al., 2016; Gupta et al.,
2018; Li and Wu, 2017). Often, the architec-
tural advances are coupled with subtle changes
in the training process. For example, dos Santos
et al. (2016) incorporate a form of negative min-
ing. This makes it difficult to separate the benefits
gained from the mining strategy from the architec-
tural advances.

Triplet loss and mining of hard negatives have
been studied for computer vision tasks with triplet
networks being popular for estimating feature em-
beddings for images. The key issue with triplet
networks is that, for a training set with N sam-
ples, the number of triplets is cubic in N . Train-
ing becomes intractable for modest sizes of the
training set. A solution in the form of impor-
tance sampling has been studied. Schroff et al.
(2015) learn image embeddings using triplet loss,

trained using moderately hard negatives. While
other approaches have been studied for the task of
person re-identification, which combine classifica-
tion with a verification loss, Hermans et al. (2017)
show that a vanilla CNN with triplet loss and the
right sampling strategy could outperform the best
models at the time. Wu et al. (2017) present a
distance-weighed sampling approach.

Triplet loss, while useful for ranking tasks,
doesn’t produce globally meaningful scores for
tasks such as person re-identification. This can be
attributed to the fact that triplet loss doesn’t try
to learn a global threshold to separate all inter-
class pairs from all intra-class pairs, and learns
only relative distances with respect to an anchor
(a question, in the context of this paper). This has
been addressed by accounting for the global struc-
ture of the embedding space (Kumar et al., 2016;
Ustinova and Lempitsky, 2016), and directly op-
timizing for inter-class distances to be larger than
intra-class distances. Quadruplet loss (Chen et al.,
2017) prvoides another way to produce globally
meaningful scores, and is suitable for our set-
ting. Quadruplet loss extends triplet loss to en-
sure smaller intra-class distances and larger inter-
class distances. This is achieved by additionally
penalizing positive and negative pairs with differ-
ent probes (questions, in the context of this paper).

While selection of hard negatives has been used
for problems in computer vision, its usefulness has
not been evaluated for QA tasks. In this work, we
first present the selection of hard negatives with
triplet loss for answer selection. Next, we show
that quadruplet loss is suitable for the task of an-
swer triggering, and when coupled with online se-
lection of hard negatives, improves over previous
baselines. As far as we know, we are the first to
use quadruplet loss for question answering.

3 Data

Dataset #Q #QA Lq La

InsuranceQA 12887 18540 7.15 95.54
SelQA 5524 6390 11.02 25.39
LargeQA 341869 502763 14.06 30.34

Table 1: Comparison of answer selection datasets.
#Q: Number of questions; #QA: Number of correct
question-answer pairs; Lq/La: Average number of to-
kens in a question/answer.

Insurance QA (Feng et al., 2015), a domain-
specific non-factoid QA dataset, is suitable for
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evaluating answer selection. SelQA (Jurczyk
et al., 2016), a recent open-domain factoid QA
dataset provides data for evaluating both answer
selection and answer triggering.

While these datasets provide standardised
comparison, we also evaluate our methods
on a large internal answer selection dataset,
LargeQA, created using Community Question-
Answers (CQnA) asked on a website. The dataset
was created similar to InsuranceQA, with the size
of candidate pool fixed to 100 answers in test sets.

Table 1 presents some statistics on the training
data used in these datasets.

We don’t include WikiQA (Yang et al., 2015)
and TrecQA (Wang et al., 2007) datasets which
have been previously used to report improvements
in answer selection. This is due to the large vari-
ance in our experiments as well as in the repro-
duction of existing methods, also noted by Crane
(2018), perhaps due to their smaller sizes.

4 Method

For selection-based QA , the training data X , can
be characterized as a list of questions Q = {q1, q2,
... , qs}, and sets of correct answer(s) Aq = {a1,
a2, ... , ap} for each question q ∈ Q.

In the following, we discuss online selection of
hard negatives with triplet loss for answer selec-
tion, and with quadruplet loss for answer trigger-
ing. In each case, a siamese architecture is used
where questions and answers are encoded inde-
pendently by identical copies of a neural network
denoted by f . Cosine similarity is used to compute
the similarity between a question and an answer:
S(x, y) = cosine(f(x), f(y)).

4.1 Answer Selection
Siamese networks can be trained for answer selec-
tion using triplets (q, a+, a−), where a+∈Aq is
a correct answer and a− /∈Aq an incorrect answer
chosen randomly from the entire answer pool. A
triplet loss with margin m is formulated as:

Ltriplet = max(0,m−S(q, a+)+S(q, a−)). (1)

In this work, we employ online selection of
hard negatives within a batch of sampled question-
answer pairs. The model is trained using batch
gradient descent, with batches B = {(qi, ai, aHi ) :
1 ≤ i ≤ b}, where b is the batch size, ai ∈ Aqi
and aHi is the hardest negative answer chosen as:

aHi = argmax
j:aj /∈Aqi, 1≤j≤b

(S(qi, aj)). (2)

Selection of negatives from within a batch of
sampled question-answer pairs has several advan-
tages. First, it does not require any extra computa-
tion from the embedding model. Second, there is
no need to employ additional heuristics to avoid
the hardest negatives. Selection from within a
stochastic batch ensures that the selected hardest
negatives in a batch are not dominated by false
negatives or noisy hard negatives during training
(See Appendix C for experimental results).

4.2 Answer Triggering
Answer triggering differs from answer selection in
that we need to identify if a valid answer is present
in the candidate pool. Triplet loss is not suitable as
it promotes scores to be discriminative only rela-
tive to a given question. While classification based
methods have been studied, we hypothesize that
globally meaningful scores can be obtained in a
ranking setup. Essentially, we need the similar-
ity scores for all wrongly paired question-answers
to be smaller than the scores for correct question-
answer pairs. We propose to use quadruplet loss
for answer triggering. Quadruplet loss, introduced
by Chen et al. (2017) for Person re-identification,
aims at keeping all inter-class distances larger than
all intra-class distances. This, we believe, is what
we need to obtain globally meaningful scores for
answer triggering.

The network can be trained using quadruplets
of the form (q, a+, a−, q′), where a+ ∈ Aq, a−

/∈ Aq, and q′ is a negative question for both a+

and a− chosen randomly from the entire question
pool, with a+ /∈ Aq′ , a− /∈ Aq′ . Quadruplet loss
for answer triggering can be formulated as:

Lquad = max(0,m1 − S(q, a+) + S(q, a−))+

max(0,m2 − S(q, a+) + S(q′, a−)) (3)

where m1 and m2 are fixed margins.
As with triplet loss, we believe the selection

of negatives is critical for learning with quadru-
plet loss. We propose to select both the nega-
tive answer and the negative question using on-
line selection of hard negatives. The model is
trained using batch gradient descent with batches
B = {(qi, ai, aHi , qHi ) : 1 ≤ i ≤ b}, where b is
the batch size, ai ∈ Aqi, a

H
i is chosen as in Equa-

tion 2, and qHi is selected to be the hardest negative
question for aHi :

qHi = argmax
k:aHi /∈Aqk

, 1≤k≤b
(S(qk, a

H
i )). (4)
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Method P@1
Dev Test1 Test2

Attentive Pooling + CNN (dos Santos et al., 2016) 68.8 69.8 66.3
Attentive Pooling + BiLSTM (dos Santos et al., 2016) 68.4 71.7 66.4
Max-Pooling + Random Negatives 61.5 61.6 57.9
Max-Pooling + Hard Negatives 64.4 65.3 64.4
LSTM-CNN + Random Negatives 68.6 70.3 67.2
LSTM-CNN + Hard Negatives 72.5 73.3 69.1
Transformer encoder + Random Negatives 65.8 67.1 63.8
Transformer encoder + Hard Negatives 75.7 75.6 73.4

Table 2: Answer selection on InsuranceQA. Top: Baselines. Middle & Bottom: Our Max-Pooling, LSTM-CNN
and Transformer encoder results. When coupled with hard negatives, simpler architectures such as Max-Pooling
become competitive, while LSTM-CNN improves over previously reported results. The effectiveness of using hard
negatives, compared to random negatives, is also evident when training the Transformer encoder model.

During inference, for a given question, we pre-
dict the highest scoring answer, provided the score
exceeds the threshold. The optimal threshold is
obtained using performance on the development
set.

5 Results and Analysis

We present quantitative results using MRR and
P@1 for answer selection on InsuranceQA,
LargeQA and SelQA, and F1 score (Yang et al.,
2015) for answer triggering on SelQA, followed
by an ablation study of the proposed method for
answer triggering.

5.1 Experimental Setup

Following Tan et al. (2015), we experiment with
an LSTM-CNN model, where a CNN layer is em-
ployed on top of LSTM encoding of the input sen-
tence, followed by Max Pooling to obtain a fixed
length representation for the sentence.

Motivated by the performance of bag-of-words
like sentence representations (Arora et al., 2016),
we also experiment with distributional bag-of-
words models where sentence embeddings are ob-
tained by pooling across the dimensions of corre-
sponding word embeddings. In particular, we used
Max-Pooling and Max-Min-Pooling, the latter be-
ing obtained by concatenating the outputs of Max
and Min Pooling.

Finally, we experiment with the Transformer
encoder (Vaswani et al., 2017; Devlin et al., 2019)
for answer selection.

Training details are available in Appendix A.

5.2 Answer Selection

InsuranceQA: LSTM-CNN model coupled with
hard negatives outperforms the best reported num-
bers on both test sets by a significant margin (1.6

and 2.7 points gain in P@1 with p-values of 0.066
and 0.008 on Test1 and Test2 respectively) on In-
suranceQA (Table 2). Finally, the Transformer
encoder model with hard negatives provides sig-
nificant performance gains for the task (3.9 and
7.0 points gain in P@1), while still learning with
siamese networks without any interaction between
question and answer representations.

Method P@1 MRR
LSTM-CNN + Random Negatives +0 +0
LSTM-CNN + Hard Negatives +2.5 +0.015

Table 3: Answer selection on LargeQA; reported num-
bers are relative to the baseline.

LargeQA: The gains due to hard negatives are
also observed on LargeQA (Table 3), with an im-
provement of 2.5 in P@1 and 0.015 in MRR.

Model MRR
RNN + Attention Pooling (Jurczyk et al., 2016) 0.876
CNN-Hinge (dos Santos et al., 2017) 0.881
ACNN (Shen et al., 2018) 0.880
AdaQA (Shen et al., 2018) 0.910
DRCN (Kim et al., 2019) 0.930
Max-Pooling + Random Negatives 0.843
Max-Pooling + Hard Negatives 0.896

Table 4: Answer selection on SelQA. Top: Baselines.
Bottom: Max-Pooling results from this work.

SelQA: For answer selection on SelQA (See
Table 4), Max-Pooling models performed best
among the models we investigated, perhaps due to
the smaller size of the dataset (other results omit-
ted).

Key Observations: First, siamese bag-of-
words models, coupled with hard negatives, are
competitive with models which rely on various
ways of question-answer interaction. Second,
siamese networks coupled with hard negatives are
particularly suited for domain specific QA (In-
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suranceQA). We believe open-domain QA has a
greater need for interaction between question and
answer representations. Third, we believe em-
ploying hard negatives is especially useful for the
Transformer encoder model, which has a much
larger set of parameters. With the Transformer en-
coder model, there is an improvement of 8.5 points
on InsuranceQA Test1 dataset when using hard
negatives as opposed to using random negatives.
With the LSTM-CNN model, the corresponding
gain is 3.0 points.

5.3 Answer Triggering

Method F1
Dev Test

CNN (Jurczyk et al., 2016) 49.16 50.89
RNN + AP (Jurczyk et al., 2016) 44.02 45.67
Max-Min-Pooling
+ Quadruplet loss + Hard negatives 54.95 53.21

Table 5: Answer triggering on SelQA. Top: Base-
lines. Bottom: Our approach using quadruplet loss
with Max-Min-Pooling model. The choice of the loss
function and the sampling strategy proposed in this pa-
per is justified by the improved results obtained using a
relatively simpler Max-Min-Pooling model.

The proposed approach with the Max-Min-
Pooling model for answer triggering improves
upon the previously reported baselines signifi-
cantly (2.32 points) on SelQA (See Table 5).

Hardest Negative:
Answer? Question?

53.21

48.95

47.93

45.63

Y             Y

Y             N

N             Y

N             N

F1

Figure 1: Ablation study for answer triggering. The
columns on the left indicate whether online selection
of hardest negative answer/question was done. To ob-
tain best results with quadruplet loss, it is critical to
sample both hard negative answers and hard negative
questions.

An ablation study (Figure 1) reveals that the se-
lection of both hardest negative answers and ques-
tions is needed to get the majority improvement.
Quadruplet loss with the Max-Min-Pooling model
without hard negatives is competitive with base-

lines (Table 5), justifying its usage for answer trig-
gering.

Further, we also compared against using triplet
loss with the Max-Min-Pooling model for answer
triggering. We found that quadruplet loss outper-
forms triplet loss (F1 of 51.89 on development set,
and 50.08 on Test set) by 3.13 points in F1.

6 Conclusion & Future Work

We have shown that selection of hard negatives
is a powerful tool for answer selection. We im-
prove over previously reported results on recent
benchmarks using siamese architectures and hard
negatives, outperforming interaction-based mod-
els. We show the generality of the approach using
shallow as well as deep neural network models.

For answer triggering, we presented results sup-
porting the hypothesis that quadruplet loss with
hard negatives is suitable for the task, and im-
proves upon previous baselines. Our ablation
study confirms the importance of using hard nega-
tives.

As future work, we plan to further investigate
the generality of the approach with other tasks and
base models.
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