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Abstract

The task of unsupervised sentiment modifica-

tion aims to reverse the sentiment polarity of

the input text while preserving its semantic

content without any parallel data. Most pre-

vious work follows a two-step process. They

first separate the content from the original sen-

timent, and then directly generate text with

the target sentiment only based on the content

produced by the first step. However, the sec-

ond step bears both the target sentiment addi-

tion and content reconstruction, thus resulting

in a lack of specific information like proper

nouns in the generated text. To remedy this,

we propose a specificity-driven cascading ap-

proach in this work, which can effectively in-

crease the specificity of the generated text and

further improve content preservation. The ex-

periments show that our approach outperforms

competitive baselines by a large margin, which

achieves 11% and 38% relative improvements

of the overall metric on the Yelp and Amazon

datasets, respectively.

1 Introduction

The goal of unsupervised sentiment modification

is to reverse the sentiment polarity of the input

text while preserving its semantic content with-

out any parallel data. It not only has a variety of

practical applications, e.g., fighting offensive lan-

guage on social media (dos Santos et al., 2018),

but also serves as an ideal testbed for controllable

text generation. However, the input for this task

usually contains some specific information like

proper nouns. For instance, “Michael” in Table 1

is a human name, which belongs to the specific in-

formation. This specific information is important

because it is often the subject or object of the sen-

tence and the bearer of sentiment. Therefore, it

needs to be fully preserved in the process of sen-

timent modification. We refer this attribute as the

specificity of the output.

Input Michael ’s work exceeds my expectations.

Shen et al. (2017) Service is terrible.
Fu et al. (2018) I was very disappointed.
Xu et al. (2018) The girls do horrible work.

Table 1: Examples generated by four different previous

methods. “Michael” is a proper noun, which belongs

to specific information.

Most previous work on unsupervised sentiment

modification follows a two-step process. They

first separate the content from the original senti-

ment, either in an implicit (Hu et al., 2017; Shen

et al., 2017; Fu et al., 2018; Tsvetkov et al., 2018)

or explicit (Xu et al., 2018; Zhang et al., 2018a)

way. Then, they directly generate text with the

target sentiment only based on the content pro-

duced by the first step. In the second step, the de-

coder does not include the sentiment information

in its source input, meaning that the source infor-

mation is incomplete for generating a sentiment-

transferred sentence. This information gap at both

ends of the decoder causes the decoder needs to

bear both the target sentiment addition and content

reconstruction. Thus, it is difficult for the decoder

to balance sentiment transformation and content

preservation simultaneously, resulting in the loss

of specific information contained in the source in-

put during decoding. This not only makes the gen-

erated text lacks specificity, but also causes poor

content preservation. Table 1 intuitively illustrates

this problem. All three traditional methods miss

proper noun “Michael” in the output.

In order to generate text containing more spe-

cific information, in this paper, we propose a

specificity-driven cascading approach. Our ap-

proach consists of three modules: separation mod-

ule, emotionalization module, and fusion module.

The separation module is responsible for explicitly

separating sentiment words from content words
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via the self-attention mechanism. Then, different

from previous work, we divide the process of gen-

erating text with the target sentiment based on con-

tent words into two steps. First of all, in order

to achieve sentiment addition, the emotionaliza-

tion module generates corresponding target sen-

timent words based on the content words. Then,

the fusion module performs content reconstruc-

tion by fusing semantic content and target senti-

ment words to generate sentiment-transferred sen-

tences. Each step is dedicated to their respective

goals, which reduces the burden of the decoder in

the fusion module. Besides, with the help of the

target sentiment words generated by the emotion-

alization module, the information gap is also elim-

inated. This allows specific information contained

in the input to be well preserved, resulting in more

specific output and better content preservation.

The main contributions of this paper are sum-

marized as follows:

• We propose an effective specificity-driven

cascading approach for unsupervised senti-

ment modification, which not only increases

the specificity of the generated text, but also

further improves content preservation.

• Experimental results show that our approach

can outperform the competitive baselines by

a large margin. Further analysis demonstrates

that the proposed method can achieve bet-

ter reconcile of sentiment transformation and

content preservation.

2 Background

Here we introduce some necessary background

knowledge. The core component of our proposed

approach is the Seq2Seq model (Sutskever et al.,

2014; Bahdanau et al., 2014), which usually con-

sists of an encoder and a decoder with the attention

mechanism.

Encoder: Given the input x = (x1, · · · , xm),
the encoder implemented as a bidirectional

LSTM (Hochreiter and Schmidhuber, 1997) struc-

ture reads x from both directions and computes

the hidden states for each word,

−→
h i =

−−−−→
LSTM(

−→
h i−1, xi) (1)

←−
h i =

←−−−−
LSTM(

←−
h i+1, xi) (2)

where e(xi) denotes the embedding of the word

xi. The final hidden representation of the i-th

Module Source Target RoleInput Output
SCφ x+/x− +/− Separate content and sentiment

S2Sθpe c+ s+ Generate positive sentiment words

S2Sθne c− s− Generate negative sentiment words

S2Sθpf (c+, s+) x+ Generate positive sentence

S2Sθnf (c−, s−) x− Generate negative sentence

Table 2: The role of each component of our approach

at the training stage. We use “+” and “-” to represent

positive and negative sentiment, respectively.

word is hi = [
−→
h i;

←−
h i], which semicolon repre-

sents vector concatenation.

Decoder: Given the hidden representations

(h1, · · · , hm), the decoder generates words

sequentially. Besides, the attention mechanism is

used to automatically select the most informative

words at different time steps. In detail, the hidden

state st+1 of the decoder at time-step t + 1 is

computed as follows:

et,i = f(st, hi) (3)

αt,i =
exp(et,i)∑m
j=1 exp(et,j)

(4)

ct =

m∑

i=1

αt,ihi (5)

st+1 = LSTM(st, [e(yt); ct]) (6)

yt ∼ softmax (g(st)) (7)

where [e(yt); ct] means the concatenation of vec-

tors e(yt) and ct. e(yt) is the embedding of the

word yt that has the highest probability. f(st, hi)
is an aligned model, which measures the depen-

dency between st and hi. g is a function, which is

used to transform the hidden state st into the prob-

ability distribution over the vocabulary space.

The model is trained by maximizing the con-

ditional likelihood of the ground-truth sequence

y∗ = (y∗1, · · · , y∗n). Specially, the objective is to

minimize the cross-entropy loss:

L = −
n∑

t=1

log (p(y∗t |y∗
<t,x))

1 (8)

3 Methodology

3.1 Overview
Here we define some notations and describe the

sentiment modification task. We use D+ =
1In this work, y∗

<t denotes the sequence (y∗
1 , · · · , y∗

t−1).
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Input:
Michael’s work
exceeds my expectations

Content:
Michael’s work

Separation
Positive Sentiment:
exceeds my expectations

Output:
Michael’s work
exceeds my expectations

Negative Sentiment:
is really awful

Output:
Michael’s work
is really awful

Emotionalization Fusion

Figure 1: The overview of the proposed cascading approach with a positive input. The process with a negative

input is in a similar way. Solid and dashed lines indicate the training process and the testing process, respectively.

{
x+
i

}n1

i=1
and D− =

{
x−
i

}n2

i=1
to represent the

positive corpus and negative corpus, respectively,

where x+ (x−) is a positive (negative) sentence.

D = D+ ∪ D− denotes the complete corpus. The

sentiment modification task aims to take the sen-

tence x+ (x−) as input and generate a sentiment-

transferred sentence x̂− (x̂+) as output.

The overview of our approach is shown in Fig-

ure 1. Our approach consists of three modules:

separation module, emotionalization module, and

fusion module. The separation module aims to ex-

plicitly separate the sentiment words from content

words and the emotionalization module receives

content words as input to generate the correspond-

ing sentiment words. Finally, the fusion module

fuses the content and sentiment words to generate

fluent sentences. Table 2 summarizes the source

input, target output, and function of each compo-

nent at the training stage. Besides, the training al-

gorithm and testing algorithm are shown in Algo-

rithm 1 and Algorithm 2, respectively.

3.2 Separation Module

The separation module aims to explicitly separate

the sentiment words from content words. Given a

sentence x = (x1, · · · , xm), the separation can be

accomplished by identifying whether each word

xi is a sentiment word. Here we employ a senti-

ment classifier with the self-attention mechanism

to achieve this goal. The classifier with the self-

attention mechanism can select the most informa-

tive words automatically by assigning higher at-

tention weights to sentiment words. Therefore, the

attention weight αi of the i-th word can be used to

identify whether xi is a sentiment word.

In detail, we use the bidirectional LSTM model

for implementation. The LSTM model reads the

input x from both directions and computes the

hidden representation hi = [
−→
h i;

←−
h i] for the i-th

word, where semicolon represents vector concate-

nation. The self-attention mechanism produces fi-

nal context vector h by aggregating the hidden rep-

resentations (h1, · · · , hm). Specifically,

αi = softmax(vThi) (9)

h =

m∑

i=1

αihi (10)

where v is a parameter vector. At the training

stage, we perform classification based on the final

context vector h and the loss function is the cross-

entropy loss. Then, for the well-trained sentiment

classifier, the average attention value of sentence

x is calculated as:

ᾱ =
1

m

m∑

i=1

αi (11)

Words with attention weight larger than ᾱ can be

regarded as sentiment words, and the remaining

words can be regarded as content words.2 There-

fore, each sentence x can be separated into content

words c and sentiment words s.3

3.3 Emotionalization Module
In previous work, there is an information gap at

both ends of the decoder, making the decoder to

bear both the target sentiment addition and con-

tent reconstruction simultaneously. To eliminate

the information gap and ease the burden of the

decoder, we divide the process of generating sen-

timent sentences based on content into two sep-

arate steps: sentiment addition and content re-

construction. Each step is dedicated to their re-

spective goals, which reduces the burden of the

2The reason is that there exists an obvious gap between
the attention weights of content words and sentiment words,
causing the weights of these two types of words to be dis-
tributed at both ends of the average. Exploratory experiments
show that the separation model can achieve more than 80%
F1 score.

3Except for Section 2, we use c and s to represent content
words and sentiment words, respectively. This is different
from the context vector c and hidden state s in Section 2.
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Algorithm 1 The training algorithm.

Require: positive corpus D+ =
{
x+

i

}n1

i=1
; negative corpus

D− =
{
x−

i

}n2

i=1
; complete corpus D = D+ ∪ D−

1: Separation:
2: Train the sentiment classifier SCφ on corpus D
3: Separate positive sentence x+ in D+ into (c+, s+)

using SCφ to construct new positive corpus N+ ={
(c+i , s

+
i ,x

+
i )

}n1

i=1

4: Separate negative sentence x− in D− into (c−, s−)
using SCφ to construct new negative corpus N− ={
(c−i , s

−
i ,x

−
i )

}n2

i=1
5: Emotionalization:
6: Train S2Sθpe using MLE on new positive corpus N+

7: Train S2Sθne using MLE on new negative corpus N−

8: Fusion:
9: Train S2Sθpf using MLE on new positive corpus N+

10: Train S2Sθnf using MLE on new negative corpus N−

decoder. Here the emotionalization module ex-

plicitly performs sentiment addition by generating

corresponding sentiment words based on content

words.

In detail, through the separation module, the

sentence x can be separated into (c, s), where

c and s represent the content words and senti-

ment words, respectively. Therefore, the new cor-

pus N+ =
{
(c+i , s

+
i ,x

+
i )

}n1

i=1
can be constructed

by explicitly separating the positive sentence x+.

Similarly, N− =
{
(c−i , s

−
i ,x

−
i )

}n2

i=1
can be con-

structed by separating the negative sentence x−.

The emotionalization module aims to automati-

cally generate corresponding sentiment words ac-

cording to the content. Since corpus N+ (or N−)

provides pseudo-parallel data about content words

c+ (or c−) and sentiment words s+ (or s−), here

we use the Seq2Seq model to accomplish this goal.

We train a Seq2Seq model S2Sθpe on the new pos-

itive corpus N+, which is responsible for gener-

ating positive sentiment words s+ based on the

content c+. Another Seq2Seq model S2Sθne is

trained on the new negative corpus N− to gener-

ate negative sentiment words s− based on content

words c−. Therefore, for the well-trained model

S2Sθpe (or S2Sθne), given content words c, S2Sθpe

(or S2Sθne) is able to generate corresponding pos-

itive (or negative) sentiment words s+ (or s−).

3.4 Fusion Module

The fusion module aims to perform content recon-

struction by fusing content words c and sentiment

words s to generate fluent emotional sentence x.

Compared with the previous work, the decoder

here has extra sentiment information s, thus elim-

inating the information gap at both ends of the

Algorithm 2 The testing algorithm.

Require: positive source input x+

1: Separate x+ using SCφ to get content words c+

2: Generate the negative sentiment words s− using S2Sθne

with input c+

3: Generate the negative sentence x̂− using S2Sθnf with

input (c+, s−)

decoder. This allows the specific information to

be better preserved during the generation process,

leading to more specific generation results and bet-

ter content preservation.

Similar to the emotionalization module, the fu-

sion module is also composed of two Seq2Seq

models, one for generating positive sentences and

the other for generating negative sentences. Here

each Seq2Seq model consists of two encoders and

one decoder. The two encoders are responsible for

compressing the semantic content words and emo-

tional words into a dense vector, respectively. The

decoder aims to generate fluent emotional sen-

tence based on compressed content vector and sen-

timent vector. In detail, we train two bi-encoder

based Seq2Seq models S2Sθpf and S2Sθnf
on the

new positive corpus N+ and negative corpus N−,

respectively. Each model aims to output x based

on the input (c, s). Note that the Seq2Seq model

here has two encoders, so we need to make modi-

fications to the relevant formulas. Two attention

mechanisms similar to Eq. 3 - Eq. 5 aggregate

the hidden representations of the content words

c and sentiment words s respectively to form

the content-side context cct and the sentiment-side

context cst . The hidden state st+1 of the decoder at

time-step t+ 1 is computed as follows:

st+1 = LSTM(st, [e(yt); c
c
t ; c

s
t ]) (12)

3.5 Training and Testing

At the training stage, each module is trained by op-

timizing the cross-entropy loss function. The test-

ing algorithm is shown in Algorithm 2. Without

loss of generality, we focus on reversing the posi-

tive input to the negative output. The process of re-

versing negative sentence to positive sentence is in

a similar way. Given a positive input x+, the sepa-

ration module can separate x+ into content words

c+ and sentiment words s+. The model S2Sθne in

the emotionalization module takes c+ as input to

generate corresponding negative sentiment words

s−. Finally, (c+, s−) is inputted into the model
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Dataset Training Validation Test
Yelp 580K 15K 4K
Amazon 230K 10K 2K

Table 3: The statistics of two datasets.

S2Sθnf
in the fusion module to generate a fluent

negative sentence x̂−.

4 Experiments

In this section, we first introduce the datasets, eval-

uation metrics, experimental details, and all com-

pared baselines.

4.1 Datasets

We conduct experiments on two datasets, Yelp4

and Amazon5 (He and McAuley, 2016). Both

datasets are composed of a large number of re-

views. Following previous work (Shen et al.,

2017), reviews with scores below 3 are labeled as

negative, and reviews with scores above 3 are la-

beled as positive. The reviews which exceed 20

words or less than 5 words are further filtered out.

In addition, we train the sentiment classifier (Kim,

2014) to filter samples with the category confi-

dence below 0.8. We divide each dataset into train-

ing, validation and test sets. The statistics of the

two processed datasets is shown in Table 3.

4.2 Evaluation Metrics

In this paper, we adopt two evaluation methods:

automatic evaluation and human evaluation.

4.2.1 Automatic Evaluation
Following previous work (Xu et al., 2018; Shen

et al., 2017), we perform automatic evaluation

in terms of sentiment transformation and content

preservation.

• ACC: We pre-train a sentiment classifier,

which is implemented as CNN (Kim, 2014)

structure, to evaluate whether the sentiment

of the generated text matches the target sen-

timent. The pre-trained sentiment classifier

achieves the accuracy of 87% and 89% on

Yelp and Amazon datasets, respectively. The

higher ACC value indicates better sentiment

transformation.

4https://www.yelp.com/dataset/
challenge

5https://www.amazon.com/

Yelp Amazon

Module LSTM Hidden LSTM Hidden
Layer Size Layer Size

SCφ 2 512 2 256
S2Sθpe (2, 3) (256, 512) (2, 2) (256, 512)
S2Sθne (2, 2) (256, 512) (1, 2) (128, 256)
S2Sθpf (2, 3) (256, 512) (2, 2) (256, 512)
S2Sθnf (2, 2) (256, 512) (1, 2) (128, 256)

Table 4: Main hyper-parameters. For the LSTM layer

and hidden size, we use (·, ·) to represent the hyper-

parameter of the encoder and decoder, respectively.

• BLEU: We use the BLEU score (Papineni

et al., 2002) between the transferred sentence

and the source sentence to evaluate content

preservation. The higher BLEU score indi-

cates better content preservation.

• G-Score: In order to evaluate the overall per-

formance of different systems, following Xu

et al. (2018), we compute the geometric mean

(G-score) of ACC value and BLEU score as

an overall evaluation metric.

4.2.2 Human Evaluation
In order to evaluate the quality of generated sen-

tences more accurately, we also perform human

evaluation. Each item contains the source input,

transfer direction, and the transferred sentences

generated by different models. Then 200 items

are distributed to 3 annotators with the linguis-

tic background. The annotators are required to

score the generated sentences from 1 to 5 based

on the source input and transfer direction in terms

of three criteria: sentiment, content, and overall

performance. Sentiment represents whether the

generated text matches the target sentiment. Con-

tent evaluates the content preservation degree. For

each dataset and each metric, the average Pear-

son correlation coefficient of the scores given by

three annotators is greater than 0.65, which indi-

cates that the human scores are highly consistent.

4.3 Baselines
We compare our proposed approach with the fol-

lowing competitive systems:

• Cross-Aligned Auto-Encoder (CAAE) is

proposed by Shen et al. (2017). They propose

to use the refined alignment of latent repre-

sentations in hidden layers to perform senti-

ment modification.
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Yelp ACC BLEU G-Score

CAAE (Shen et al., 2017) 50.20 1.35 8.23
MDAE (Fu et al., 2018) 81.30 3.27 16.30
SEAE (Fu et al., 2018) 42.25 19.18 28.47
BT (Tsvetkov et al., 2018) 61.45 2.56 12.54
CRL (Xu et al., 2018) 73.70 35.62 51.24

Proposed Method 68.65 47.42 57.06

Amazon ACC BLEU G-Score

CAAE (Shen et al., 2017) 51.75 2.17 10.60
MDAE (Fu et al., 2018) 67.85 4.54 17.55
SEAE (Fu et al., 2018) 47.50 28.79 36.98
BT (Tsvetkov et al., 2018) 53.75 3.73 14.16
CRL (Xu et al., 2018) 65.20 22.66 38.44

Proposed Method 56.30 49.83 52.97

Table 5: Automatic evaluations of our method and

baselines, from which we can see that our approach

achieves the best overall performance on both datasets.

• Multi-Decoder Auto-Encoder (MDAE) is

proposed by Fu et al. (2018). They use a sep-

arate decoder for each sentiment to generate

transferred sentences based on the extracted

content vectors.

• Style-Embedding Auto-Encoder (SEAE) is

also proposed by Fu et al. (2018). Each senti-

ment has a unique embedding, which is used

to control the sentiment transfer direction of

the decoder.

• Back-Translation (BT) (Tsvetkov et al.,

2018) focuses on learning a latent representa-

tion of the input by means of language trans-

lation model and further perform generation.

• Cycled Reinforcement Learning (CRL) is

proposed by Xu et al. (2018). They use a cy-

cled reinforcement learning model to explic-

itly extract content to further generate trans-

ferred sentences.

4.4 Experiment Settings
For both datasets, the vocabulary size is 30,000

and out-of-vocabulary words are replaced with

unk. We train word2vec (Mikolov et al., 2013)

on an English Wikipedia corpus dump to get 300-

dimensional word embeddings. The batch size is

64 and the hyper-parameters of each module on

two datasets are shown in Table 4. For each mod-

ule, we use the Adam (Kingma and Ba, 2014) op-

timizer and the initial learning rate is 0.0003. Be-

sides, we make use of the dropout method (Srivas-

tava et al., 2014) to avoid over-fitting and clip the

Yelp Sentiment Content Overall

CAAE (Shen et al., 2017) 3.48 1.87 2.03
MDAE (Fu et al., 2018) 3.56 2.07 3.11
SEAE (Fu et al., 2018) 2.67 2.71 3.26
BT (Tsvetkov et al., 2018) 1.81 3.14 2.52
CRL (Xu et al., 2018) 3.64 3.03 3.89

Proposed Method 3.31 4.21 4.09

Amazon Sentiment Content Overall

CAAE (Shen et al., 2017) 3.37 2.74 2.72
MDAE (Fu et al., 2018) 3.31 2.89 2.58
SEAE (Fu et al., 2018) 2.82 3.05 3.13
BT (Tsvetkov et al., 2018) 2.04 2.58 2.94
CRL (Xu et al., 2018) 3.68 3.21 3.06

Proposed Method 3.42 3.83 3.71

Table 6: Human evaluations of different systems,

showing that our approach outperforms the baselines

by a large margin, especially in content preservation.

gradients (Pascanu et al., 2013) to the maximum

norm of 10. During training, we train the model

for a fixed number of epochs and monitor its per-

formance on the validation set after 100 updates.

Once the training is finished, we select the model

with the best G-score on the validation set as our

final model and evaluate its performance on the

test set.

5 Results and Discussion

In this section, we report the experimental results.

Besides, further analysis is also provided.

5.1 Experimental Results

The automatic evaluation results on two datasets

are shown in Table 5. Results show that our ap-

proach achieves the best overall performance. For

instance, our model achieves 11% and 38% rela-

tive improvement of G-score over the best base-

line on the two datasets, respectively. This shows

that our approach can further reconcile sentiment

transformation and content preservation. We also

note that our method achieves particularly high

BLEU scores, indicating that the proposed method

can enhance the specificity of the generated text,

leading to better content preservation.

The human evaluation results are shown in Ta-

ble 6, from which we can draw similar conclu-

sions. It is obvious that our approach can outper-

form the baselines by a large margin, especially in

terms of content preservation. The reason is that

there is no information gap at both ends of our de-

coder when generating sentiment-transferred sen-
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Figure 2: The recall scores of specific information (e.g.

proper nouns) on different systems.

tences, which relieves the burden on the decoder.

Therefore, more specific information is preserved.

5.2 Effectiveness of Enhancing Specificity

The analysis in Section 5.1 has shown that our ap-

proach can achieve excellent content preservation,

which shows that the proposed model can gener-

ate text containing more specific information to

some extent. To further verify this conclusion, we

manually select test samples containing specific

information (e.g. proper nouns) and then calcu-

late the recall scores of this specific information

on different systems. Figure 2 shows the related

results, from which we can see that our approach

achieves the highest recall score. This further il-

lustrates that our approach can effectively improve

the specificity of the generated text.

5.3 Ablation Study

We conduct an ablation study to verify the ef-

fectiveness of the emotionalization module. The

results are shown in Table 7, illustrating that

the removal of the emotionalization module leads

to an obvious reduction in model performance.

Compared to the ablated version, the full model

achieves improvements of 11.14% and 9.87% G-

score on two datasets, respectively. Besides, both

sentiment transformation and content preserva-

tion can be improved with the emotionalization

module. The emotionalization module can auto-

matically generate corresponding sentiment words

based on the extracted content, which eliminates

information gap and relieves the burden of the de-

coder, leading to better model performance.

5.4 Case Study

Table 8 shows several examples of the testing pro-

cess for our approach, which intuitively reflects

Yelp ACC BLEU G-score

Full model 68.65 47.42 57.06
w/o EM 52.40 40.24 45.92

Amazon ACC BLEU G-score

Full model 56.30 49.83 52.97
w/o EM 44.90 41.37 43.10

Table 7: Ablation study. “EM” denote the emotional-

ization module.

Input: The worst and unprofessional company.
Separation: The worst and unprofessional company.

Emotionalization: Exceeded my expectations
Fusion: The company exceeded my expectations.

Input: Staff is awesome and always friendly.
Separation: Staff is awesome and always friendly.

Emotionalization: So rude unprofessional
Fusion: So rude and unprofessional staff.

Table 8: Outputs of different modules of our method.

The underlined words are sentiment words recognized

by separation module.

the function of each module. Given an input, the

separation module can separate sentiment words

from content words. For instance, the separa-

tion module successfully identifies the sentiment

words “worst and unprofessional” in the first ex-

ample. Then, the emotionalization module is able

to generate corresponding target sentiment expres-

sion “exceeded my expectations” based on the

given content words “the company”. Beyond that,

the fusion module can fuse content words and tar-

get sentiment expression to further generate a flu-

ent sentiment-transferred sentence “the company
exceeded my expectations”.

Table 9 presents several outputs of different sys-

tems on the Yelp dataset. The baselines tend to

generate outputs lacking specific information, re-

sulting in poor content preservation. For instance,

all baselines miss proper noun “wendys” in the

first example. In contrast, our approach increases

the specificity of the output, leading to better con-

tent preservation. Our method not only performs

sentiment addition and content reconstruction in-

dependently, but also eliminates the information
gap. This eases the burden of the decoder, allow-

ing more specific information to be preserved.

5.5 Error Analysis
Although our approach outperforms the baselines

by a large margin, we still observe some failed ex-

amples. We conduct a detailed analysis and cate-

gorize them into two types demonstrated below.
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Input: Wendys is my favorite chain, but this location is
the worst.
CAAE: Great food and the best food!
MDAE: Best best i ever visit.
SEAE: This place had amazing stars!
CRL: Undoubtedly is my favorite chain.
Proposal: Wendys is my favorite chain, great location!

Input: Annette in optical was super helpful!
CAAE: I have been to say and i have n’t be them.
MDAE: Terrible here is not disappointed , it!
SEAE: Walked in the service was super well.
CRL: Horrible stylist bank was extremely unprofes-
sional.
Proposal: Annette in optical was rude!

Table 9: Examples generated by different systems on

the Yelp dataset. “Wendys” and “Annette” belong to

the specific information contained in the input.

One type of error is the neutral output without

any sentiment polarity, such as “I went to the bar
on Friday”. This is because both datasets con-

tain a large number of neutral reviews, which can

be viewed as noises. Since these neutral reviews

are also labeled as positive or negative, the separa-

tion module may incorrectly identify some content

words as sentiment words. Training samples lack-

ing sentiment information make the emotionaliza-

tion module unable to generate sentiment words,

leading to the neutral output.

The other type of error is the output that con-

tains the original sentiment, which can be at-

tributed to the failure of the separation of content

and sentiment. Such failure usually occurs when

the input contains sentiment words that are un-

seen in the training data, or the sentiment is im-

plicitly expressed. The separation module may

not recognize these unseen or obscure sentiment

words, causing that the extracted content still con-

tains original sentiment information. This content

is further inputted to the emotionalization module,

causing the output to contain original sentiment.

6 Related Work

This paper is mainly related to the following two

series of work.

Unsupervised sentiment modification. One

line of research for this task focuses on implic-

itly separating content from original sentiment. To

control the sentiment, Hu et al. (2017) combines

VAE and attribute discriminator while Shen et al.

(2017) strives to align latent representations in

hidden layers. Both Fu et al. (2018) and Yang et al.

(2018) adopt adversarial training to ensure the suc-

cess of separation. Tsvetkov et al. (2018) strives to

obtain style-independent content representations

through additional translation models. However,

this implicit separation tends to result in poor con-

tent preservation since content and sentiment are

entangled in an uninterpretable way. Different

from this line of work, we adopt explicit separa-

tion of content and sentiment via self-attention,

which achieves better content preservation. An-

other line strives to explicitly separate content and

sentiment at the word-level. Li et al. (2018) pro-

poses a retrieval system, which may lead to low-

quality outputs. Xu et al. (2018) presents a rein-

forcement learning (RL) approach to remove sen-

timent words. However, the training of RL is un-

stable and sensitive to hyper-parameters. Further,

Zhang et al. (2018a) tries to automatically extracts

appropriate sentiment information from learned

sentiment memories. Different from Zhang et al.

(2018a) which extracts entangled sentiment mem-

ories from capacity-constrained memory matrices,

our work can generate accurate explicit sentiment

words flexibly based on specific content, leading

to better performance. There also exist some other

endeavors which construct pseudo-parallel data by

means of back-translation (Sennrich et al., 2015).

For instance, Zhang et al. (2018b) and Luo et al.

(2019) jointly train two transfer systems via itera-

tive back-translation. Further, Lample et al. (2019)

extend this training framework to support multiple

attribute control .

Sentiment analysis. Our work is also related to:

sentiment analysis (Severyn and Moschitti, 2015;

Cambria, 2016; Poria et al., 2017; Lam et al.,

2018), sentiment embeddings (Tang et al., 2014;

Barnes et al., 2018), and aspect extraction (Poria

et al., 2016; He et al., 2017; Pablos et al., 2018).

7 Conclusion

In this paper, we propose a simple but effective

specificity-driven cascading approach for unsu-

pervised sentiment modification. The proposed

approach performs target sentiment addition and

content reconstruction independently, so that more

specific information is preserved. Extensive ex-

perimental results show that our approach outper-

forms several competitive systems by a large mar-

gin. Further analysis demonstrates that the pro-

posed method not only increases the specificity of

the generated text, but also further improves con-

tent preservation.



5516

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jeremy Barnes, Roman Klinger, and Sabine Schulte
im Walde. 2018. Bilingual sentiment embeddings:
Joint projection of sentiment across languages. In
ACL, pages 2483–2493.

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems, 31(2):102–
107.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Rui Yan. 2018. Style transfer in text: Ex-
ploration and evaluation. In AAAI.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2017. An unsupervised neural attention
model for aspect extraction. In ACL, pages 388–
397.

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In
WWW, pages 507–517.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. volume 9, pages 1735–1780.
MIT Press.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In ICML, pages 1587–
1596.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Wai Lam, Xin Li, Bei Shi, and Lidong Bing. 2018.
Transformation networks for target-oriented senti-
ment classification. In ACL, pages 946–956.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In ICLR.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In NAACL-HLT, pages
1865–1874.

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao
Chang, Zhifang Sui, and Xu Sun. 2019. A dual rein-
forcement learning framework for unsupervised text
style transfer. arXiv preprint arXiv:1905.10060.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Aitor Garcı́a Pablos, Montse Cuadros, and German
Rigau. 2018. W2VLDA: almost unsupervised sys-
tem for aspect based sentiment analysis. Expert
Syst. Appl., 91:127–137.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In ICML, pages 1310–1318.

Soujanya Poria, Erik Cambria, and Alexander F. Gel-
bukh. 2016. Aspect extraction for opinion mining
with a deep convolutional neural network. Knowl.-
Based Syst., 108:42–49.

Soujanya Poria, Haiyun Peng, Amir Hussain, Newton
Howard, and Erik Cambria. 2017. Ensemble appli-
cation of convolutional neural networks and multiple
kernel learning for multimodal sentiment analysis.
Neurocomputing, 261:217–230.

Cı́cero Nogueira dos Santos, Igor Melnyk, and Inkit
Padhi. 2018. Fighting offensive language on social
media with unsupervised text style transfer. In ACL,
pages 189–194.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In SIGIR, pages 959–962.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In NIPS, pages 6833–6844.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL, pages 1555–1565.

Yulia Tsvetkov, Alan W. Black, Ruslan Salakhutdi-
nov, and Shrimai Prabhumoye. 2018. Style transfer
through back-translation. In ACL, pages 866–876.



5517

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xi-
aodong Zhang, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In ACL,
pages 979–988.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P. Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. In NeurIPS, pages 7298–7309.

Yi Zhang, Jingjing Xu, Pengcheng Yang, and Xu Sun.
2018a. Learning sentiment memories for sentiment
modification without parallel data. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1103–1108.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018b. Style transfer as unsupervised machine
translation. arXiv preprint arXiv:1808.07894.


