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Abstract

Knowledge graphs are structured representa-
tions of real world facts. However, they typ-
ically contain only a small subset of all pos-
sible facts. Link prediction is a task of infer-
ring missing facts based on existing ones. We
propose TuckER, a relatively straightforward
but powerful linear model based on Tucker
decomposition of the binary tensor represen-
tation of knowledge graph triples. TuckER
outperforms previous state-of-the-art models
across standard link prediction datasets, act-
ing as a strong baseline for more elaborate
models. We show that TuckER is a fully ex-
pressive model, derive sufficient bounds on its
embedding dimensionalities and demonstrate
that several previously introduced linear mod-
els can be viewed as special cases of TuckER.

1 Introduction

Vast amounts of information available in the world
can be represented succinctly as entities and rela-
tions between them. Knowledge graphs are large,
graph-structured databases which store facts in
triple form (es, r, eo), with es and eo representing
subject and object entities and r a relation. How-
ever, far from all available information is currently
stored in existing knowledge graphs and manually
adding new information is costly, which creates
the need for algorithms that are able to automat-
ically infer missing facts.

Knowledge graphs can be represented as a
third-order binary tensor, where each element cor-
responds to a triple, 1 indicating a true fact and 0
indicating the unknown (either a false or a miss-
ing fact). The task of link prediction is to predict
whether two entities are related, based on known
facts already present in a knowledge graph, i.e. to
infer which of the 0 entries in the tensor are indeed
false, and which are missing but actually true.

A large number of approaches to link prediction
so far have been linear, based on various meth-
ods of factorizing the third-order binary tensor
(Nickel et al., 2011; Yang et al., 2015; Trouillon
et al., 2016; Kazemi and Poole, 2018). Recently,
state-of-the-art results have been achieved using
non-linear convolutional models (Dettmers et al.,
2018; Balažević et al., 2019). Despite achieving
very good performance, the fundamental problem
with deep, non-linear models is that they are non-
transparent and poorly understood, as opposed to
more mathematically principled and widely stud-
ied tensor decomposition models.

In this paper, we introduce TuckER (E stands
for entities, R for relations), a straightforward
linear model for link prediction on knowledge
graphs, based on Tucker decomposition (Tucker,
1966) of the binary tensor of triples, acting as a
strong baseline for more elaborate models. Tucker
decomposition, used widely in machine learning
(Schein et al., 2016; Ben-Younes et al., 2017; Yang
and Hospedales, 2017), factorizes a tensor into
a core tensor multiplied by a matrix along each
mode. It can be thought of as a form of higher-
order SVD in the special case where matrices are
orthogonal and the core tensor is “all-orthogonal”
(Kroonenberg and De Leeuw, 1980). In our case,
rows of the matrices contain entity and relation
embeddings, while entries of the core tensor deter-
mine the level of interaction between them. Sub-
ject and object entity embedding matrices are as-
sumed equivalent, i.e. we make no distinction be-
tween the embeddings of an entity depending on
whether it appears as a subject or as an object in a
particular triple. Due to the low rank of the core
tensor, TuckER benefits from multi-task learning
by parameter sharing across relations.

A link prediction model should have enough ex-
pressive power to represent all relation types (e.g.
symmetric, asymmetric, transitive). We thus show
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that TuckER is fully expressive, i.e. given any
ground truth over the triples, there exists an as-
signment of values to the entity and relation em-
beddings that accurately separates the true triples
from false ones. We also derive a dimensionality
bound which guarantees full expressiveness.

Finally, we show that several previous state-
of-the-art linear models, RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), ComplEx
(Trouillon et al., 2016) and SimplE (Kazemi and
Poole, 2018), are special cases of TuckER.

In summary, key contributions of this paper are:

• proposing TuckER, a new linear model for
link prediction on knowledge graphs, that is
simple, expressive and achieves state-of-the-
art results across all standard datasets;
• proving that TuckER is fully expressive and

deriving a bound on the embedding dimen-
sionality for full expressiveness; and
• showing how TuckER subsumes several pre-

viously proposed tensor factorization ap-
proaches to link prediction.

2 Related Work

Several linear models for link prediction have pre-
viously been proposed:
RESCAL (Nickel et al., 2011) optimizes a scor-
ing function containing a bilinear product between
subject and object entity vectors and a full rank
relation matrix. Although a very expressive and
powerful model, RESCAL is prone to overfitting
due to its large number of parameters, which in-
creases quadratically in the embedding dimension
with the number of relations in a knowledge graph.
DistMult (Yang et al., 2015) is a special case
of RESCAL with a diagonal matrix per relation,
which reduces overfitting. However, the linear
transformation performed on entity embedding
vectors in DistMult is limited to a stretch. The
binary tensor learned by DistMult is symmetric in
the subject and object entity mode and thus Dist-
Mult cannot model asymmetric relations.
ComplEx (Trouillon et al., 2016) extends Dist-
Mult to the complex domain. Subject and object
entity embeddings for the same entity are complex
conjugates, which introduces asymmetry into the
tensor decomposition and thus enables ComplEx
to model asymmetric relations.
SimplE (Kazemi and Poole, 2018) is based on
Canonical Polyadic (CP) decomposition (Hitch-
cock, 1927), in which subject and object entity

embeddings for the same entity are independent
(note that DistMult is a special case of CP). Sim-
plE’s scoring function alters CP to make subject
and object entity embedding vectors dependent on
each other by computing the average of two terms,
first of which is a bilinear product of the subject
entity head embedding, relation embedding and
object entity tail embedding and the second is a
bilinear product of the object entity head embed-
ding, inverse relation embedding and subject en-
tity tail embedding.

Recently, state-of-the-art results have been
achieved with non-linear models:
ConvE (Dettmers et al., 2018) performs a global
2D convolution operation on the subject entity
and relation embedding vectors, after they are re-
shaped to matrices and concatenated. The ob-
tained feature maps are flattened, transformed
through a linear layer, and the inner product is
taken with all object entity vectors to generate a
score for each triple. Whilst results achieved by
ConvE are impressive, its reshaping and concate-
nating of vectors as well as using 2D convolution
on word embeddings is unintuitive.
HypER (Balažević et al., 2019) is a simplified
convolutional model, that uses a hypernetwork to
generate 1D convolutional filters for each relation,
extracting relation-specific features from subject
entity embeddings. The authors show that convo-
lution is a way of introducing sparsity and param-
eter tying and that HypER can be understood in
terms of tensor factorization up to a non-linearity,
thus placing HypER closer to the well established
family of factorization models. The drawback of
HypER is that it sets most elements of the core
weight tensor to 0, which amounts to hard regular-
ization, rather than letting the model learn which
parameters to use via soft regularization.

Scoring functions of all models described above
and TuckER are summarized in Table 1.

3 Background

Let E denote the set of all entities andR the set of
all relations present in a knowledge graph. A triple
is represented as (es, r, eo), with es, eo ∈ E de-
noting subject and object entities respectively and
r ∈ R the relation between them.

3.1 Link Prediction

In link prediction, we are given a subset of all true
triples and the aim is to learn a scoring function φ
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Model Scoring Function Relation Parameters Space Complexity

RESCAL (Nickel et al., 2011) e>s Wreo Wr ∈ Rde
2 O(nede + nrd

2
r)

DistMult (Yang et al., 2015) 〈es,wr, eo〉 wr ∈ Rde O(nede + nrde)
ComplEx (Trouillon et al., 2016) Re(〈es,wr, eo〉) wr ∈ Cde O(nede + nrde)
ConvE (Dettmers et al., 2018) f(vec(f([es;wr] ∗ w))W)eo wr ∈ Rdr O(nede + nrdr)
SimplE (Kazemi and Poole, 2018) 1

2(〈hes ,wr, teo〉+ 〈heo ,wr−1 , tes〉) wr ∈ Rde O(nede + nrde)
HypER (Balažević et al., 2019) f(vec(es ∗ vec−1(wrH))W)eo wr ∈ Rdr O(nede + nrdr)
TuckER (ours) W ×1 es ×2 wr ×3 eo wr ∈ Rdr O(nede + nrdr)

Table 1: Scoring functions of state-of-the-art link prediction models, the dimensionality of their relation param-
eters, and significant terms of their space complexity. de and dr are the dimensionalities of entity and relation
embeddings, while ne and nr denote the number of entities and relations respectively. eo ∈ Cde is the complex
conjugate of eo, es,wr ∈ Rdw×dh denote a 2D reshaping of es and wr respectively, hes , tes ∈ Rde are the head
and tail entity embedding of entity es, and wr−1 ∈ Rdr is the embedding of relation r−1 (which is the inverse of
relation r). ∗ is the convolution operator, 〈·〉 denotes the dot product and ×n denotes the tensor product along the
n-th mode, f is a non-linear function, andW ∈ Rde×de×dr is the core tensor of a Tucker decomposition.

that assigns a score s = φ(es, r, eo) ∈ R which
indicates whether a triple is true, with the ultimate
goal of being able to correctly score all missing
triples. The scoring function is either a specific
form of tensor factorization in the case of linear
models or a more complex (deep) neural network
architecture for non-linear models. Typically, a
positive score for a particular triple indicates a true
fact predicted by the model, while a negative score
indicates a false one. With most recent models, a
non-linearity such as the logistic sigmoid function
is typically applied to the score to give a corre-
sponding probability prediction p = σ(s) ∈ [0, 1]
as to whether a certain fact is true.

3.2 Tucker Decomposition
Tucker decomposition, named after Ledyard R.
Tucker (Tucker, 1964), decomposes a tensor into
a set of matrices and a smaller core tensor. In a
three-mode case, given the original tensor X ∈
RI×J×K , Tucker decomposition outputs a tensor
Z ∈ RP×Q×R and three matrices A ∈ RI×P ,
B ∈ RJ×Q, C ∈ RK×R:

X ≈ Z ×1 A×2 B×3 C, (1)

with ×n indicating the tensor product along the n-
th mode. Factor matrices A, B and C, when or-
thogonal, can be thought of as the principal com-
ponents in each mode. Elements of the core tensor
Z show the level of interaction between the differ-
ent components. Typically, P , Q, R are smaller
than I , J , K respectively, so Z can be thought of
as a compressed version of X . Tucker decomposi-
tion is not unique, i.e. we can transformZ without
affecting the fit if we apply the inverse transforma-
tion to A, B and C (Kolda and Bader, 2009).

4 Tucker Decomposition for Link
Prediction

We propose a model that uses Tucker decomposi-
tion for link prediction on the binary tensor rep-
resentation of a knowledge graph, with entity em-
bedding matrix E that is equivalent for subject and
object entities, i.e. E = A = C ∈ Rne×de and
relation embedding matrix R = B ∈ Rnr×dr ,
where ne and nr represent the number of entities
and relations and de and dr the dimensionality of
entity and relation embedding vectors.

W

de

de

dr

es

eo

wr

Figure 1: Visualization of the TuckER architecture.

We define the scoring function for TuckER as:

φ(es, r, eo) =W ×1 es ×2 wr ×3 eo, (2)

where es, eo ∈ Rde are the rows of E representing
the subject and object entity embedding vectors,
wr ∈ Rdr the rows of R representing the relation
embedding vector andW ∈ Rde×dr×de is the core
tensor. We apply logistic sigmoid to each score
φ(es, r, eo) to obtain the predicted probability p of
a triple being true. Visualization of the TuckER
architecture can be seen in Figure 1. As proven in
Section 5.1, TuckER is fully expressive. Further,
its number of parameters increases linearly with
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respect to entity and relation embedding dimen-
sionality de and dr, as the number of entities and
relations increases, since the number of parame-
ters ofW depends only on the entity and relation
embedding dimensionality and not on the number
of entities or relations. By having the core tensor
W , unlike simpler models such as DistMult, Com-
plEx and SimplE, TuckER does not encode all the
learned knowledge into the embeddings; some is
stored in the core tensor and shared between all
entities and relations through multi-task learning.
Rather than learning distinct relation-specific ma-
trices, the core tensor of TuckER can be viewed as
containing a shared pool of “prototype” relation
matrices, which are linearly combined according
to the parameters in each relation embedding.

4.1 Training

Since the logistic sigmoid is applied to the scor-
ing function to approximate the true binary ten-
sor, the implicit underlying tensor is comprised of
−∞ and ∞. Given this prevents an explicit ana-
lytical factorization, we use numerical methods to
train TuckER. We use the standard data augmenta-
tion technique, first used by Dettmers et al. (2018)
and formally described by Lacroix et al. (2018),
of adding reciprocal relations for every triple in
the dataset, i.e. we add (eo, r

−1, es) for every
(es, r, eo). Following the training procedure intro-
duced by Dettmers et al. (2018) to speed up train-
ing, we use 1-N scoring, i.e. we simultaneously
score entity-relation pairs (es, r) and (eo, r

−1)
with all entities eo ∈ E and es ∈ E respec-
tively, in contrast to 1-1 scoring, where individual
triples (es, r, eo) and (eo, r

−1, es) are trained one
at a time. The model is trained to minimize the
Bernoulli negative log-likelihood loss function. A
component of the loss for one entity-relation pair
with all others entities is defined as:

L = − 1
ne

ne∑
i=1

(y(i)log(p(i)) + (1− y(i))log(1− p(i))),

(3)
where p ∈ Rne is the vector of predicted proba-
bilities and y ∈ Rne is the binary label vector.

5 Theoretical Analysis

5.1 Full Expressiveness and Embedding
Dimensionality

A tensor factorization model is fully expressive
if for any ground truth over all entities and rela-
tions, there exist entity and relation embeddings

that accurately separate true triples from the false.
As shown in (Trouillon et al., 2017), ComplEx is
fully expressive with the embedding dimensional-
ity bound de = dr = ne · nr. Similarly to Com-
plEx, Kazemi and Poole (2018) show that SimplE
is fully expressive with entity and relation embed-
dings of size de = dr = min(ne ·nr, γ+1), where
γ represents the number of true facts. They fur-
ther prove other models are not fully expressive:
DistMult, because it cannot model asymmetric re-
lations; and transitive models such as TransE (Bor-
des et al., 2013) and its variants FTransE (Feng
et al., 2016) and STransE (Nguyen et al., 2016),
because of certain contradictions that they impose
between different relation types. By Theorem 1,
we establish the bound on entity and relation em-
bedding dimensionality (i.e. decomposition rank)
that guarantees full expressiveness of TuckER.

Theorem 1. Given any ground truth over a set of
entities E and relations R, there exists a TuckER
model with entity embeddings of dimensionality
de = ne and relation embeddings of dimension-
ality dr = nr, where ne = |E| is the number of
entities and nr = |R| the number of relations, that
accurately represents that ground truth.

Proof. Let es and eo be the ne-dimensional one-
hot binary vector representations of subject and
object entities es and eo respectively and wr the
nr-dimensional one-hot binary vector representa-
tion of relation r. For each subject entity e(i)s , rela-
tion r(j) and object entity e(k)o , we let the i-th, j-th
and k-th element respectively of the corresponding
vectors es, wr and eo be 1 and all other elements
0. Further, we set the ijk element of the tensor
W ∈ Rne×nr×ne to 1 if the fact (es, r, eo) holds
and -1 otherwise. Thus the product of the entity
embeddings and the relation embedding with the
core tensor, after applying the logistic sigmoid, ac-
curately represents the original tensor.

The purpose of Theorem 1 is to prove that
TuckER is capable of potentially capturing all in-
formation (and noise) in the data. In practice
however, we expect the embedding dimensional-
ities needed for full reconstruction of the under-
lying binary tensor to be much smaller than the
bound stated above, since the assignment of val-
ues to the tensor is not random but follows a cer-
tain structure, otherwise nothing unknown could
be predicted. Even more so, low decomposition
rank is actually a desired property of any bilin-
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Figure 2: Constraints imposed on the values of core tensor Z ∈ Rde×de×de for DistMult and Z ∈ R2de×2de×2de

for ComplEx and SimplE. Elements that are set to 0 are represented in white.

ear link prediction model, forcing it to learn that
structure and generalize to new data, rather than
simply memorizing the input. In general, we ex-
pect TuckER to perform better than ComplEx and
SimplE with embeddings of lower dimensionality
due to parameter sharing in the core tensor (shown
empirically in Section 6.4), which could be of im-
portance for efficiency in downstream tasks.

5.2 Relation to Previous Linear Models
Several previous tensor factorization models can
be viewed as a special case of TuckER:
RESCAL (Nickel et al., 2011) Following the
notation introduced in Section 3.2, the RESCAL
scoring function (see Table 1) has the form:

X ≈ Z ×1 A×3 C. (4)
This corresponds to Equation 1 with I = K = ne,
P = R = de, Q = J = nr and B = IJ the J × J
identity matrix. This is also known as Tucker2 de-
composition (Kolda and Bader, 2009). As is the
case with TuckER, the entity embedding matrix of
RESCAL is shared between subject and object en-
tities, i.e. E = A = C ∈ Rne×de and the rela-
tion matrices Wr ∈ Rde×de are the de × de slices
of the core tensor Z . As mentioned in Section 2,
the drawback of RESCAL compared to TuckER is
that its number of parameters grows quadratically
in the entity embedding dimension de as the num-
ber of relations increases.
DistMult (Yang et al., 2015) The scoring func-
tion of DistMult (see Table 1) can be viewed as
equivalent to that of TuckER (see Equation 1) with
a core tensor Z ∈ RP×Q×R, P = Q = R = de,
which is superdiagonal with 1s on the superdiag-
onal, i.e. all elements zpqr with p = q = r are
1 and all the other elements are 0 (as shown in
Figure 2a). Rows of E = A = C ∈ Rne×de

contain subject and object entity embedding vec-
tors es, eo ∈ Rde and rows of R = B ∈ Rnr×de

contain relation embedding vectors wr ∈ Rde . It

is interesting to note that the TuckER interpreta-
tion of the DistMult scoring function, given that
matrices A and C are identical, can alternatively
be interpreted as a special case of CP decomposi-
tion (Hitchcock, 1927), since Tucker decomposi-
tion with a superdiagonal core tensor is equivalent
to CP decomposition. Due to enforced symmetry
in subject and object entity mode, DistMult cannot
learn to represent asymmetric relations.

ComplEx (Trouillon et al., 2016) Bilinear
models represent subject and object entity embed-
dings as vectors es, eo ∈ Rde , relation as a matrix
Wr ∈ Rde×de and the scoring function as a bi-
linear product φ(es, r, eo) = esWreo. It is trivial
to show that both RESCAL and DistMult belong
to the family of bilinear models. As explained by
Kazemi and Poole (2018), ComplEx can be con-
sidered a bilinear model with the real and imagi-
nary part of an embedding for each entity concate-
nated in a single vector, [Re(es); Im(es)] ∈ R2de

for subject, [Re(eo); Im(eo)] ∈ R2de for object,
and a relation matrix Wr ∈ R2de×2de , constrained
so that its leading diagonal contains duplicated
elements of Re(wr), its de-diagonal elements of
Im(wr) and its -de-diagonal elements of -Im(wr),
with all other elements set to 0, where de and -de
represent offsets from the leading diagonal.

Similarly to DistMult, we can regard the scoring
function of ComplEx (see Table 1) as equivalent
to the scoring function of TuckER (see Equation
1), with core tensor Z ∈ RP×Q×R, P = Q =
R = 2de, where 3de elements on different tensor
diagonals are set to 1, de elements on one tensor
diagonal are set to -1 and all other elements are set
to 0 (see Figure 2b). This shows that the scoring
function of ComplEx, which computes a bilinear
product with complex entity and relation embed-
dings and disregards the imaginary part of the ob-
tained result, is equivalent to a hard regularization
of the core tensor of TuckER in the real domain.



5190

SimplE (Kazemi and Poole, 2018) The authors
show that SimplE belongs to the family of bilinear
models by concatenating embeddings for head and
tail entities for both subject and object into vec-
tors [hes ; tes ] ∈ R2de and [heo ; teo ] ∈ R2de and
constraining the relation matrix Wr ∈ R2de×2de

so that it contains the relation embedding vector
1
2wr on its de-diagonal and the inverse relation
embedding vector 1

2wr−1 on its -de-diagonal and
0s elsewhere. The SimplE scoring function (see
Table 1) is therefore equivalent to that of TuckER
(see Equation 1), with core tensor Z ∈ RP×Q×R,
P = Q = R = 2de, where 2de elements on two
tensor diagonals are set to 1

2 and all other elements
are set to 0 (see Figure 2c).

5.3 Representing Asymmetric Relations
Each relation in a knowledge graph can be charac-
terized by a certain set of properties, such as sym-
metry, reflexivity, transitivity. So far, there have
been two possible ways in which linear link pre-
diction models introduce asymmetry into factor-
ization of the binary tensor of triples:
• distinct (although possibly related) embed-

dings for subject and object entities and a di-
agonal matrix (or equivalently a vector) for
each relation, as is the case with models such
as ComplEx and SimplE; or

• equivalent subject and object entity embed-
dings and each relation represented by a full
rank matrix, which is the case with RESCAL.

The latter approach appears more intuitive, since
asymmetry is a property of the relation, rather
than the entities. However, the drawback of the
latter approach is quadratic growth of parameter
number with the number of relations, which of-
ten leads to overfitting, especially for relations
with a small number of training triples. TuckER
overcomes this by representing relations as vec-
tors wr, which makes the parameter number grow
linearly with the number of relations, while still
keeping the desirable property of allowing rela-
tions to be asymmetric by having an asymmetric
relation-agnostic core tensor W , rather than en-
coding the relation-specific information in the en-
tity embeddings. Multiplying W ∈ Rde×dr×de

with wr ∈ Rdr along the second mode, we obtain
a full rank relation-specific matrix Wr ∈ Rde×de ,
which can perform all possible linear transforma-
tions on the entity embeddings, i.e. rotation, re-
flection or stretch, and is thus also capable of

modeling asymmetry. Regardless of what kind of
transformation is needed for modeling a particu-
lar relation, TuckER can learn it from the data.
To demonstrate this, we show sample heatmaps of
learned relation matrices Wr for a WordNet sym-
metric relation “derivationally related form” and
an asymmetric relation “hypernym” in Figure 3,
where one can see that TuckER learns to model
the symmetric relation with the relation matrix that
is approximately symmetric about the main diago-
nal, whereas the matrix belonging to the asymmet-
ric relation exhibits no obvious structure.

(a) Wderivationally related form (b) Whypernym

Figure 3: Learned relation matrices for a symmetric
(derivationally related form) and an asymmetric (hy-
pernym) WN18RR relation. Wderivationally related form is
approximately symmetric about the leading diagonal.

6 Experiments and Results

6.1 Datasets

We evaluate TuckER using four standard link pre-
diction datasets (see Table 2):
FB15k (Bordes et al., 2013) is a subset of Free-
base, a large database of real world facts.
FB15k-237 (Toutanova et al., 2015) was created
from FB15k by removing the inverse of many re-
lations that are present in the training set from val-
idation and test sets, making it more difficult for
simple models to do well.
WN18 (Bordes et al., 2013) is a subset of Word-
Net, a hierarchical database containing lexical re-
lations between words.
WN18RR (Dettmers et al., 2018) is a subset of
WN18, created by removing the inverse relations
from validation and test sets.

6.2 Implementation and Experiments

We implement TuckER in PyTorch (Paszke et al.,
2017) and make our code available on GitHub.1

We choose all hyper-parameters by random
search based on validation set performance. For

1https://github.com/ibalazevic/TuckER
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FB15k and FB15k-237, we set entity and relation
embedding dimensionality to de = dr = 200. For
WN18 and WN18RR, which both contain a sig-
nificantly smaller number of relations relative to
the number of entities as well as a small num-
ber of relations compared to FB15k and FB15k-
237, we set de = 200 and dr = 30. We use
batch normalization (Ioffe and Szegedy, 2015) and
dropout (Srivastava et al., 2014) to speed up train-
ing. We find that lower dropout values (0.1, 0.2)
are required for datasets with a higher number
of training triples per relation and thus less risk
of overfitting (WN18 and WN18RR), whereas
higher dropout values (0.3, 0.4, 0.5) are required
for FB15k and FB15k-237. We choose the learn-
ing rate from {0.01, 0.005, 0.003, 0.001, 0.0005}
and learning rate decay from {1, 0.995, 0.99}. We
find the following combinations of learning rate
and learning rate decay to give the best results:
(0.003, 0.99) for FB15k, (0.0005, 1.0) for FB15k-
237, (0.005, 0.995) for WN18 and (0.01, 1.0) for
WN18RR (see Table 5 in the Appendix A for a
complete list of hyper-parameter values on each
dataset). We train the model using Adam (Kingma
and Ba, 2015) with the batch size 128.

At evaluation time, for each test triple we gen-
erate ne candidate triples by combining the test
entity-relation pair with all possible entities E ,
ranking the scores obtained. We use the filtered
setting (Bordes et al., 2013), i.e. all known true
triples are removed from the candidate set ex-
cept for the current test triple. We use evaluation
metrics standard across the link prediction liter-
ature: mean reciprocal rank (MRR) and hits@k,
k ∈ {1, 3, 10}. Mean reciprocal rank is the aver-
age of the inverse of the mean rank assigned to the
true triple over all candidate triples. Hits@k mea-
sures the percentage of times a true triple is ranked
within the top k candidate triples.

Dataset # Entities (ne) # Relations (nr)

FB15k 14,951 1,345
FB15k-237 14,541 237
WN18 40,943 18
WN18RR 40,943 11

Table 2: Dataset statistics.

6.3 Link Prediction Results
Link prediction results on all datasets are shown in
Tables 3 and 4. Overall, TuckER outperforms pre-
vious state-of-the-art models on all metrics across
all datasets (apart from hits@10 on WN18 where

a non-linear model, R-GCN, does better). Re-
sults achieved by TuckER are not only better than
those of other linear models, such as DistMult,
ComplEx and SimplE, but also better than the re-
sults of many more complex deep neural network
and reinforcement learning architectures, e.g. R-
GCN, MINERVA, ConvE and HypER, demon-
strating the expressive power of linear models and
supporting our claim that simple linear models
should serve as a baseline before moving onto
more elaborate models.

Even with fewer parameters than ComplEx and
SimplE at de = 200 and dr = 30 on WN18RR
(∼9.4 vs∼16.4 million), TuckER consistently ob-
tains better results than any of those models. We
believe this is because TuckER exploits knowl-
edge sharing between relations through the core
tensor, i.e. multi-task learning. This is supported
by the fact that the margin by which TuckER out-
performs other linear models is notably increased
on datasets with a large number of relations. For
example, improvement on FB15k is +14% over
ComplEx and +8% over SimplE on the tough-
est hits@1 metric. To our knowledge, ComplEx-
N3 (Lacroix et al., 2018) is the only other lin-
ear link prediction model that benefits from multi-
task learning. There, rank regularization of the
embedding matrices is used to encourage a low-
rank factorization, thus forcing parameter sharing
between relations. We do not include their pub-
lished results in Tables 3 and 4, since they use the
highly non-standard de = dr = 2000 and thus a
far larger parameter number (18x more parameters
than TuckER on WN18RR; 5.5x on FB15k-237),
making their results incomparable to those typi-
cally reported, including our own. However, run-
ning their model with equivalent parameter num-
ber to TuckER shows comparable performance,
supporting our belief that the two models both at-
tain the benefits of multi-task learning, although
by different means.

6.4 Influence of Parameter Sharing

The ability of knowledge sharing through the
core tensor suggests that TuckER should need a
lower number of parameters for obtaining good
results than ComplEx or SimplE. To test this,
we re-implement ComplEx and SimplE with re-
ciprocal relations, 1-N scoring, batch normaliza-
tion and dropout for fair comparison, perform
random search to choose best hyper-parameters
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WN18RR FB15k-237

Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult (Yang et al., 2015) yes .430 .490 .440 .390 .241 .419 .263 .155
ComplEx (Trouillon et al., 2016) yes .440 .510 .460 .410 .247 .428 .275 .158
Neural LP (Yang et al., 2017) no − − − − .250 .408 − −
R-GCN (Schlichtkrull et al., 2018) no − − − − .248 .417 .264 .151
MINERVA (Das et al., 2018) no − − − − − .456 − −
ConvE (Dettmers et al., 2018) no .430 .520 .440 .400 .325 .501 .356 .237
HypER (Balažević et al., 2019) no .465 .522 .477 .436 .341 .520 .376 .252
M-Walk (Shen et al., 2018) no .437 − .445 .414 − − − −
RotatE (Sun et al., 2019) no − − − − .297 .480 .328 .205

TuckER (ours) yes .470 .526 .482 .443 .358 .544 .394 .266

Table 3: Link prediction results on WN18RR and FB15k-237. The RotatE (Sun et al., 2019) results are reported
without their self-adversarial negative sampling (see Appendix H in the original paper) for fair comparison.

WN18 FB15k

Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) no − .892 − − − .471 − −
DistMult (Yang et al., 2015) yes .822 .936 .914 .728 .654 .824 .733 .546
ComplEx (Trouillon et al., 2016) yes .941 .947 .936 .936 .692 .840 .759 .599
ANALOGY (Liu et al., 2017) yes .942 .947 .944 .939 .725 .854 .785 .646
Neural LP (Yang et al., 2017) no .940 .945 − − .760 .837 − −
R-GCN (Schlichtkrull et al., 2018) no .819 .964 .929 .697 .696 .842 .760 .601
TorusE (Ebisu and Ichise, 2018) no .947 .954 .950 .943 .733 .832 .771 .674
ConvE (Dettmers et al., 2018) no .943 .956 .946 .935 .657 .831 .723 .558
HypER (Balažević et al., 2019) no .951 958 .955 .947 .790 .885 .829 .734
SimplE (Kazemi and Poole, 2018) yes .942 .947 .944 .939 .727 .838 .773 .660

TuckER (ours) yes .953 .958 .955 .949 .795 .892 .833 .741

Table 4: Link prediction results on WN18 and FB15k.

(see Table 6 in the Appendix A for exact hyper-
parameter values used) and train all three models
on FB15k-237 with embedding sizes de = dr ∈
{20, 50, 100, 200}. Figure 4 shows the obtained
MRR on the test set for each model. It is important
to note that at embedding dimensionalities 20, 50
and 100, TuckER has fewer parameters than Com-
plEx and SimplE (e.g. ComplEx and SimplE have
∼3 million and TuckER has ∼2.5 million param-
eters for embedding dimensionality 100).

0 50 100 150 200
Embedding Dimensionality / Rank

0.15

0.20

0.25
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0.40
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R

R

ComplEx

SimplE

TuckER

Figure 4: MRR for ComplEx, SimplE and TuckER for
different embeddings sizes on FB15k-237.

We can see that the difference between the
MRRs of ComplEx, SimplE and TuckER is ap-
proximately constant for embedding sizes 100 and
200. However, for lower embedding sizes, the dif-

ference between MRRs increases by 0.7% for em-
bedding size 50 and by 4.2% for embedding size
20 for ComplEx and by 3% for embedding size
50 and by 9.9% for embedding size 20 for Sim-
plE. At embedding size 20 (∼300k parameters),
the performance of TuckER is almost as good as
the performance of ComplEx and SimplE at em-
bedding size 200 (∼6 million parameters), which
supports our initial assumption.

7 Conclusion
In this work, we introduce TuckER, a relatively
straightforward linear model for link prediction on
knowledge graphs, based on the Tucker decompo-
sition of a binary tensor of known facts. TuckER
achieves state-of-the-art results on standard link
prediction datasets, in part due to its ability to per-
form multi-task learning across relations. Whilst
being fully expressive, TuckER’s number of pa-
rameters grows linearly with respect to the number
of entities or relations in the knowledge graph. We
further show that previous linear state-of-the-art
models, RESCAL, DistMult, ComplEx and Sim-
plE, can be interpreted as special cases of our
model. Future work might include exploring how
to incorporate background knowledge on individ-
ual relation properties into the existing model.
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