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Abstract

Many Data Augmentation (DA) methods have
been proposed for neural machine translation.
Existing works measure the superiority of DA
methods in terms of their performance on a
specific test set, but we find that some DA
methods do not exhibit consistent improve-
ments across translation tasks. Based on the
observation, this paper makes an initial at-
tempt to answer a fundamental question: what
benefits, which are consistent across different
methods and tasks, does DA in general obtain?
Inspired by recent theoretic advances in deep
learning, the paper understands DA from two
perspectives towards the generalization ability
of a model: input sensitivity and prediction
margin, which are defined independent of spe-
cific test set thereby may lead to findings with
relatively low variance. Extensive experiments
show that relatively consistent benefits across
five DA methods and four translation tasks are
achieved regarding both perspectives.

1 Introduction

Data Augmentation (DA) is a training paradigm
that has been proved to be very effective in many
modalities (Park et al., 2019; Perez and Wang,
2017; Sennrich et al., 2016a), especially for classi-
fication (Perez and Wang, 2017). In structured do-
main, Neural Machine Translation (NMT) is the
frontier of DA research (Sennrich et al., 2016a;
Norouzi et al., 2016; Zhang and Zong, 2016;
Fadaee et al., 2017; Wang et al., 2018; Zhang
et al., 2019; Edunov et al., 2018; Fadaee and
Monz, 2018). However, by investigating a vari-
ety of DA methods, we find that their test per-
formance across different translation tasks does
not exhibit consistent improvement, and this phe-
nomenon can be initially observed in (Wang et al.,
2018) as well. The reason might be the evaluation
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metric on a specific test set when compared to the
whole data population, which generates all possi-
ble data, has large variance so that leads to the in-
consistency. This evaluation dilemma is also rec-
ognized and explored by Recht et al. (2018, 2019);
Werpachowski et al. (2019), and is especially no-
torious for language generation tasks (Chaganty
et al., 2018; Hashimoto et al., 2019) where the
evaluation metrics, e.g. BLEU (Papineni et al.,
2001), are extrinsic and heavily relies on the ref-
erence provided. Therefore, we ask a fundamental
question: what benefits, which are more consistent
across different DA methods and translation tasks,
can DA in general obtain?

A direct answer to the above question is to use
generalization gap (Kawaguchi et al., 2018) de-
fined by the difference between population risk
and empirical risk. This measure does not rely
on any specific test set, accurately depicts general-
ization but is intractable to compute. So recently,
many theorists have proposed either non-vacuous
generalization bound (Dziugaite and Roy, 2017;
Zhou et al., 2019) or novel generalization mea-
sures (Novak et al., 2018; Bartlett et al., 2017;
Neyshabur et al., 2017; Jiang et al., 2019) to
roughly reflect the gap. Inspired by them, we pro-
pose to understand the benefits of DA from two
perspectives: input sensitivity and prediction mar-
gin. The proposed underlying two measures are
well adapted from Novak et al. (2018) and Bartlett
et al. (2017) and can be computed only on the train
samples to unveil the consistent benefits of DA.
Under a carefully designed fair setting over four
different translation tasks, we examine five meth-
ods from two main categories of DA and compare
them with a model trained without DA. The empir-
ical experiments demonstrate the following find-
ings: a). DA methods exhibit more consistent ef-
fects across different translation tasks in terms of
both measures. b). DA methods can either allevi-
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ate input sensitivity or promote prediction margin.
By and large, our main contributions are:

• We make an initial attempt to understand the
essence of DA in NMT by investigating its
benefits which are relatively consistent across
five DA methods and four translation tasks.

• We highlight two perspectives towards gen-
eralization to measure the benefits of DA in
NMT and study them with carefully designed
fair experiments.

2 DA Methods in NMT

2.1 Training Objective Decomposition
Given the train set T the baseline NMT model
p✓(y|x) without using DA is trained under the em-
pirical data distribution p̂(X,Y |T ) through maxi-
mum likelihood estimation:

JMLE = Ex,y⇠p̂(X,Y |T )[log p✓(y|x)], (1)

where p̂ is a mixture of Dirac distribution concen-
trated around each training instance with uniform
mixture coefficients (1/|T |). Then we define the
augmentation (AUG) model as a conditional dis-
tribution over the train set, q(X,Y |T ). 1 Under
the AUG model, the training objective becomes:

JAUG = Ex,y⇠q(X,Y |T )[log p✓(y|x)]. (2)

More realistically, for any DA method in any train-
ing run, we can collect the augmented instances
to form a set A distinguishing T , when consid-
ering the curriculum of mixing A with the origi-
nal train T . Since we would like to derive a con-
ceptual framework that reflects this form of im-
portance weighting, we further decompose AUG
model into a linear interpolation (↵) of p̂(X,Y |T )
and an augmentation distribution qAUG(X,Y |T ):

↵ · p̂(X,Y |T ) + (1� ↵) · qAUG(X,Y |T ), (3)

where ↵ controls the mixture ratio within a batch
during SGD training. The ratio has been founded
as an important factor influencing final perfor-
mance (Sennrich et al., 2016a; Fadaee et al., 2017;
Edunov et al., 2018; Fadaee and Monz, 2018).

1 In the paper, we do not consider using monolingual data
for DA thus conditioning only on bilingual data since this will
further bring monolingual data selection discussed in Fadaee
and Monz (2018) as a factor to influence the performance of
different DA methods; we leave this factor for future study.

Method Fr)En En)Fr Zh)En En)De

Baseline 38.38 (5) 38.88 (6) 17.25 (6) 26.19 (4)
RAML +0.22 (3) +0.67 (3) +0.23 (4) -0.16 (6)

SO +0.01 (4) +0.62 (4) +0.02 (5) -0.15 (5)
ST -0.13 (6) +0.46 (5) +1.51 (2) +0.83 (2)
TA +0.62 (2) +1.13 (1) +2.41 (1) +1.01 (1)
BT +0.82 (1) +0.99 (2) +1.06 (3) +0.39 (3)

Table 1: Main BLEU results (CTC=0.62).

Key factors Through Eq. 3, we can identify two
key factors for conducting fair experiments: a) the
number of SGD updates on every original training
instance means how much the model learns from
T ; b) the mixture ratio means how much the model
learns from A online, with which together balance
the learning of the translation knowledge.

2.2 Settings and Main Performance
Settings By carefully controlling the above two
factors, we conduct fair and extensive experiments
with Transformer (Vaswani et al., 2017) on four
translation tasks for five DA methods. Fairseq (Ott
et al., 2019) is used as our codebase. We use stan-
dard benchmarks IWSLT17 En-Fr, WMT19 Zh-
En, WMT19 En-De, where we train both transla-
tion directions on the IWSLT corpus. The five DA
methods are briefly summarized as follows:

• RAML: reward-augmented maximum likeli-
hood training, which augment the target-side
with a sampling distribution P (Y |Y ⇤) con-
centrated around Y ⇤ (Norouzi et al., 2016).

• Switchout (SO): similar to RAML, but also
adds the some kind of augmentation to the
source-side (Wang et al., 2018).

• Self-training (ST): fix the source-side, uses
an forward NMT model to generate the
target-side (Zhang and Zong, 2016).

• Target-agree (TA): similar to ST, but uses a
forward NMT model with right-to-left de-
coder (Zhang et al., 2019).

• Back-translation (BT): fix the target-side,
uses an backward NMT model to generate the
source-side (Sennrich et al., 2016a).

The implementation of RAML and SO are bor-
rowed from the Appx. of Wang et al. (2018). 2

2We categorize and analyze how we choose or train DA
methods with a generative formulation in Appx. A and B.
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Method Fr)En En)Fr Zh)En En)De

Baseline 0.565 (6) 0.623 (4) 0.422 (6) 0.682 (5)
RAML -0.056 (2) +0.003 (5) -0.008 (4) -0.003 (4)

SO -0.082 (1) -0.099 (1) -0.053 (2) -0.143 (1)
ST -0.034 (3) -0.009 (3) -0.054 (1) -0.116 (2)
TA -0.023 (5) -0.010 (2) -0.043 (3) -0.013 (3)
BT -0.026 (4) +0.035 (6) -0.007 (5) +0.232 (6)

Table 2: Sensitivity measure (CTC=0.72).

CTC Table 1 shows the main BLEU results of dif-
ferent methods on the test set. However, we cannot
identify the best DA method because their rank-
ings across the four translation tasks vary a bit.
To measure the degree of consistency, we use a
correlation measure called Kendall’s coefficient of
concordance (Kendall and Smith, 1939; Mazurek,
2011) to evaluate the correlation of the rankings
produced on the four translation tasks (appx. C).
The value shows strong consistency (correlation)
of different rankings when it is close to 1. We
call the correlation value Cross-Task Consistency
measure or CTC. The CTC for the BLEU measure
is 0.62, which is of weak consistency. This phe-
nomenon might be a result of the intrinsic nature
of using a single specific test as a substitute of the
whole data population for evaluation. In the next
section, we introduce two measures that are more
consistent (with close-to-1 CTC value). They in
some extent reflect the model generalization and
are easy-to-compute as well.

3 Two Measures Towards Generalization

We attempt to understand the benefits that DA can
obtain through the quantification of input sensi-
tivity and prediction margin. The two measures
are adapted from Novak et al. (2018) and Bartlett
et al. (2017); Neyshabur et al. (2017); Jiang et al.
(2019). They have been proved through massive
experiments to be correlated with model general-
ization. Our main purpose here is to utilize them
to unveil the consistency property (measured by
CTC) of DA across different methods and transla-
tion tasks. The next two subsections define the two
measures and report their statistics on subsamples
of the train set respectively.

3.1 Input Sensitivity
Input sensitivity is the sensitivity of the loss com-
puted from the model towards a minor change of
input representation. Given a point of interest x,

Figure 1: � sensitivity binned avg. token freq. statis-
tics. Each point represents a bin from which we com-
pute the token level average � sensitivity between that
DA method and the baseline and the token level aver-
age frequency as its x and y coordinate value.

the original form in Novak et al. (2018) is defined
as the expected Jacobian norm of the loss vector
log p✓(·|x) and p✓ is a softmax classifier:

Ex||J(x)||F , (4)

where J(x) = @ log p✓(·|x)/@xT , and || · ||F the
Frobenius or L2 norm of the matrix. The paper
also suggests a more predictive quantity of the
generalization ability. That is to take advantage of
the label y of x and only compute the L2 norm of
a slice of the Jacobian matrix indexed by the label.
We adopt the later measure which is the gradient
norm of the loss scalar indexed by y to x:

Ex||J(x)y||F . (5)

If x 2 Rd lies in a space with differential struc-
ture, we can apply Eq. 5 directly. But in NMT
the naive representation of an instance (x, y) is
the token index given by the vocabulary, so we
cannot compute the gradient of the loss with re-
spect to x. We follow Sundararajan et al. (2017)
and use the result of x after embedding lookup as
its learned representation, denoted as Emb(x) 2
RLx⇥d where Lx is the length of the input and
d the size of the embedding. By regarding the
translation model p✓(y|x) as a function that de-
composes at each step of y given Emb(x) as in-
put to get a scalar average log likelihood, denoted
as Lx,y = 1

Ly

P
t log p✓(yt|y<t, x). Moreover, ini-

tial experiments on just using the single original
xi to evaluate the gradient will still result in in-
consistency, due to the non-equivalence of the lo-
calness concept compared with the continuous set-
ting, i.e. for language input, the localness is be-
tween discrete inputs in the neighbor of xi. So we
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evaluate the sensitivity of xi by averaging gradient
norms over its k nearest neighbor xi(j) 2 kNN[xi]
through cosine similarity between word embed-
dings. We set k to 5 in our experiment to guar-
antee words in the k nearest neighbor has similar
semantic meaning. Formally, we define the input
sensitivity of an NMT model as:

E(x,y)
1

Lx

X

i

1

k

X

xi(j)2kNN[xi]

����

����
@Lx,y

@Emb(x) i(j)

����

����
F

,

(6)
where the Emb(x)i is the embedding lookup of the
ith token index, so we compute the average token-
wise gradient of each instance.

We use subsamples of the train set to approxi-
mately compute the expectation in Eq. 6 and the
overall statistics are shown in Table 2. Similar
to Table 1, the DA methods are shown in their �
value respect to the baseline. A first thing to no-
tice is that the ranking is more steady across tasks
(CTC=0.72). It also shows that for input x, DA in
general can reduce the gradient norm of the pre-
diction loss on Emb(x)i, which shows that DA can
obtain more stable model towards data corruption.

To further understand what effect DA in gen-
eral has on each input token type, we compute
the � sensitivity between the baseline and one DA
method on the same token type and sort them ac-
cording to the � with positive value (which means
DA reduces the sensitivity of that token type). We
then divide the sorted types into ten bins and com-
pute the average token type frequency of that bin.
As shown in Figure 1, DA in general, improves the
sensitivity of token types with relatively low fre-
quency more than those with high frequency, thus
may somehow improve the translation quality of
low frequency token types.

3.2 Prediction Margin
Margin is a classic concept in support vector ma-
chine (Vapnik, 2013), which is defined as the ge-
ometric distance between the support vectors and
the decision boundary. Larger margin implies bet-
ter generalization. In nonlinear case, it reflects the
distance of a correctly classified input represen-
tation with class i to move towards the decision
boundary between i and any other class j (Jiang
et al., 2019). However, since the decision bound-
ary does not have analytical form due to non-
linearity, computing the geometric distance is in-
tractable. In our setting we regard NMT model as
doing step-wise classification with z = (x, y<t) as

Method Fr)En En)Fr Zh)En En)De

Baseline 0.797 (4) 0.592 (4) 0.756 (4) 0.679 (4)
RAML -0.028 (6) -0.063 (6) -0.024 (6) -0.006 (5)

SO -0.027 (5) -0.060 (5) -0.022 (5) -0.009 (6)
ST +0.046 (1) +0.036 (1) +0.035 (1) +0.044 (1)
TA +0.037 (2) +0.019 (2) +0.025 (2) +0.043 (2)
BT +0.017 (3) +0.015 (3) +0.004 (3) +0.016 (3)

Table 3: Margin measure (CTC=0.98).

input feature and yt as the label. In Bartlett et al.
(2017), the original definition of the margin of cor-
rectly predicted input is:

p✓(yt|z)�maxv0 6=ytp✓(v
0|z)

R · ||x||2/N
, (7)

where yt is the ground-truth label, v0 another class
type, R the spectral complexity of the model and
N the number of training instance in the train sub-
samples for computing their margins. We simplify
Eq. 7 to only consider the numerator. The reasons
are: a) under the same model architecture, Rs are
very close across different DA methods; b) we can
omit ||x||2/N since it remains unchanged as well.
In this way, we can map every z, yt to a margin
with label type yt = v, where v 2 Vtgt:

mv
z,yt := p✓(yt|z)�maxv0 6=ytp✓(v

0|z). (8)

So for every target token type v we can collect a
set of margins {mv

z,yt}, and the margin sets of all
token types are combined as the total margin set
[v{mv

z,yt}. Following Neyshabur et al. (2017), we
do not compute the minimum margin of the total
set which can be highly sensitive to outliers. In-
stead, if the total set has cardinality N 0, we ob-
tain the ✏N 0-th smallest margin from the set as
the overall prediction margin, with a tolerant co-
efficient ✏ 2 [0, 0.1] (✏ is set to 0.001). 3 We
can also obtain token-wise prediction margin from
{mv

z,yt}, which is the prediction margin of a spe-
cific token type v.

The overall prediction margins are listed in Ta-
ble 3. The relative rank is highly consistent across
the four translation tasks (CTC=0.98). Although
RAML and SO seem to be inferior to the baseline,
other DA methods improve the margin in general.
We give a possible explanation for this in the next
subsection. Similar to the previous subsection, we

3Note that, we have tried different tolerant coefficents and
find they do not effect the final rankings of DA methods.
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Figure 2: � margin binned avg. token freq. statistics.

also report the average token type frequency of
each margin binned token groups in Figure 2 and
find that DA, in general, brings larger margin im-
provement over low frequency tokens.

3.3 Discussion

Why use these two measures? We have con-
ducted a relatively complete survey of the recent
measures towards measuring generalization ability
proposed by the deep learning community, such as
model complexity (Zhang et al., 2016; Neyshabur
et al., 2017), flatness (Dinh et al., 2017), stiff-
ness (Fort et al., 2019) and second order Hes-
sian of the input or the number of linear regions
in hiddens (Novak et al., 2018; Montufar et al.,
2014). Some of those measures have complex def-
inition such as linear regions, others are very ex-
pensive to compute for models as large as Trans-
former such as Hessian and stiffness. However,
we compute weight norm with different forms pro-
posed in Neyshabur et al. (2017) and find no reg-
ularity which suggests that the complexity mea-
sure through norms for networks architectures like
Transformer or convolutional/recurrent neural net-
works might be very different from simple feed-
forward ones which might be still an open prob-
lem in theoretic deep learning community. As a
matter of fact, due to computational easiness and
large-scale empirical evidence, we choose sensi-
tivity and margin the measures.
Why no absolute consistency between the two
measures? In Section 3.1 and 3.2, the two mea-
sures do not show well consistency between them:
under the margin based measure, RAML and SO
do not exhibit superiority over the baseline like
they do under the sensitivity measure. One rea-
son might be: despite the measures are empir-
ically proved to reflect generalization, they are
only one view towards generalization respectively.

Specifically, in recent generalization theory (No-
vak et al., 2018; Bartlett et al., 2017), the measures
are evaluated between models with extremely evi-
dent difference in generalization ability (measured
by test performance difference), for example, be-
tween models trained with random labels and true
labels. Instead, our comparison is among models
with similar capacity and are well-trained, which
rises challenge for us to get very consistent statis-
tics through a single view. This may inspire us to
combine multiple views of model training to de-
sign better measures with stronger correlation.

4 Conclusion and Future Work

This paper aims at delivering relatively consistent
benefit measures of DA due to the phenomenon
of inconsistant BLEU improvement across trans-
lation tasks. To our expect, the proposed two mea-
sures exhibit relative consistency (especially pre-
diction margin) on five DA methods across four
translation tasks, which demonstrate that DA can
benefit model with improved sensitivity or predic-
tion margin especially for low frequency words.

However, the problem of intrinsic evaluation
or better understanding of the unreasonable effec-
tive of DA should just be a start. DA is a trade-
off between noise vs. knowledge injection, so it
could be a nice theoretic direction to think about
DA under statistical query model (Kearns, 1998)
with translation between formal languages (ws-,
2019). This could inspire another essential ques-
tion: what is the intrinsic properties of the aug-
mented data (Branchaud-Charron et al., 2019) that
matter in discrete domain. Applications like active
data selection (Coleman et al., 2019) guided with
margin or sensitivity can be derived. In general,
understanding NMT model’s behavior (not only
with DAs) beyond BLEU (Neubig et al., 2019)
should be taken seriously, e.g. to design a bevavior
suite like Osband et al. (2019) is most valuable.
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