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Abstract

While broadly applicable to many natural lan-
guage processing (NLP) tasks, variational au-
toencoders (VAEs) are hard to train due to the
posterior collapse issue where the latent vari-
able fails to encode the input data effectively.
Various approaches have been proposed to al-
leviate this problem to improve the capability
of the VAE. In this paper, we propose to in-
troduce a mutual information (MI) term be-
tween the input and its latent variable to regu-
larize the objective of the VAE. Since estimat-
ing the MI in the high-dimensional space is in-
tractable, we employ neural networks for the
estimation of the MI and provide a training al-
gorithm based on the convex duality approach.
Our experimental results on three benchmark
datasets demonstrate that the proposed model,
compared to the state-of-the-art baselines, ex-
hibits less posterior collapse and has compara-
ble or better performance in language model-
ing and text generation. We also qualitatively
evaluate the inferred latent space and show that
the proposed model can generate more reason-
able and diverse sentences via linear interpola-
tion in the latent space.

1 Introduction

Deep learning architectures are parameterized by
families of non-linear functions, which learn mul-
tiple levels of more abstract representations (Ben-
gio, 2009; Bengio et al., 2013). Recently, there has
been a surge of interest in deep generative models
for unsupervised learning, such as variational au-
toencoders (VAEs) (Kingma and Welling, 2014;
Rezende et al., 2014), generative adversarial net-
works (GANs) (Goodfellow et al., 2014), and au-
toregressive models (van den Oord et al., 2016).
The goal is to learn a compact representation to
capture the salient structure in a given highly com-
plex high-dimensional unlabelled data so that new
data with some variations can be generated. They
have been widely applied to a range of NLP tasks,

such as language modeling (Bowman et al., 2016;
Zhao et al., 2018a), dialog generation (Zhao et al.,
2017, 2018b), etc. In this paper, we focus on the
VAE with recurrent neural networks as its encoder
and decoder for text generation.

Recurrent neural networks (RNNs) are one of
the state-of-the-art autoregressive models for text
modeling (Melis et al., 2018; Trinh et al., 2018).
Training RNNs involves factorizing the joint dis-
tribution over a set of random variables into a se-
ries of conditional distributions. Yet, the one-step-
ahead predictions force RNNs to learn local cor-
relations, rather than global coherence. This is in-
sufficient to capture high-level abstractions which
characterize text sequences.

One approach to circumvent this challenge is to
introduce variational autoencoders (VAEs) (Bow-
man et al., 2016), where an encoder learns a latent
variable from text sequences and a decoder takes
advantage of the variable to reconstruct word-level
details. The inferred latent variable in the contin-
uous space captures the semantics and syntactics
of text sequences and text generation can be per-
formed in the latent space. Although the approach
is theoretically elegant, training the VAE often suf-
fers from the well-known posterior collapse issue.
It tends to ignore the latent variable and the result-
ing model reduces to a language model. The issue
is especially challenging when a powerful autore-
gressive decoder (e.g., RNNs) is adopted (Bow-
man et al., 2016). Many recent efforts have been
made to address this problem by modifying the ob-
jective (Zhao et al., 2019; Dieng et al., 2019; Wang
and Wang, 2019), the decoder architecture (Yang
et al., 2017), and the variational inference proce-
dure (He et al., 2019; Fu et al., 2019).

The posterior collapse issue can also be under-
stood from the fact that word-level details tend to
carry more entropy bits than semantically-relevant
concepts. It is well known that most of the changes
in the word level to ensure grammatical coherence
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do not quickly change the underlying semantics.
The maximum-likelihood objective prefers to cap-
ture entropy bits at the word level, rather than how
well high-level semantics are encoded in the latent
space. Training the VAE thus often ends up with
relying solely on the autoregressive properties of
text sequences, leaving the latent variable unused.
Some previous studies (Chen et al., 2017; Alemi
et al., 2018) have showed that optimizing the orig-
inal objective of the VAE is deviated from the goal
of learning a good representation.

We consider to address the posterior collapse is-
sue by regularizing the latent space so that the in-
ferred posterior of the latent variable is more spe-
cific to its own input, instead of only sticking to the
prior. This can be done by maximizing the mutual
information (MI) between the input and its latent
variable. The MI not only measures how accurate
the output agrees with its input, but also whether
a meaningful latent variable can be learned in the
latent space. However, the estimation and maxi-
mization of the MI in the high-dimensional space
are difficult. A recent line of work (van den Oord
et al., 2018; Belghazi et al., 2018; Hjelm et al.,
2019; Veličković et al., 2019) tries to estimate and
maximize the MI using the GAN-based approach,
where the MI is defined as the Jensen-Shannon di-
vergence (JSD) between the joint distribution and
marginals. In this paper, we propose to add a mu-
tual information regularization term, defined as the
Kullback-Leibler (KL) divergence, into the objec-
tive of the VAE to alleviate the posterior collapse.
Different from the models proposed in (Zhao et al.,
2019; Dieng et al., 2019), we make effective use
of the expressive power of neural networks for the
tractable estimation and maximization of the MI in
the high-dimensional space. Our empirical results
demonstrate that the proposed model can achieve
better modeling quality.

Our contributions are summarized as follows:

• We introduce a mutual information term into
the objective of the VAE. The latent space can
be learned by promoting the posteriors to be
more specific to its own inputs, thus leading
to low-redundant and diverse representations.

• We establish a lower bound on the mutual in-
formation via introducing an energy function
paramterized by neural networks. An effec-
tive learning algorithm is derived for the un-
biased estimation of the gradients.

• We empirically show that the proposed model
improves the performance in language mod-
eling and text generation.

2 Related Work

It has been observed that VAEs tend to suffer from
the posterior collapse issue, especially when pow-
erful autoregressive decoders are used for model-
ing text sequences. A common solution is to warm
up the KL term in the objective of the VAE by
gradually increasing the KL weight from 0 to 1
during training (Bowman et al., 2016). Other pro-
posed methods include randomly dropping words
during decoding (Bowman et al., 2016), threshold-
ing the KL term to retain free bits (Kingma et al.,
2016; Razavi et al., 2019; Pelsmaeker and Aziz,
2019), adding auxiliary objectives to ensure the ef-
fective latent variable for decoding (Goyal et al.,
2017; Zhao et al., 2017; Dieng et al., 2019), im-
posing conditional independence assumptions on
the inputs of autoregressive decoders to limit the
contextual capacity (Yang et al., 2017; Semeniuta
et al., 2017), replacing the Gaussian distribution
with the von Mises-Fisher distribution to obtain a
fixed KL term (Xu and Durrett, 2018). Also, the
semi-amortized approach (Kim et al., 2018) is pro-
posed to perform stochastic variational inference
on top of amortized variational inference. Yet, an
effective latent variable is learned at the cost of the
computational complexity. Some recent work (He
et al., 2019; Fu et al., 2019) attempts to improve
the training procedure of the VAE without chang-
ing its original objective.

Another recent thread of research studies has fo-
cused on enhancing the dependency between the
input and its latent variable. The skip connection
was introduced in (Dieng et al., 2019) to enforce
stronger links between the latent variable and the
likelihood. InfoVAE (Zhao et al., 2019) introduces
a mutual information term, approximated by max-
imum mean discrepancy, into the objective of the
VAE. A similar approach was proposed in (Zhao
et al., 2018b) for learning discrete representations.

Recent years have seen some attempts for unsu-
pervised learning through the use of the mutual in-
formation. Neural estimation for the MI was pro-
posed in (Brakel and Bengio, 2017), where an en-
coder and a discriminator are trained to minimize
the JSD-based MI. This framework has been fur-
ther improved and extended, including DeepInfo-
Max (Hjelm et al., 2019) for image classification
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and Deep Graph InfoMax (Veličković et al., 2019)
for graph-structured data. Contrastive predicting
coding (van den Oord et al., 2018) is an architec-
ture to learn global representations by maximiz-
ing the mutual information between the past and
future information. Other than the neural estima-
tion approach, the Monte Carlo method can also be
used to estimate the MI (Zhao et al., 2018b; Dieng
et al., 2019). Yet it suffers from biased estimation
and high computational cost.

3 Background

3.1 Variational Autoencoders (VAEs)

Deep generative models define a joint distribution
over a set of random variables composed in multi-
ple layers of hierarchies. The goal is to learn the
model distribution pθ(x) to fit the true data distri-
bution q(x) as well as possible. This can be done
by minimizing the Kullback-Leibler (KL) diver-
gence between two distributions, and it is equiva-
lent to the maximum-likelihood objective:

min
θ

KL[q(x)||pθ(x)] = max
θ

Eq(x)[log pθ(x)].
(1)

In this paper, we focus on latent variable mod-
els, which define the marginal log-likelihood via a
latent variable z:

log pθ(x) = log

∫
pθ(x|z)p(z)dz. (2)

Since exactly estimating log pθ(x) is typically
intractable, the VAE instead optimizes a tractable
Evidence Lower BOund (ELBO):

Eq(x)[log pθ(x)] ≥ LELBO =

Eq(x){Eqφ(z|x)[log pθ(x|z)]− KL[qφ(z|x)||p(z)]},
(3)

where the variational posterior qφ(z|x) and the
generative distribution pθ(x|z) are parameterized
by neural networks (also known as the encoder and
the decoder). The prior p(z) is assumed a standard
Gaussian distribution N (0, I).

The ELBO consists of a reconstruction likeli-
hood term that ensures qφ(z|x) to encode enough
information to generate x and a KL regularizer that
ensures qφ(z|x) to encode little information in the
posterior by matching it to the prior. Ideally, the
encoder would embed high-level abstractions of x
into the latent variable z and guide the decoder to
recover low-level details based on z.

To generate text sequences x = {x1, . . . , xT }
with length T , the VAE encodes holistic proper-
ties of text sequences x into the latent variable z.
RNNs are used for both the encoder and decoder.
For encoding, the last hidden state of the encoder
RNN is mapped into the latent variable z. For de-
coding, z is fed as an additional input to the de-
coder RNN at each step, and then the next word
xt is generated conditional on the latent variable z
and all preceding information x<t.

3.2 Posterior Collapse
The ELBO will be tighter via optimizing parame-
ters {φ, θ}. The optimal ELBO should be equal to
the true data distribution, and thus

LELBO ≤ Eq(x)[log pθ(x)] ≤ Eq(x)[log q(x)]. (4)

If the autoregressive decoder pθ(x|z) is power-
ful enough to approximate well the true data dis-
tribution q(x), the ELBO would be

LELBO = Eq(x){log q(x)− KL[qφ(z|x)||p(z)]}.
(5)

The optimal ELBO forces the variational posterior
to be like the prior, regardless of how expressively
qφ(z|x) is parameterized. The zero-forcing effect
of the KL term causes two undesirable outcomes.
(i) The latent variable z is independent of the input
x, meaning that it contains no information about x.
(ii) The reconstruction of x cannot benefit from the
encoder at all, meaning that the VAE generates se-
quences without making use of the latent variable
z. This phenomenon is called posterior collapse.

It has been proposed in (Hoffman and Johnson,
2016) that decomposing the ELBO can produce an
equivalent way to define the ELBO:

LELBO = Eqφ(x,z)[log pθ(x|z)]− Iq[x, z]
−KL[qφ(z)||p(z)],

(6)

where qφ(x, z) denotes the variational joint dis-
tribution induced by the posterior qφ(z|x), Iq[x, z]
denotes the mutual information between x and z
under qφ(x, z), and qφ(z) = 1

N

∑N
n=1 qφ(zn|xn)

denotes the aggregated posterior (Makhzani et al.,
2016). The zero-forcing effect of the KL indicates

Iq[x, z] = KL[qφ(z)||p(z)] = 0. (7)

However, if the latent variable z is a good repre-
sentation of x, the mutual information between x
and z should take a large value and the KL term
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in Equation (3) would be non-zero. As the ELBO
objective contains the negative term of the mutual
information, achieving higher mutual information
between x and z is in fact opposite to maximizing
the ELBO. This provides another way to explain
the posterior collapse issue.

3.3 Mutual Information

Mutual information measures the non-linear rela-
tionship between two variables x and y:

I[x, y] = Ep(x,y)
[
log

p(x, y)
p(x)p(y)

]
, (8)

where the MI is minimum if two random variables
are statistically independent, or maximum when
two variables contain identical information. So if
the MI is high, the variables are highly predictive
of each other.

This hints that we can learn a stochastic encoder
qφ(z|x) to maximize the MI between the input x
and its latent variable z under the variational joint
distribution qφ(x, z), given by

max
φ

Iq[x, z] = max
φ

Eqφ(x,z)
[
log

qφ(x, z)
q(x)qφ(z)

]
,

(9)
where qφ(z|x) and qφ(z) are distributions over the
latent variable. This leads to a decoder-free model
for the maximization of the MI. Yet the MI is hard
to compute, as qφ(z) involves a mixture of the data
points. The Monte Carlo approach has been used
to approximate the MI in the VAE (Dieng et al.,
2019), which however incurs a high computational
cost and easily suffers from biased estimation.

4 Proposed Approach

4.1 Model Formulation

As shown in Equation (6), maximizing the ELBO
penalizes the mutual information between the in-
put x and its latent variable z. Due to the posterior
collapse issue, the latent variable z does not repre-
sent high-level abstractions of x, making the rep-
resentation learning even harder. We explicitly in-
troduce a mutual information regularization term
into the original ELBO objective that prefers high
mutual information between x and z. This encour-
ages the model to make effective use of the latent
variable and alleviate the posterior collapse issue.
More formally, we arrive at the following training

objective:

LMI-ELBO =Eq(x){Eqφ(z|x)[log pθ(x|z)
− KL[qφ(z|x)||p(z)]}+ αIq[x, z],

(10)
where the first two terms can be optimized through
the reparameterization trick as in the ELBO and α
is a hyperparameter, which balances the trade-off
between the inference and generation. We choose
to compute the mutual information under the vari-
ational joint distribution, as it focuses on the la-
tent space and thus allows us to organize the latent
space. The consequence is that the variational pos-
teriors would be more diverse in the latent space
characterizing different input sequences, while the
KL regularizer restricts the posteriors to match the
Gaussian prior, with less “holes” in between where
the decoder cannot be trained.

There has been prior work leveraging the mu-
tual information for improving the inference and
generation in deep generative models. Some stud-
ies (Chen et al., 2016; Dieng et al., 2019) have at-
tempted to maximize the mutual information un-
der the generative joint distribution pθ(x, z). In
this paper, we focus on explicitly maximizing the
mutual information under the variational joint dis-
tribution qφ(x, z), which encourages the VAE to
learn a useful latent variable z for improving word
generation. Our proposed model is similar in the
spirit to the InfoVAE (Zhao et al., 2019). Instead,
we adopt neural networks to estimate the MI accu-
rately in the high-dimensional space.

4.2 Mutual Information Formulation

The Jensen-Shannon divergence was employed to
define the MI between two variables (Brakel and
Bengio, 2017; Hjelm et al., 2019; Veličković et al.,
2019). In this paper, we instead maximize the MI,
defined by the KL divergence between the joint
distribution and marginals. Due to the asymmetric
discrepancy, the dependencies between the input
and its latent variable can be enhanced. More for-
mally, we define an energy function over the varia-
tional joint distribution to estimate the probability
of each configuration between two variables (Ben-
gio, 2009), given by:

qφ(x, z) = efψ(x,z)q(x)qφ(z)/Zψ, (11)

where the energy function fψ(x, z) is parameter-
ized by neural networks and the partition function
Zψ is defined as Eq(x)qφ(z)[e

fψ(x,z)].
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Based on Equations (9) and (11), a lower bound
on the mutual information Iq[x, z] is given by:

Iq[x, z] =

Eqφ(x,z)[fψ(x, z)]− log
[
Eq(x)qφ(z)[e

fψ(x,z)]
]
≥

Eqφ(x,z)[fψ(x, z)]−ξ·Eq(x)qφ(z)
[
efψ(x,z)

]
+log ξ+1,

(12)
where the concave function log[x] is approximated
by a tangent line with the scope ξ according to the
Taylor expansion. The approximation is log[x] ≤
ξ · x− log[ξ]− 1, where different values of ξ cor-
respond to different tangent lines. The role of the
energy function fψ(x, z) is similar to the discrim-
inator in GANs, which learns to distinguish pairs
that are sampled from q(x)qφ(z|x) or pairs that are
independently sampled from q(x)qφ(z). The max-
imization of the lower bound suggests that the en-
ergy function learns to assign higher values to the
samples from q(x)qφ(z|x), rather than those from
q(x)qφ(z), thus enhancing the dependencies.

Since after computing the gradient derivative of
log[·] with respect to parameters ψ, the denomina-
tor would contain the expectation of the gradients,
leading to biased estimation of the full batch gra-
dients. To solve this, we approximate log[·] with a
tangent line for unbiased estimation of the gradi-
ents with respect to the optimal function f∗ψ(x, z).

In order to achieve the tighter lower bound on
the MI and unbiased estimation for the gradients,
we use the convex duality approach (Jordan et al.,
1999). The update procedure of model parameters
{φ, ψ} can be described as follows.

(i). Fixing φ and ψ, we optimize Equation (12)
with respect to ξ, and the optimal value ξ∗ can thus
be obtained by

ξ∗ = argmax
ξ>0

{
−ξ · Eq(x)qφ(z)[e

fψ(x,z)] + log ξ
}

= Eq(x)qφ(z)
[
efψ(x,z)

]
.

(13)
(ii). Fixing ξ, we optimize Equation (12) with

respect to φ and ψ:

max
φ,ψ

{
Eqφ(x,z)[fψ(x, z)]− ξ

∗·Eq(x)qφ(z)[e
fψ(x,z)]

}
.

(14)
Here, we first consider the optimal energy func-

tion f∗ψ(x, z) for any given posterior qφ(z|x) and
tangent scope ξ.

Proposition 1. With the fixed φ and ξ, the opti-
mal energy function f∗ψ(x, z) according to the ob-

jective in Equation (12) is given by

f∗ψ(x, z) = log qφ(x, z)− log[q(x)qφ(z)]− log ξ,
(15)

where f∗ψ(x, z) becomes the pointwise mutual in-
formation when ξ = 1. This suggests that the en-
ergy function assigns zero probability to the sam-
ples independently drawn from q(x)qφ(z).

With the optimal energy function f∗ψ(x, z), the
max-max objective in Equation (12) can be refor-
mulated as:

C(φ, ψ∗) =

Eqφ(x,z)[f
∗
ψ(x, z)]−ξ·Eq(x)qφ(z)

[
ef
∗
ψ(x,z)

]
+log ξ+1

= KL[qφ(x, z)||q(x)qφ(z)] = Iq[x, z].
(16)

We show that maximizing the lower bound on the
MI with respect to {φ, ψ, ξ} is equivalent to max-
imizing the KL divergence between the joint dis-
tribution and their marginals. Together with Equa-
tions (10) and (16) as well as Proposition 1, the
optimization objective becomes:

LMI-ELBO =Eq(x){Eqφ(z|x)[log pθ(x|z)
− KL[qφ(z|x)||p(z)]}+ αC(φ, ψ∗),

(17)
where C(φ, ψ∗) is defined as a function that max-
imizes the lower bound on the MI with the opti-
mal ψ∗. Then, we compute the gradients of Equa-
tion (17) with respect to {φ, θ}. While it is easy
to compute the gradient with respect to θ, the gra-
dient with respect to φ is hard to compute since
C(φ, ψ∗) itself depends on φ. Actually, when the
function fψ(x, z) is optimal, the expectation of the
gradients becomes zero, that is

Eqφ(x,z)[∇φf
∗
ψ(x, z)]−Eq(x)qφ(z)

[
∇φef

∗
ψ(x,z)

]
= 0.

(18)
In practice, we can ignore the gradients once
fψ(x, z) achieves the optimality. We refer the pro-
posed model as VAE-MINE. The overall learning
procedure is summarized in Algorithm 1.

5 Experiments and Results

5.1 Datasets
We adopt three benchmark datasets, Penn Tree-
bank (Marcus et al., 1993), Stanford Natural Lan-
guage Inference (Bowman et al., 2015) and Yahoo
Answers (Yang et al., 2017) to evaluate whether
the inferred latent variable can give better per-
formance in language modeling and text genera-
tion. For data pre-processing, we set the maximum
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Algorithm 1: VAE with Mutual Information
Neural Estimation (VAE-MINE)

1 Initialize the parameters of the encoder, decoder, energy
function {φ, θ, ψ} and tangent scope ξ;

2 repeat
3 Sample mini-batch of M sentences {x1, . . . , xM}

from the data distribution q(x);
4 Sample mini-batch of M latent variables

{z1, . . . , zM} from the encoder qφ(z|x);
5 Shuffle M latent variables {z′1, . . . , z′M};
6 Update ψ by ascending its stochastic gradient:

7 1
M

∑M
i=1∇ψ

[
fψ(xi, zi)− ξ · efψ(xi,z′i)

]
;

8 Compute the optimal tangent scope ξ∗:
9 ξ∗ = 1

M

∑M
i=1 e

fψ(xi,z′i);
10 Update φ by ascending its stochastic gradient:
11 1

M

∑M
i=1∇φ[log pθ(xi|zi)− KL[qφ(zi|xi)||p(z)]]

12 + 1
M

∑M
i=1∇φ

[
fψ(xi, zi)− ξ · efψ(xi,z′i)

]
;

13 Update θ by ascending its stochastic gradient:
14 1

M

∑M
i=1∇θ log pθ(xi|zi);

15 Perform SGD-updates for parameters {φ, θ, ψ};
16 until convergence;

Dataset #Train #Valid #Test Length Vocab
PTB 42K 3.3K 3.7K 21 10K
SNLI 1.1M 13K 13K 20 20K
Yahoo 101K 10K 10K 78 20K

Table 1: Statistics of three benchmark datasets used in
the experiments. Length denotes the average length of
the sentences in the dataset and Vocab denotes the vo-
cabulary size.

length of sentences to 200 and the maximum vo-
cabulary size to 20K across all the datasets. Statis-
tics of three datasets are summarized in Table 1.

5.2 Experimental Setup

We implement the VAE using a one-layer uni-
directional LSTM (Hochreiter and Schmidhuber,
1997) with 512 hidden units and 128-dimensional
word embedding for the encoder and decoder. The
latent variable is 64-dimensional for all the mod-
els. We adopt the standard Gaussian prior and the
diagonal Gaussian posterior. The last hidden state
of the encoder RNN is fed into an MLP to esti-
mate the mean and variance of the Gaussian pos-
terior. Then, we sample the latent variable z and
feed it to the decoder RNN at each step. The ini-
tial hidden state of the decoder RNN is obtained
by feeding z to another MLP with the tanh() acti-
vation function. In order to further regularize the
decoder RNN, dropout with a keep probability of
0.5 is applied to the inputs and outputs. We adopt
SGD to optimize the model with a decayed learn-
ing rate and a gradient clipping.

Our architecture adopts an encoder RNN and an
energy function parameterized by neural networks
to maximize the lower bound on the MI. The en-
ergy function is trained by samples from the varia-
tional joint distribution and marginals. In practice,
samples from the marginals are obtained by pair-
ing one sentence x and another latent variable z′
inferred by another sentence x′. We adopt an MLP
with two 512-unit hidden layers and ReLU activa-
tion to parameterize the energy function. As the
encoder RNN and energy function optimize the
same MI objective, the lower layers are shared be-
tween two modules. We set the value of the hy-
perparameter α within [2, 5] with step = 0.5 for
VAE-MINE and select the best α∗ based on the
validation dataset.

We compare the proposed VAE-MINE with the
state-of-the-art baselines. LSTM-LM is an un-
conditional language model. For VAE-0.5 (Bow-
man et al., 2016), we implement KL annealing
by increasing the KL weight linearly from 0.1 to
1.0 in the first 10 epochs and adopt word dropout
rate of 0.5 to alleviate the posterior collapse. For
VAE-BOW (Zhao et al., 2017), we replace word
dropout with the bag-of-word (BOW) loss. For In-
foVAE (Zhao et al., 2019), CyclicalVAE (Fu et al.,
2019), and LaggingVAE (He et al., 2019), we fol-
low the reported implementations.

5.3 Performance Evaluation
Posterior Collapse. We apply three metrics to
evaluate the severity of the posterior collapse: KL
divergence between the variational posterior and
the prior, mutual information (MI), and the num-
ber of active units (AU) of the latent variable z. If
the KL in Equation (3) becomes zero, the posterior
collapses, meaning that the variational posterior is
equal to the prior. For the MI, we use the Monte
Carlo approach to approximate Equation (6),

KL[qφ(z)||p(z)] =
1

S

S∑
s=1

[log qφ(zs)− log p(zs)],

(19)
where S is the sample size.

The number of active units (Burda et al., 2015)
is computed by

AU =

D∑
d=1

I{Covq(x)(Eqφ(z|x)[zd]) ≥ ε}, (20)

where zd is the d-th dimension of z and the thresh-
old ε is set to 0.01. I{·} is an indicator giving 1
when its statement is true and 0 otherwise.
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Forward and Reverse Perplexity. A common
measure for the quality of the generated sentences
is to evaluate the perplexity of a language model
trained on the training or generated sentences. We
fit a non-parametric Kneiser-Ney (KN) smoothed
5-gram language model (LM) (Heafield, 2011) on
the sentences sampled from the model distribu-
tion pθ(x) and the true data distribution q(x). Two
evaluation criteria are defined as Forward Perplex-
ity (FPPL) and Reverse Perplexity (RPPL) (Zhao
et al., 2018a; Cı́fka et al., 2018). Computing the
FPPL is equivalent to training a KN 5-gram LM
on the training sentences and reporting the per-
plexity on the 100K sentences generated from the
model, while the RPPL involves training a KN 5-
gram LM on the 100K generated sentences and re-
porting the perplexity on the test sentences.

5.4 Language Modeling Results

The results for language modeling are shown in
Table 2. We report negative log-likelihood (NLL),
KL divergence (KL), perplexity (PPL), mutual in-
formation (MI), the number of active units (AU),
forward perplexity (FPPL) and reverse perplexity
(RPPL).

According to Table 2, we observe that the KL
value for VAE-0.5 is almost zero, indicating that
the model suffers from posterior collapse. Simi-
lar situations can also be observed for InfoVAE.
When the bag-of-word loss is used, the KL value
increases, yet making VAE-BOW produce a larger
NLL. This suggests that the latent variable does
not contain useful information to reduce the recon-
struction error. For VAE-MINE, we see that it can
produce either comparable or better results over
the evaluation metrics when compared with other
state-of-the-art baselines. With the mutual infor-
mation term considered for the optimization, we
believe that VAE-MINE allows more reasonable
correspondence patterns between the input and its
inferred latent variable so as to better alleviate pos-
terior collapse. Together with the original ELBO
objective, the inferred posteriors of the different
input sentences give an appropriate level of over-
lapping among them in the latent space, instead of
sticking to the Gaussian prior. To summarize, the
latent variable with non-trivial KL value helps the
decoder RNN for better word-level generation.

Regarding the generation capability, we observe
that VAE-MINE and LaggingVAE exhibit similar
performance in terms of PPL and FPPL (sample

quality) and outperform the other baselines by a
significant margin. Particularly, VAE-MINE per-
forms significantly better than others in terms of
RPPL (sample diversity). We believe that this is
due to the explicit use of the MI term to guide the
learning process. It is consistent with our motiva-
tion that the MI-regularized objective can alleviate
the posterior collapse to improve VAEs’ capabil-
ity of generating fluent and diverse sentences with
the effective use of the latent variable. In contrast,
LaggingVAE treats the MI as a stopping criterion
for training the encoder RNN at the beginning of
optimization. Even though the model can achieve
good performance on alleviating the posterior col-
lapse and generate fluent sentences, the generated
sentences lack diversity. VAE-MINE can achieve
relatively lower RPPL values, which suggests that
it can achieve a good balance between sample di-
versity and training quality. This is not surprising
that maximizing the MI would produce more di-
verse sentences. Also, the encoder parameters can
benefit from the gradients from the energy func-
tion during training.

5.5 Reconstruction, Interpolation and
Generation

We qualitatively evaluate the sentences generated
using VAE-MINE as well as other baselines. The
VAE variants can reconstruct input sentences by
encoding them into the latent space and then de-
coding the means or samples drawn from the vari-
ational posteriors. Table 3 shows two sets of sen-
tences generated using VAE-MINE with a greedy
decoding based on two particular inputs. It shows
that sentences involving similar underlying struc-
tures and concepts can be generated.

In order to evaluate the quality of the inferred
latent space, we interpolate two points in the la-
tent space and then decode the interpolated points
for generating sentences. Table 4 shows the transi-
tions of the generated sentences between two par-
ticular sentences in the SNLI dataset using differ-
ent models. LaggingVAE turns out to be perform-
ing the worst by generating repetitive sentences.
This explains why it gives large RPPL values as
shown in Table 2. For VAE-MINE, we find that
it can generate smoothly transitioned sentences in
term of sentence semantics and syntactics via lin-
ear interpolation in the latent space. This demon-
strates that the proposed VAE-MINE can learn the
latent representations which smoothly fill up the
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Dataset Model NLL (KL) PPL MI AU FPPL RPPL

PTB

LSTM-LM 102.85 (–) 95.63 – – 461.44 472.86
VAE-0.5 104.06 (0.03) 100.90 0.07 2 339.32 444.81

VAE-BOW 105.58 (4.35) 107.94 1.65 4 385.77 463.34
InfoVAE 108.37 (0.02) 122.15 0.06 0 483.71 515.09

CyclicalVAE 104.36 (4.93) 102.25 2.84 10 419.61 464.78
LaggingVAE 100.93 (4.84) 87.82 2.84 13 12.64 842.02
VAE-MINE 100.91 (4.86) 87.75 3.01 13 13.34 400.21

SNLI

LSTM-LM 33.41 (–) 18.97 – – 49.99 289.30
VAE-0.5 33.55 (0.01) 19.20 0.01 0 45.04 281.15

VAE-BOW 37.00 (13.57) 26.06 2.07 23 44.72 278.31
InfoVAE 33.88 (0.02) 19.78 0.09 0 45.34 295.38

CyclicalVAE 34.84 (6.39) 21.52 3.12 28 58.16 291.53
LaggingVAE 33.10 (1.34) 18.03 0.73 3 4.02 173.47
VAE-MINE 33.13 (4.05) 18.09 3.15 30 6.21 152.63

Yahoo

LSTM-LM 348.95 (–) 78.99 – – 461.44 472.85
VAE-0.5 340.64 (0.63) 71.17 0.44 3 178.97 252.51

VAE-BOW 343.39 (10.13) 73.66 1.99 7 182.95 256.85
InfoVAE 344.84 (0.03) 74.21 0.01 1 161.93 260.77

CyclicalVAE 335.40 (7.51) 75.56 3.29 12 193.79 256.28
LaggingVAE 328.69 (6.65) 61.29 2.99 17 5.60 843.56
VAE-MINE 328.70 (6.70) 61.31 4.34 18 6.72 185.33

Table 2: Language modeling results on the PTB, SNLI and Yahoo datasets. We report negative log-likelihood
(NLL), KL divergence (KL), perplexity (PPL), mutual information (MI), the number of active units (AU) of the
latent variable z, forward perplexity (FPPL) and reverse perplexity (RPPL). We express the NLL as the ELBO.
Bold numbers indicate the best performance and underlined numbers indicate the second best performance.

Input: the man is at home sleeping. three girls are sitting at desks and appear to be working intently.
Output1: the man is at home sleeping. three women are sitting at desks and looking to be working together.
Output2: the woman is sleeping at home. Two ladies are standing at desks and appear to be playing together.
Output3: the woman is working at home. three women are sitting at desks and looking to be playing together.

Table 3: Sentences generated from the variational posteriors of the latent variable based on SNLI dataset.

latent space.
Next, we compare generated sentences by sam-

pling latent variables from the Gaussian prior and
then greedy decoding. In Table 5, we observe that
sentences generated from LaggingVAE are not as
diverse as the ones generated from VAE-MINE.

5.6 Nearest Neighbour Analysis
To better understand the learned representations,
we did a nearest-neighbour analysis by choosing a
sentence from the training set, ordering the train-
ing set in terms of the cosine distance computed in
the latent space, then selecting the top three with
the highest similarity. Our results in Table 6 show
that VAE-MINE learns a good latent variable such
that novel sentences can be chosen, due to the na-
ture of MI-regularized objective.

6 Conclusion

Variational autoencoders suffer from the posterior
collapse issue. In this paper, we propose to alle-
viate this problem by adding a mutual informa-
tion regularization into the objective of the VAE.
Explicitly optimizing the proposed objective al-

lows to encode high-level abstractions effectively.
We use an energy function parameterzied by neu-
ral networks and the convex duality approach to
maximize the lower bound on the MI. Experimen-
tal results on three benchmark datasets show that
the proposed model VAE-MINE in general outper-
forms other state-of-the-art baselines and can gen-
erate more reasonable sentences via linear inter-
polation in the latent space. One research direc-
tion is to explore how to generate long-form text
with deep generative models organized in multiple
layers of latent variables, due to natural language
characterizing a hierarchical structure.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their insightful comments.

References
Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V.

Dillon, Rif A. Saurous, and Kevin Murphy. 2018.
Fixing a broken ELBO. In Proceedings of the
35th International Conference on Machine Learn-
ing, pages 159–168.



4055

InfoVAE

two men are sitting on a couch while they wait for their parents to work.
the woman is the world war.
a man telling his hand.
this man is sitting on bike.
man jet ski is catching colorful waves.
two little girl are happily not about to play twister.
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a woman is standing with the canister in a band.
a female age matured on the stage is looking in a microscope.
a man is eating a small meal at a nightclub.
the performer is taking his photos by a statue.
there is a crowd of people, and several women posing for a picture.
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this church choir sings to the masses as they sing joyous songs from the book at a church.
this church choir sings to the masses as they sing joyous songs from the book at a church.
this church choir sings to the masses as they sing joyous songs from the book at a church.
a woman gets picture taken in front of the masses.
a woman gets picture taken in front of the masses.
a woman gets picture taken in front of the masses.
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a choir including three people sing and dance on the stage in front of the masses.
two musicians are playing the drums and a girl sits on a piano.
a young family sits while waiting a girl at the bottom of a church.
a man takes a photo of the girl.
a little girl has a toy and a digital camera.
the woman with red shirt is smiling to the girl.

Table 4: Sentences generated by interpolating between the encodings of “this church choir sings to the masses
as they sing joyous songs from the book at a church.” and “a woman with a green headscarf, blue shirt and
a very big grin.”.

the company said it will be able to sell its n stake in the u.s.
the company said it will be to pay $ n million in the debt
the company said it will be able to replace its existing UNK and UNK
the company said it would buy n shares of its common shares for $ n each
the stock market’s plunge was a UNK shot of the company’s stock market yesterday
mr. UNK said the agreement has n’t yet to be determined by the company
but the japanese are struggling to the UNK of the u.s. government
the company also said it will sell its boston corp. unit to the company’s UNK group
how do i get rid of UNK UNK? i have a UNK UNK and i have a UNK UNK. i have tried UNK and UNK.
how do you say “UNK”? i’m not sure what you mean. i’m not sure what you mean.
how do i get a UNK? i am a UNK student in college and i want to know how to get a job in the UNK area.
how do i get a job in a bank? i am a student. i have a UNK what is the best way to study in a UNK.
what is the difference between a democrat and republican? i think it is a UNK, but i do n’t think UNK is a UNK.
what is the best city in the world? i’m looking for a good place to start a UNK, but i’m not sure if this is the best way.
how do i get a free music download? i want to download it from my computer and i want to know the name of the song.
who is the best player in the nba? i think UNK is a great player.
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Gaussian prior by LaggingVAE (upper half) and VAE-MINE (lower half).

Query but the japanese are struggling to the UNK of the u.s. government

LaggingVAE
the japanese UNK openly about the u.s. public’s UNK
many UNK regard a u.s. presence as a desirable UNK to japanese influence
the u.s. government in recent years has accused japanese companies of UNK slashing prices

VAE-MINE
the u.s. government in recent years has accused japanese companies of UNK slashing prices
while the small deals are far less UNK they add to japanese UNK of the u.s. market
continuing demand for dollars from japanese investors boosted the u.s. currency

Query a person on a horse jumps over a broken down airplane.

LaggingVAE
a horse jockey is jumping a horse over an obstacle on a coarse.
a person aquestrian horse jumping over a wooden fence.
a jockey riding a horse prepares to jump over an obstacle.

VAE-MINE
a horse jockey is jumping a horse over an obstacle on a coarse.
a jockey riding a horse prepares to jump over an obstacle.
a small child plays with her airplane as a cat looks on.

Table 6: Sentences selected from the PTB and SNLI training set in terms of the cosine distance between the
inferred latent variables.
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