
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 4959–4968,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

4959

Stick to Facts: Towards Fidelity-oriented Product Description Generation

Zhangming Chan1,2,∗,†, Xiuying Chen1,2,∗, Yongliang Wang3, Juntao Li1,2,
Zhiqiang Zhang3, Kun Gai3, Dongyan Zhao1,2 and Rui Yan1,2,‡

1 Center for Data Science, AAIS, Peking University
2 Wangxuan Institute of Computer Technology, Peking University

3 Alibaba Group, Beijing
{zhangming.chan,xy-chen,ljt,zhaody,ruiyan}@pku.edu.cn

{yongliang.wyl,zhang.zhiqiang,jingshi.gk}@alibaba-inc.com

Abstract

Different from other text generation tasks, in
product description generation, it is of vital
importance to generate faithful descriptions
that stick to the product attribute informa-
tion. However, little attention has been paid
to this problem. To bridge this gap we pro-
pose a model named Fidelity-oriented Product
Description Generator (FPDG). FPDG takes
the entity label of each word into account,
since the product attribute information is al-
ways conveyed by entity words. Specifically,
we first propose a Recurrent Neural Network
(RNN) decoder based on the Entity-label-
guided Long Short-Term Memory (ELSTM)
cell, taking both the embedding and the en-
tity label of each word as input. Second, we
establish a keyword memory that stores the
entity labels as keys and keywords as values,
and FPDG will attend to keywords through
attending to their entity labels. Experiments
conducted a large-scale real-world product de-
scription dataset show that our model achieves
the state-of-the-art performance in terms of
both traditional generation metrics as well as
human evaluations. Specifically, FPDG in-
creases the fidelity of the generated descrip-
tions by 25%.

1 Introduction

The effectiveness of automatic text generation has
been proved in various natural language process-
ing applications, such as neural machine transla-
tion (Luong et al., 2015; Zhou et al., 2017), di-
alogue generation (Tao et al., 2018a; Hu et al.,
2019), and abstractive text summarization (Chen
et al.; Gao et al., 2019). One such task, product
description generation has also attracted consid-
erable attention (Lipton et al., 2015; Wang et al.,

∗Equal contribution. Ordering is decided by a coin flip.
†Contribution during internship at Alibaba Group.
‡Corresponding author.

Input high-waist; straight; jeans; blue; ZARA

B
ad

output

This UNIQLO low-waist jeans are suitable for the
curvature of the waistline and will not slip when
worn for a long time. The straight version and black
color together makes you even slimmer.

G
ood

output
This blue jeans look personalized and chic, making
you more distinctive. With a high-waist design, the
legs look even more slender, and the whole person
looks taller. The straight design hides the fat in the
legs and is visually slimmer.

Table 1: Example of product description generation.
The text with underline demonstrates faithful descrip-
tion, and text with deleteline demonstrates wrong de-
scription.

2017; Zhang et al., 2019a). An accurate and attrac-
tive description not only helps customers make an
informed decision but also improves the likelihood
of purchase. Concretely, the product description
generation task takes several keywords describing
the attributes of a product as input, and then out-
puts fluent and attractive sentences that highlight
the feature of this product.

There is one intrinsic difference between prod-
uct description generation and other generation
tasks, such as story or poem generation (Li et al.,
2018; Yao et al., 2019); the generated description
has to be faithful to the product attributes. An ex-
ample case is shown in Table 1, where the good
product description matches the input information,
while the bad description mistakes the brand and
the style of the jeans. Our preliminary study re-
veals that 48% of the outputs from a state-of-
the-art sequence-to-sequence system suffer from
this problem. In the real-world e-commerce prod-
uct description generation system, generating text
with unfaithful information is unacceptable. A
wrong brand name will damage the interests of ad-
vertisers, while a wrong product category might
break the law by misleading consumers. Any kind
of unfaithful description will bring huge economic

4960

losses to online platforms.
Though of great importance, no attention has

been paid to this problem. Existing prod-
uct description generators include (Chen et al.,
2019; Zhang et al., 2019b), where they focus on
generating personalized descriptions and pattern-
controlled descriptions, respectively.

In this paper, we address the fidelity problem
in generation tasks by developing a model named
Fidelity-oriented Product Description Generator
(FPDG), which takes keywords about the product
attributes as inputs. Since product attribute infor-
mation is always conveyed by entity words (up to
89.72% in input keywords), FPDG generates faith-
ful product descriptions by taking into account the
entity label of each word. Specifically, first, we
propose an Entity-label-guided Long Short-Term
Memory (ELSTM) as the cell in the decoder RNN,
which takes the entity label of an input word, as
well as the word itself as input. Then, we estab-
lish a keyword memory storing the input keywords
with their entity labels. In each decoding step,
the current hidden state of the ELSTM focuses on
proper words in this keyword memory in regard
to their entity categories. We also collect a large-
scale real-world product description dataset from
one of the largest e-commerce platforms in China.
Extensive experiments conducted on this dataset
show that FPDG outperforms the state-of-the-art
baselines in terms of traditional generation met-
rics and human evaluations. Specifically, FPDG
greatly improves the fidelity of generated descrip-
tion by 24.61%.

To our best knowledge, we are the first to ex-
plore the fidelity problem of product description
generation. Besides, to tackle this problem, we
propose an ELSTM and a keyword memory to in-
corporate entity label information, so as to gener-
ate more accurate descriptions.

2 Related Work

We detail related work on text generation, entity-
related generation, and product description.

Text generation. Recently, sequence-to-
sequence (Seq2Seq) neural network models have
been widely used in NLG approaches. Their ef-
fectiveness has been demonstrated in a variety
of text generation tasks, such as neural machine
translation (Luong et al., 2015; Bahdanau et al.,
2014; Wu et al., 2016), abstractive text summa-
rization (See et al., 2017a; Hsu et al., 2018; Chen

and Bansal, 2018), dialogue generation (Tao et al.,
2018a; Xing et al., 2017), etc. Along another line,
there are also works based on an attention mech-
anism. Vaswani et al. (2017) proposed a Trans-
former architecture that utilizes the self-attention
mechanism and has achieved state-of-the-art re-
sults in neural machine translation. Since then, the
attention mechanism has been used in a variety of
tasks (Devlin et al., 2018; Fan et al., 2018; Zhou
et al., 2018).

Entity-related generation. Named entity
recognition (NER) is a fundamental component
in language understanding and reasoning (Green-
berg et al., 2018; Katiyar and Cardie, 2018). In
(Ji et al., 2017), they proved that adding entity re-
lated information can improve the performance of
language modeling. Building upon this work, in
(Clark et al., 2018), they combined entity context
with previous-sentence context, and demonstrated
the importance of the latter in coherence test. An-
other line of related work generates recipes using
neural networks to track and update entity repre-
sentations (Bosselut et al., 2018). Different from
the above works, we utilize entity labels as supple-
mentary information to assist decoding in the text
generation task.

Product descriptions. Quality product descrip-
tions are critical for providing a competitive cus-
tomer experience in an e-commerce platform. Due
to its importance, automatically generating the
product description has attracted considerable in-
terests. Initial works include (Wang et al., 2017),
which incorporates statistical methods with the
template to generate product descriptions. With
the development of neural networks, (Chen et al.,
2019) explored a new way to generate personal-
ized product descriptions by combining the power
of neural networks and a knowledge base. (Zhang
et al., 2019b) proposed a pointer-generator neu-
ral network to generate product description whose
patterns are controlled.

In real-world product description generation ap-
plication, however, the most important prerequi-
site is the fidelity of generated text, and to the best
of our knowledge, no research has been conducted
on this so far.

3 Problem Formulation

FPDG takes a list of keywords X = {x1, ..., xTX
}

as inputs, where TX is the number of keywords.
These keywords are all about the important at-

4961

Input Keywords

Entity-label-SAM

Brand name Brand category ... Color
Adidas Sports shoes ... Black

...

Keyword Memory

|----------------Keyword Encoder--------------| |----------------------------------Entity-based Generator------------------------------|

ELSTM ELSTM ELSTM ELSTM

This black Adidas is

Adidas Black

Brand Color

...

...

Word-SAMword

entity-
label <SOS> Regular black Color Adidas BrandThis<SOS>

Figure 1: Overview of FPDG. Green denotes an entity label and purple denotes a word. We divide our model
into two components: (1) The Keyword Encoder stores the word and its entity label in the token memory, and
uses Self-Attention Modules (SAMs) to encode words and entity labels; (2) The Entity-based Generator generates
product description based on the token memory and SAM encoders.

tributes of the product. The goal of FPDG is to
generate a product description Ŷ = {ŷ1, ..., ŷTŶ

}
that is not only grammatically correct but also
consistent with the input information, such as the
brand name and the fashion style. Essentially,
FPDG tries to optimize the parameters to maxi-
mize the probability P (Y |X) =

∏TY
t=1 P (yt|X),

where Y = {y1, ..., yTY
} is the ground truth an-

swer.

4 Model

In this section, we introduce our Fidelity-oriented
Product Description Generator (FPDG) model in
detail. An overview of FPDG is shown in Figure 1
and can be split into two modules:

(1) Keyword Encoder (See § 4.1): We first use
a key-value memory to store the entity-label as
key and the corresponding word as value. To bet-
ter learn the interaction between words, we em-
ploy two self-attention modules from Transformer
(Vaswani et al., 2017) to model the input keywords
and their entity-labels separately.

(2) Entity-based Generator (See § 4.2): We pro-
pose a recurrent decoder based on Entity-label-
guided LSTM (ELSTM) to generate the product
description.

4.1 Keyword Encoder

In the product description dataset, most of the in-
put keywords are entity words (up to 89.72%), and
the description text should be faithful to these en-
tity words. Hence, we incorporate entity label in-
formation to improve the accuracy of the gener-
ated text. In this section, we introduce how to em-
bed input keywords with entity label information.

To begin with, we use an embedding matrix e
to map a one-hot representation of each word in

xi into a high-dimensional vector space. Since
our input keywords have no order information,
we use the Self-Attention Module (SAM) from
Transformer (Vaswani et al., 2017) to model the
temporal interactions between the words, instead
of RNN-based encoder. We use three fully-
connected layers to project e(xi) into three spaces,
i.e., the query qi = Fq(e(xi)), the key ki =
Fk(e(xi)) and the value vi = Fv(e(xi)). The at-
tention module then takes qi to attend to each k·,
and uses these attention distribution results αi,· ∈
RTX as weights to obtain the weighted sum of vi,
as shown in Equation 2. Next, we add the original
word representation e(xi) on βi as the residential
connection layer, as shown in Equation 3:

αi,j =
exp (qikj)∑TX

n=1 exp (qikn)
, (1)

βi =
∑TX

j=1 αi,jvj , (2)

ĥi = e(xi) + βi, (3)

where αi,j denotes the attention weight of the i-th
word on the j-th word. Finally, we apply a feed-
forward layer on ĥi to obtain the final word repre-
sentation hi:

hi = max(0, ĥi ·W1 + b1) ·W2 + b2, (4)

where W1,W2, b1, b2 are all trainable parameters.
We refer to the above process as:

hi = SAM (Fq(xi), Fk(x·), Fv(x·)) . (5)

In the meantime, we leverage the e-commerce-
adapted AliNER1 to label each word in the input
such as “brand name” and “color”. Non-entity
words are labeled as “normal word”. We denote ci

1https://ai.aliyun.com/nlp/ner

https://ai.aliyun.com/nlp/ner

4962

En
tit
y-
La
be
l-

LS
TM

Figure 2: The structure of ELSTM, which is a hybrid
of three LSTMs.

as the entity label for the i-th word. To better learn
the interaction between these entity labels, we use
a second SAM, taking c· as input, and obtain the
final representation for ci as mi:

mi = SAM (Fq(ci), Fk(c·), Fv(c·)) . (6)

We also propose a key-value keyword memory
that stores the label results as shown in Figure 1.
The keys in the keyword memory are TC repre-
sentations of different entity-labels, where TC is
the number of entity categories. The values in
the memory are self-attention representations of
words that belong to each category. We denote the
k-th entity-label in the keyword memory as ck, and
the i-th word belonging to this category as e(xki).
This keyword memory will be incorporated into
the generation process in §4.2.3.

4.2 Entity-based Generator

To incorporate entity label information into gen-
eration process, we propose a modified version
of LSTM, named Entity-label-guided Long Short-
Term Memory (ELSTM). We first introduce EL-
STM and then introduce the RNN decoder based
on ELSTM.

4.2.1 ELSTM
As shown in Figure 3, ELSTM consists of three
LSTMs, two Word-LSTMs and one Entity-label-
LSTM. The hidden states of the two Word-LSTMs
are integrated together, forming wh

t , while the hid-
den state of Entity-Label-LSTM is lht . The word
hidden state wh

t attends to the SAM outputs to
predict the next word, while the entity label hid-
den state lht is used to attend to the keyword mem-
ory and predict entity label of next word. In other

words, ELSTM is a hybrid of three LSTMs with
a deeper interaction between these cells. Overall,
ELSTM takes two variables as input, the embed-
ding of an input word e(yt) and its entity labelmt.

The structure of each LSTM in ELSTM is the
same as original LSTM, thus, is omitted here due
to space limitations. Next, we introduce the inter-
action in ELSTM in detail. As shown in Figure 2,
Word-LSTM0 takes the e(yt) as input, and outputs
the initial word hidden state wh′

t+1:

wh′
t+1 = Word-LSTM0(w

h
t , e(yt)). (7)

Next we calculate the entity label hidden state by
Entity-Label-LSTM, taking both mt and wh′

t+1 as
input:

lh
′

t+1 = Entity-Label-LSTM(lht ,mt + wh′
t+1). (8)

To further improve the accuracy of entity label pre-
diction, we also apply another multi-layer projec-
tion, incorporating entity label context vector cmt
(introduced in §16) to obtain polished entity hid-
den state lht+1:

lht+1 = FC([lh
′

t+1, c
m
t]), (9)

where [,] denotes the concatenation operation.
Finally, Word-LSTM1 takes the entity-label

hidden state lht+1 and word embedding e(yt) as in-
put, and outputs predicted word hidden state that
contains entity label information:

w
h′1
t+1 = Word-LSTM1(w

h
t , e(yt) + lht+1). (10)

Note that it is possible that the predicted entity-
label hidden state is not accurate enough. Hence,
we apply a gate fusion combiningwh′1

t+1 with initial
word hidden state wh′

t+1 to ensure the word hidden
state quality:

γ = σ(FC([w
h′1
t+1, w

h′
t+1])), (11)

wh
t+1 = γw

h′1
t+1 + (1− γ)wh′

t+1. (12)

The fusion result is wh
t+1, i.e., the updated word

hidden state.
In this way, the entity label information and

word information are fully interacted in ELSTM
cell, while the hidden states are updated.

4963

Initial State

Brand name Brand category ... Color

Adidas Sports shoes ... Black

...

ELSTM

Entity-Label-SAM

Word-SAM Word-Attention

Label-Attention

ELSTM

Figure 3: An overview of the description generator.

4.2.2 ELSTM-based Attention Mechanism

Established on ELSTMs, we now have a new
RNN decoder to generate descriptions, incorporat-
ing the two SAM encoders and the keyword mem-
ory. First, we apply an Bi-RNN to encode input
keywords, and use its last hidden state as decoder
initial hidden states, i.e., wh

0 and lh0 . The t-th de-
coding step is calculated as:[
wh
t+1

lht+1

]
= ELSTM

([
wh
t

lht

]
, (e(yt),mt)

)
. (13)

Next, similar to the traditional attention mecha-
nism from (Bahdanau et al., 2015), we summarize
the input word representation e(y.) and entity la-
bel representation m· into the word context vector
cwt and entity label vector cmt , respectively. As for
how to obtain cwt and cmt , we use the two hidden
states in ELSTM, i.e., wh

t and lht to attend to h.
and m., respectively. Specifically, the entity label
context vector cmt is calculated as:

γ̂t,i =Wa tanh
(
Wbl

h
t +Whhi

)
, (14)

γt,i = exp (γ̂t,i) /
∑TX

j=1 exp (ˆγt,j) , (15)

cmt =
∑TX

i=1 γt,imi. (16)

The decoder state lht is used to attend to each entity
label representation mi, resulting in the attention
distribution γt ∈ RTX , as shown in Equation 15.
Then we use the attention distribution γt to obtain
a weighted sum of the entity label representations
m· as the word context vector cmt , shown in Equa-
tion 16. cwt is obtained in a similarity by using
hidden state wh

t attending to e(y.), and we omit
the details for brevity. This two context vectors
play different parts, and is introduced in §4.2.4.

4.2.3 Incorporating Keyword Memory
So far, we have finished calculating the context
vector. Next, we describe how to incorporate the
guidance from the keyword memory. We first use
the entity label hidden state to attend to the en-
tity label keys in the keyword memory by gumbel
softmax (Jang et al., 2016) (Equation 17), and then
use the attention weights to obtain the weighted
sum of self-attention representation of values in
the memory (Equation 19):

πk
′

t =
exp((lhtWec

k + pk)/τ)∑Tc
j=1 exp((w

h
tWec

j + pk)/τ)
, (17)

vk
′

i = SAM
(
Fq(e(x

k
i), Fk(e(x

k
·), Fv(e(x

k
·)
)
,

(18)

o
′
t+1 =

∑TC
k=1

(
πkt
∑T

ck

i=1(v
k′
i)
)
, (19)

where pk = − log(− log(gk)), gk ∼ U(0, 1), τ ∈
[0, 1] is the softmax temperature. Tck denotes the
number of words in the input keywords that belong
to the k-th entity category. We choose gumbel-
softmax instead of regular softmax because a gen-
erated word can only belong to one entity cate-
gory. In this way, FPDG first predicts the entity
label of the predicted word and then uses o

′
t+1 to

store the information of words that belong to this
category.

4.2.4 Projection Layers
Next, using a fusion gate gt, o

′
t+1 is combined with

word hidden state cwt+1 in a similar way in Equa-
tion 12 to obtain ot+1. Finally, we obtain the final
generation distribution Pv over vocabulary:

P v
t+1 = softmax

(
Wv[ot+1, w

h
t+1] + bv

)
. (20)

We concatenate the memory vector ot+1, the word
context vector cwt+1, and the output of the decoder
ELSTM wh

t+1 as the input of the output projection
layer.

Apart from predicting the next word, we also
use the entity label hidden state lht to predict the
entity label of the next word as an auxiliary task.
The distribution P e

t+1 over entity categories is cal-
culated as:

P e
t+1 = softmax(We[l

h′
t+1, c

m
t+1] + be) (21)

We use negative log-likelihood as loss function:

L = −(
∑TŶ

t=1 logPv(yt) + λ ·
∑TŶ

t=1 logPe(mt)),
(22)

4964

where λ is the weight of entity label prediction
loss. The gradient descent method is employed to
update all parameters and minimize this loss func-
tion.

5 Experimental Setup

5.1 Research Questions
We list four research questions that guide the ex-
periments: RQ1 (See § 6.1): What is the over-
all performance of FPDG? Are generated descrip-
tions faithful? RQ2 (See § 6.2): What is the effect
of each module in FPDG? RQ3 (See § 6.3): How
does the keyword memory work in each decoding
step? RQ4 (See § 6.4): Can ELSTM successfully
capture entity label information?

5.2 Dataset
We collect a large-scale real-world product de-
scription dataset from one of the largest e-
commerce platforms in China2. The inputs are
keywords about the product attributes selected by
sellers on the platform, and the product descrip-
tions are written by professional experts that are
good at marketing. Overall, there are 404,000
training samples, and 5,000 validation and test
samples. On average, there are 10 keywords in
the input, and 63 words in the product description.
89.72% inputs are entity words.

5.3 Evaluation Metrics
Following (Fu et al., 2017), we use the evalua-
tion package of (Chen et al., 2015), which includes
BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR
and ROUGE-L. BLEU is a popular machine trans-
lation metric that analyzes the co-occurrences of
n-grams between the candidate and reference sen-
tences. METEOR is calculated by generating an
alignment between the words in the candidate and
reference sentences, with an aim of 1:1 correspon-
dence. ROUGE-L is a metric designed to evaluate
text summarization algorithms.

(Tao et al., 2018b) notes that only using the
BLEU metric to evaluate text quality can be mis-
leading. Therefore, we also evaluate our model by
human evaluation. Three highly educated partic-
ipants are asked to score 100 randomly sampled
summaries generated by Pointer-Gen and FPDG.
We chose Pointer-Gen since its performance is rel-
atively higher than other baselines. The statistical
significance of observed differences between the

2https://www.taobao.com/

performance of two runs are tested using a two-
tailed paired t-test and is denoted using N(or H) for
strong significance for α = 0.01.

5.4 Comparison Methods

We first conduct an ablation study to prove the ef-
fectiveness of each module in FPDG. Model w/o
ELSTM is implemented with only keys in the
memory because there are no entity representa-
tions as values. Then, to evaluate the performance
of our proposed dataset and model, we compare it
with the following baselines:
(1) Seq2Seq: The sequence-to-sequence frame-
work (Sutskever et al., 2014) is one of the initial
works proposed for the language generation task.
(2) Pointer-Gen: A sequence-to-sequence frame-
work with pointer and coverage mechanism pro-
posed in (See et al., 2017b).
(3) Conv-Seq2seq: A model combining the con-
volutional neural networks and the sequence-to-
sequence network (Gehring et al., 2017).
(4) FTSum: A faithful summarization model pro-
posed in (Cao et al., 2018), which leverages open
information extraction and dependency parse tech-
nologies to extract actual fact descriptions from
the source text.
(5) Transformer: A network architecture that
solely based on attention mechanisms, dis-
pensing with recurrence and convolutions en-
tirely (Vaswani et al., 2017).
(6) PCPG: A pattern-controlled product descrip-
tion generation model proposed in (Zhang et al.,
2019b). We adapt the model for our scenario.

To verify whether the performance improve-
ment is obtained by adding additional entity label
inputs, we directly concatenate the word embed-
ding with the entity embedding as input for these
baselines, denoted as “with Entity Embedding” in
Table 2.

5.5 Implementation Details

We implement our experiments in Pytorch3 on
Tesla V100 GPUs4. The word and entity-label em-
bedding dimensions are set to 256. The number of
hidden units and the entity-label hidden size are
also set to 256. All inputs were padded with ze-
ros to a maximum keyword number of the batch.
There are 36 categories of entity labels together.

3https://pytorch.org/
4Our model will be incorporated into Chuangyi-

Taobao (https://chuangyi.taobao.com/pages/
smartPhrase).

https://www.taobao.com/
https://pytorch.org/
https://chuangyi.taobao.com/pages/smartPhrase
https://chuangyi.taobao.com/pages/smartPhrase

4965

Models BLEU Metric METEOR ROUGE-L
BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2seq 30.10 13.61 7.564 4.824 14.08 25.04
with Entity Embedding 30.46 13.77 7.722 5.012 14.09 24.96

Pointer-Gen 30.66 13.84 7.933 5.278 14.10 24.93
with Entity Embedding 30.92 13.92 7.988 5.219 14.14 24.85

Conv-Seq2seq 28.22 12.15 6.393 4.012 13.72 23.92
with Entity Embedding 28.23 12.22 6.401 4.012 13.75 24.03

FTSum 30.33 13.57 7.563 4.689 13.86 24.63
with Entity Embedding 30.47 13.61 7.611 4.937 13.97 24.82

Transformer 29.11 12.77 7.116 4.620 13.95 23.36
with Entity Embedding 29.37 12.64 6.852 4.315 13.88 23.73

PCPG(including Entity) 29.46 13.02 7.259 4.620 13.72 24.50

Our FPDG 32.26 14.79 8.472 5.629 15.17 25.27

w/o KW-MEM 31.85 14.36 8.134 5.351 15.01 25.09
w/o ELSTM 31.41 14.57 8.430 5.630 14.98 25.25

Table 2: RQ1: Comparison between baselines.

λ is set to 0 in the first 500 steps, and 0.6 in the
rest of the training process. We performed mini-
batch cross-entropy training with a batch size of
256 documents for 15 training epochs. we set the
minimum encoding step to 15 and maximum de-
coding step size to 70. During decoding, we em-
ploy beam search with a beam size of 4 to gener-
ate a more fluent sentence. It took around 6 hrs
on GPUs for training. After each epoch, we evalu-
ated our model on the validation set and chose the
best performing model for the test set. We use the
Adam optimizer (Duchi et al., 2010) as our opti-
mizing algorithm and the learning rate is 1e-3.

6 Experimental Results

6.1 Overall Performance

For research question RQ1, we examine the per-
formance of our model and baselines in terms
of BLEU, as shown in Table 2. Firstly, among
all baselines, Pointer-Gen obtains the best perfor-
mance, outperforming the worst baseline Conv-
Seq2Seq by 2.44 in BLEU-1. Secondly, directly
concatenating the entity label embedding with the
word embedding does not bring much help, only
leading to an improvement of 0.26 in BLEU-1 for
the Pointer-Gen model. Finally, our model out-
performs all baselines for all metrics, outperform-

Fluency Informativity Fidelity

Pointer-Gen 2.23 1.84 1.91
FPDG 2.46N 2.19N 2.38N

Table 3: RQ1: Human evaluation comparison with
Pointer-Gen baseline.

ing the strongest baseline Pointer-Gen, by 5.22%,
6.86%, 6.79%, and 6.65% in terms of BLEU-1,
BLEU-2, BLEU-3, and BLEU-4, respectively.

As for human evaluation, we ask three highly
educated participants to rank generated summaries
in terms of fluency, informativity, and fidelity. The
rating score ranges from 1 to 3 with 3 being the
best. The results are shown in Table 3, where
FPDG outperforms Pointer-Gen by 10.31% and
19.02% in terms of fluency and informativity, and,
specifically, FPDG greatly improves the fidelity
value by 24.61%. We also conduct the paired stu-
dent t-test between our model and Pointer-Gen,
and the result demonstrates the significance of the
above results. The kappa statistics are 0.35 and
0.49, respectively, which indicates fair and moder-
ate agreement between annotators5.

5(Landis and Koch, 1977) characterize kappa values < 0
as no agreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60
as moderate, 0.61-0.80 as substantial, and 0.81-1 as almost

4966

Figure 4: RQ3: Visualizations of entity-label-attention
when generating the word on the left.

6.2 Ablation Study

Next, we turn to research question RQ2. We con-
duct ablation tests on the usage of the keyword
memory and ELSTM, corresponding to FPDG
w/o KW-MEM and ELSTM, respectively. The
ROUGE score result is shown at the bottom of
Table 2. Performances of all ablation models are
worse than that of FPDG in terms of almost all
metrics, which demonstrates the necessity of each
module in FPDG. Specifically, ELSTM makes
the greatest contribution to FPDG, improving the
BLEU-1, BLEU-2 scores by 2.71% and 1.51%.

6.3 Analysis of Keyword Memory

We then address RQ3 by analyzing the entity-
label-level attention on the keyword memory. Two
representative cases are shown in Figure 4. The
figure in the above is the attention map when gen-
erating the word “toryburch”, and the bottom fig-
ure is when generating the word “printflower”.
The darker the color, the higher the attention.
Due to limited space, we omit irrelevant entity
categories. When generating “toryburch”, which
is a brand name, the entity-label-level attention
pays most attention to the “Brand” entity label,
and when generating “flower”, which is a style
element, it mostly pays attention to “Element”.
This example demonstrates the effectiveness of the
entity-label-level attention.

6.4 Analysis of ELSTM

We now turn to RQ4; whether or not the ELSTM
can capture entity label information. We exam-
ine this question by verifying whether ELSTM can
predict the entity label of the generated word. The
accuracy of the predicted entity label is calculated
in a teacher-forcing style, i.e., each ELSTM takes

perfect agreement.

Input:正品; Prada;/;普拉达; 男包; 尼龙; 双肩背包; 男
士; 休闲; 旅行包; 电脑包; 登山包(authentic; Prada;
man bag; leisure; travel bag; laptop bag; backpack)

R
eference

这款来自prada的拉链双肩包。采用纯色设计，
包面上的字母印花图案十分显眼，令人眼前一
亮，瞬间脱颖而出。开合双拉链处理，使用顺
滑，方便拿取物品。大容量的包包，为物品的
放置提供足够的空间。(This zippered shoulder
bag from Prada. With a solid color design, the letter
print on the surface of the bag is very conspicuous,
making it instantly stand out. Open and close dou-
ble zipper makes it easy to use take items smoothly.
Large-capacity bag provides enough space for the
placement of items.)

Pointer-G
en

这款来自prada的翻盖双肩包。采用了翻盖的设
计，具有很好的防盗效果，让你的出行更加安
全可靠。大容量的包型设计，满足日常的生活
所需，让你的出行更加方便快捷。(This flipover
bag from Prada. The clamshell design has a good
anti-theft effect, making your trip safer and more
reliable. The large-capacity package design meets
the needs of everyday life, making your travel more
convenient and quick.

FPD
G

这款来自prada的纯色双肩包。纯色的设计，
给人一种大气又干练的感觉，打造时下流行
的简约风格。拉链的开合设计，划拉顺畅，
增加物品安全性。大容量的包型，既能容纳
生活物品，还让携带更加的便捷。(This solid
color backpack from Prada. The solid color de-
sign gives people an atmosphere and a sense of
exquisiteness, creating a simple style that is popular
nowadays. The opening and closing design of the
zipper smoothes the stroke and increases the safety
of the item. Large-capacity package can accommo-
date living items and make it easier to carry.

Table 4: Examples of the generated answers by Pointer-
Gen and FPDG. The text with underline demonstrates
faithful description, and text with deleteline demon-
strates wrong description.

the ground truth entity label and word as input, and
outputs the entity label of the next word. We em-
ploy recall at position k in n candidates (Rn@k)
as evaluation metrics. Over the whole test dataset,
R1@36 is 64.12%, R2@36 is 80.86%, and R3@36
is 94.02%, which means ELSTM can capture the
entity label information to a great extent and guide
the word generation.

We also show a case study in Table 4. The de-
scription generated by Pointer-Gen introduces the
Prada bag as a “clamshell bag has a good anti-
theft effect”, which is contrary to the fact. While
our model generates the faithful description: “The
opening and closing design of the zipper smoothes
the stroke”.

7 Conclusion and Future Work

In this paper, we explore the fidelity problem in
product description generation. To tackle this

4967

challenge, based on the consideration that prod-
uct attribute information is typically conveyed by
entity words, we incorporate the entity label infor-
mation of each word to enable the model to have
a better understanding of the words and better fo-
cus on key information. Specifically, we propose
an Entity-label-guided Long Short-Term Memory
(ELSTM) and a token memory to store and cap-
ture the entity label information of each word.
Our model outperforms state-of-the-art methods in
terms of BLEU and human evaluations by a large
margin. In the near future, we aim to fully prevent
the generation of unfaithful descriptions and bring
FPDG online.

Acknowledgments

We would like to thank the reviewers for their con-
structive comments. This work was supported by
the National Key Research and Development Pro-
gram of China (No. 2017YFC0804001), the Na-
tional Science Foundation of China (NSFC No.
61876196 and NSFC No. 61672058). Rui Yan
was sponsored by Alibaba Innovative Research
(AIR) Grant. Rui Yan is the corresponding author.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2018. Simulat-
ing action dynamics with neural process networks.
ICLR.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstrac-
tive summarization. In AAAI.

Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia
Yang, Jingren Zhou, and Jie Tang. 2019. To-
wards knowledge-based personalized product de-
scription generation in e-commerce. arXiv preprint
arXiv:1903.12457.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Xiuying Chen, Zhangming Chan, Shen Gao, Meng-
Hsuan Yu, Dongyan Zhao, and Rui Yan. Learn-
ing towards abstractive timeline summarization. In
IJCAI.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In ACL, pages 675–686.

Elizabeth Clark, Yangfeng Ji, and Noah A Smith. 2018.
Neural text generation in stories using entity repre-
sentations as context. In NAACL, pages 2250–2260.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

John C. Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In ACL, pages
889–898.

Kun Fu, Junqi Jin, Runpeng Cui, Fei Sha, and Chang-
shui Zhang. 2017. Aligning where to see and what
to tell: image captioning with region-based attention
and scene-specific contexts. PAMI, 39(12):2321–
2334.

Shen Gao, Xiuying Chen, Piji Li, Zhaochun Ren, Li-
dong Bing, Dongyan Zhao, and Rui Yan. 2019. Ab-
stractive text summarization by incorporating reader
comments. In AAAI.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In ICML, pages
1243–1252. JMLR. org.

Nathan Greenberg, Trapit Bansal, Patrick Verga, and
Andrew McCallum. 2018. Marginal likelihood
training of bilstm-crf for biomedical named entity
recognition from disjoint label sets. In EMNLP,
pages 2824–2829.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In ACL, pages 132–141.

Wenpeng Hu, Zhangming Chan, Bing Liu, Dongyan
Zhao, Jinwen Ma, and Rui Yan. 2019. Gsn: A
graph-structured network for multi-party dialogues.
arXiv preprint arXiv:1905.13637.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with gumbel-softmax.
ICLR.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity rep-
resentations in neural language models. In EMNLP,
pages 1830–1839.

4968

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In ACL, pages 861–
871.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Juntao Li, Yan Song, Haisong Zhang, Dongmin Chen,
Shuming Shi, Dongyan Zhao, and Rui Yan. 2018.
Generating classical chinese poems via conditional
variational autoencoder and adversarial training. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3890–3900.

Zachary C Lipton, Sharad Vikram, and Julian
McAuley. 2015. Capturing meaning in product re-
views with character-level generative text models.
arXiv preprint arXiv:1511.03683.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In
ACL, volume 1, pages 11–19.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017a. Get to the point: Summarization with
pointer-generator networks. In ACL, pages 1073–
1083.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017b. Get to the point: Summarization
with pointer-generator networks. pages 1073–1083.
ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Chongyang Tao, Shen Gao, Mingyue Shang, Wei Wu,
Dongyan Zhao, and Rui Yan. 2018a. Get the point
of my utterance! learning towards effective re-
sponses with multi-head attention mechanism. In
IJCAI, pages 4418–4424.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui
Yan. 2018b. Ruber: An unsupervised method for
automatic evaluation of open-domain dialog sys-
tems. In AAAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao, and
Chin-Yew Lin. 2017. A statistical framework for
product description generation. In IJCAI, pages
187–192.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between

human and machine translation. arXiv preprint
arXiv:1609.08144.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In AAAI.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7378–7385.

Tao Zhang, Jin Zhang, Chengfu Huo, and Weijun Ren.
2019a. Automatic generation of pattern-controlled
product description in e-commerce. In The World
Wide Web Conference, pages 2355–2365. ACM.

Tao Zhang, Jin Zhang, Chengfu Huo, and Weijun Ren.
2019b. Automatic generation of pattern-controlled
product description in e-commerce. In WWW,
pages 2355–2365.

Long Zhou, Wenpeng Hu, Jiajun Zhang, and
Chengqing Zong. 2017. Neural system combi-
nation for machine translation. arXiv preprint
arXiv:1704.06393.

Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, Ying
Chen, Wayne Xin Zhao, Dianhai Yu, and Hua Wu.
2018. Multi-turn response selection for chatbots
with deep attention matching network. In ACL,
pages 1118–1127.

