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Abstract
In this paper, we provide a simple and effective
baseline for classifying both patents and pa-
pers to the well-established Cooperative Patent
Classification (CPC). We propose a label-
informative classifier based on the Wide &
Deep structure, where the Wide part encodes
string-level similarities between texts and la-
bels, and the Deep part captures semantic-
level similarities via non-linear transforma-
tions. Our model trains on millions of patents,
and transfers to papers by developing distant-
supervised training set and domain-specific
features. Extensive experiments show that
our model achieves comparable performance
to the state-of-the-art model used in industry
on both patents and papers. The output of this
work should facilitate the searching, granting
and filing of innovative ideas for patent exam-
iners, attorneys and researchers.

1 Introduction

Classifying patents and papers to a technology
taxonomy is a crucial step to organize the mas-
sive knowledge and to discover innovative ideas.
Patent examiners rely on the taxonomy to search
for similar documents when granting or invali-
dating a patent application; attorneys use it to
check whether the innovation points of an inven-
tion have been covered in previous literature; re-
searchers use the taxonomy to monitor the tech-
nology trends in certain fields, and companies use
it to outline the intellectual property landscape of
its own or its competitors’. The most commonly
used taxonomies are International Patent Classifi-
cation (IPC) 1 and its newer version Cooperative
Patent Classification (CPC) 2. Figure 1 illustrates
the CPC hierarchy and the discriminative descrip-
tions attached to each node.

1https://www.wipo.int/classifications/ipc/en/
2https://www.epo.org/searching-for-patents/helpful-

resources/first-time-here/classification/cpc.html

Figure 1: Illustration of the CPC hierarchy.

The categorization is now mostly done manu-
ally by experts in patent offices. Due to the grow-
ing amount of patents and the limited number of
domain experts, there has been an urge to auto-
mate the classification process. Also, as more
and more technology innovations are published in
patents, researchers with no background in patent
classification may want to know which patents are
most relevant to an academic paper. For this end,
we aim to classify both patents and papers to the
CPC subclass with more than 600 labels.

Classifying patents and papers to CPC subclass
is a challenging task because (1) there are a large
number of labels that covers almost all technology
domains, and the differences between labels are
often subtle; (2) although mass amount of labelled
data for patents is available, the annotated data for
paper-to-CPC is very limited. Since labelling pa-
pers with CPC labels requires expert knowledge,
large-scale human annotation is very expensive.

In this paper, we leverage the CPC label de-
scriptions and use the Wide-and-Deep network to
integrate label information with semantic informa-
tion from input texts. We also construct a distant-
supervised dataset for papers. Our contributions
are:
• We prove the effectiveness of the label fea-

tures through the Wide-and-Deep structure in
CPC classification on more than 600 labels.

• We achieve comparable performance to the
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state-of-the-art on classifying both patents
and papers to a widely-used technology tax-
onomy. Our model can serve as a simple
and effective baseline for CPC classification
tasks.

2 Related Work

2.1 Patent Classification

Most of the previous patent classification systems
focus on developing more features derived from
patent structures with traditional learning algo-
rithms (Verberne and D’hondt, 2011). Going be-
yond document-level features, Cai and Hofmann
(2007) and Qiu et al. (2011) capture the label hier-
archy in model representations. It is flexible for
traditional learning algorithms to integrate prior
knowledge; however, it is difficult for them to gen-
eralize to unseen data.

Deep Neural Networks make efficient use of
large-scale training data and generalize well to
unseen data. There are a few NN-based patent
classification methods. Grawe et al. (2017) uses
Long Short Term Memory (LSTM) on 50 IPC sub-
groups and Li et al. (2018) applies Convolutional
Neural Networks (CNN) to IPC subclasses classi-
fication.

There are some efforts on mapping papers to
IPC in the context of patent retrieval combined
with K nearest neighbours (KNN) classification.
Cao et al. (2008) adopt a query-expansion ap-
proach to retrieve relevant patents and use a
KNN classifier to label the research paper. Xiao
et al. (2008) combine different scoring methods
to rerank the retrieved IPC and achieved the best
performance in the NTCIR-7 workshop for clas-
sify research papers to IPC system (Nanba et al.,
2008). To our best knowledge, there has been no
attempt tackling both tasks in one model.

2.2 Label Information

Leveraging label information is not new and is
mostly accomplished by embedding labels and
texts in the same space to measure their cor-
relations (Yogatama et al., 2015; Zhang et al.,
2018). Ma et al. (2016) adds prototypes to the la-
bel representation. Zhang et al. (2018) proposes
to transform classification to a matching target
between texts and labels for multi-task learning.
Wang et al. (2018) further weights text features by
the compatibilities between text and label embed-
dings via attention mechanism. Our model differs

Figure 2: Example of the label description (left boxes)
and classification cues (shadowed texts). The true la-
bel for the input text (right box) is B01D. Although the
given text discussed neural networks, which is seman-
tically closer to G06N, the classification cue of ”ultra-
filtration” decides for B01D eventually.

from previous studies in that we use the string-
level similarity between label descriptions and in-
put text instead of label embeddings. Based on
the analysis of CPC classification system, we be-
lieve that string-level similarity can compensate
for what semantic-level similarity cannot captures
for patent classification tasks.

3 Model

3.1 The Label-text Feature

We discover that label descriptions can provide
precise cues to classify a document which contains
multiple semantic aspects. Figure 2 provide an ex-
ample on the necessity of integrating label descrip-
tion. It should be noted that when patent examin-
ers classify documents to the CPC system, they are
also advised to use cue words and to search among
label descriptions 3.

We integrate the label information through the
label-text feature that captures the string-level re-
latedness between label descriptions and texts.
Here we use BM25 score:.

BM25(Dk, x) =
∑n

i=1 idf(xi)
tf(xi,Dk)(k1+1)

tf(xi,Dk)+k1(1−b+b
|Dk|
avgdl )

(1)

where xi is the ith item in text x; Dk is the la-
bel description for class k; idf and tf are inverse
document frequency and text frequency for xi in
Dk respectively; avgdl is the average description
length; |Dk| is the document length; k1 and b are
hyper parameters.

3see IPC guidelines at https://www.wipo.int/
export/sites/www/classifications/ipc/en/
general/guidelines_where_to_classify.pdf

https://www.wipo.int/export/sites/www/classifications/ipc/en/general/guidelines_where_to_classify.pdf
https://www.wipo.int/export/sites/www/classifications/ipc/en/general/guidelines_where_to_classify.pdf
https://www.wipo.int/export/sites/www/classifications/ipc/en/general/guidelines_where_to_classify.pdf
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Figure 3: WnD classifier structure. The Deep part (left)
captures semantic information; the Wide part (right)
captures label-text relatedness. The label-text feature
is a K-dimensional vector, where K equals to the label
set size.

3.2 Wide and Deep Structure

We adopt the Wide and Deep (WnD) neural net-
work (Cheng et al., 2016) for text classification
. Given a training set (Xn,D,yn)Nn=1, where
Xn is the input document texts, D is the in-
put label descriptions and yn is the true labels.
The model outputs the probabilities for each of
the K classes ŷ ∈ RK . The training target
is to minimize binary cross entropy loss: L =
1
N

1
K ΣN

n=1Σ
K
k=1CE(y

(k)
n , ŷ

(k)
n ), where y

(k)
n is the

kth element in vector yn.
An overview of the WnD classifier is shown

in figure 3. The model has two parts: the wide
part and the deep part. The wide part takes in
the label-text feature to capture string-level relat-
edness between the label descriptions and the text;
the deep part maps the input text to word embed-
dings and go through a non-linear transformation
to capture semantic-level relatedness between the
text and the label.

The Wide part: The Wide part is a regression
model with the form ŷwide = σ(W T

widezwide+b),
where zwide is the label-text interaction features as
described in section 3.1: zwide = BM25(D,Xn).

The Deep part: The Deep part is a non-linear
transformation of the input text that aims to cap-
ture the semantic of the text. It can be a clas-
sic neural network for text encoding, such as
RNN, CNN, or simple fully connected network.
In this paper, we use textCNN (Kim, 2014) for
the transformation because it is a simple base-
line that works reasonably well. The Deep part
transform the texts to a fixed-length representation

zdeep. The representation zdeep is then mapped
to K classes using sigmoid activation ŷdeep =

σ(W T
deepzdeep + b).

The Wide and Deep parts are concatenated
at the top and are jointly trained through ŷ =
σ(W T

deepzdeep + W T
widezwide + b) in order to

let the semantic and the string level relatedness
complements each other when making the deci-
sion. In this way, the model simulates the behav-
ior of patent examiners classifying a document:
when they are uncertain which labels to assign (i.e.
when semantic knowledge cannot provide a cer-
tain answer), examiners will resort to searching for
cue words in the label descriptions for a clue.

4 Experimental Setup

4.1 Datasets
We remove stopwords and punctuations and
choose the first 120 words per document. The
word embeddings are 300 dimensional and initial-
ized randomly. Kernel size for textCNN is 2,3,4
and 5, and the number of filters is 1024. For each
CPC subclass, we use the descriptions of its own
and of all its child labels. We train the model using
Adam optimizer.

Datasets: Out of the USPTO patent set, We ran-
domly sample 6.7 million abstracts as the patent
training set and 60k as the testing set. For the pa-
per testing set, the gold-standard is hard to obtain.
We discover that some papers cited by patents are
assigned CPC labels by European Patent Office,
we collect those from the website 4 and derive
4956 testing instances for paper-to-CPC classifi-
cation. The datasets are described in table 1.

# instances # avg label per example
training set 6.7 million 1.47
patents testing set 60k 1.45
papers testing set 4956 1.30

Table 1: Dataset Description

Evaluation metrics: As each patent/paper has
one or more CPC labels, we measure our model
from both the classification and the ranking per-
spectives with 3 metrics: (1) example-based pre-
cision/recall: the average precision/recall per in-
stance. We measure precision and recall on the
top1, top3 predictions and precision on all predic-
tions with the probability score ≥ 0.5. (2) macro
precision/recall: the average precision/recall per
class. (3) mean average precision (MAP): a

4https://www.epo.org/index.html
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ranking-based metric that measures whether the
right labels are placed before the wrong ones.

4.2 Classify Patents to CPC
We compare our WnD classifier on patents with
two baselines: traditional textCNN and attention-
textCNN. By comparing WnD with textCNN, we
want to know whether the label-text feature can
complement semantic information for classifica-
tion; by comparing with attention-textCNN, we
want to compare our label integration method with
other label embedding-based methods. For the
attention model, we borrowed the idea of label-
embedding attentive model (Wang et al., 2018).
The attention is a T -dimensional vector where T
is the text length. It calculates the importance of
each word to the classification task.

The WnD achieves significant gains with la-
bel information (see table 2). It suggests that the
complementary effects of string-level relatedness
between label and texts indeed benefits the final
classification decision. Our model also outper-
forms attention-textCNN. Although label embed-
dings are helpful for small label sets (around 10
labels) (Wang et al., 2018; Zhang et al., 2018), it
is less effective on hundreds of labels. We suspect
the reason is that the attention is not discriminative
between classes. When the label set is large, many
non-stop words may be important for classifica-
tion. But their weights should vary for different
classes, which can hardly be captured by the at-
tention vector. Also, attention-textCNN has much
more parameters than textCNN and tends to over-
fit on the training data.

The best reported numbers on patent-to-IPC in
subclass level achieves 0.74 on precision (Ver-
berne and D’hondt, 2011). Although can not be
directly compared, our large-enough testing set
makes it confident that we are comparable with the
state-of-the-art system while being more scalable.

4.3 Classify Papers to CPC
There is not enough labelled data for the paper-
to-CPC task. We can directly apply the model
trained on patents to papers, but the performance
will degrade significantly due to domain differ-
ence. For example, the word camera in papers is
commonly referred to as photo capturing appara-
tus in patents. To deal with the domain-adaptation
issue, we propose two approaches:

distant supervision: We auto-label papers us-
ing patent-paper citation. For each paper, we label

it with the CPCs of the patents that cite it. We
assume that papers cited by a patent should be rel-
evant to the given patent in terms of background
and technology domain. We get a total 1.7 million
papers with abstract that are cited by the patents
in the USPTO patent set, and each paper gets on
average 2.8 labels. On these auto-labelled papers
we then fine tune the model originally trained on
patents.

domain-adapted features: The WnD structure
enables us to incorporate domain-adapted features
to the Wide part. Here we proposed two ways to
add such features:

• prototyping: We pick the top 20 terms from
the papers for each of the K classes according
to the tf-idf score. Those representative terms
are used as the label descriptions for papers;

• label expansion: We train word embeddings
using skip-gram (Mikolov et al., 2013) on pa-
pers and expand the original label descrip-
tions with the 10 nearest words in the embed-
ding space according to their cosine distance.

We compare our paper-to-CPC model with
the best-performing KNN+reranking model (Xiao
et al., 2008) introduced in section 2.1. We also
want to compare our model with large-scale clas-
sification systems used in industry. In order to do
that, we crawl from Google Patent the machine-
classified CPC labels of scholar papers for our
testing set 5, and we assume that the labels are
ranked according to the order on the web page.
Google classifies papers on the finest level. In or-
der to compare our subclass results with it, we use
only the subclass part of the first label, which is
supposed to be the most confident one.

The comparison results are shown in table 3.
WnD benefits from both transfer learning and
domain-adapted features. Since the prototypes
are automatically collected, it is possible to apply
WnD to classification tasks where detailed label
descriptions are not available.

Google Patent scores better on preci-
sion/recall@1, but performs less well on macro
precision/recall. Since Google classifies the
papers on a finer grained level, the classifier may
receive more information during training, thus
performing better on coarser grained levels. To

5The data can be found by searching for a scholar paper
in Google Patent. The machine-classified CPCs will appear
in the information page
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Model p@1 r@1 p@3 r@3 precision
(prob>0.5)

Macro
p@1

Macro
r@1 MAP

textCNN 75.51 55.24 40.64 78.92 62.16 63.77 32.15 75.68
attention-textCNN 70.63 51.49 38.11 74.17 51.69 56.98 26.15 72.46
WnD 77.11 56.42 41.18 80.12 64.01 67.81 34.18 76.60

Table 2: Test results on patents. For attention-CNN we used the implementation of attention mechanism from
(Wang et al., 2018)

Model p@1 r@1 p@3 r@3 precision
(prob >0.5)

Macro
p@1

Macro
r@1 MAP

textCNN 63.18 53.93 33.76 81.91 48.00 16.07 11.19 71.76
WnD 66.16 56.73 34.15 82.86 50.09 16.77 11.74 75.04
KNN+reranking 63.99 54.98 32.85 79.18 NA 14.70 10.60 72.37
Google Patent* 69.59 59.95 NA NA NA 14.28 10.25 NA
WnD + transfer 68.33 58.68 35.25 85.10 51.26 17.23 11.45 77.15
WnD +transfer+Prototype 68.94 59.12 35.60 85.87 51.11 17.63 12.39 77.84
WnD +transfer+labelExpand 68.69 58.96 35.31 85.22 50.37 17.16 11.71 77.53

Table 3: Test results on papers. textCNN and WnD are models trained on patents directly apply to papers.
WnD+transfer refers to WnD fine tuned on auto-labelled papers.*The training set and granularity of Google Patent
model may be different from other models. We put it here for the convenience to compare and discuss

investigate the effects of classification granularity
on performance, we mapped the WnD subclass
predictions to class level (128 label) and trained
another WnD on class level. The p@1 and r@1
are 86.94% and 79.15% for WnD subclass-to-
class and 82.43% and 74.72% for WnD class.
The gap indicates the possible positive effects of
fine-granularity training.

5 Conclusions and Future Works

In this paper, we propose a WnD classifier to map
both patents and papers to CPC subclasses. The
model captures both the string and semantic re-
latedness between labels and texts. We achieve
comparative performance to the state-of-the-art
models for both paper-to-CPC and patent-to-CPC
tasks. We hope to contribute an intuitive, simple
yet practically effective baseline for categorizing
scientific publications.

Although CPC subclass already has over 600 la-
bels, it is still a relative coarse granularity in the
taxonomy. The finest level (subgroup) consists of
over 200 thousand labels and provides much more
detailed classification information. At the same
time, with the explosion of labels, the task is much
more challenging. In the future, we will go deeper
into the taxonomy and try to explore the hierarchi-
cal relations between labels and improve the scal-
ability of models for finer grained label sets.
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