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Abstract
In this paper, we present a fast and reliable
method based on PCA to select the number of
dimensions for word embeddings. First, we
train one embedding with a generous upper
bound (e.g. 1,000) of dimensions. Then we
transform the embeddings using PCA and in-
crementally remove the lesser dimensions one
at a time while recording the embeddings’ per-
formance on language tasks. Lastly, we se-
lect the number of dimensions while balancing
model size and accuracy. Experiments using
various datasets and language tasks demon-
strate that we are able to train 10 times fewer
sets of embeddings while retaining optimal
performance. Researchers interested in train-
ing the best-performing embeddings for down-
stream tasks, such as sentiment analysis, ques-
tion answering and hypernym extraction, as
well as those interested in embedding com-
pression should find the method helpful.

1 Introduction

Word embeddings constitute an integral part of the
implementation of numerous NLP tasks ranging
from sentiment classification (Lin et al., 2015),
nationality classification (Ye et al., 2017), classi-
fication of behavior on Twitter (Wang et al., 2017),
to measuring document similarity (Kusner et al.,
2015). The strength of word embeddings stems
from their embedding words into low dimensional
continuous vector space (Mnih and Kavukcuoglu,
2013; Pennington et al., 2014; Tang et al., 2015;
Raunak, 2017).

Various algorithms have been proposed for
learning words’ vector space representations, in-
cluding most notably Mikolov et al. (2013b), Pen-
nington et al. (2014), and Nickel and Kiela (2017).
However, the exact definition of ‘low’ dimension-
ality is rarely explored. As pointed out by Yin and
Shen (2018), the most frequently used dimension-
ality is 300, largely due to the fact that the early

influential papers (Mikolov et al., 2013b; Pen-
nington et al., 2014) used 300. Other often used
dimensionalities include 200 (Tang et al., 2015;
Ling et al., 2016; Nickel and Kiela, 2017) and
500 (Tang and Liu, 2009; Perozzi et al., 2014).

The impact of vector dimension on embed-
dings’ performance is well known (Lai et al.,
2016). With too few dimensions, the model will
underfit; with too many dimensions the model will
overfit. Both undercut the embeddings’ perfor-
mance (Yin and Shen, 2018). What is also known
is that the size of the embeddings will grow lin-
early with the vector dimension (Ling et al., 2016;
Raunak, 2017). What is less known is how to
identify the optimal vector dimension given any
dataset. The method we propose here helps fill
this gap.
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Figure 1: Left: Accuracy for the word analogy task as
a function of vector dimension (dimension incremental
is 50). Right: The number of embedding parameters
as a function of vector dimension. Results are gener-
ated using the Text8 dataset with a vocabulary size of
71,291.

We offer a fast and reliable PCA-based method
that (1) only needs to train the embeddings once
and (2) is able to select vector dimension with
competitive performance.1 First, we train one em-
bedding with a generous upper bound (e.g. 1,000)

1As such, the selected dimension is a Pareto-optimal di-
mension that balances embedding size and performance.
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of dimensions. Then we transform the embed-
dings using PCA and incrementally remove the
lesser dimensions one at a time while recording
the embeddings’ performance on language tasks.
Lastly we calculate the best dimensionality and re-
turn the corresponding embeddings.

Experiments using various datasets and lan-
guage tasks reveal three key observations:

• The optimal dimensionality calculated on the
basis of PCA agrees with that by grid search.

• The resulting embedding is competitive
against the one selected by grid search.

• Different upper-bound dimensionalities (e.g.
500, 1000) point to the same optimal dimen-
sionality.

Researchers interested in downstream tasks, such
as sentiment analysis (Lin et al., 2015), question
answering (Devlin et al., 2018) and hypernym ex-
traction (Chen et al., 2018), as well as those inter-
ested in embedding compression should find the
method helpful.

2 Related Work

Our work draws inspiration from Yin and
Shen (2018). The authors build on the Latent Se-
mantics Analysis (LSA) approach and slide k from
a lower bound (e.g. 10) to a generous upper bound
(e.g. 1,000) in E = U1:kD

α
1:k,1:k, where U and

D come from the singular-value decomposition of
the signal matrix and α is a hyperparameter to be
tuned. For each k, the authors generate one corre-
sponding embedding and compare it with the sim-
ulated oracle embedding. The k that yields the
smallest loss is selected. In a similar vein, our
work bypasses the problem of training multiple
embeddings, often necessitated by grid search, by
sliding over all the k values of PCA. Compared
with Yin and Shen (2018), our method is easier to
implement, as we do not rely on, e.g, Monte Carlo
simulations of the oracle embeddings.

At a deeper level, our work is also connected
to Yin and Shen (2018) in terms of the trade-off
between bias and variance. Yin and Shen (2018)
propose pairwise inner product (PIP) loss to mea-
sure the quality of an embedding. They decom-
pose the PIP loss into a bias term and a variance
term, where reducing the dimension increases the
bias term but reduces the variance. They show

that the bias-variance trade-off reflects the signal-
to-noise ratio in dimension selection. While there
is no exact 1-1 mapping from their theorem to our
work, we do have analogous discussion in Section
3. The PCA step in our algorithm enables us to
identify and drop dimensions that (1) contribute
less to the explained variance in the embedding
and yet (2) contribute equally to cosine similarity.
In essence, our PCA step is removing dimensions
with low signal-to-noise ratios.

Our work also draws strength from the liter-
ature on post-processing embeddings. Mu and
Viswanath (2018) demonstrate that removing the
top dominating directions in the PCA-transformed
embeddings helps improve the embeddings’ per-
formance in word analogy and similarity tasks.
Building on that, Raunak (2017) shows that by
performing another iteration of PCA and dropping
the bottom directions, one can further improve a
model’s performance as well as reduce its size.
Both works focus on improving pre-trained em-
beddings’s performance in terms of accuracy and
size. By contrast, our algorithm selects the opti-
mal dimensionality before the actual training.

In addition, our work is related to a few re-
cent studies on model compression (Faruqui et al.,
2015; Ling et al., 2016; Shu and Nakayama,
2018). In particular, Ling et al. (2016) seek to
drop the least significant digits to reduce the em-
beddings’ size. By comparison, our method re-
moves the least significant dimensions (in terms
of explained variance (Bishop, 2006)). It should
be noted that the two methods complement each
other, as one focuses on dimension selection
whereas the other on limited precision represen-
tation.

3 Algorithm

In this section, we formally describe how to se-
lect a competitive dimensionality by training one
embedding. We state the proposed algorithm in
Algorithm 1.

First, we note that the PCA transformation
(when retaining all the N dimensions) does not
affect embeddings’ performance on word similar-
ity tasks. Any potential performance gain should
come from dropping the lesser dimensions. By
“lesser dimensions,” we mean the dimensions that
contribute little to the explanation of variance
(Bishop, 2006).

In Figure 2, we first transform an embedding
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Algorithm 1 Select the Optimal Dimensionality using PCA

Set dimension upper bound N; select language task from {word analogy, similarity}
Train embedding E with N dimensions
Transform E using PCA: (u1, u2, ..., uN ; Ẽ)← PCA(E), where u1, u2, .., uN are the new basis

vectors, Ẽ represents the transformed coefficients
for i = N to 2 do

E = E-Ẽ:,i · ui, where Ẽ:,i represents the ith column of Ẽ and each scalar in Ẽ:,i scales vector ui
Evaluate E on the selected language task, record (i, metric)

end for
Return the selected dimension: [argmax

i
f (i, metric)]-1, where f is a score function that balances

performance and model size and i is between 2 and N
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Figure 2: Left: explained variance drops sharply after
the top 100 dimensions. Right: all the 1,000 dimen-
sions have roughly the same mean value.

using PCA, so that each new dimension repre-
sents a principal component. We show that the ex-
plained variance goes drastically down for dimen-
sions beyond the 100th and stays relatively stable
for 100th-1,000th dimensions. In terms of magni-
tude, the first dimension explains 69.2 times more
variance than the last dimension.

While different dimensions contribute differ-
ently to the explained variance, they nonetheless
contribute equally to the calculation of inner prod-
uct (Figure 2, right). Therefore, the lesser dimen-
sions, with less variance but equal weighting, ef-
fectively decreases the discriminative power of the
model. Removing these lesser dimensions enables
us to focus on the more discriminative dimensions.
To identify optimal dimensionality, beyond which
all dimensions are considered lesser, we turn to ex-
periments in Section 4.

4 Experiments

Given the popularity of the word2vec model
(Mikolov et al., 2013b), we use Skip-gram as the
embedding algorithm. Following Yin and Shen
(2018) and Grave et al. (2017), we use the widely

used benchmark datasets, Text8 (Mahoney, 2011)
and WikiText-103 (Merity et al., 2017), as the
training datasets. For ground truth, we train 20
embeddings, with dimensions ranging from 50 to
1,000 at an interval of 50 as well as two embed-
dings with dimensions of 5 and 25.2 Here we have
made the implicit assumption that 1,000 is an up-
per bound for the embedding space’s dimension-
ality. For each embedding, we train 200 epochs
(Pennington et al., 2014; Shazeer et al., 2016) and
keep only the checkpoint that performs best on the
word analogy task (Mikolov et al., 2013a). Our
experiments focus on (1) comparing our method
with grid-search based ground truth and (2) exam-
ining consistency between different upper bounds.

4.1 Performance Compared with Grid Search

In this subsection, we compare the optimal di-
mensionality that our method calculates with the
ground truth (Figure 3). We perform the com-
parison across three testing datasets: Wordsim
353 (Finkelstein et al., 2002), RW Stanford (Lu-
ong et al., 2013) and MTurk 771 (Halawi et al.,
2012). Figure 3 demonstrates that our PCA based
method (with one training only) is able to uncover
the optimal dimensionality. Table 1 reports the
distance in selected dimensionalities.

We also observe that the optimal embedding
that results from our method (with retraining) is
competitive against the optimal embedding found
using grid search. In Figure 3, we mark out the
respective optimal performances of the two ap-
proaches in similarity tasks. In Table 2, we further

2A larger interval will save researchers more time, but
may result in a sub-optimal dimensionality. While a smaller
interval may give more accurate results, it requires train-
ing more sets of embeddings proportionally. Our proposed
method, by contrast, can scan through all the dimensions at
the finest granularity, 1, at virtually no extra cost.
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Figure 3: Across different benchmarks and different training datasets, the optimal dimensionality that our method
(blue curve) identifies closely matches grid search (red curve). The top row is based on Text8. The bottom row is
based on WikiText-103. The vertical dotted lines represent the optimal dimensionality for the respective curves.
The horizontal dotted line represents the performance of grid search and the blue star marks the performance of
our method. The score function is f (i, metric)= metric-50×i. All the curves are averaged over 5 random runs.

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Text8: Wordsim 353

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

0 200 400 600 800 1000
0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Text8: RW Stanford

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Text8: MTurk 771

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

0 200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

WikiText-103: Wordsim 353

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

0 200 400 600 800 1000
0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

WikiText-103: RW Stanford

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

WikiText-103: MTurk 771

D = 500
D = 600
D = 700
D = 800
D = 900
D = 1000

Figure 4: Across different benchmarks and different training datasets, consistency is observed when the upper
bound is set to 500, 600, 700, 800, 900 and 1,000. The curves trace closely each other, in particular for WordSim
353 and MTurk 771. The top row is based on the Text8 dataset. The bottom row is based on the WikiText-103
dataset. All the curves are averaged over 5 random runs. Best viewed in color.

report the optimal performance achieved by grid
search and our method as well as their relative per-
formance. Even though we have only trained one
embedding (and one retraining), our method, on
average, is able to achieve 100.2% (WordSim 353)
to 96.9% (MTurk 771) of the optimal performance

by grid-searching through 22 sets of embeddings.

4.2 Consistency across Upper Bounds

One hyperparameter involved in our method is the
upper bound. Intuitively, we expect the upper
bound should be higher for larger datasets. In this
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Table 1: Distance in Dimensionalities between Grid
Search and Our Proposed Method (Numbers within the
bucket size 50 are in bold)

Datasets WordSim RW Stanford MTurk
Text8 34 1 65
WikiText 18 10 48
Average 26 5.5 66.5

Table 2: Performance (Correlation) Comparison be-
tween Grid Search and Our Proposed Method

Datasets Method WordSim RW Stanford MTurk

Text8
G.S. 63.8 31.8 56.4
Ours 64.5 (101.1%) 31.8(100.3%) 52.9 (93.8%)

WikiText
G.S. 64.8 38.4 59.6
Ours 64.3 (99.3%) 38.3 (99.7%) 59.6 (100%)

Average - 100.2% 100% 96.9%

subsection, we demonstrate our method is robust
against different upper bounds.

In Figure 4, we vary the dimension from 500
to 1,000 at an increment of 100. We observe that
the dimensionality our method selects is consis-
tent across different upper bounds. Based on the
demonstrated consistency, different upper bounds
can be selected and still the optimal dimensional-
ity can be uncovered as long as the chosen upper
bound is larger than the optimal dimensionality.

4.3 Efficiency Compared with Grid Search

In this subsection, we report the running time of
our algorithm and compare it with that of grid
search. We have recorded the running time of our
experiments and that of the PCA transformations.
We average them over 5 random runs (Figure 5).

For Text8, grid search takes 22,801 minutes cu-
mulatively. Training a 1,000-dimension embed-
ding takes 1,724 minutes. The PCA step takes
22 minutes (note that for each embedding we only
need one PCA operation). This represents a 13.1x
speedup for our method. For WikiText-103, grid
search takes 132,652 minutes. Training a 1,000-
dimension embedding takes 10,448 minutes. The
PCA step takes 34 minutes. This represents a
12.7x speedup.

We note that the comparison results are depen-
dent on grid granularity. A coarser grid search
could save researchers more time, at the cost of
performance loss.
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Figure 5: Left: training time for Text8 for embeddings
of different dimensions for 200 epochs using 6 CPUs.
Right: training time for WikiText-103 for embeddings
of different dimensions for 200 epochs using 10 CPUs.
All results are averaged over 5 random runs.

5 Conclusion

In this paper, we provided a fast and reliable
method based on PCA to select the number of di-
mensions for training word embeddings. First, we
train one embedding with a generous upper bound
(e.g. 1,000) of dimensions. Then we transform
the embedding using PCA and incrementally re-
move the lesser dimensions while recording the
embeddings’ performance on language tasks. Ex-
periments demonstrate that (1) our method is able
to identify the optimal dimensionality, (2) the re-
sulting embedding has competitive performance
against grid search, and (3) our method is robust
against the selection of the upper bound.
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