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Abstract

In transductive learning, an unlabeled test set
is used for model training. While this setting
deviates from the common assumption of a
completely unseen test set, it is applicable in
many real-world scenarios, where the texts to
be processed are known in advance. However,
despite its practical advantages, transductive
learning is underexplored in natural language
processing. Here, we conduct an empirical
study of transductive learning for neural mod-
els and demonstrate its utility in syntactic and
semantic tasks. Specifically, we fine-tune lan-
guage models (LMs) on an unlabeled test set to
obtain test-set-specific word representations.
Through extensive experiments, we demon-
strate that despite its simplicity, transductive
LM fine-tuning consistently improves state-of-
the-art neural models in both in-domain and
out-of-domain settings.

1 Introduction

In supervised learning, a model is trained on a
training set and its generalization performance is
evaluated on an unseen test set. In this setting, the
model has no access to the test set during training.
However, the assumption of a completely unseen
test set is not always necessary. In many cases,
certain aspects of the test set are already known at
training time. For example, a company may want
to annotate a large number of existing documents
automatically (Section 3). In such a scenario, the
texts to be processed are known in advance, and
using the model trained on the texts themselves to
process them can be more efficient. Using an un-
labeled test set in this way is the key idea behind
transductive learning.

In transductive learning (Vapnik, 1998), an un-
labeled test set is given in the training phase. That
is, the inputs of the test set, i.e., the raw texts, can
be used during training, but the labels are never

used. In the test phase, the trained model is eval-
uated on the same test set. Despite its practical
advantages, transductive learning has received lit-
tle attention in natural language processing (NLP).
After the pioneering work of Joachims (1999),
who proposed a transductive support vector ma-
chine for text classification, transductive methods
for linear models have been investigated in only
a few tasks, such as lexical acquisition (Duh and
Kirchhoff, 2006) and machine translation (Ueffing
et al., 2007). In particular, transductive learning
with neural networks is underexplored.

Here, we investigate the impact of transductive
learning on state-of-the-art neural models in syn-
tactic and semantic tasks, namely syntactic chunk-
ing and semantic role labeling (SRL). Specifically,
inspired by recent findings that language model
(LM)-based word representations yield large per-
formance improvement (Devlin et al., 2019), we
fine-tune Embeddings from Language Models
(ELMo) (Peters et al., 2018) on an unlabeled test
set and use them in each task-specific model. Typ-
ically, LMs are trained on a large-scale corpus
whose word distributions are different from the
test set. By contrast, transductive learning allows
us to fit LMs directly to the distributions of the
test set. Our experiments show the effectiveness
of transductive LM fine-tuning.

In summary, our main contributions are:

• This work is the first to introduce an LM fine-
tuning method to transductive learning1.
• Through extensive experiments in both in-

domain and out-of-domain settings, we
demonstrate that transductive LM fine-tuning
consistently improves state-of-the-art neural
models in syntactic and semantic tasks.

1Our code and scripts are publicly available at
https://github.com/hiroki13/transductive-language-models.
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2 Related Work

Transductive learning. Vapnik advocated and
formalized transductive learning (Vapnik, 1998;
Gammerman et al., 1998), which has been applied
to text classification (Joachims, 1999; Ifrim and
Weikum, 2006) and image processing (Bruzzone
et al., 2006; Sener et al., 2016; Liu et al., 2019).
Although some studies have presented transduc-
tive methods for linear models in other tasks (Duh
and Kirchhoff, 2006; Ueffing et al., 2007; Chen
et al., 2008; Alexandrescu and Kirchhoff, 2009),
transductive methods for neural models are under-
explored in NLP.

Unsupervised domain adaptation. Transduc-
tive learning is related to unsupervised domain
adaptation, in which models are adapted to a tar-
get domain by using unlabeled target domain texts
(Ben-David et al., 2010; Shi and Sha, 2012). This
setting does not allow models to access the test
set, which is the main difference between unsuper-
vised domain adaptation and transductive learn-
ing. Various unsupervised adaptation methods
have been proposed for linear models (Blitzer
et al., 2006; Jiang and Zhai, 2007; Tsuboi et al.,
2009; Søgaard, 2013). In the context of neural
models, adversarial domain adaptation (Ganin and
Lempitsky, 2015; Ganin et al., 2016; Guo et al.,
2018), importance weighting (Wang et al., 2017),
structural correspondence learning (Ziser and Re-
ichart, 2017), self/tri/co-training (Saito et al.,
2017; Ruder and Plank, 2018), and other tech-
niques orthogonal to transductive LM fine-tuning
have been applied successfully in unsupervised
domain adaptation2. Integrating these methods
with transductive LM fine-tuning is an interesting
direction for future research.

LM-based word representations. Recently,
LM-based word representations pre-trained on
unlabeled data have gained considerable atten-
tion (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019). The most related method to
ours is Universal Language Model Fine-tuning
(ULMFiT), which pre-trains an LM on a large
general-domain corpus and fine-tunes it on the
target task (Howard and Ruder, 2018). Inspired
by these studies, we introduce LM-based word
representation in transductive learning.

2Feature augmentation is considered a supervised domain
adaptation method (Daume III, 2007; Kim et al., 2016).

Transductive
LM Fine-tuning(2)(1)

(3)

Figure 1: Training procedure. (1) LM pre-training:
the LM is firstly pre-trained on the large-scale unla-
beled corpus Dlarge = {X large

i }N large

i=1 . (2) Transduc-
tive LM fine-tuning: the LM is then fine-tuned on the
unlabeled test set Dtest = {X test

i }N
test

i=1 . Note that the
test set used for training is the identical one used in
evaluation. (3) Task-specific model training: the task-
specific model is trained on the training set Dtrain =

{(X train
i , Y train

i )}N train

i=1 . L denotes the loss function.

3 Neural Transductive Learning

Motivation. Suppose that a company has re-
ceived a vast amount of customer reviews and
wants to automatically process these reviews more
accurately, even if it takes some time. For this pur-
pose, they do not have to build a model that works
well on new unseen reviews. Instead, they want a
model that works well on only the reviews in hand.
In this situation, using these reviews themselves to
train a model can be more efficient. This is the
key motivation for developing effective and prac-
tical transductive learning methods. Toward this
goal, we develop transductive methods for state-
of-the-art neural models.

Problem formulation. In the training phase, a
training set Dtrain = {(X train

i , Y train
i )}N train

i=1 and an
unlabeled test set Dtest = {X test

i }N
test

i=1 are used for
model training, where Xi is an input, e.g., a sen-
tence, and Yi represents target labels, e.g., labels
from a set of syntactic or semantic annotations. In
the test phase, the trained model is used for pre-
dicting labels and is evaluated on the same test set
Dtest.

Method. We present a simple transductive
method for neural models. Specifically, we fine-
tune an LM on an unlabeled test set. Figure 1
illustrates the training procedure that consists of
the following steps: (1) LM pre-training, (2)
Transductive LM fine-tuning and (3) task-specific
model training. We first train an LM on a large-
scale unlabeled corpus Dlarge and then fine-tune
the LM on an unlabeled test set Dtest. Finally, we
use the fine-tuned LM as the embedding layer of
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Training Development Test
Sents Preds Sents Preds Sents Preds

BC 11.8k 28.9k 2.1k 5.0k 2,0k 5.4k
BN 10.6k 3.1k 1.2k 3,9k 1.2k 3.7k
MZ 6.9k 2.4k 0.6k 2.1k 0.7k 2.6k
NW 34.9k 96.6k 5.8k 16.6k 1.8k 5.8k
PT 21.5k 34.9k 1.7k 2.5k 1.2k 2.8k
TC 12.8k 16.2k 1.6k 2.0k 1.3k 1.7k
WB 16.9k 20.0k 2.3k 2.8k 0.9k 2.2k

Table 1: Dataset statistics on the CoNLL-2012 dataset.
1k = 1,000. Column “Sents” denotes the number of
sentences in each dataset. Column “Preds” denotes the
number of predicates in each dataset.

each task-specific model and train the model on a
training set Dtrain.

Θ′ ← argminΘ Llm(Θ|Dlarge), (1)

Θ
′′ ← argminΘ′ Llm(Θ′|Dtest), (2)

Φ′ ← argminΦ Ltask(Φ|Θ′′
,Dtrain). (3)

Here, Llm and Ltask are the loss functions for
an LM and task-specific model, respectively.3

In the LM pre-training and fine-tuning phases
(Eqs. 1 and 2), we first train the initial LM param-
eters Θ and then fine-tune the pre-trained parame-
ters Θ′. In the task-specific training phase (Eq. 3),
we fix the fine-tuned LM parameters Θ′′ used for
the embedding layer of a task-specific model, and
train only the task-specific model parameters Φ.

4 Experiments

Tasks. To investigate the effectiveness of trans-
ductive LM fine-tuning for syntactic and semantic
analysis, we conduct experiments in syntactic
chunking (Ramshaw and Marcus, 1999; Sang
and Buchholz, 2000; Ponvert et al., 2011) and
SRL (Gildea and Jurafsky, 2002; Palmer et al.,
2005; Carreras and Màrquez, 2005)4. The goal
of syntactic chunking is to divide a sentence
into non-overlapping phrases that consist of
syntactically related words. The goal of SRL is to
identify semantic arguments for each predicate.
For example, consider the following sentence:

The man kept a cat
SYNCHUNK [ NP ] [ NP ]

SEMROLE [ A0 ] [ A1 ]

3In our experiments (Section 4), both losses were given
by the negative log-likelihood (Appendix A).

4This paper addresses span-based, PropBank-style SRL.
Detailed descriptions on other lines of SRL research (e.g.
dependency-based SRL and FrameNet-based SRL) can be
found in Baker et al. (1998); Das et al. (2014); Surdeanu et al.
(2008); Hajič et al. (2009).

In syntactic chunking, given the input sentence,
systems have to recognize “The man” and “a cat”
as noun phrases (NP). In SRL, given the input sen-
tence and the target predicate “kept”, systems have
to recognize “The man” as the A0 argument and “a
cat” as the A1 argument. For syntactic chunking,
we adopted the experimental protocol by Ponvert
et al. (2011) and for SRL, we followed Ouchi et al.
(2018) (details in Appendix A).

Datasets. We perform experiments using the
CoNLL-2012 dataset5. To investigate the perfor-
mances under in-domain and out-of-domain set-
tings, we use each of the seven domains in the
CoNLL-2012 dataset. Table 1 shows the data
statistics. Each test set contains at most 2,000 sen-
tences. Compared with previous studies, such as
Xiao and Guo (2013) that used 570,000 sentences
as unlabeled data for unsupervised domain adapta-
tion of syntactic chunking, our transductive exper-
iments can be regarded as a low-resource adapta-
tion setting. As a large-scale unlabeled raw corpus
for LM training, we use the 1B word benchmark
corpus (Chelba et al., 2013).

Model setup. We use ELMo (Peters et al., 2018)
as an LM. For syntactic chunking, we use a vari-
ant of the Reconciled Span Parser (Joshi et al.,
2018). For SRL, we use the span selection model
(BiLSTM-Span model) (Ouchi et al., 2018). Each
model is trained on a source domain training set
and was evaluated on a target domain test set6. The
development set is also the source domain, and
it is used for hyperparameter tuning7. Consider
the case where NW → BC, i.e., the source domain
is the newswire NW and the target domain is the
broadcast conversation BC. We first train ELMo
on the large-scale raw corpus (one billion word
benchmark corpus) and fine-tune it on the BC test
set. We then train syntactic and semantic models
that use the fine-tuned ELMo on the NW training
set. During the task-specific model training, we
freeze the fine-tuned ELMo. We select hyperpa-
rameters by using the NW development set. Finally,
we evaluate the trained model on the BC test set. In
the same way, we conduct training and evaluation
for each domain pair.

5We used the version of OntoNotes downloaded at:
http://cemantix.org/data/ontonotes.html.

6We used the official evaluation scripts downloaded
at https://www.clips.uantwerpen.be/conll2000/chunking/ and
http://www.lsi.upc.edu/ srlconll/soft.html.

7All models and hyperparameters are described in Appen-
dices B, C, and D.
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src → tgt BC BN MZ NW PT TC WB Averaged F1
SYNTACTIC CHUNKING

BC 93.0 / 93.5 92.9 / 93.0 90.0 / 90.6 88.1 / 88.7 94.1 / 94.9 84.5 / 85.1 89.4 / 89.8 90.3 / 90.8
BN 92.5 / 93.0 94.7 / 95.0 91.2 / 91.4 90.0 / 90.6 94.8 / 95.3 84.0 / 84.9 89.9 / 90.7 91.0 / 91.6
MZ 89.9 / 90.8 91.6 / 92.3 92.3 / 92.5 89.2 / 90.0 93.4 / 94.3 80.5 / 82.2 89.9 / 90.9 89.5 / 90.4
NW 91.4 / 92.0 93.7 / 93.9 92.2 / 92.6 94.2 / 94.5 95.7 / 96.1 83.3 / 84.2 92.3 / 92.9 91.8 / 92.3
PT 87.1 / 88.2 86.9 / 87.5 85.6 / 86.9 81.0 / 82.7 97.5 / 97.7 79.0 / 80.0 86.9 / 88.1 86.3 / 87.3
TC 87.3 / 88.2 87.2 / 87.5 84.1 / 85.4 80.8 / 82.3 93.0 / 93.7 89.3 / 89.5 85.4 / 86.5 86.7 / 87.6
WB 91.8 / 92.3 93.4 / 93.7 91.7 / 92.2 91.0 / 91.5 95.6 / 96.0 83.6 / 85.1 93.0 / 93.5 91.4 / 92.0

SEMANTIC ROLE LABELING
BC 83.3 / 83.9 78.9 / 79.3 74.2 / 74.8 71.0 / 72.4 82.8 / 84.4 80.2 / 80.6 78.7 / 79.8 78.4 / 79.3
BN 80.3 / 81.2 83.3 / 83.5 76.5 / 77.4 75.0 / 75.7 86.5 / 86.8 77.1 / 78.0 78.8 / 79.9 79.6 / 80.4
MZ 76.4 / 77.3 76.6 / 77.3 80.2 / 80.6 73.8 / 74.8 84.8 / 87.2 72.8 / 73.3 77.5 / 78.7 77.4 / 78.5
NW 79.2 / 80.1 79.8 / 80.0 79.5 / 80.0 83.8 / 84.4 88.3 / 89.0 75.5 / 76.5 81.1 / 81.8 81.0 / 81.7
PT 71.2 / 72.1 67.4 / 67.8 66.6 / 68.0 64.7 / 66.0 92.8 / 93.0 72.6 / 73.9 76.2 / 77.2 73.1 / 74.0
TC 73.8 / 74.1 67.6 / 67.8 64.5 / 64.9 59.2 / 60.2 79.0 / 80.4 83.3 / 83.6 71.3 / 72.5 71.2 / 71.9
WB 74.1 / 74.4 71.7 / 72.4 72.0 / 72.8 71.4 / 72.0 87.8 / 88.8 76.3 / 76.7 81.8 / 82.4 76.4 / 77.1

Table 2: Main results under cross-domain settings, src (“source”, training set)→ tgt (“target”, test set). Cells show
the F1 scores of the baseline model (before the slash) and the transductive model (after the slash). Column “Av-
eraged F1” represents the F1 scores averaged across the target domains. Domains are as follows: BC = Broadcast
Conversation, BN = Broadcast News, MZ = Magazine, NW = Newswire, PT = New Testament, TC = Telephone
Conversation, and WB = Weblogs and Newsgroups.

Results. Table 2 shows the F1 scores on each
test set. All reported F1 scores are the average of
five distinct trials using different random seeds. In
each cell, the left-hand side denotes the F1 score of
the baseline (using a base LM without fine-tuning)
and the right-hand side denotes F1 of the trans-
ductive models (using a fine-tuned LM on each
test set). In in-domain (same source/target do-
mains, e.g., BC→BC) and out-of-domain (differ-
ent source/target domains, e.g., BC→NW) settings,
all transductive models consistently outperformed
the baselines, which suggests that transductive LM
fine-tuning improves performance of neural mod-
els. Although the improvements were undramatic
(around 1.0 F1 gain), these consistent improve-
ments can be regarded as valuable empirical re-
sults because of the difficulty of unsupervised and
low-resource adaptation settings.

5 Analysis

Comparison between unsupervised domain
adaptation and transduction. In unsupervised
domain adaptation, target domain unlabeled data
(the texts whose domain is the same as that of a
test set) is used for adaptation. Although the do-
main is identical between target domain data and a
test set, their word distributions are somewhat dif-
ferent. In transductive learning, because an unla-
beled test set can be used for training, it is possible
to adapt LMs directly to the word distributions of
the test set. Here, we investigate whether adapt-
ing LMs directly to each test set is more effective

Syntactic chunking Semantic role labeling
CU T CU T

BC 90.4 90.8 78.6 79.3
BN 91.1 91.6 79.8 80.4
MZ 90.0 90.4 77.9 78.5
NW 92.1 92.3 81.1 81.7
PT 87.1 87.3 73.5 74.0
TC 87.1 87.6 71.3 71.6
WB 91.8 92.0 76.6 77.1

Table 3: Performance comparison between LM fine-
tuning on target domain unlabeled data of the same size
as each test set, “Controlled Unlabeled data (CU),” and
transductive LM fine-tuning on each test set (T). Cells
show the F1 scores averaged across the target domains.

than adapting LMs to each target domain unla-
beled data. Similarly to our transductive method
shown in Figure 1, we first train LMs on the large-
scale unlabeled corpus (the 1B word benchmark
corpus) and then fine-tune them on the unlabeled
target domain data8. In addition, we control the
sizes of the target domain unlabeled data and test
sets. That is, we use the same number of sen-
tences in the unlabeled data of each target domain
as in each test set. Table 3 shows the F1 scores
averaged across all the target domains. The trans-
ductive models (T) consistently outperformed the
domain-adapted models (CU). This demonstrates
that adapting LMs directly to test sets is more ef-
fective than adapting them to target domain unla-
beled data.

8As target domain unlabeled data, we use the CoNLL-
2012 training set of each domain.
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Syntactic chunking Semantic role labeling
U U + T U U + T

BC 90.5 91.0 79.0 79.4
BN 91.3 91.6 80.1 80.6
MZ 90.2 90.6 78.3 78.7
NW 92.1 92.5 81.5 81.9
PT 87.3 87.7 73.6 74.3
TC 87.2 87.6 71.4 72.0
WB 91.8 92.2 76.8 77.2

Table 4: Performance comparison between LM fine-
tuning on target domain unlabeled data (U) and on the
combination of the unlabeled data and test sets (U +
T). Cells show the F1 scores averaged across the target
domains.

CoNLL 2000 2005 2012
WSJ Brown

BASE 96.6 87.7 78.3 86.2
TRANS 96.7 87.9* 79.5* 86.6*
Clark et al. (2018) 97.0 - - -
Peters et al. (2017) 96.4 - - -
Hashimoto et al. (2017) 95.8 - - -
Wang et al. (2019) - 88.2 79.3 86.4
Li et al. (2019) - 87.7 80.5 86.0
Ouchi et al. (2018) - 87.6 78.7 86.2
He et al. (2018) - 87.4 80.4 85.5

Table 5: Standard benchmark results. Cells show
the F1 scores on each test set. The CoNLL-2000
and CoNLL-2005/2012 datasets are used for syntactic
chunking and SRL, respectively. Results of the trans-
ductive models (TRANS) marked with * are statistically
significant compared to the baselines (BASE) using the
permutation test (p < 0.05).

Combination of unsupervised domain adapta-
tion and transduction. In real-world situations,
large-scale unlabeled data of target domains is
sometimes available. In such cases, LMs can be
trained on both the target domain unlabeled data
and the test sets. Here, we investigate the effec-
tiveness of using both datasets. Table 4 shows the
F1 scores averaged across all the target domains.
Fine-tuning the LMs on the target domain unla-
beled data as well as each test set (U + T) showed
better performance than fine-tuning them only on
the target domain unlabeled data (U). This com-
bination of tranduction with unsupervised domain
adaptation further improves performance.

Effects in standard benchmarks. Some studies
indicated that when promising new techniques are
only evaluated on very basic models, determining
how much (if any) improvement will carry over to
stronger models can be difficult (Denkowski and
Neubig, 2017; Suzuki et al., 2018). Motivated by
such studies, we provide the results in standard
benchmark settings. For syntactic chunking, we

use the CoNLL-2000 dataset (Sang and Buchholz,
2000) and follow the standard experimental proto-
col (Hashimoto et al., 2017). For SRL, we use the
CoNLL-2005 (Carreras and Màrquez, 2005) and
CoNLL-2012 datasets (Pradhan et al., 2012) and
follow the standard experimental protocol (Ouchi
et al., 2018). Table 5 shows the F1 scores of our
models and those of existing models. The results
of the baseline model were comparable with those
of the state-of-the-art models, and the transduc-
tive model consistently outperformed the baseline
model9. Note that we cannot fairly compare the
transductive and existing models due to the differ-
ence in settings. These results, however, demon-
strate that transductive LM fine-tuning improves
state-of-the-art chunking and SRL models.

6 Conclusion

In this study, we investigated the impact of trans-
ductive learning on state-of-the-art neural mod-
els in syntactic and semantic tasks. Specifically,
we fine-tuned an LM on an unlabeled test set.
Through extensive experiments, we demonstrated
that, despite its simplicity, transductive LM fine-
tuning contributes to consistent performance im-
provement of state-of-the-art syntactic and seman-
tic models in cross-domain settings. One inter-
esting line of future work is to explore effective
transductive methods for task-dependent (neural)
layers. For instance, as some unsupervised do-
main adaptation methods can be applied to trans-
ductive learning, integrating them with transduc-
tive LM fine-tuning may further improve their per-
formance. Another line of our future work is to
apply these transductive methods to various NLP
tasks and investigate their performance.
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