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Abstract

Aspect words, indicating opinion targets, are
essential in expressing and understanding hu-
man opinions. To identify aspects, most pre-
vious efforts focus on using sequence tag-
ging models trained on human-annotated data.
This work studies unsupervised aspect extrac-
tion and explores how words appear in global
context (on sentence level) and local context
(conveyed by neighboring words). We pro-
pose a novel neural model, capable of cou-
pling global and local representation to dis-
cover aspect words. Experimental results on
two benchmarks, laptop and restaurant re-
views, show that our model significantly out-
performs the state-of-the-art models from pre-
vious studies evaluated with varying metrics.
Analysis on model output show our ability to
learn meaningful and coherent aspect repre-
sentations. We further investigate how words
distribute in global and local context, and find
that aspect and non-aspect words do exhibit
different context, interpreting our superiority
in unsupervised aspect extraction.

1 Introduction

Opinion, one of the main factors shaping human
behavior, is crucial to our daily activities (Liu,
2012). Every choice we make in our life, rang-
ing from where to go for a Friday dinner to which
job offer to pick up, is largely influenced by what
other people think. To help individuals navigate
decision-making processes, there exists growing
attentions on opinion mining algorithms that dis-
till massive opinion-rich texts — such as digital
product reviews (Poddar et al., 2017) and social
media discussions (Dusmanu et al., 2017) — into
the opinionated information we need.

∗This work was partially done when Ming Liao was an
intern at Tencent AI Lab, Shenzhen, China.

†Jing Li is the corresponding author and conducted most
of the work at Tencent AI Lab, Shenzhen, China.

[R1]: It’s truly a great laptop
:::
for

::
the

:::::
price.

[R2]: If you have the money, I suggest going
::

for
::
the

::
i7

Table 1: Two sample laptop review sentences. Aspect
words are in boldface and blue. Wavy underlines indi-
cate local context words indicating aspect word “i7”.

Towards human opinion understanding, it is es-
sential to figure out what target the opinion cen-
ters around. After all, previous studies have long
pointed out that human language mostly conveys
opinion with aspect and sentiment words (Liu,
2012). In this work, we focus on aspect extrac-
tion, targeting at the recognition of words indi-
cating opinion aspects (henceforth aspect words).
We believe developing effective aspect extraction
models will benefit a broad range of compelling
applications, such as aspect-based sentiment clas-
sification (Tang et al., 2016), opinion summariza-
tion (Wu et al., 2016), trending event tracking
(Feng et al., 2016), and so forth.

To date, most progress made in aspect extrac-
tion has focused on training sequence tagging
models on human-annotated data (Li and Lam,
2017; Xu et al., 2018; Wang and Pan, 2018). How-
ever, acquiring manual labels will inevitably un-
dergo an expensive data annotation process and is
hence difficult to scale for datasets from new do-
main or language. In this work, we explore how
aspect words can be discovered in a fully unsu-
pervised manner. We are inspired by the linguis-
tic phenomenon that aspect words generally dis-
tinguish themselves from other words in their oc-
currence patterns within global and local context.
Here global context refers to how pairs of words
co-occur with each other at sentence level (with-
out considering word order and can be extended to
capture document-level context), while local con-
text means what neighbors a word has.

To illustrate why global and local context can
work together to indicate aspect words, Table 1
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shows two sentences from laptop review bench-
mark (Pontiki et al., 2016). As can be seen from
R1, aspect words “price” and “laptop” tend to
appear together in R1-like sentences concerning
“laptop price”. As for R2, its aspect words “i7”,
though not co-occurring with other aspects, have
similar neighbors “for the” in local context with
“price”, which reveals its high likelihood of being
aspect words, the same as “price”.

Inspired by the phenomenon above, we propose
a novel unsupervised model capable of coupling
global and local context to discover aspect word
clusters. Our model is built on the success of topic
models in aspect extraction (Lin and He, 2009;
Brody and Elhadad, 2010; Zhao et al., 2010). It
is attributed to their ability to form latent topics
with words likely to co-occur in a subset of sen-
tences instead of widely appearing in the entire
corpus (Blei et al., 2003). These words happen to
exhibit similar patterns of how aspect words occur
on sentence level (Lin and He, 2009). However,
the above methods, only exploiting global context,
are arguably suboptimal for largely ignoring the
rich information delivered by local context. Some
recent work (He et al., 2017), on the other way
around, focus on using local context, yet ignore its
coupled effects with global context.

Our work, to the best of our knowledge, is the
first to explore how global and local context jointly
indicate aspect words. Moreover, taken advan-
tage of the recent advances in neural topic models
(Miao et al., 2017; Srivastava and Sutton, 2017),
we enable end-to-end learning of global and lo-
cal representation, where the interaction between
them contributed to aspect recognition can be au-
tomatically captured.

In experiments, we first compare our model
with existing unsupervised models on aspect ex-
traction. The results on restaurant and laptop re-
views show that our model outperforms state-of-
the-art approaches using global or local context
only. For example, we achieve 36.1 F1 on lap-
top dataset, compared with 32.9 produced by He
et al. (2017). Further discussions demonstrate our
capability of capturing meaningful representations
from global and local context, which interprets our
superiority in aspect extraction. In addition, we
empirically analyze global and local word context
on our datasets. The results confirm that aspect
words indeed vary in their global and local context
compared with non-aspect ones, hence providing

useful clues for aspect identification.

2 Related Work

Our work is mainly in the line with aspect extrac-
tion research. On this task, early studies mostly
focus on the design of hand crafted rules (Hu
and Liu, 2004; Zhuang et al., 2006; Qiu et al.,
2011) or features (Jin et al., 2009; Li et al., 2010).
Recently, the propose of neural models enables
automatic representation learning without labor-
intensive feature engineering (Wang et al., 2016,
2017; Li and Lam, 2017; Xu et al., 2018; Wang
and Pan, 2018). These supervised models, rely on
manually annotated data, thus restricted in their
scaling ability for new domain or language. In-
stead, our work, focusing on unsupervised aspect
extraction, can discover aspect words via exploit-
ing how words occur in global and local context.

Our work is inspired by the unsupervised meth-
ods capturing latent aspect factors with LDA-
style topic models (Lin and He, 2009; Brody
and Elhadad, 2010; Zhao et al., 2010). We are
also related with non-neural models incorporat-
ing word embeddings (encoding local context) to
learn latent topics (discovered from global con-
text) (Nguyen et al., 2015; Li et al., 2016; Shi
et al., 2017). Compared with them — relying on
expertise to customize inference algorithms, our
model — in a neural architecture — does not re-
quire model-specific derivation, and enables inter-
actions between global and local representations
to be automatically learned. Though some neural
models were recently proposed for our task (Wang
et al., 2015; He et al., 2017), they focus on lo-
cal context, unable to leverage global information.
Distinguishing from them, we examine how the
coupled effects of global and local context can sig-
nal aspect words, which have never been studied
before in previous work.

3 Our Neural Model Coupling Global
and Local Context

This section describes our neural model coupling
the force of global and local context for aspect ex-
traction. Figure 1 shows our overall architecture.
There are two modules composed, one for local
context modeling and the other for global.

In the following, we first describe the formula-
tion of input and output in Section 3.1. Then the
local and global context modeling process will be
in turn given in Section 3.2 and 3.3.
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Figure 1: Our overall architecture with one module for
local context modeling (on the left) and the other for
global (on the right).

3.1 Input and Output

Before touching details to reveal how our model
works, we first describe our input and output.

Formally, given a corpus C with |C| sen-
tences, {x1,x2, ...,x|C|}, we process each sen-
tence x into two forms: word sequence form xseq
and bag-of-words (BoW) form xbow. xseq =
〈w1, w2, ..., w|x|〉, where wn indicates word index
of the n-th word and |x| denotes the number of
words. xbow is the BoW term vector over the vo-
cabulary V . Here xseq (considering word order)
is fed for modeling local context and learning how
words co-occur with their neighbors, while xbow
(following the bag-of-words assumption in most
topic models (Blei et al., 2003; Miao et al., 2017))
serves as the input for global context modeling and
capture sentence-level word co-occurrence.

Our goal is to output distributional clusters of
aspect words. Then following Qiu et al. (2011)’s
practice, the top N nouns (N as a hyperparam-
eter) from each cluster (ranked by likelihood) are
selected as the extracted aspect words, considering
most aspects are nouns.

3.2 Local Context Modeling

As mentioned above, local context modeling mod-
ule takes word sequence form, xseq, as its in-
put. In this module, each word wn ∈ xseq is
first processed with an embedding layer and con-
verted into an embedding vector en. Then we em-
ploy long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) network to explore local
context. Word embeddings e1, e2, ..., e|x| are pro-
cessed into hidden states via recurrently exploring
word co-occurrence with left neighbors. Specifi-
cally, for word wn, its hidden states hn is:

hn = fLSTM (en,hn−1) (1)

where fLSTM (·) refers to an LSTM unit. The hid-
den states 〈h1,h2, ...,h|x|〉 are considered as the
local representation, further leveraged in global
context modeling and described later.

3.3 Global Context Modeling
Our global context modeling module is inspired by
previous practice that discovers aspect words with
LDA-fashion Bayesian graphical models (Lin and
He, 2009). We assume there are K latent aspect
factors embedded in the the given corpus C. Each
factor φk (k = 1, 2, ...,K) is represented with a
distributional word cluster over the vocabulary V .

Also Inspired by neural topic models (Miao
et al., 2017), we adopt a variational auto-encoder
(VAE) (Kingma and Welling, 2013), with an en-
coder and a decoder, to resemble the topic model-
style data generation process. In doing so, we en-
able latent aspects, capturing word co-occurrence
in both global and local context, to be learned in
neural architecture. There are two main steps in-
volved: First, the input sentence x (in BoW form
xbow) is encoded to global representation z. Con-
ditioned on z, together with local representation
hn (defined in Section 3.2 and n = 1, 2, ..., |x|),
decoder further generates x′bow, the BoW-form re-
construction of xbow. In the rest of this section,
we first introduce how global representation z is
learned by encoder from global context. Then we
introduce how global and local representations are
coupled to work together for data generation.

Global Representation Encoding. The encoder
is employed to learn global representation, z, from
xbow. Following Miao et al. (2017), words in
global context are assumed to satisfy Gaussian dis-
tribution, prior on mean µ and standard deviation
σ. Their estimation formula are defined as:

µ = fµ(fe(xbow)), log σ = fσ(fe(xbow)) (2)

where f∗(·) is a neural perceptron performing a
linear transformation operation followed by a non-
linear ReLU activation (Nair and Hinton, 2010).

Coupling Global and Local Context. Recall
we obtain the hidden states hn (n = 1, 2, ..., |x|)
from local context modeling, and here we describe
how we couple them with global representation z.

Concretely, we employ attention mecha-
nism (Bahdanau et al., 2015) over the hidden
states in local representation, which, in aware
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of global information, aims to identify words in
x that can usefully indicate its aspect factors.
We design attention weight αn to measure the
similarity between the semantic meaning of word
wn and x’s global representation z:

αn = zT fh(hn) (3)

where fh(·) is a ReLU activation function. The
context vector of this attention, namely globally-
scoped local representation, is defined as:

c =

|x|∑
n

αnhn (4)

In the next step, the decoder will use c for learn-
ing corpus-level aspect factors and reproducing
xbow. Below comes more details.

Decoding Process. Given the global representa-
tion z and the globally-scoped local representation
c, the decoder carries out the data generation pro-
cess conditioned on both of them. For each input
sentence x, we assume each word wn ∈ xbow is
sampled conditioned on its aspect mixture, θ, aK-
dim distribution reflecting x’s composition of as-
pect factors. θ is then estimated with both z and c,
conveying global and local context of x’s words.
The story describing x’s generation process is:

• Draw global representation z ∼ N (µ, σ2).
• Obtain globally-scoped local representation c

with Eq. 4.
• Aspect mixture θ = softmax(fθ(z+ c)).
• For the n-th word in x:

– βn = softmax(fφ(θ)).
– Draw the word wn ∼Multi(βn).

Here f∗(·) is a ReLU-activated neural perceptron
described above. Particularly, the weight matrix
of fφ(·) (with the softmax normalization) are em-
ployed as the aspect-word distributions (distribu-
tional word clusters), φ, used to represent the la-
tent aspect factors and serves as our main output.

Learning Objective. We design the learning ob-
jective of our entire framework as:

L = DKL(p(z)||q(z |x))− Ep(z)[p(x | z)] (5)

where p(z) is a standard Gaussian prior. The first
term reflects encoding loss while the second es-
timation likelihood (for decoding). We refer the
readers to Miao et al. (2017) for more details.

4 Experimental Setup

Datasets. We conduct experiments on two
benchmark datasets constructed for the SemEval

# of sen |Voc| Avg len
per sen |Apt| # of apt

per sen
Laptop
Train 6,355 3,374 14.51 837 2.35
Test 800 1,866 13.17 430 2.52
Rest
Train 6,359 5,166 13.20 1,404 2.36
Test 2,161 3,800 13.51 948 2.41

Table 2: Statistics of laptop and restaurant (rest)
datasets. |Voc|: the vocabulary size (including stop
words). Avg len: average number of tokens. |Apt|: the
number of distinct aspects. # of apt per sen: average
number of aspects in a sentence.

aspect-based sentiment analysis (ABSA) chal-
lenge (Pontiki et al., 2014, 2015, 2016) with hu-
man annotated aspects — one gathers restaurant
reviews (henceforth restaurant) and the other
consists of laptop reviews (henceforth laptop).
For model training and evaluation, we combine
the training and test datasets for 2014-2016 ABSA
(except for 2015 without laptop data released).
Following common practice (Wagner et al., 2014),
a review sentence is considered as a data sentence
for input. The statistics of our datasets are dis-
played in Table 2. We can see that aspect words
take around 25.0% of the vocabulary, yet less than
19.1% of the words per sentence. It is indicated
the sparsity and diversity of aspect words, further
suggesting the challenging of our task.

Preprocessing. Here are our preprocessing
steps. First, we adopted NLTK toolkit for text
tokenization.1 Then, we normalized all letters
into their lower cases. Next, we removed words
appearing less than five times. Finally, for
BoW-form input, we removed all stop words and
punctuation following common practice in topic
models (Blei et al., 2003).

Parameter Setting. We applied pre-trained
GloVe embedding (Pennington et al., 2014) for
initialization in local context modeling.2 The em-
bedding dimension is set to 300, and batch size to
128. For the number of latent aspect factors, K,
we tuned it on training data with five-fold valida-
tion and set it to 40. As for N , the number of
nouns to be selected from each aspect word clus-
ter, we set it to 30 following Qiu et al. (2011).
In model training, we employ Adam optimizer
(Kingma and Ba, 2015), with learning rate set to

1https://www.nltk.org
2https://nlp.stanford.edu/projects/

glove/

https://www.nltk.org
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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1e− 3, and run 20 epochs with early stop strategy
adopted. Dropout strategy (Srivastava et al., 2014)
is also adopted to avoid overfitting.

Evaluation Metrics. To ensure comparable per-
formance, for clustering-based approaches, we se-
lect the top 30 nouns from 40 aspect clusters, same
as our set up. For the rest, the top 1, 200 nouns are
extracted. Here we adopt two sets of evaluation
metrics. First, we follow Qiu et al. (2011) to test
sentence-level aspect extraction, where the inter-
section of our selection and the words appear in
a review sentence are considered as the extracted
aspects. In this evaluation, we report precision,
recall, and F1 scores. Second, we evaluate our
ability to build aspect lexicon (a.k.a. corpus-level
extraction) following Hamilton et al. (2016). We
consider all the annotated aspects as gold standard
lexicon and adopt accuracy for evaluation.

Comparisons. We first consider a simple base-
line that randomly selects nouns as aspect words
(henceforth RANDOM). We also compare with
extracting- and clustering-based baselines — TF-
IDF (Bahdanau et al., 2015), K-MEANS (Lloyd,
1982) (implemented with sklearn toolkit3 and tak-
ing Glove embedding for similarity measure), and
BTM4 (Yan et al., 2013), state-of-the-art in short
text topic modeling and well-performed in aspect
extraction (He et al., 2017).

In addition, we consider the following recently
proposed unsupervised models in comparison:
LF-LDA (Nguyen et al., 2015), LDA topic model
incorporating word embeddings (GloVe is applied
here), and ABAE (He et al., 2017), the state-of-
the-art attention-based model for unsupervised as-
pect extraction. Besides the existing models, we
also compare with our variant that only models
global context with neural topic model (henceforth
GBC ONLY). The full model coupling global and
local context is hence referred to as LCC+GBC.

5 Experimental Result

In this section, we first discuss comparison re-
sults with unsupervised aspect extraction models
in Section 5.1. Section 5.2 shows what our model
learns and interprets why it can discover aspect
words. Next, in Section 5.3, we carry out an em-
pirical study over how global and local context in-
dicate aspect words. Last, we further discuss our

3https://scikit-learn.org/stable/
4https://github.com/xiaohuiyan/BTM

Models Restaurant Laptop
Pre Rec F1 Acc Pre Rec F1 Acc

Comparisons
RANDOM 24.9 20.4 22.4 17.3 24.1 39.0 29.8 20.8
TF-IDF 28.6 24.8 26.6 24.3 22.5 18.3 20.2 21.9
K-MEANS 28.1 40.0 33.0 19.0 23.0 35.6 27.9 23.5
BTM 30.6 56.4 39.7 21.2 25.8 48.8 33.7 31.3
LF-LDA 30.2 60.3 40.2 24.8 26.3 50.1 34.4 28.4
ABAE 30.9 57.8 40.2 23.6 25.4 46.5 32.9 32.0
Our models
GBC ONLY 30.5 57.9 39.9 24.2 25.6 49.8 33.8 29.8
LCC+GBC 31.2 60.5 41.2 26.0 28.0 50.2 36.1 33.7

Table 3: Precision (pre), Recall (rec), F1, and Ac-
curacy (Acc) produced by various unsupervised mod-
els. Acc measures corpus-level extraction while oth-
ers sentence-level. Our model significantly outperform
others in F1 and Acc measure (paired t-test, p < 0.05).

parameter effects and main error in Section 5.4.

5.1 Aspect Extraction Results
Main Comparison Results. In Table 3, we re-
port the aspect extraction results on two datasets.
Several interesting observations can be drawn:
• All models tend to yield better F1 on restau-

rant yet better Acc on laptop. We find that restau-
rant exhibits generally worse model performance
on corpus-level extraction than that on sentence
level. The opposite findings is whereas drawn on
laptop. It might be because restaurant contains
more distinct aspects (shown with the larger |Apt|
in Table 2). It is possibly due to the prominence
of rare aspects, which is challenging to be discov-
ered.
• Simple baselines do not work well. Both

RANDOM and TF-IDF perform poorly, indicating
the challenge of unsupervised aspect extraction.
• Global context can well indicate aspects. We

observe that approaches based on topic models
(BTM, LF-LDA, and our models) perform bet-
ter than others. The results indicate that aspect
words do vary from other words in global context
distributions. Topic model-based approaches, via
exploiting sentence-level word co-occurrence, can
thus effectively identify aspect words.
• Coupling global and local context is effective.

By combining topic models (global context) with
word embeddings (local context), LF-LDA pro-
duces the second best F1. Also, our full model
LCC+GBC outperforms its variant GBC ONLY

in F1. These observations indicate the benefit of
joint modeling of global and local context to dis-
cover aspect words.

Besides, by comparing model performance over
the two datasets, we observe that all models per-
form worse on laptop. An intuitive explana-
tion is that laptop reviews generally concern wide

https://scikit-learn.org/stable/
https://github.com/xiaohuiyan/BTM
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GBC ONLY LCC+GBC
good, menu, little, kind,
noise, play, daniel, fare,
jelly, much, details, fa-
ther, neighborhood, wine,
door, possible, murray,
keep, vagan, heaviness,
cool, wins, angel, upper,
romantic, takes, avenue,
fruit, pink, strips

value, wine, date, evening,
food, block, avenue, line,
fun, years, love, yes, hang,
knows, must, cheese,
favorite, course, romantic,
tip, jeans, servers, cold,
pastrami, atmosphere,
fine, counter, word, sauce,
phone

crash, keyboard, en-
counter, 39, battery,
wires, memory, pho-
tographs, sooner, fits, feel,
things, steve, overheat,
would, seem, pro, touch,
cpu, mouse, figure, user,
better, users, ran, days,
question, apple, worth, sit

needed, skype, advise,
keyboard, remote, daily,
matches, high, love,
originally, wife, loud,
excellent, macbook,
freezes, well, anytime, got,
friend, weird, even, gui,
weeks, recently, internet,
8.1, laptops, tapping,
speakers, noon

Table 4: Top 30 words of sample latent aspects learned
by our variant GBC ONLY (on the left) and full model
LCC+GBC (on the right). The top displays the outputs
on restaurant dataset and the bottom laptop. Aspect
words are in boldface and blue (annotated in least one
sentence), while sentiment words are in italic and red.

range of aspects (e.g., screens, battery, etc.), while
restaurant reviews tend to be centered around gen-
eral aspects (e.g., food and service). Aspect words
thus exhibit sparse occurrence patterns in laptop
reviews, rendering generally worse model perfor-
mance. Section 5.3, we will discuss more. For the
same reason, local context helps LCC+GBC ob-
tain larger margin on laptop, compared with mod-
els relying on global word co-occurrence.

5.2 Model Interpretation

Here we probe into our output and study why
LCC+GBC model works.

Topic Coherence. We first analyze the coher-
ence of our latent aspects, where CV metrics, a
widely-applied automatic topic coherence mea-
sure (Röder et al., 2015) is adopted. LCC+GBC’s
latent aspects achieves CV coherence scores of
0.401 and 0.393 on restaurant and laptop dataset,
respectively, compared to 0.382 and 0.377 pro-
duced by GBC ONLY. It hence suggests the joint
effects of global and local context also helps pro-
duce coherent aspects.

Sample Latent Aspects. We further conduct a
qualitative analysis on the produced latent aspects.
Table 4 shows the top 30 words (ranked by likeli-
hood) of the sample latent aspects. LCC+GBC’s
output aspects look more coherent, with words

it 's
tru

ly a
gre

at
lap

top for the pri
ce

(a)

if
yo
u
ha
ve the

mo
ne
y i

sug
ge
st
go
ing for the i7

(b)

Figure 2: The globally-scoped local attention weights
learned by our LCC+GBC model for the sample sen-
tences in Table 1. Darker colors indicate higher values.

having similar semantics clustered together, such
as “course”, “romantic”, and “date” learned from
restaurant dataset, and “skype”, “remote”, and “in-
ternet” from laptop. The possible reason is that
words conveying similar semantic meanings tend
to appear in similar local context. LCC+GBC, via
coupling local context with global one, is thus able
to capture such semantic representations.

We also notice that LCC+GBC discovers more
rare aspects, such as “pastrami” (from restaurant)
and “gui” (from laptop). These words, though may
exhibit sparse occurrence and unable to be discov-
ered purely with global context, might be effec-
tively indicated by their local context. This reveals
the benefit of combining the effects of global and
local context for aspect extraction.

In addition, we notice that our output aspect
clusters include some sentiment words. It is pos-
sibly because aspect words tend to co-occur with
sentiment ones in both global and local context.
Thus without supervision, it is likely our models
discover them together. These findings suggest
our potential benefit on extracting sentiment words
— which can be easily separated from aspects by
their POS tags (Qiu et al., 2011)). Such extension
is beyond the scope of this paper but worth explor-
ing in future work.

Case Study. To understand what LCC+GBC
learns resulting its superiority in aspect extrac-
tion. We take the two samples in Table 1 as in-
put. Figure 2 visualizes their globally-scoped at-
tention weights (defined in Eq. 3). We observe
that LCC+GBC assigns high attention weights for
aspect words “laptop”, “price”, and “i7”. Also
highlighted are the neighboring words “for the” in
both attentions, usefully signaling their next word
to be aspect. The results indicate LCC+GBC
learns meaningful information via exploring inter-
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Figure 3: Sentence-level co-occurrence of aspect (in
blue line) and non-aspect (in red line) word pairs distri-
bution from two datasets. X-axis: word pair frequency.
Y-axis: proportion of pairs. Aspect and non-aspect
words exhibit diverse distributions.

actions between global and local representation.

5.3 Analysis of Global and Local Context

To extensively understand the effects of global and
local context on aspect identification, we carry out
an empirical study on our datasets.

Aspects vs. Non-aspects. We first compare the
global and local word occurrence statistics in con-
text of aspect and non-aspect words. This is to em-
pirically analyze why LCC+GBC can effectively
distinguish aspect and non-aspect words.

To examine global context, Figure 3 presents
distributions of word pair co-occurrence in sen-
tences, with two lines corresponding to aspect
and non-aspect pairs. It is seen different dis-
tribution are exhibited by aspect and non-aspect
pairs, with non-aspect ones flatly distributed over
varying frequency while the aspect pairs are more
sparse. This indicates global context, capturing
how words co-appear in sentences, can indeed
help distinguish aspect and non-aspect words.

We also notice that aspect pair distributions are
slightly different on two datasets. On restaurant
dataset, we observe a pulse on pairs occurring
10− 20 times, while the distribution on laptop is a
long tail. This demonstrates the sparse aspect oc-
currence patterns in laptop dataset (probably ow-
ing to the broad range of aspects discussed there),
also explains the general worse performance on it
(compared to restaurant and shown in Table 3).

We then analyze local context and show the
distribution of POS tags (predicted with NLTK
toolkit) in left and right neighbors. We take lap-
top dataset as an example to discuss, and similar
observations are drawn from restaurant. For better
displays, from 34 POS tags in total, we pick up the
top 5 tags in aspects’ and non-aspects’ neighbors
respectively. Distributions are shown over their
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(a) Left Context

CC IN VBZ NN RB DT JJ0.00
0.05
0.10
0.15
0.20
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non-aspects

(b) Right Context

Figure 4: The distribution of neighboring POS tags in
left and right context ( laptop dataset). Aspect neigh-
bors are in red and non-aspects’ in blue. X-axis: neigh-
boring POS tags. Y-axis: POS proportions. Aspects’
and non-aspects’ neighbors have different POS tags.

union set in Figure 4. In both left and right context,
we observe aspects and non-aspects exhibit differ-
ent distributions for their neighboring POS tags.
For example, aspect words are likely to have “DT”
(e.g., an, this) appearing as left while “RB” (e.g.,
highly, barely) frequently acting as non-aspects’
left neighbors while rarely in aspects’.

In addition, we display in Table 5 the top 10
neighboring bigrams in left context. Although it
is merely a qualitative human judgement at this
point, we can draw some interesting observations
from the results. For example, some opinioned bi-
grams, such as “a great” and “love the”, are likely
to appear on the left local context of aspects (opin-
ion targets). Such patterns may usefully indicate
aspect words and help distinguish them from non-
aspect ones. As for right bigram neighbors, they
exhibit sparse occurrence patterns, hence might
provide less useful clues. We will analyze the ef-
fects of left and right local context next.

Aspects Non-aspects
easy to, and the, of the, for
the, with the, a great, that
the, it ’s, all the, love the

of the, it is, and the, is a,
battery life, to use, it ’s,
with the, i have, for the

Table 5: Top 10 neighboring bigrams in left context of
aspects and non-aspects (laptop dataset).

Local Context Modeling. We then compare and
discuss the effectiveness of varying modules to
capture local representation. The performance of
our variants combined with varying local encoders
are shown in Table 6. It is observed that all vari-
ants with attention, in aware of global context and
put over local representation, yield better perfor-
mance. This shows that attention mechanism is
able to capture interactions between global and lo-
cal representations, which are useful in discover-
ing aspect words. We also notice that LSTM en-
coder performs better than CNN and BI-LSTM.
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Restaurant Laptop
W/O LCC 39.9 33.6
AVG EMB 40.0 33.9
LSTM (w/o att) 40.1 34.4
CNN (w/ att) 40.4 34.0
BI-LSTM (w/ att) 40.6 34.8
LSTM (w/ att) 41.2 36.1

Table 6: F1 score of our variants with varying encoders
for local context modeling. Here att refers to the at-
tention to capture globally-scoped local representation
(shown in Eq. 3 and 4). In the first column, W/O LCC
refers to GBC ONLY variant. AVG EMB means average
embedding. LSTM (w/ att) is our LCC+GBC model.

It is possibly because, in local context, left neigh-
bors convey more useful clues for indicating as-
pect words, compared with right ones. As a result,
CNN and BI-LSTM, equally considering left and
right context, might be somehow affected by the
noise in right context. They are thus outperformed
by LSTM, which only models local context in
left-to-right direction.
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Figure 5: Recall scores for discovering varying quin-
tiles (20%) of aspects (ranked by frequency). X-axis:
quintiles of aspect frequency. Y-axis: recall scores.

Varying Aspect Frequency. Recall that the
sample aspects in Table 4 suggest more rare as-
pects discovered by LCC+GBC compared with
GBC ONLY. We conduct an analysis on model
performance to discover aspects with varying fre-
quency. Figure 5 compares the recall scores pro-
duced by ABAE, GBC ONLY, and LCC+GBC
when retrieving varying aspect quintiles (5-
quantile) (ranked by frequency). It shows ABAE
performs better in discovering low-frequency as-
pects while GBC ONLY better at recognizing fre-
quent ones. It suggests global context is more use-
ful to indicate common aspects while local context
better at signaling rare ones. LCC+GBC, captur-
ing the coupled effects of global and local context,
can identify both common and rare aspects, and
thus yield superior performance.

20 30 40 50 60 70
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40.50

41.00
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(a) Restaurant
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34.00

34.50
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35.50

36.00 GBC ONLY
LCC+GBC

(b) Laptop

Figure 6: F1 scores of our models (in y-axis) given
varying aspect number K (in x-axis). LCC+GBC per-
forms consistently better than GBC ONLY .

5.4 Further Discussion

Parameter Analysis In main results, we fix the
number of latent aspects to K = 40. In Figure 6,
we further examine how our models (GBC ONLY

and LCC+GBC) perform given varying number
of K. Here to ensure comparable performance,
we set N = 1200/K. It is seen that LCC+GBC
yields consistently better F1 than GBC ONLY.
We also observe that both models do not exhibit
monotomic curves, where LCC+GBC obtains the
best performance given K = 40, consistent with
the validation results.

Error Analysis. Here we analyze our main er-
rors types. One major type is caused by wrongly
identifying aspect phrases, such as “windows 7”,
where “7” is missed possibly ascribed to its sparse
occurrence. We have such errors owning to mod-
eling context in word level and sometimes fail to
capture semantics in coarser grain. One possible
solution is to extend our global context model-
ing module to learn phrase-level semantics (He,
2016). Another main errors occur when process-
ing context-sensitive aspect words. For exam-
ple, “hard” indicates aspect in “The hard drive
is fast.”, rather than “It is hard to use that lap-
top.”. Our model, failing to distinguish “hard”
in varying context, considers it as aspect for both
sentences. To deal with such error, we can adopt
context-aware decoders, such as Hu et al. (2017),
to distinguish word semantics in different context.

6 Conclusion

We have presented a study of unsupervised as-
pect extraction via exploring the coupled effects
of global and local context. A neural model has
been proposed to learn the interactions between
global and local representations indicative of as-
pect words. Experiment results on two benchmark
datasets show our model outperform comparison
approaches modeling local or global context only.
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We find out three interesting points in empirical
analysis over global and local context: First, as-
pects and non-aspects exhibit distinguishing distri-
butions in either global and local context; Second,
in local context, left neighbors can better indicate
aspect words compared with the right; Third, lo-
cal context can better indicate rare aspects while
global signals common aspects better.
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