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Abstract

Conventional word embeddings represent
words with fixed vectors, which are usu-
ally trained based on co-occurrence patterns
among words. In doing so, however, the power
of such representations is limited, where the
same word might be functionalized separately
under different syntactic relations. To address
this limitation, one solution is to incorporate
relational dependencies of different words into
their embeddings. Therefore, in this paper, we
propose a multiplex word embedding model,
which can be easily extended according to var-
ious relations among words. As a result, each
word has a center embedding to represent its
overall semantics, and several relational em-
beddings to represent its relational dependen-
cies. Compared to existing models, our model
can effectively distinguish words with respect
to different relations without introducing un-
necessary sparseness. Moreover, to accom-
modate various relations, we use a small di-
mension for relational embeddings and our
model is able to keep their effectiveness. Ex-
periments on selectional preference acquisi-
tion and word similarity demonstrate the effec-
tiveness of the proposed model, and a further
study of scalability also proves that our em-
beddings only need 1/20 of the original em-
bedding size to achieve better performance.

1 Introduction

Representing words as distributed representations
is an important way for machines to process
lexical semantics, which attracts much atten-
tion in natural language processing (NLP) in the
past few years (Mikolov et al., 2013; Penning-
ton et al., 2014; Song et al., 2017, 2018b; Song
and Shi, 2018) with respect to its usefulness
in many downstream tasks, e.g., parsing (Chen
and Manning, 2014), machine translation (Zou

∗Equal contribution.

et al., 2013), coreference resolution (Lee et al.,
2018), etc. Conventional word embeddings, e.g.,
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), leverage the co-occurrence
information among words to train a unified em-
bedding for each word. Such models are popu-
lar and the resulting embeddings are widely used
owing to their effectiveness and simplicity. How-
ever, these embeddings are not helpful for scenar-
ios requiring words functionalizing separately un-
der different situations, where selectional prefer-
ence (SP) (Wilks, 1975) is a typical scenario.

In general, SP refers to that, given a word (pred-
icate) and a dependency relation, human beings
have certain preferences for the words (arguments)
connecting to it. Such preferences are usually
carried in dependency syntactic relations, for ex-
ample, the verb ‘sing’ has plausible object words
‘song’ or ‘rhythm’ rather than other nouns such as
‘house’ or ‘potato’. With such characteristic, SP is
proven to be important in natural language under-
standing for many cases and widely applied over
a variety of NLP tasks, e.g., sense disambigua-
tion (Resnik, 1997), semantic role classification
(Zapirain et al., 2013), and coreference resolution
(Hobbs, 1978; Zhang et al., 2019b,c), etc.

Conventional SP acquisition methods are ei-
ther based on counting (Resnik, 1997) or com-
plex neural network (de Cruys, 2014), and the SP
knowledge acquired in either way can not be di-
rectly leveraged into downstream tasks. On the
other hand, the information captured by word em-
beddings can be seamlessly used in downstream
tasks, which makes embedding a potential solu-
tion for the aforementioned problem. However,
conventional word embeddings using one unified
embedding for each word are not able to dis-
tinguish different relations types (such as vari-
ous syntactic relations, which is crucial for SP)
among words. For example, such embeddings
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Figure 1: Illustration of the multiplex embeddings for
‘sing’ and ‘song’. Black arrows present center embed-
dings for words’ overall semantics; blue and green ar-
rows refer to words’ relational embeddings for relation-
dependent semantics. All relational embeddings for
each word are designed to near its center embedding.
nsubj and dobj relations are used as examples.

treat ‘food’ and ‘eat’ as highly relevant words
but never distinguish the function of ‘food’ to be
a subject or an object to ‘eat’. To address this
problem, the dependency-based embedding model
(Levy and Goldberg, 2014) is proposed to treat
a word through separate ones, e.g., ‘food@dobj’
and ‘food@nsubj’, under different syntactic rela-
tions, with the skip-gram (Mikolov et al., 2013)
model being used to train the final embeddings.
However, this method is limited in two aspects.
First, sparseness is introduced because each word
is treated as two irrelevant ones (e.g., ‘food@dobj’
and ‘food@nsubj’), so that the overall quality of
learned embeddings is affected. Second, the re-
sulting embedding size is too large1, which is not
appropriate either for storage or usage.

Therefore, in this paper, we propose a multiplex
word embedding (MWE) model, which can be
easily extended to various relations between two
words. A multiplex network embedding model
was originally proposed for modeling multiple re-
lations among people in a social network (Zhang
et al., 2018). Interestingly, we found it also use-
ful in capturing various relations among different
words. One example is shown in Figure 1. ‘sing’
and ‘song’ are highly related to each other with the
‘predicate-objective’ rather than the ’predicate-
subject’ relation. In our model, each word has
a group of embeddings, including a center em-
bedding representing its general semantics, and

1Assuming one has 200,000 words in the vocabulary and
20 dependency relations, and follow conventional approaches
(Mikolov et al., 2013; Pennington et al., 2014) to set the em-
bedding dimension to 300, the resulting embedding size will
be about 10 Gigabytes.

several embeddings representing their relation-
dependent semantics. To ensure that the embed-
dings of the same word (under different relations)
are similar to each other, we limit the Euclidean
norm of relation-dependent embeddings within a
small range, as shown in Figure 1. Moreover, con-
sidering that there could be many relations among
words, if using a conventional dimension setting
for embeddings to encode relations, the overall
embedding size would be too big to be used in
downstream tasks. To deal with it, we propose to
use a small dimension for relation-dependent em-
beddings and use a transformation matrix for each
relation to project them into the same space of the
center embeddings. Thus the two types of embed-
dings can be jointly trained and the quality of the
relation-dependent ones are guaranteed.

Experiments are conducted on SP acquisition
over different dependency relations to evaluate
whether the learned embeddings effectively cap-
ture words’ semantics over these relations. In ad-
dition, the word similarity measurement is used
to assess how well words’ general semantics are
learned in our model. Both evaluations confirm
the superiority of our model, where the SP in-
formation is effectively preserved and the words’
overall semantics are enhanced. Particularly, fur-
ther analysis also indicates that our MWE embed-
dings are more powerful than all existing embed-
ding methods in SP acquisition with around 1/20
in their size comparing to previous embeddings
(Levy and Goldberg, 2014). All code and resulting
embeddings are available at: https://github.com/
HKUST-KnowComp/MWE.

2 Multiplex Word Embeddings

2.1 Model Overview

As introduced in Section 1, encoding selectional
preference information into embeddings can be
conducted by modeling word association patterns
under different dependency relations. Similar to
(Levy and Goldberg, 2014), the proposed MWE
model also distinguishes different relations among
words and learns separate embeddings for them on
each dependency edge.

Formally, let W be the vocabulary set contain-
ing n words w1, w2, ..., wn andR the relations set
containing m relations r1, r2, ..., rm, the proposed
model is expected to produce m + 1 embeddings
for each word, where there are m relational em-
beddings representing relations and a center em-

https://github.com/HKUST-KnowComp/MWE
https://github.com/HKUST-KnowComp/MWE
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bedding c for the general semantics. Particularly,
each relational embedding has an overall and a lo-
cal version, denoted as v and u, where u records
the difference between v and c. For both the re-
lational embeddings (v and u) and the center em-
bedding, we use a similar way as that in word2vec
(Mikolov et al., 2013) that each one has two vari-
ants to represent the semantics of a word w being
the head or tail in different relations. We denote
the head and tail embeddings as ur

h,w ∈ Rs and
ur
t,w ∈ Rs for the local embeddings of word w un-

der relation type r and cw,h ∈ Rd and cw,t ∈ Rd

for the center embedding, respectively, where s is
the dimension for u and d the dimension for c.

Although learning on similar information as
that in (Levy and Goldberg, 2014), to reduce the
sparseness of introducing m relational embed-
dings for each word, we do not treat each word as
multiple separate prototypes. Instead, we use its
center embedding to transfer information among
different relations and the sum of the center em-
bedding and a local embedding to represent the
final embedding for the corresponding relation2.
Moreover, considering there are various relations
among words, we use a lower dimension s for stor-
age compression, with s < d. Thus, a transforma-
tion matrix X is introduced to transform u into the
same vector space of c. As a result, the final em-
beddings v for head and tail of w under relation r
are formulated as:

vr
h,w = ch,w +Xr

h
Tur

h,w,

vr
t,w = ct,w +Xr

t
Tur

t,w.
(1)

2.2 Learning the MWE model

To train vr
h,w and vr

t,w for each w under r, we
adopt the negative sampling strategy to conduct
the learning process. Specifically, for each r, we
use a relation tuple set Tr, with each tuple t =
(wh, r, wt) ∈ Tr, where wh is the head word and
wt the tail word. For each t, we randomly gen-
erate two negative tuples by replacing wh and wt

with the randomly selected fake head w′h and tail
w′t respectively. Then the learning process is ex-
pected to distinguish the positive tuple against the

2 Conceptually shown in Figure 1, to ensure the resulting
final embeddings not too far away from the center embed-
dings, we add restriction to the Euclidean norm of the local
relational embeddings.

negative ones. Therefore, formally, we maximize

J =
1

|Tr|
∑
t∈Tr

log
ef(wh,r,wt)

ef(wh,r,wt) + ef(wh,r,w′
t) + ef(w

′
h
,r,wt)

,

(2)

over all tuples in Tr for each r, with f(·) evalu-
ating wh and wt being positive samples under r
through

f(wh, r, wt) = vr
h,wh

> · vr
t,wt

. (3)

For each (wh, wt), we use cross entropy as the
loss function

E =− log σ(vr
h,wh

> · vr
t,wt

)− log σ(−vr
h,wh

> · vr
t,w′

t
)

− log σ(−vr
h,w′

h

> · vr
t,wt

),

(4)

to measure the learning effect for Eq. (2), with σ
denoting the sigmoid function.

Combined with Eq. (1), the training process is
thus to update c, ur, and Xr with the gradients
passed from the loss function using stochastic gra-
dient descent (SGD).

In detail, take wh as an example, its center em-
bedding ch,wh

is updated by

ch,wh
= ch,wh

− λ · η · ∂E

∂vr
h,wh

= ch,wh
− λ · η · e(wh, wt) · vr

t,wt
,

(5)

where e(wh, wt) = σ(erh,wh

>·ert,wt
)−tk, with tk =

1 if (wh, wt) is positive sample and tk = 0 for
negative ones. η is the discounting learning rate. λ
is an alternating weight to control the contribution
of the gradient, ranging from 0 to 1.

Moreover, Xr and ur are updated as follows:

ur
h,wh

= ur
h,wh

− (1− λ) · η · ∂E

∂vr
h,wh

·
∂Xr

hu
r
h,wh

∂ur
h,wh

= ur
h,wh

− (1− λ) · η · e(wh, wt) ·Xr
h · vr

t,wt
,
(6)

Xr
h = Xr

h − (1− λ) · η · ∂E

∂vr
h,wh

·
∂Xr

hu
r
h,wh

∂Xr
h

= Xr
h − (1− λ) · η · e(wh, wt) · ur

h,wh
· vr

t,wt
,

(7)

Meanwhile, ct,wt , u
r
t,wt

, and Xr
t are updated in

the same way of ch,wh
, ur

h,wh
, and Xr

h following
Eqs. (5), (6), and (7).

The above learning process is conducted on all
m relations at the same time. During the train-
ing, the Euclidean norm of XTu for all embed-
dings is constrained to have a maximum semantic
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Algorithm 1 Multiplex Word Embedding
Input: Relation specific tuple sets T1, . . . , Tm, d,
s, a, and η.
Output: cw, ur

w, and Xr.
Initialize cw, ui

w and Xi randomly.
for Each Iteration k do

Update λ.
for Each tuple tp = (wh, r, wt) ∈ Tr do

Randomly generate the two negative ex-
amples tn1 = (w′h, r, wt) and tn2 = (wh,
r, w′t).
Ttmp = [tp, tn1, tn2]
for t ∈ Ttmp do

e(wh, wt) = σ(v′h,wh

T · vit,nt
)− tk

Update ch,wh
, ur

h,wh
, Xr

h, ct,wt , u
r
t,wt

,
and Xr

t based on Eqs. (5), 6), and (7).
if ‖Xr

h
Tur

h,wh
‖ > a then

Update Xr
h and ur

h,wh
.

end
if ‖Xr

t
Tur

t,wt
‖ > a then

Update Xr
t and ur

t,wt
.

end
end

end
end

drifting range a, whose value controls the distance
between the local relational embeddings and the
center embedding. Specifically, if ‖XTu‖ equals
to a′, which is greater than a, we scale down XT

and u with
√
a′ · 1

ka , where k is a scaling parame-
ter set to 0.8 throughout this work.

The learning processing is summarized in Al-
gorithm 1. For complexity analysis, it is obvious
drawn that m relation types and n words result in
O(mn) and O((d+ s ∗m) ∗n) for time and space
complexities, respectively.

2.3 The Alternating Optimization Strategy

To balance the learning process between the over-
all semantics and the relation-specific informa-
tion, we adopt an alternating optimization strat-
egy3 (Bezdek and Hathaway, 2003) to adjust λ
based on different stage of the training instead of
using a fixed weight for λ. Specifically, consid-
ering c is more reliable and possesses more infor-
mation while u is learned with shared c, we alter-

3Alternating optimization was originally proposed to train
different parameters in a sequential manner and applied in
various areas.

natively update c and u upon the convergence of
c. As a result, we set λ to 1 in the first half of the
training process and 0 afterwards.

3 Experiments

Experiments are conducted to evaluate how our
embeddings are performed on SP acquisition and
word similarity measurement.

3.1 Implementation Details
We use the English Wikipedia4 as the training cor-
pus. The Stanford parser5 is used to obtain depen-
dency relations among words. For the fair com-
parison, we follow existing work and set d = 300,
s = 10, and a = 1. Following (Keller and La-
pata, 2003) and (de Cruys, 2014), we select three
dependency relations (nsubj, dobj, and amod) as
follows:

• nsubj: The preference of subject for a given
verb. For example, it is plausible to say ‘dog
barks’ rather than ‘stone barks’. The verb is
viewed as the predicate (head) while the subject
as the argument (tail).

• dobj: The preference of object for a given verb.
For example, it is plausible for ‘eat food’ rather
than ‘eat house’. The verb is viewed as the pred-
icate (head) while the object as the argument
(tail).

• amod: The preference of modifier for a given
noun. For example, it is plausible to say ‘fresh
air’ rather than ‘solid air’. The noun is viewed
as the predicate (head) while the adjective as the
argument (tail).

3.2 Baselines
We first compare the proposed multiplex embed-
ding with the following embedding models. As
it is trivial to apply these embedding models in
downstream tasks, we label these models as down-
stream friendly.

• word2vec, the embedding model proposed by
Mikolov et al. (2013). We use the skip-gram
model for this baseline.

• GloVe (Pennington et al., 2014), learning word
embeddings by matrix decomposition on word
co-occurrences.
4https://dumps.wikipedia.org/enwiki/
5https://stanfordnlp.github.io/CoreNLP/
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Model Downstream
Keller SP-10K

dobj amod average nsubj dobj amod average

word2vec Friendly 0.29 0.28 0.29 0.32 0.53 0.62 0.49
GloVe Friendly 0.37 0.32 0.35 0.57 0.60 0.68 0.62
D-embeddings Friendly 0.19 0.22 0.21 0.66 0.71 0.77 0.71

ELMo Friendly 0.23 0.06 0.15 0.09 0.29 0.38 0.25
BERT (static) Friendly 0.11 0.05 0.08 0.25 0.32 0.27 0.28
BERT (dynamic) Friendly 0.19 0.23 0.21 0.35 0.45 0.51 0.41

PP Unfriendly 0.66 0.26 0.46 0.75 0.74 0.75 0.75
DS Unfriendly 0.53 0.32 0.43 0.59 0.65 0.67 0.64
NN Unfriendly 0.16 0.13 0.15 0.70 0.68 0.68 0.69

MWE Friendly 0.63 0.43† 0.53† 0.76 0.79† 0.78 0.78†

Table 1: Results on different SP acquisition evaluation sets. As Keller is created based on the PP distribution and has relatively
small size while SP-10K is created based on random sampling and has a much larger size, we treat the performance on SP-10K
as the main evaluation metric. Spearman’s correlation between predicated plausibility and annotations are reported. The best
performing models are denoted with bold font. † indicates statistical significant (p <0.005) overall baseline methods.

• D-embeddings, the model proposed by Levy
and Goldberg (2014) uses a skip-gram frame-
work to encode dependencies into embeddings
with multi-prototypes of words.

To investigate whether the SP knowledge can be
captured by the pretrained contextualized word
embedding models, we also treat following pre-
trained models as baselines.

• ELMo (Peters et al., 2018), a pretrained lan-
guage model with contextual awareness. We use
its static representations of words as the word
embedding.

• BERT (Devlin et al., 2019), a pretrained
bi-directional contextualized word embedding
model with state-of-the-art performance on
many NLP tasks.

Besides those embedding methods, we also
compare with following conventional SP acqui-
sition methods to demonstrate the effectiveness
of the proposed multiplex embedding model, as
it is still unclear how to leverage these methods
in downstream tasks, we label these methods as
downstream unfriendly.

• Posterior Probability (PP) (Resnik, 1997), a
counting based method for the selectional pref-
erence acquisition task.

• Distributional Similarity (DS) (Erk et al.,
2010), a method that uses the similarity of the

SP Evaluation Set #W #P

Keller (Keller and Lapata, 2003) 571 360
SP-10K (Zhang et al., 2019a) 2,500 6,000

Table 2: Statistics of Human-labeled SP Evaluation
Sets. #W and #P indicate the numbers of words and
pairs, respectively. As different datasets have differ-
ent SP relations, we only report statistics about ‘nsubj’,
‘dobj’, and ‘amod’ (if available).

embedding of the target argument and average
embedding of observed golden arguments in the
corpus to predict the preference strength.

• Neural Network (NN) (de Cruys, 2014), an
NN-based method for the SP acquisition task.
This model achieves the state-of-the-art perfor-
mance on the pseudo-disambiguation task.

For word2Vec and GloVe, we use their released
code. For D-embedding, we follow their original
paper using the Gensim package6. The dimen-
sions of the aforementioned embeddings are set to
300 according to their original settings. For ELMo
and BERT, we use their pre-trained models. As
BERT was not originally designed for word level
semantics tasks, for the selectional preference ac-
quisition task, we compare with two variations
of the original BERT model: (1) BERT (static),
which extracts static embedding from the BERT
model in a similar way as that from the ELMo
model; (2) BERT (dynamic), which takes a pair of

6https://radimrehurek.com/gensim/models/word2vec.html
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Model noun verb adjective overall

word2vec 0.41 0.28 0.44 0.38
Glove 0.40 0.22 0.53 0.37

D-embedding 0.41 0.27 0.38 0.36

nsubj

h 0.46 0.29 0.54 0.43
t 0.45 0.25 0.48 0.40

h+t 0.44 0.23 0.50 0.40
[h,t] 0.47 0.27 0.51 0.42

dobj

h 0.46 0.27 0.45 0.41
t 0.45 0.23 0.46 0.40

h+t 0.45 0.20 0.45 0.38
[h,t] 0.46 0.25 0.48 0.42

amod

h 0.47 0.25 0.52 0.37
t 0.46 0.24 0.50 0.38

h+t 0.46 0.24 0.52 0.38
[h,t] 0.47 0.26 0.52 0.38

center

h 0.51 0.33 0.57 0.48
t 0.51 0.30 0.56 0.47

h+t 0.52 0.31 0.54 0.46
[h,t] 0.51 0.32 0.57 0.48

Table 3: Spearman’s correlation of different embeddings for
the WS measurement. ‘nsubj’, ‘dobj’, ‘amod’ represents the
embeddings of the corresponding relation and ‘center’ indi-
cates the center embeddings. h, t, h+t, and [h,t] refer to the
head, tail, sum of two embeddings, and the concatenation of
them, respectively. The best scores are marked in bold fonts.

words as input and produces a plausibility score
for that pairs of words. The main difference be-
tween the static and dynamic version of BERT is
that in the dynamic version, the contextual infor-
mation can be fully utilized, which is more similar
to the training objective of BERT.

3.3 Selectional Preference Acquisition

The first task in our experiment is SP acquisi-
tion. Currently, there are two methods that we can
use to evaluate the quality of extracted SP knowl-
edge: Pseudo-disambiguation (Ritter et al., 2010)
and human labeled datasets (McRae et al., 1998;
Keller and Lapata, 2003). However, as shown in
(Zhang et al., 2019a), pseudo-disambiguation se-
lects positive SP tuples from the corpus and gen-
erate negative SP tuples by randomly replacing
the head/tail. As a result, pseudo-disambiguation
only evaluates how good the model fits the cor-
pus rather than evaluating the SP acquisition mod-
els based on ground truth. Thus, in this sec-
tion, we evaluate different SP acquisition methods
with ground truth (human labeled datasets). Two
representative datasets, Keller (Keller and Lapata,
2003) and SP-10K (Zhang et al., 2019a), are se-
lected as the benchmark datasets.

In each dataset, for each SP relation, various

Model WS Dimension Training Time

ELMo 0.434 512 ≈40
BERT 0.486 768 ≈300

MWE 0.476 300 4.17

Table 4: Comparison of MWE against language models on
the WS task. Overall performance, embedding dimension,
and training time (days) on a single GPU are reported.

word pairs are provided. For each of the word
pairs, the datasets also provide the annotated plau-
sibility score of how likely a preference exists be-
tween that word pair under the corresponding SP
relation. Thus the job for all the models is to pre-
dict the plausibility score for all word pairs under
different SP relation settings. After that, we follow
the conventional setting that uses the Spearman’s
correlation to assess the correspondence between
the predicted plausibility scores and human anno-
tations on all word pairs for all SP relations. The
statistics of these datasets are shown in Table 2.

For embedding based methods (word2vec,
GloVe, D-embedding7, and MWE8), we follow
previous work (Mikolov et al., 2013; Levy and
Goldberg, 2014) and use the cosine similarity be-
tween embeddings of head and tail words to pre-
dict their relations. For conventional SP acquisi-
tion methods (PP, DS, and NN), we follow their
original paper to compute the plausibility scores.

The experimental results are shown in Table 1.
As Keller is created based on the PP distribution
and have relatively small size while SP-10K is cre-
ated based on random sampling and has a much
larger size, we treat the performance on SP-10K
as the major evaluation. Our embeddings signifi-
cantly outperform other baselines, especially em-
bedding based baselines. The only exception is
PP on the Keller dataset due to its biased distribu-
tion. In addition, there are other interesting obser-
vations. First, compared with ‘dobj’ and ‘nsubj’,
‘amod’ is simpler for word2vec and GloVe. The
reason behind is that conventional embeddings
only capture the co-occurrence information, which
is enough to predict the selectional preference of

7For D-embedding, since it provides embeddings for dif-
ferent relations (e.g., ‘food@nsubj’, ‘food@dobj), we follow
their work and directly use embeddings over certain relations
to predict the score for the tested pairs. For example, given
the test tuple (‘eat’, dobj, ‘food’), we compute the cosine sim-
ilarity of ‘eat’ and ‘food@dobj’ rather than ‘food@subj’.

8For the proposed model MWE, we use the cosine simi-
larity between vh,wh and vt,wt as the predicted plausibility.
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Figure 2: Effect of the different s on SP acquisition
(SP-10K) and WS tasks.

‘amod’ rather than ‘nsubj’ or ‘dobj’9. Second,
even though large-scale contextualized word em-
bedding models like ELMo and BERT have been
proved useful in many other tasks, they are still
limited in learning specific and detailed seman-
tics and thus perform inferior to our model in the
SP acquisition task. For Example, ELMo and
BERT can know that there is a strong semantic
connection between ‘eat’ and ‘food’, but they do
not know whether ‘food’ is a plausible subject
or object of ‘eat’. Third, surprisingly, although
NN achieves the state-of-the-art performance on
the pseudo-disambiguation task, its performance
is not satisfying against human annotation, espe-
cially on Keller, which is probably because the NN
model overfits the training data, whose distribu-
tion is different from human SP knowledge.

3.4 Word Similarity Measurement
In addition to SP acquisition, we also evaluate
our embeddings on word similarity (WS) mea-
surement to test whether the learned embedding
can effectively capture the overall semantics. We
use SimLex-999 (Hill et al., 2015) as the evalua-
tion dataset for this task because it contains dif-
ferent word types, i.e., 666 noun pairs, 222 verb
pairs, and 111 adjective pairs. We follow the con-
ventional setting that uses the Spearman’s correla-
tion to assess the correspondence between the sim-
ilarity scores and human annotations on all word
pairs. Evaluations are conducted on the final em-
beddings v for each relation and the center ones.

Results are reported in Table 3 with several ob-
servations. First, our model achieves the best over-
all performance and significantly better on nouns,
which can be explained by that nouns appear in all

9The only possible SP relation between nouns and adjec-
tives is ‘amod’, while multiple SP relations could exist be-
tween nouns and verbs, and co occurrence information can-
not effectively distinguish them.

Figure 3: Effect of different a on SP acquisition (SP-
10K) and WS tasks.

three relations while most of the verbs and adjec-
tives only appear in one or two relations. This re-
sult is promising since it is analyzed by Solovyev
et al. (2017) that two-thirds of the frequent
words are nouns; thus there are potential benefits
if our embeddings are used in downstream NLP
tasks. Second, the center embeddings achieve the
best performance against all the other relation-
dependent embeddings, which demonstrates the
effectiveness of our model in learning relation-
dependent information over words and also en-
hancing their overall semantics.

We also compare MWE with pre-trained con-
textualized word embedding models in Table 4
for this task, with overall performance, embed-
ding dimensions, and training times reported. It
is observed that that MWE outperforms ELMo
and achieves comparable results with BERT with
smaller embedding dimension and much less
training complexities.

4 Analysis

With the experiments on SP acquisition and word
similarity measurement, we conduct further analy-
sis for different settings for hyper-parameters and
learning strategies, as well as the scalability of our
model.

4.1 Effect of the Local Embedding Dimension
We investigating the performance of MWE on
SPA (SP acquisition) and WS tasks with different
s. As shown in Figure 2, the performance of our
model is in an increasing trend when we increase
the value of s. When the dimension reaches 10, the
performance almost reaches the top, which con-
firms that the local relational embeddings can be
effective in small dimensions (about 1/30 of the
center dimension) when using center embeddings
as the constraint.
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Training Strategy Averaged SPA Overall WS

λ = 1 0.762 0.476
λ = 0 0.073 0.018
λ = 0.5 0.493 0.323

Alternating optimization 0.775 0.476

Table 5: Comparisons of different training strategies.

4.2 Effect of the Semantic Drifting Range

Similar to s, we also investigate the model perfor-
mance with the influence of different constraint a.
It is observed in Figure 3 that, the constraint gets
looser with the increase of a. For SP acquisition,
in a small range, the model performance grad-
ually improves along with the increasing value
of a because these embeddings are more flexible
to capture intense relation-dependent information.
However, once the range passes a threshold (1 in
our experiment), the embeddings get farther away
from their general semantics and start to overfit,
which is also observed in the WS experiment, and
thus the performance drops monotonically.

4.3 Effect of Alternating Optimization

An analysis is also conducted to demonstrate the
effectiveness of the alternating optimization strat-
egy. As shown in Table 5, we compare our model
with several different strategies. The first one is
to put all weights to the center embedding (fix
λ to 1), which never updates the local relational
embeddings. As a result, it can achieve similar
performance on word similarity measurement but
is inferior in SP acquisition because no relation-
dependent information is preserved. The second
strategy is to put all weights to the local relational
embeddings (fix λ to 0). In this case, it performs
very poor owing to the loss of general semantics.
Last but not least, the alternating optimization also
outperforms the setting with a fixed λ = 0.5,
which can be explained by alternating optimiza-
tion can first get a good overall semantic represen-
tation and then acquire the SP knowledge on top
of that. To summarize, the alternating optimiza-
tion provides an effective solution to training our
model with a smart process in adjusting the con-
tribution of different embeddings as well as stabi-
lizing their optimization.

4.4 Scalability

Scalability of embeddings is an important factor
in real applications. Practically, GPU or similar

Figure 4: Scalability on embedding size against num-
ber of words.

computation support is required to accommodate
embeddings to applying neural models. Normally,
the current most affordable GPUs typically have
a memory size limitation around 10 GB. Thus,
to ensure the learned embeddings can be used in
downstream tasks, their size becomes an impor-
tant concern when evaluating different embedding
models, especially when there exist many different
relations between words in our model.

Assuming that there are 20 relations among
words, the size of all embedding models with the
increasing word numbers in Figure 4. word2Vec
and GloVe have the smallest size because they
only train one embedding for each word while sac-
rificing the relation-dependent information among
them. As a comparison, D-embeddings are trained
on multiple prototypes for each word to record re-
lation information, thus their size dramatically ex-
plodes with the increasing of the vocabulary. Con-
sequently, it is easily computed for D-embeddings
that 200,000 words will result in a 10GB model,
which is unfeasible to be used in downstream
tasks. Effectively with the small dimension for our
local relational embeddings, relation information
can be preserved in a small-sized model, which
shows a compatible space requirement with the
conventional embeddings.

5 Related Work

Learning word embeddings has become an impor-
tant research topic in NLP (Bengio et al., 2003;
Turney and Pantel, 2010; Collobert et al., 2011;
Song and Shi, 2018), with the capability of embed-
dings demonstrated in different languages (Song
et al., 2018a) and tasks such as parsing (Chen and
Manning, 2014), machine translation (Zou et al.,
2013), coreference resolution (Lee et al., 2018),
etc. Conventional word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) often leverage
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word co-occurrence patterns, resulting in a ma-
jor limitation that they coalesce different relation-
ships between words into a single vector space. To
address this limitation, dependency-based embed-
ding model (Levy and Goldberg, 2014) was pro-
posed to represent each word with several separate
embeddings, and then suffers from its sparseness
and the huge size of the resulting embeddings. Al-
ternatively, our MWE model uses a set of (con-
strained and small) embeddings for each word to
encode its general and relation-dependent seman-
tics to resolve the sparseness and the size problem.

Another line of work related to this paper is
the research on SP, which is considered important
in language understanding and has been proved
helpful in various downstream tasks (Tang et al.,
2016; Resnik, 1997; Hobbs, 1978; Inoue et al.,
2016; Zapirain et al., 2013). Several studies at-
tempted to acquire SP automatically from raw cor-
pora (Resnik, 1997; Rooth et al., 1999; Erk et al.,
2010; Santus et al., 2017). However, they are de-
signed specifically for SP acquisition and are lim-
ited in leveraging SP knowledge for downstream
tasks. Compared to them, the learned embeddings
from our model are useful resources that incorpo-
rate SP knowledge and can be seamlessly lever-
aged in other NLP models.

6 Conclusion

In this paper, we present a multiplex word embed-
ding model encoding selectional preference infor-
mation from word dependency relations. Differ-
ent from conventional embeddings, for each word,
we proposed to use a set of embeddings to rep-
resent its general (center embedding) and relation-
dependent (local relational embedding) semantics,
where their combination present the final embed-
ding for each word under particular relations. Ex-
periments on SP acquisition and word similarity
measurement illustrated that our model better en-
codes SP knowledge than different baselines with-
out harming its capability in representing general
semantics. Analysis is also conducted with respect
to different settings and optimization strategies, as
well as the effect of model size, which further il-
lustrates the validity and effectiveness of the pro-
posed model and its learning process.
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