@inproceedings{bogin-etal-2019-global,
title = "Global Reasoning over Database Structures for Text-to-{SQL} Parsing",
author = "Bogin, Ben and
Gardner, Matt and
Berant, Jonathan",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/D19-1378/",
doi = "10.18653/v1/D19-1378",
pages = "3659--3664",
abstract = "State-of-the-art semantic parsers rely on auto-regressive decoding, emitting one symbol at a time. When tested against complex databases that are unobserved at training time (zero-shot), the parser often struggles to select the correct set of database constants in the new database, due to the local nature of decoding. {\%}since their decisions are based on weak, local information only. In this work, we propose a semantic parser that globally reasons about the structure of the output query to make a more contextually-informed selection of database constants. We use message-passing through a graph neural network to softly select a subset of database constants for the output query, conditioned on the question. Moreover, we train a model to rank queries based on the global alignment of database constants to question words. We apply our techniques to the current state-of-the-art model for Spider, a zero-shot semantic parsing dataset with complex databases, increasing accuracy from 39.4{\%} to 47.4{\%}."
}
Markdown (Informal)
[Global Reasoning over Database Structures for Text-to-SQL Parsing](https://preview.aclanthology.org/fix-sig-urls/D19-1378/) (Bogin et al., EMNLP-IJCNLP 2019)
ACL
- Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Global Reasoning over Database Structures for Text-to-SQL Parsing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3659–3664, Hong Kong, China. Association for Computational Linguistics.