@inproceedings{zhang-etal-2019-broad,
title = "Broad-Coverage Semantic Parsing as Transduction",
author = "Zhang, Sheng and
Ma, Xutai and
Duh, Kevin and
Van Durme, Benjamin",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/D19-1392/",
doi = "10.18653/v1/D19-1392",
pages = "3786--3798",
abstract = "We unify different broad-coverage semantic parsing tasks into a transduction parsing paradigm, and propose an attention-based neural transducer that incrementally builds meaning representation via a sequence of semantic relations. By leveraging multiple attention mechanisms, the neural transducer can be effectively trained without relying on a pre-trained aligner. Experiments separately conducted on three broad-coverage semantic parsing tasks {--} AMR, SDP and UCCA {--} demonstrate that our attention-based neural transducer improves the state of the art on both AMR and UCCA, and is competitive with the state of the art on SDP."
}
Markdown (Informal)
[Broad-Coverage Semantic Parsing as Transduction](https://preview.aclanthology.org/fix-sig-urls/D19-1392/) (Zhang et al., EMNLP-IJCNLP 2019)
ACL
- Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. 2019. Broad-Coverage Semantic Parsing as Transduction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3786–3798, Hong Kong, China. Association for Computational Linguistics.