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Abstract
In this paper, we focus on natural language
video localization: localizing (i.e., grounding)
a natural language description in a long and
untrimmed video sequence. All currently pub-
lished models for addressing this problem can
be categorized into two types: (i) top-down
approach: it does classification and regres-
sion for a set of pre-cut video segment candi-
dates; (ii) bottom-up approach: it directly pre-
dicts probabilities for each video frame as the
temporal boundaries (i.e., start and end time
point). However, both two approaches suffer
several limitations: the former is computation-
intensive for densely placed candidates, while
the latter has trailed the performance of the
top-down counterpart thus far. To this end, we
propose a novel dense bottom-up framework:
DEnse Bottom-Up Grounding (DEBUG). DE-
BUG regards all frames falling in the ground
truth segment as foreground, and each fore-
ground frame regresses the unique distances
from its location to bi-directional ground truth
boundaries. Extensive experiments on three
challenging benchmarks (TACoS, Charades-
STA, and ActivityNet Captions) show that DE-
BUG is able to match the speed of bottom-up
models while surpassing the performance of
the state-of-the-art top-down models.

1 Introduction

Vision-and-language understanding, e.g., what the
vision and text are, and how they relate with each
other, is one of the core tasks in both computer vi-
sion and natural language processing. To test the
machine comprehension of complex video scene
and natural language simultaneously, a challeng-
ing task was proposed (Gao et al., 2017; Hen-
dricks et al., 2017, 2018), called Natural Lan-
guage Video Localization (NLVL). As shown
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Language Query: People are scrubbing the ice in front of a ball.

89.7s 94.2s

Figure 1: Natural language video localization is to lo-
calize a segment with the start point (89.7s) and end
point (94.2s) in the video given a language description.

in Figure 1, given a natural language description
query and an untrimmed video sequence, NLVL
needs to localize a segment in the video (i.e., iden-
tify the start and end time point of the segment)
which semantically corresponds to the reference
sentence. Moreover, NLVL is an indispensable
technique for many important applications, e.g.,
text-oriented video highlight detection or retrieval.

Currently, the overwhelming majority of NLVL
models are top-down approaches: they first cut a
video into a set of segment candidates, then they
do classification and regression for each candidate.
Specifically, they can be further grouped into two
sub-types: 1) sliding-window-based (Gao et al.,
2017; Hendricks et al., 2017; Liu et al., 2018b,a;
Ge et al., 2019; Chen and Jiang, 2019; Xu et al.,
2019; Zhang et al., 2019b): the video is explic-
itly segmented by multiple predefined temporal
sliding-window scales. After extracting features
for the query and all candidates, NLVL degrades
into a multimodal matching problem. 2) anchor-
based (Chen et al., 2018; Zhang et al., 2019a): it
assigns each frame1 with multi-scale temporal an-
chors, which follows the same spirit of anchor box
in object detection (Ren et al., 2015).

Although top-down approaches have dominated
NLVL for years, it is worth noting that they suffer

1The frame is a general description for a frame in a video
sequence or an element in a video frame feature sequence.
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Language Query: He boils pasta noodles in a pot.

Dense Positive SamplesSparse Positive Samples
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start end

Figure 2: (a): A NLVL sample with ground truth segment (A→B). (b): Sparse positive samples in existing sparse
bottom-up models (i.e., two frames). (c): Dense positive samples in DEBUG (i.e., all frames in range (A→B)).

several notorious limitations: 1) The performance
is sensitive to the heuristic rules (e.g., the temporal
scales or the number of candidates). 2) In order to
achieve a high recall, they are required to densely
place candidates, which significantly increase the
amount of computation and localization time.

To eliminate these inherent drawbacks in top-
down framework, some recent NLVL works (Chen
et al., 2019a; Yuan et al., 2019) start to borrow
idea from reading comprehension (Xiong et al.,
2017, 2018; Yu et al., 2018), which directly pre-
dicts the start and end boundaries. Although this
sparse bottom-up approach is highly computation-
efficient, the localization accuracy, especially for
long videos (e.g., TACoS) is behind its top-down
counterpart. We argue that the main reasons come
from three-fold: 1) Two boundary predictions are
independent, i.e., the model ignores the content
consistency between two predictions. As an exam-
ple shown in Figure 2 (a), two frames in B and D
have a similar visual appearance. Thus, the model
is prone to predict the result as (A→D), without
considering the distinct content change in range
(B→C). 2) The positive and negative training sam-
ples are extremely imbalanced. Since the number
of video frames is large (e.g., each video in TACoS
has average 9,000 frames), but the positive train-
ing samples are sparse, i.e., only two frames (Fig-
ure 2 (b)). 3) Detecting temporal action bound-
ary from frames, i.e., predicting a frame is query-
related and at temporal boundary simultaneously
by a single network, is still a challenging task,
even without query constraint (Shou et al., 2018).

In this paper, we propose a dense bottom-up
framework for NLVL: DEnse Bottom-Up Ground-
ing (DEBUG), to mitigate the problems in exist-

ing NLVL frameworks. Specifically, we regard all
frames falling in the ground truth segment as pos-
itive samples (i.e., foreground). For each positive
frame, DEBUG has a classification subnet to pre-
dict its relatedness with the query, and a boundary
regression subnet to regress the unique distances
from its location to bi-directional ground truth
boundaries. This design helps to disentangle the
temporal boundary detection from query-related
prediction, relieving the burden of the single clas-
sification network in existing sparse bottom-up
models. Meanwhile, we can utilize as many pos-
itive samples as possible to alleviate the imbal-
ance problem between positive and negative sam-
ples (Figure 2 (c)). Since each pair of boundary
predictions are based on the same frame feature,
i.e., two predictions act as a whole, which helps to
avoid falling into the local optimum caused by in-
dependent predictions. In addition, we propose a
temporal pooling to relieve unstable performance
caused by single prediction. Moreover, DEBUG
is agnostic to the upstream multimodal interaction
network, i.e., it can be seamlessly incorporated
into any stronger backbone to boost performance.

We demonstrate the effectiveness of DEBUG on
three challenging benchmarks: TACoS (Regneri
et al., 2013), Charades-STA (Gao et al., 2017), and
ActivityNet Captions (Krishna et al., 2017). With-
out bells and whistles, DEBUG surpasses the per-
formance of the state-of-the-art models over vari-
ous benchmarks and metrics at the highest speed.

2 Related Work

2.1 Natural Language Video Localization
NLVL is a very difficult task, which needs to
understand both complex video scene and natu-



5146

ral language simultaneously. Because most of
NLVL models are under the top-down framework,
they focus on designing more effective multi-
modal interaction networks, e.g., query-based at-
tention on video frames (Liu et al., 2018a), visual-
based attention on language words (Liu et al.,
2018b), or co-attention between each frame-and-
word pairs (Chen et al., 2018, 2019a; Yuan et al.,
2019). It is worth noting that the improvement in
multimodal interaction network is orthogonal to
the DEBUG, i.e., DEBUG can be seamlessly in-
corporated into any stronger interaction network.

To the best of our knowledge, there are only two
exceptions among all NLVL models: RWM (He
et al., 2019) and SM-RL (Wang et al., 2019),
which are not under either top-down or bottom-
up frameworks. They both formulate NLVL as a
sequential decision making problem, solved by re-
inforcement learning, e.g., actor critic (Chen et al.,
2019b). The action space for each step is a set of
handcraft-designed temporal box transformations.

2.2 Top-Down vs. Bottom-Up

Top-down and bottom-up approaches, which are
widely co-exist in many CV and NLP tasks, are
two different philosophical viewpoints for solving
problems. The most related top-down and bottom-
up concepts as the one in NLVL frameworks are:
Object Detection. Most of the object detectors af-
ter Faster-RCNN (Ren et al., 2015) are top-down
models, i.e., it predicts classification scores and
regression offsets for multiple predefined anchors
in each position. These models suffer the same
drawbacks as above mentioned in the top-down
approach for NLVL. However, with the advent of
the first performance comparable bottom-up ob-
ject detector: CornerNet (Law and Deng, 2018),
the bottom-up approaches begin to gain unprece-
dented attention (Zhou et al., 2019b,a; Duan et al.,
2019; Tian et al., 2019), which inspires us to ex-
plore a decent bottom-up framework for NLVL.
Attention Mechanism. Top-down attention has
dominated many vision-and-language tasks, e.g.,
visual captioning (Xu et al., 2015; Chen et al.,
2017), visual QA (Xu and Saenko, 2016; Ye et al.,
2017). Recently, a model combining both top-
down and bottom-up attention reaches the win-
ner of multiple challenges (Anderson et al., 2018).
Thus, how to combine the top-down and bottom-
up attentions effectively is still an unexplored
problem in the vision-and-language tasks.
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Figure 3: (a): The overview of QANet backbone. (b):
The encoder block throughout the QANet.

3 Approach

The NLVL task considered in this paper, is defined
as follows. Given a long and untrimmed video se-
quence V , and a natural language query Q which
describes a segment in V from start time point ts
to end time point te, NLVL needs to predict these
two time points (ts, te) given V and Q.

In this section, we first introduce the multi-
modal interaction backbone of DEBUG, which is
built upon the recently proposed QANet (Yu et al.,
2018) for reading comprehension (Section 3.1).
Then, we demonstrate the details about the pro-
posed dense bottom-up grounding (Section 3.2).
Finally, we describe the training and test stage of
the whole DEBUG (Section 3.3).

3.1 Backbone: QANet
We adopt the QANet to model the interaction be-
tween two different modalities (i.e., video and lan-
guage), which serves as the backbone of DEBUG.
The details of the QANet are shown in Figure 3
(a), which consists of three main components:
Embedding Encoder Layer. The input for this
layer in two different branches are extracted video
frame features F = {fi}Ti=1 and query word fea-
tures W = {wn}Nn=1, respectively (see details
in Section 4.2). T and N are the numbers of
frames and words. The embedding encoder layer
is a stack of encoder blocks as shown in Figure 3
(b), which contains multiple components, includ-
ing convolutional layer, layer-normalization layer,
self-attention layer, and feedforward layer. The
output of this layer is new frame features F̃ =
{f̃i}Ti=1 or word features W̃ = {w̃n}Nn=1, which
encode the context in its respective modality.
Visual-language Attention Layer. It calculates
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two different attention weights between the two
modal features. Specifically, it first computes a
similarity matrix S ∈ RT×N , where Sij denotes
the similarity between frame feature f̃i and word
feature w̃j . Then the two attention weights are:

A = S̄ · W̃ , B = S̄ · ¯̄ST · F̃ , (1)

where S̄ and ¯̄S are the row-wise and column-wise
normalized matrix of S, respectively.
Model Encoder Layer. Given the two attention
weights A and B, the model encoder layer begins
to encode the interaction between the two modal
features. This layer is also a stack of encoder
blocks (Figure 3 (b)), and these encoder blocks
share parameters. The input in i-th position is
[fi,ai,fi � ai,fi � bi], where ai and bi are i-
th row of A and B, � is the element-wise multi-
plication, and [·] is a vector concatenate operation.
The output is H = {hi}Ti=1,H ∈ RT×D, where
hi ∈ RD is a frame feature encoded with mul-
timodal context. Then H is fed into the follow-
ing head network (i.e., dense bottom-up ground-
ing) for boundaries prediction. We refer readers to
QANet (Yu et al., 2018) paper for more details.

3.2 Dense Bottom-Up Grounding
Since the nature of the bottom-up approach, DE-
BUG regards each frame as a training sample. Dif-
ferent from the existing sparse bottom-up models
which only use the exact start and end boundary
frames as foreground, DEBUG utilizes all frames
falling in the ground truth segment as positive
samples. For each sample, there are three branch
subnets, which aim to predict its classification
score, boundary distances, and confidence score
respectively. Specifically, the whole architecture
of DEBUG is shown in Figure 4, and the details
about the three branch subnets are:
Classification Subnet. The classification subnet
predicts the relatedness between each video frame
and the language query, i.e., whether the frame is
a foreground frame. Taking the multimodal fea-
ture H ∈ RT×D from the backbone, this subnet
applies four 1×3 conv layers, each with D filters
and each followed by ReLU activations, followed
by a 1×3 conv layer with 1 filter. Finally, sigmoid
activations are attached to output the foreground
prediction score per location. For a positive sam-
ple (i.e., foreground), its ground truth classifica-
tion label is c∗i = 1, otherwise c∗i = 0.
Boundary Regression Subnet. The boundary re-
gression subnet predicts the unique distances from

video feature: 𝐅

query feature: 𝐖

𝐇

QANet
Backbone

classificationx4 Tx1 𝒄%TxD

𝒕%

𝒆%

TxD

x4TxD TxD

x4TxD TxD

Tx2

Tx1

regression

confidence

Figure 4: The whole architecture of the DEBUG. It consists
of a QANet backbone and a head network with three branch
subnets. T × ∗ denotes the shape of corresponding matrix.

the location of each frame to the bi-directional
ground truth boundaries. The design of the bound-
ary regression subnet is identical to the classi-
fication subnet except it terminates in 2 outputs
for both left and right distances. We only assign
boundary regression targets for positive frames.
Specifically, for a positive frame at i-th position,
if the ground truth segment range is (ts, te) (i.e.,
ts ≤ i ≤ te), the regression target is t∗i = (l∗i , r

∗
i ):

l∗i = i− ts, r∗i = te − i, (2)

where l∗i and r∗i represents the distance from i-th
frame to the left and right boundaries, respectively.
Confidence Subnet. The design of the confidence
subnet is identical to the classification subnet, but
it predicts the confidence of the boundary regres-
sion results for each frame. The motivation of this
subnet design comes from that the prediction con-
fidences from different frames should be different,
e.g., it is more difficult for a frame near the start
point to detect the end point than a frame near the
end point. Therefore, we set the ground truth con-
fidence of each frame based on its “centerness” in
the segment. Given the regression target l∗i and r∗i ,
the ground truth confidence score is defined as:

e∗i =
min(l∗i , r

∗
i )

max(l∗i , r
∗
i )
. (3)

The confidence score ranges from 1 to 0 with the
frame position from segment center to boundary.

3.3 Training and Inference
Loss. Given all frames predictions {(ĉi, t̂i, êi)}
and the corresponding ground truth {(c∗i , t∗i , e∗i )},
the total training loss function for DEBUG is:

L =
1

N

∑
i

Lcls(ĉi, c
∗
i ) +

α

Np
1{c∗i=1}Lreg(t̂i, t

∗
i )

+
β

Np
1{c∗i=1}Lconf (êi, e

∗
i ) (4)
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Figure 5: Illustration of temporal pooling.

where Lcls and Lconf both are binary cross en-
tropy (BCE) loss for classification subnet and con-
fidence subnet. Lreg is the IOU loss for boundary

regression subnet (i.e., − ln
min(r∗i ,r̂i)−max(l∗i ,l̂i)

max(r∗i ,r̂i)−min(l∗i ,l̂i)
).

N andNp denotes the number of total samples and
positive samples, respectively. α and β are loss
weights to balance different losses, we set both α
and β to 1 in all experiments. 1{c∗i=1} is an indi-
cator function, being 1 if c∗i = 1 and 0 otherwise.
Inference. Given a video and a language query,
we forward them through the network and obtain
ĉi, t̂i, êi for each frame from three subnets. Then,
we rank all segment predictions by the score ŝ:
ŝi = ĉi × êi. A straightforward solution is select-
ing the segment with the highest score as the fi-
nal prediction. However, segment prediction from
a single frame is usually with high variance. To
relieve this situation, we propose a simple yet ef-
fective strategy: Temporal Pooling, to fuse multi-
ple frame predictions. As shown in Figure 5, tem-
poral pooling directly uses the leftmost and right-
most boundaries among all pooling candidates as
its output. As for the pooling candidates, they need
to meet with two conditions simultaneously: 1)
the predicted segment is overlapped with the one
with the highest score; 2) the score is large than
the highest score multiple a threshold δ2.

4 Experiments

4.1 Datasets and Metrics

Datasets. We evaluated the DEBUG on three
challenging NLVL benchmarks: TACoS (Regneri
et al., 2013). It consists of 127 videos and 17,344
text-to-clip pairs. In our experiments, we used
the standard split same as (Gao et al., 2017), i.e.,
50% for training, 25% for validation and 25% for
test. The average length of each video is 5 min-
utes. Charades-STA (Gao et al., 2017). It consists
of 12,408 text-to-clip pairs for training, and 3,720
pairs for test. The average length of each video is
30 seconds. ActivityNet Captions (Krishna et al.,

2In experiments, we tested δ ∈ {0.1, 0.2, ..., 0.9} and se-
lected the one with the highest performance for each dataset.

2017). It is not only the largest NLVL dataset
(19,209 videos) but also with much more diverse
context than the others. We followed (Yuan et al.,
2019) and utilized the public train set (i.e., 37,421
text-to-clip pairs) for training, and the validation
set (i.e., 17,505 text-to-clip pairs) for test. The av-
erage length of each video is 2 minutes.
Evaluation Metrics. Following the conventions
in previous works, we evaluated NLVL on two
prevailing evaluation metrics: 1) R@N, IoU@θ:
The percentage of testing samples which have at
least one of the top-N results with IoU larger than
θ. Since the nature of the bottom-up framework,
we only useN=1 in all our experiments; 2) mIoU:
The average IoU over all testing samples.

4.2 Implementation Details
Given an untrimmed video V , we first down-
sampled frames and utilized the C3D (D.Tran
et al., 2015) feature pretrained on Sports-
1M (A.Karpathy et al., 2014) as the initial frame
features. Then, we reduced the dimension of these
features to 500 using PCA, which are the video
frame features F (Section 3.1). For query Q, it
was truncated or padded to a maximum length of
15 words. Each word was initialized with the 300-
d Glove vector (J.Pennington et al., 2014), and all
word embeddings were fixed. Then we learned a
transformation matrix to map these embeddings to
500-d, which are the sentence word features W
(Section 3.1). The dimension of all intermediate
layers in the backbone and three subnets was set
to 128. We trained the whole network for 100
epochs from scratch, and the loss was optimized
by Adam algorithm (D.P.Kingma and J.Ba, 2015).
The learning rate started from 0.0001 and was di-
vided by 10 when the loss plateaus. The batch size
was set to 16, and the dropout rate was 0.5.

4.3 Comparisons with State-of-the-Arts
Settings. We compared the DEBUG with all re-
cently published state-of-the-art NLVL models.
From the viewpoint of top-down and bottom-
up framework, we group them into: 1) Sliding-
window-based models: VSA-RNN, VSA-STV,
CTRL (Gao et al., 2017), ROLE (Liu et al.,
2018b), ACRN (Liu et al., 2018a), MCF (Wu and
Han, 2018), ACL (Ge et al., 2019), SAP (Chen
and Jiang, 2019), QSPN (Xu et al., 2019). 2)
Anchor-based models: TGN (Chen et al., 2018).
3) Sparse bottom-up models: L-Net (Chen et al.,
2019a), ABLR-af, ABLR-aw (Yuan et al., 2019)
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Method IoU@0.1 IoU@0.3 mIoU

TA
C

oS
VSA-RNN 8.84 6.91 -
VSA-STV 15.01 10.77 -
CTRL 24.32 18.32 -
ACRN 24.22 19.52 -
MCF 25.84 18.64 -
SM-RL 26.51 20.25 -
ACL 28.31 22.07 -
SAP 31.15 - -
L-NET� - - 13.41
ABLR-aw� 31.60 18.90 12.50
ABLR-af� 34.70 19.50 13.40
DEBUG∗ 35.22 22.07 14.56
DEBUG 41.15 23.45 16.03
Method IoU@0.3 IoU@0.5 IoU@0.7

C
ha

ra
de

s-
ST

A

VSA-RNN - 10.50 4.32
VSA-STV - 16.91 5.81
CTRL - 23.63 8.89
ROLE 25.26 12.12 -
ACL - 26.47 11.23
SAP - 27.42 13.36
RWM - 36.70 -
SM-RL - 24.36 11.17
QSPN 54.70 35.60 15.80
DEBUG∗ 52.16 35.89 17.92
DEBUG 54.95 37.39 17.69
Method IoU@0.3 IoU@0.5 mIoU

A
ct

iv
ity

N
et

TGN 43.81 27.93 -
QSPN 45.30 27.70 -
RWM - 36.90 -
ABLR-af� 53.65 34.91 35.72
ABLR-aw� 55.67 36.79 36.99
DEBUG∗ 55.82 39.20 39.01
DEBUG 55.91 39.72 39.51

Table 1: Performance (%) over R@1,IoU@θ and mIoU
compared with the state-of-the-art NLVL models on
TACoS, Charades-STA and ActivityNet Captions. �

denotes the models that are under bottom-up frame-
work. ∗ denotes the DEBUG which is without temporal
pooling. The best and second best methods under each
setting are marked in according formats.

Dataset Metric QANet-SE DEBUG

TACoS

IoU@0.1 29.54 41.15
IoU@0.3 16.75 23.45
IoU@0.5 9.57 11.72
mIoU 12.01 16.03

Charades-STA

IoU@0.3 50.81 54.95
IoU@0.5 32.63 37.39
IoU@0.7 16.24 17.69
mIoU 33.94 36.34

ActivityNet

IoU@0.1 71.90 74.26
IoU@0.3 53.44 55.91
IoU@0.5 38.04 39.72
mIoU 38.02 39.51

Table 2: Performance (%) over R@1,IoU@θ and mIoU
compared with QANet-SE on TACoS, Charades-STA
and ActivityNet Captions.

4) Others (i.e., RL-based models): RWM (He
et al., 2019), SM-RL (Wang et al., 2019).
Results. The results are reported in Table 1.
From Table 1, we can observe that the DEBUG
achieves a new state-of-the-art performance un-
der all evaluation metrics and benchmarks. It
is worth noting that DEBUG can especially im-
prove the performance significantly in some more
strict metrics (e.g., 2.62% and 2.52% absolute im-
provement in mIoU on dataset TACoS and Activi-
tyNet Captions, and 2.12% absolute improvement
in IoU@0.7 on Charades-STA3), which demon-
strates the effectiveness of the DEBUG.

4.4 Ablative Studies

In this section, we did extensive ablative experi-
ments to thoroughly investigate the DEBUG.

4.4.1 Sparse vs. Dense Bottom-Up
Setting. To eliminate the influence of backbones
and equally investigate the performance gain be-
tween DEBUG and the existing sparse bottom-up
framework, we designed a strong baseline dubbed
as QANet-SE. Its backbone is identical to DE-
BUG (Figure 3), but its head network follows the
sparse bottom-up framework, i.e., it predicts the
start and end time points directly.
Results. The results are reported in Table 2.
We can observe that DEBUG surpasses QANet-
SE over all metrics and benchmarks. Especially,
the performance gains are much more obvious in
TACoS (e.g., over 20%∼40% relative improve-
ments in all metrics). This is because the average
length of each video in TACoS is largest among
all benchmarks, and the QANet-SE style (i.e.,
sparse bottom-up) method suffers severe positive
and negative samples imbalance in long videos.
Instead, DEBUG can relieve this problem by uti-
lizing much more positive training samples.

4.4.2 Importance of Each Component
We ran a number of experiments to analyze the im-
portance of each component in DEBUG. Results
are shown in Table 3 and discussed in detail next.
Classification vs. Confidence Subnet. From Ta-
ble 3, we can observe that models with only a
single classification or confidence subnet can get
comparable performance. More precisely, the lat-
ter one is slightly better than the former. This is

3Since all published works had not reported their mIoU
scores on Charades-STA, we only compare with them on the
metric IoU@θ.
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Datasets TACoS Charades-STA ActivityNet

CLS CFD TP
IoU@θ

mIoU
IoU@θ

mIoU
IoU@θ

mIoU
0.1 0.3 0.5 0.3 0.5 0.7 0.1 0.3 0.5

X 31.67 20.30 11.61 13.47 47.39 33.92 17.12 32.03 70.54 54.09 38.64 36.97
X 33.74 20.34 10.97 13.83 48.52 34.68 16.40 32.32 70.93 54.94 38.85 38.48

X X 35.22 22.07 11.44 14.56 52.16 35.89 17.92 34.04 73.34 55.82 39.20 39.01
X X 37.59 22.76 11.40 15.23 51.72 34.60 16.94 34.15 73.56 55.43 39.31 38.74

X X 40.14 22.27 11.58 15.43 51.67 35.38 15.51 33.86 73.62 55.52 39.00 39.33
X X X 41.15 23.45 11.72 16.03 54.95 37.39 17.69 36.34 74.26 55.91 39.72 39.51

Table 3: Performance (%) over R@1,IoU@θ and mIoU in ablative experiments of each component of DEBUG
model on TACoS, Charades-STA and ActivityNet Captions. CLS: with or without the classification subnet, CFD:
with or without the confidence subnet, TP: with or without the temporal pooling.

Methods TACoS ActivityNet
MCN 9.41 0.30
VSA-RNN 6.45 2.29
VSA-STV 3.44 0.12
CTRL 4.02 0.13
ACRN 4.09 0.13
ABLR� 0.14 0.02
DEBUG 0.02 0.02

Table 4: Average time (s) to localize
one sentence for different methods on
TACoS and ActivityNet Captions. �

denotes sparse bottom-up model.

(a) Charades-STA (b) TACoS

Figure 6: The number of samples across the length error (#frames difference) be-
tween predicted segment and ground truth segment on Charades-STA and TACoS.

because the confidence subnet considers the im-
portance of each frame, instead, the classifica-
tion subnet regards all foreground equally. Mean-
while, the performance of both models can be
further boosted by utilizing two subnets simulta-
neously, which demonstrates that this multi-task
design helps each subnet to focus on their own
goal and both subnets benefit from sharing fea-
tures (i.e., one for foreground prediction, and an-
other for “centerness” prediction).
With vs. Without Temporal Pooling. From Ta-
ble 3, we can observe that the temporal pooling
trick improves the performance in most of the sit-
uations, and the performance gains in TACoS are
largest over all benchmarks. The main reason is
that the visual appearance of each frame in TACoS
is quite similar, i.e., the performance based on sin-
gle frame prediction is very unstable since multi-
ple frames have similar predictions. Instead, the
model with temporal pooling helps to avoid this
by fusing multiple frame predictions.

4.4.3 Efficiency Analysis.
We evaluated the efficiency of DEBUG, by com-
paring the average run time to localize one sen-
tence in the video. As shown in Table 4, the
DEBUG significantly reduce the localization time
compared to all top-down models (MCN, VSA-

Methods
Charades-STA TACoS

100 200 300 100 200 300

L
QANet-SE 54.7 73.0 81.9 15.2 21.8 28.1
DEBUG 56.5 75.1 83.2 13.2 22.7 29.8

R
QANet-SE 50.3 69.8 81.0 11.8 20.1 26.7
DEBUG 54.6 75.1 83.2 11.3 20.4 27.5

L&R
QANet-SE 38.5 61.5 74.4 6.5 12.2 16.9
DEBUG 46.5 71.1 81.1 4.9 12.8 19.5

M
QANet-SE 53.9 72.7 83.1 11.6 20.5 28.2
DEBUG 57.3 75.8 83.7 13.3 23.2 30.2

Table 5: Accuracy (%) of multiple keypoints at different
thresholds on Charades-STA and TACoS. L: left point; R:
right point; L&R: both left and right point; M: middle point.

RNN, VSA-STV, CTRL, ACRN), and the gap is
much wider in long video datasets (e.g., TACoS).
This meets with the notorious drawback of the top-
down framework, i.e., it is computation-intensive
for dense sliding windows or anchors. Meanwhile,
DEBUG is even slightly faster than the sparse
bottom-up model (ABLR), this is because the
QANet backbone only uses conv and self-attention
layer instead of the time-consuming RNN in
ABLR backbone. All experiments are conducted
on the same hardware (an NVIDIA GTX 1080Ti).

4.4.4 Error Analysis.
To analyze the bottleneck of DEBUG and the ex-
isting sparse bottom-up framework, and help pave
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Language Query: A woman is seen speaking to the camera and then 
pours ice into a glass.
GT: 0s 27.6s

Score 𝒔":

DEBUG: 0s 28.8s

Language Query: She pours various liquids into the glass and mixing 
it around with a mixer.
GT: 19.6s 57.8s

Score 𝒔":

DEBUG: 21.3s 62.9s

Language Query: A man is outside on a snowy day, scraping the snow 
from his car with a scraper.
GT: 0s 48.2s

Score 𝒔":

DEBUG: 0s 56.5s

Language Query: He cleans both windows, then the headlights.

GT: 51.9s 122.0s

Score 𝒔":

DEBUG: 39.5s 108.8s

Language Query: A boy is balanced on a board, then shows several 
moves and stunts as he moves around a skate park.
GT: 12.6s 58.7s

Score 𝒔":

DEBUG: 6.4s 60.4s

Language Query: He jumps, flips, ramps, and performs several moves.

GT: 62.3s 164.3s

Score 𝒔":

DEBUG: 49.5s 152.9s

Language Query: Two men are seen standing behind drums and play-
ing with one another.
GT: 0s 36.1s

Score 𝒔":

DEBUG: 1s 38.4s

Language Query: The stop playing in the end to speak to one another 
and walk off stage.
GT: 82.1s 107.3s

Score 𝒔":

DEBUG: 88.5s 104.5s

Figure 7: The qualitative results of DEBUG on the ActivityNet Captions dataset.

the way for future research on bottom-up approach
for NLVL, We conducted several statistical anal-
ysis about the results of DEBUG and its sparse
bottom-up counterpart QANet-SE (Section 4.4.1):

Segment Length. We compared the length error
of the segments predicted by DEBUG and QANet-
SE, the results are illustrated in Figure 6. We ob-
serve that QANet-SE is prone to predicting over-
long segment range (e.g., the samples with length
error larger than 300 frames in Chardes-STA or
5,000 frames in TACoS take a large proportion.)

Keypoint Accuracy. We compared the accuracy
of three keypoints of the ground truth segment:
the left, right, and middle point. We regard a key-
point prediction as right if the absolute frame dif-
ference between the prediction and ground truth is
smaller than a threshold. We used three thresholds
(100, 200, 300) and the results are reported in Ta-
ble 5. We have two observations: 1) For middle
point, DEBUG always gets higher accuracy. 2)
For boundary points, DEBUG only drops behind
QANet-SE in TACoS at threshold 100.

Analysis. The sparse bottom-up approach (e.g.,
QANet-SE) can get good boundary predictions

even for long video datasets (e.g., TACoS), which
meets with the design of training a boundary clas-
sifier. But the bottleneck of this approach is that
the predictions of start and end point are inde-
pendent, which is prone to result in an overlong
segment prediction. However, DEBUG predicts
boundary from the same frame feature, which can
avoid predicting overlong segments. Meanwhile,
DEBUG has a confidence subnet to predict “cen-
terness” of each frame, which helps to predict the
middle point. But the bottleneck of DEBUG is the
accuracy of boundary point in long video dataset.

4.4.5 Qualitative Results.

The qualitative results of DEBUG on ActivityNet
Captions is illustrated in Figure 7. We can observe
that DEBUG is sensitive to language query, i.e.,
the predicted scores ŝ are totally different when
given different language queries even for the same
video. Meanwhile, the score ŝ is always a uni-
modal curve with its peak near the midpoint of
ground truth segment, which meets with the de-
sign of DEBUG which uses “centerness” as the
confidence target.
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5 Conclusion

We proposed a novel dense bottom-up framework
DEBUG for NLVL. It is the first bottom-up model,
which surpasses all top-down models with the
highest speed. Compared to the existing bottom-
up models, DEBUG improve performance signif-
icantly by: 1) making full use of positive sam-
ples to alleviate the severe imbalance problem;
2) disentangling boundary detection from query-
related prediction to relieve the burden of a sin-
gle network; 3) predicting boundaries from same
frame to avoid local optimum caused by indepen-
dent predictions. Moving forward, we are going to
narrow the gap between top-down and bottom-up
models, and design a hybrid framework exploring
both choices.
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