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Abstract

We tackle the nested and overlapping event de-
tection task and propose a novel search-based
neural network (SBNN) structured prediction
model that treats the task as a search prob-
lem on a relation graph of trigger-argument
structures. Unlike existing structured predic-
tion tasks such as dependency parsing, the task
targets to detect DAG structures, which con-
stitute events, from the relation graph. We
define actions to construct events and use all
the beams in a beam search to detect all
event structures that may be overlapping and
nested. The search process constructs events
in a bottom-up manner while modelling the
global properties for nested and overlapping
structures simultaneously using neural net-
works. We show that the model achieves
performance comparable to the state-of-the-art
model Turku Event Extraction System (TEES)
on the BioNLP Cancer Genetics (CG) Shared
Task 2013 without the use of any syntactic and
hand-engineered features. Further analyses on
the development set show that our model is
more computationally efficient while yielding
higher F1-score performance.

1 Introduction

Nested and overlapping event structures, which
occur widely in text, are important because they
can capture relations between events such as
causality, e.g., a “production” event is a conse-
quence of a “discovery” event, which in turn is a
result of an “exploration” event. Event extraction
involves the identification of a trigger and a set of
its arguments in a given text. Figure 1 shows an
example of a nested and overlapping event struc-
ture in the biomedical domain. The relation graph
(topmost) forms a directed acyclic graph (DAG)
structure (McClosky et al., 2011) and it encapsu-
lates 15 event structures. It contains nested event
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Figure 1: Top: A DAG-structured relation graph (top-
most) from the sentence “Looking for mechanisms link-
ing Brn-3a to carcinogenesis, we discuss the role of this
transcription factor in influencing Bcl-2/VEGF induc-
tion of tumor angiogenesis, ...” from BioNLP’13 CG
Shared Task (Pyysalo et al., 2015). Bottom: A pair of
overlapping and nested events (E2, E3) extracted from
the graph with their shared argument event, a flat event
(E1).

structures such as E2,E3 because one of their ar-
guments, in this case E1, is an event. Specifically,
E1 is a flat event since its argument is an entity.
Moreover, E2 and E3 are also overlapping events
(explicitly shown in the relation graph having two
induction triggers) because they share a common
argument, E1.

State-of-the-art approaches to event extrac-
tion in the biomedical domain are pipeline sys-
tems (Björne and Salakoski, 2018; Miwa et al.,
2013) that decompose event extraction into sim-
pler tasks such as: i) trigger/entity detection,
which determines which words and phrases in a
sentence potentially constitute as participants of
an event, ii) relation detection, which finds pair-
wise relations between triggers and arguments,
and iii) event detection, which combines pairwise
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relations into complete event structures. Joint
approaches have also been explored (Rao et al.,
2017; Riedel and McCallum, 2011; Vlachos and
Craven, 2012; Venugopal et al., 2014), but they
focus on finding relation graphs and detect events
with rules. McClosky et al. (2011) treats events
as dependency structures by constraining event
structures to map to trees, thus their method can-
not represent overlapping event structures. Other
neural models in event extraction are in the gen-
eral domain (Feng et al., 2016; Nguyen and Gr-
ishman, 2015; Chen et al., 2015; Nguyen et al.,
2016), but they used the ACE2005 corpus which
does not have nested events (Miwa et al., 2014).
Furthermore, there are some efforts on applying
transition-based methods on DAG structures in de-
pendency parsing, e.g., (Sagae and Tsujii, 2008;
Wang et al., 2018), however, they do not consider
overlapping and nested structures.

We present a novel search-based neural event
detection model that detects overlapping and
nested events with beam search by formulating it
as a structured prediction task for DAG structures.
Given a relation graph of trigger-argument rela-
tions, our model detects nested events by search-
ing a sequence of actions that construct event
structures incrementally in a bottom-up manner.
We focus on event detection since the existing
methods do not consider nested and overlapping
structures as a whole during learning. Treating
them simultaneously helps the model avoid in-
ferring wrong causality relations between entities.
Our model detects overlapping events by main-
taining multiple beams and detecting events from
all the beams, in contrast to existing transition-
based methods (Nivre, 2003, 2006; Chen and
Manning, 2014; Dyer et al., 2015; Andor et al.,
2016; Vlachos and Craven, 2012). We define an
LSTM-based neural network model that can rep-
resent nested event structure to choose actions.

We show that our event detection model
achieves performance comparable to the event de-
tection module of the state-of-the-art TEES sys-
tem (Björne and Salakoski, 2018) on the BioNLP
CG Shared Task 2013 (Pyysalo et al., 2013) with-
out the use of any syntactic and hand-engineered
features. Furthermore, analyses on the develop-
ment set show our model performs fewer number
of classifications in less time.
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Figure 2: An illustration of the proposed neural model
detecting event structures in a bottom-up manner,
where E1 event representation becomes an argument
to E2 event structure on the example sentence used in
Figure 1.

2 Model

We describe our search-based neural network
(SBNN) model that constitutes events from a rela-
tion graph by structured prediction. SBNN resem-
bles an incremental transition-based parser (Nivre,
2006), but the search order, actions and represen-
tations are defined for DAG structures. We first
discuss how we generate the relation graph in §2.1,
then describe the structured prediction algorithm
in §2.2 and the neural network in §2.3 and lastly,
we explain the training procedure in §2.4.

2.1 Relation Graph Generation

To train our model, we use the predicted relations
merged with pairwise relations decomposed from
the gold events. We then generate a relation graph
from the merged relations. During inference, the
relation graph is generated only from the predicted
relations. Figure 1 shows an example of the gen-
erated DAG-structured relation graph.

2.2 Structured Prediction for DAGs

We represent event structures with DAG structures
and find them in a relation graph. Our model per-
forms beam search on relation graphs by choos-
ing actions to construct events. Unlike existing
beam search usage where they only choose the
best path in the beam, e.g., (Nivre, 2006), we use
all the beams to predict event structures, which en-
ables the model to predict overlapping and nested
events.

Event structures are searched and fixed for each
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Figure 3: A snapshot of the search procedure within
one time step (with k = 1) on the trigger induction
which detects event E2 after a CONSTRUCT action.

trigger of the relation graph in a bottom-up man-
ner. The model predicts the flat events first and
then the representations of the flat events become
the argument of the nested events. Figure 2 shows
the proposed neural model (described in detail in
§2.3), which illustrates that the event representa-
tion of event E1 becomes the argument to event
E2. If the flat event is not detected, its nested event
will not be detected consequently. When this hap-
pens, the search process stops.

Figure 3 shows an snapshot of the search proce-
dure within one time step as applied to a relation
graph with a trigger induction to detect event E2
(see Figure 1 and 2). To do the search, the model
maintains two data structures: a buffer B which
holds a queue of arguments1 to be processed and
a structure S which contains the partially built
event structure. The initial state is composed of
the buffer B with all the arguments and a structure
S empty. At each succeeding time step, the model
applies a set of predefined actions to each argu-
ment and uses a neural network to score those ac-
tions. Processing completes when B is empty and
S contains all the arguments for the trigger along
with the history of actions taken by the model.

We now define the three actions2 that the
model applies at each time step to each argu-
ment, namely: add the argument (ADD), ignore
the argument (IGNORE) and add the argument
and construct an event candidate (CONSTRUCT).

1A special NONE argument marks the first argument in
the buffer to enable detection of no-argument events.

2Except for the NONE argument where only two actions
are applied: IGNORE and CONSTRUCT.

We have chosen only three actions for simplic-
ity. Figure 3 shows how actions are applied to the
argument angiogenesis (due to space constraints
we only show two actions indicated by the ar-
rows). Concretely, we show two distinct structures
(S1, S2) that are created in time step t + 1 after
CONSTRUCT and IGNORE actions were applied
to the current structure S1 in time step i.

The event candidate structures are fixed as
events if the scores of the CONSTRUCT actions
are above a certain threshold. The resulting state
after a CONSTRUCT action is removed from the
beams. We maintain multiple beams and use all of
them to predict overlapping events.

2.3 Neural Network as Scoring Function

Figure 2 shows the proposed neural model. We
employ a BiLSTM network to generate the word
representations from pre-trained word embed-
dings. To represent phrases, we averaged the word
representations. The LSTM network is shared
among the states during search in the sentence.
We build a relation embedding for each argument,
which concatenates the information of the trig-
ger t, the role o, the argument a and the action
c. We include both the type information p and
the word or phrase representation w of the trig-
ger or entity argument. Formally, each relation
ri is represented as a relation embedding: ri =
[tp; tw;op;ap;aw; c], where tp is the representa-
tion of the type of the trigger and so on. Each ri
is passed to a linear hidden layer, then to a recti-
fied linear unit (ReLU) non-linearity and summed
to produce the structure and buffer embeddings:
St and Bt.

We use a neural network as the action scoring
function (indicated by the dotted box in Figure 2)
defined as σ(at|St−1, Bt−1). We model the action
scoring function using St and Bt, which are com-
posed by adding an action at for a relation rt to
St−1 and moving rt from Bt−1 to St−1. The state
at any time step t is composed of the bufferBt and
the partially built structure St. Each of St and Bt

contains a set of relations {r1, r2, r3, . . . , rn}. In
Figure 2, there is no arrow to B in event E1 be-
cause the diagram only shows the model snapshot
at a specific time step during the search process.
In this particular time step t, the buffer B in E1
is already empty and thus, it does not contain any
relations ri.
St and Bt are then concatenated to form the
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event embedding. The event embedding has the
same dimension as the sum of argument type and
word dimensions so that it can be used as ar-
gument representation in nested events as shown
in Figure 2. Then, we passed the event embed-
ding into a linear hidden layer and output zt.
Finally, the scoring function σ is calculated as
σ(at|St−1, Bt−1) = sigmoid(zt).

2.4 Training

From the relation graph generated in §2.1, we cal-
culate gold action sequences that construct the
gold event structures on the graph. The loss is
summed over all actions and for all the events dur-
ing the beam search and thus the objective func-
tion is to minimise their negative log-likelihood.
We employ early updates (Collins and Roark,
2004): if the gold falls out of the beam, we stop
searching and update the model immediately.

3 Experimental Settings

We applied our model to the BioNLP CG shared
task 2013 (Pyysalo et al., 2015). We used the orig-
inal data partition and employed the official evalu-
ation metrics. We focussed on the CG task dataset
over other BioNLP datasets because of its com-
plexity and size (Nédellec et al., 2013; Björne and
Salakoski, 2018; Pyysalo et al., 2013). The CG
dataset has the most number of entity types and
event types and thus is the most complex among
the available (and accessible) BioNLP datasets.
Furthermore, the CG dataset is the largest dataset
in terms of the number of event instances and the
proportion of nested and overlapping events. Eval-
uating our model extensively on other BioNLP
tasks and datasets is part of our future work.

The development set contains 3,217 events of
which 36.46% are nested events, 43.05% are over-
lapping events and 44.07% are flat events. Note
that the total does not equal to 100% because
nested and overlapping events may have intersec-
tion: a nested event can be overlapping and vice
versa.

We compared our model with the event de-
tection module of the state-of-the-art model
TEES (Björne and Salakoski, 2018), which em-
ploys convolutional neural network and uses syn-
tactic and hand-engineered features for event de-
tection. Björne and Salakoski (2018) found that
the dependency parse features increased the per-
formance of the convolutional model. In con-

trast, we do not use these syntactic features nor
hand-engineered features. Furthermore, instead of
the ensemble methods, we used TEES’s published
single models, as this enables us to make a di-
rect comparison with TEES in a minimal setting.
We train our model using the predicted relations
from TEES merged with the pairwise relations de-
composed from the gold CG events. During in-
ference, we predict event structures using only the
predicted relations from TEES.

3.1 Nested and Overlapping Event
Evaluation Process

Similarly, we used the official evaluation script to
measure the performance of the model on nested,
overlapping and flat events. We first separated
the nested, overlapping and flat events, respec-
tively. Then we compute the precision and recall
for each category in the following way. For exam-
ple, for nested events, to compute the precision,
we compare the predicted nested events with all
gold events and to compute recall, we compare
gold nested events with all predicted events. The
evaluation script detects nested events by compar-
ing the whole tree structure down to its sub-events
until it reaches the flat events. Hence, the perfor-
mance scores of the nested events inevitably in-
clude the performance on flat events.

3.2 Training Details and Model Parameters

We implemented our model using the Chainer li-
brary (Tokui et al., 2015). We initialised the word
embeddings using pre-trained embeddings (Chiu
et al., 2016) while other embeddings are initialised
using the normal distribution. All the embed-
dings and weight parameters were updated with
mini-batch using the AMSGrad optimiser (Reddi
et al., 2018). We also incorporated early stop-
ping to choose the number of training epochs and
tuned hyper-parameters (dropout, learning rate
and weight decay rate) using grid search. The
model parameters can be found in appendix A.

4 Results and Analyses

Table 1 shows the event detection performance of
the models on the test set. Our model achieves per-
formance comparable to the state-of-the-art TEES
event detection module without the use of any syn-
tactic and hand-engineered features, suggesting it
can be applied to other domains with no need for
feature engineering. We validated it to have no sig-
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Model P R F1 (%)

TEES 61.42 52.93 56.86
SBNN 63.67 51.43 56.90

Table 1: Event detection performance on the CG task
2013 test dataset.

Model P R F (%)

TEES 56.81 48.21 52.16

SBNN k = 1 48.95 43.79 46.23
k = 8 63.60 47.46 54.36
k = 64 60.30 49.16 54.17
k = 256 60.91 48.53 54.02

Table 2: Event detection performance on CG task 2013
development set for SBNN with the top three perform-
ing k-values and when k = 1.

nificant statistical difference with the TEES model
(the Approximate Randomisation test (Yeh, 2000;
Noreen, 1989)).

To gain a deeper insight about the model, we
performed analyses on the development set. Ta-
ble 2 shows the performance of SBNN by varying
the k-best parameter in beam search. We tested 2i

values for i = 1, 2, 3, . . . , 11 and found that the
best value was 8 with F1-score of 54.36%, which
is 2.2 percentage points (pp) higher than TEES.

Table 3 shows the number of classifications (or
action scoring function calls in our model) per-
formed by each model with the corresponding ac-
tual running time. SBNN performs fewer classifi-
cations and in less time than TEES, implying it is
more computationally efficient.

Table 4 shows the performance comparison of
the models on nested, overlapping and flat event
detection. Our model yields higher F1-scores than
TEES which can be attributed to its ability to
maintain multiple beams and to detect events from
all these beams during search.

Finally, we computed the upper bound recall
given the predicted relations from TEES. The up-
per bound is computed by setting the threshold
parameter of our model to zero, which then con-
structs all gold events possible from the predicted
relations of TEES. Since we evaluate our model
on the output relations of TEES, the event detec-
tion performance is bounded or limited by these
predicted relations. For instance, if one of the rela-
tions in an event was not predicted, the event struc-
ture will never be formed. We observe that this
remains a challenging task since the upper bound
recall is still at 53.47% (6.01pp higher than our

Model Number of Classifications Running Time (s)

TEES 6,141 155
SBNN k = 8 4,093 131

Table 3: Comparison on computational efficiency on
the CG task 2013 development dataset.

Model Nested Overlapping Flat Overall F1 (%)

TEES 42.70 34.49 56.81 52.16
SBNN k = 8 45.24 36.92 60.5 54.36

Table 4: Nested and overlapping event detection F1 (%)
score performance on the CG task 2013 development
set.

current model’s score). Closing this gap requires
among others addressing inter-sentence and self-
referential events, which account for 3.1% of the
total events.

5 Conclusions and Future Work

We presented a novel search-based neural model
for nested and overlapping event detection by
treating the task as structured prediction for
DAGs. Our model achieves performance com-
parable to the state-of-the-art TEES event detec-
tion model without the use of any syntactic and
hand-engineered features, suggesting the domain-
independence of the model. Further analyses on
the development set revealed some desirable char-
acteristics of the model such as its computational
efficiency while yielding higher F1-score perfor-
mance. These results set the first focussed bench-
mark of our model and next steps include ap-
plying it to other event datasets in the biomed-
ical and general domain. In addition, it can
also be applied to other DAG structures such as
nested/discontiguous entities (Muis and Lu, 2016;
Ju et al., 2018).
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Daumé III. 2017. Biomedical event extraction us-
ing abstract meaning representation. In BioNLP
2017, pages 126–135, Vancouver, Canada,. Associ-
ation for Computational Linguistics.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of adam and beyond. In
International Conference on Learning Representa-
tions.

Sebastian Riedel and Andrew McCallum. 2011. Ro-
bust biomedical event extraction with dual decom-
position and minimal domain adaptation. In Pro-
ceedings of BioNLP Shared Task 2011 Workshop,
pages 46–50, Portland, Oregon, USA. Association
for Computational Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency dag parsing. In Proceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 753–760. Coling
2008 Organizing Committee.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS).

Deepak Venugopal, Chen Chen, Vibhav Gogate, and
Vincent Ng. 2014. Relieving the computational bot-
tleneck: Joint inference for event extraction with
high-dimensional features. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 831–843,
Doha, Qatar. Association for Computational Lin-
guistics.

Andreas Vlachos and Mark Craven. 2012. Biomedical
event extraction from abstracts and full papers using
search-based structured prediction. BMC bioinfor-
matics, 13(11):S5.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A neural transition-based approach for
semantic dependency graph parsing. In AAAI Con-
ference on Artificial Intelligence.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Pro-
ceedings of the 18th conference on Computational
linguistics-Volume 2, pages 947–953. Association
for Computational Linguistics.

http://www.aclweb.org/anthology/W17-2315
http://www.aclweb.org/anthology/W17-2315
https://openreview.net/forum?id=ryQu7f-RZ
http://www.aclweb.org/anthology/W11-1807
http://www.aclweb.org/anthology/W11-1807
http://www.aclweb.org/anthology/W11-1807
http://aclweb.org/anthology/C08-1095
http://aclweb.org/anthology/C08-1095
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://www.aclweb.org/anthology/D14-1090
http://www.aclweb.org/anthology/D14-1090
http://www.aclweb.org/anthology/D14-1090
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549/16113
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549/16113


3686

A Model Parameters

Parameter Value/Dimension

Mini-Batch Size 100
Word Embedding 200
BiLSTM Word Embedding 100
Role Type Embedding 10
Trigger/Argument Type Embedding 20
Early Stopping Patience 5
Dropout 0.5
Learning Rate 0.001
Hidden Layer Size 60
Event Embedding 100
Action Score Threshold 0.5
Beam Size 8
Action Embedding 4
Weight Decay Rate 0.001

Table 5: Hyper-parameters used in our experiments.


