
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 3342–3349,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

3342

Towards Realistic Practices In Low-Resource Natural Language
Processing: The Development Set

Katharina Kann, Kyunghyun Cho and Samuel R. Bowman
New York University, USA

{kann, kyunghyun.cho, bowman}@nyu.edu

Abstract

Development sets are impractical to obtain for
real low-resource languages, since using all
available data for training is often more effec-
tive. However, development sets are widely
used in research papers that purport to deal
with low-resource natural language processing
(NLP). Here, we aim to answer the following
questions: Does using a development set for
early stopping in the low-resource setting in-
fluence results as compared to a more realis-
tic alternative, where the number of training
epochs is tuned on development languages?
And does it lead to overestimation or under-
estimation of performance? We repeat mul-
tiple experiments from recent work on neural
models for low-resource NLP and compare re-
sults for models obtained by training with and
without development sets. On average over
languages, absolute accuracy differs by up to
1.4%. However, for some languages and tasks,
differences are as big as 18.0% accuracy. Our
results highlight the importance of realistic ex-
perimental setups in the publication of low-
resource NLP research results.

1 Introduction

Parametric machine learning models are fre-
quently trained by minimizing the loss on the
training set T ,

LT (θ) =
∑
x∈T

l (θ, x) , (1)

for model parameters θ and a predefined loss func-
tion l. Gradient-based optimizers minimize this
loss L(θ) by updating θ in the direction of the gra-
dient ∇L(θ). A low loss characterizes a model
which makes accurate predictions for examples in
T . However, since T is finite, overfitting the train-
ing set might lead to poor generalization perfor-
mance. One way to avoid fitting Equation 1 too

train # dev ES

Bollmann et al. (2018) 5k 12k-46k Yes
Kann et al. (2018) 400-700 100-200 Yes
Makarov and Clematide (2018) 100 1k Yes
Sharma et al. (2018) 100 100 Yes
Schulz et al. (2018) 1k-21k 9k N/A
Upadhyay et al. (2018) 500 1k Yes

Table 1: Number of examples used for training and
development in recent low-resource NLP experiments;
ES=early stopping on the development set. Experi-
ments from papers in bold will be revisited here.

closely is early stopping: a separate development
or validation set is used to end training as soon
as the loss on the development set LD(θ) starts
increasing or model performance on the develop-
ment set D starts decreasing. The best set of pa-
rameters θ is used in the final model.

This works well when large amounts of data are
available to create training, development and test
splits. Recently, however, with the success of pre-
training (Peters et al., 2018; Devlin et al., 2019)
and multi-task learning (Caruana, 1997; Ruder,
2017; Wang et al., 2019) approaches, neural mod-
els are showing promising results on various nat-
ural language processing (NLP) tasks also in low-
resource or few-shot settings (Johnson et al., 2017;
Kann et al., 2017; Yu et al., 2018). Often, the
high-resource experimental setup and training pro-
cedure are kept unchanged, and the size of the
original training set is reduced to simulate limited
data. This leads to settings where validation ex-
amples may outnumber training examples. Table
1 shows such cases for the tasks of historical text
normalization (Bollmann et al., 2018), morpho-
logical segmentation (Kann et al., 2018), morpho-
logical inflection (Makarov and Clematide, 2018;
Sharma et al., 2018), argument component iden-
tification (Schulz et al., 2018), and transliteration
(Upadhyay et al., 2018).

3343

However, in a real-world setting with limited
resources, it is unlikely that such a development
set would be available for early stopping, since it
would be more effective to use at least part of it
for training instead. Here, we investigate how pre-
vious results relate to those obtained in a setting
that does not assume a development set. Instead
of early stopping, we use data from the same task
in other languages, the development languages,
to decide on the number of training epochs. We
are interested in two questions: Does recent work
in low-resource NLP overestimate model perfor-
mance by using an unrealistically precise perfor-
mance signal to stop training? Or, inversely, is
model performance underestimated by overfitting
the finite development set?

Our experiments on historical text normaliza-
tion, morphological inflection, and transliteration,
featuring a variety of languages, show that perfor-
mance does differ between runs with and without
early stopping on the development set; if using the
development set leads to better or worse results de-
pends on the task and language. Differences of up
to 18% absolute accuracy highlight that a realis-
tic evaluation of models for low-resource NLP is
crucial for estimating real-world performance.

2 Related Work

Realistic evaluation of machine learning.
Oliver et al. (2018) investigate how to evaluate
semi-supervised training algorithms in a realistic
way; they differ from us in that they focus
exclusively on semi-supervised learning (SSL)
algorithms, and do not consider NLP explicitly.
However, in line with our conclusion, they
report that recent practices for evaluating SSL
techniques do not address the question of the
algorithms’ real-word applicability in a satisfying
way. In NLP, several earlier works have explicitly
investigated real-world low-resource settings
as opposed to artificial proxy settings, e.g., for
part-of-speech tagging (Garrette et al., 2013) or
machine translation (Irvine and Callison-Burch,
2013). While those mostly focus on real data-poor
languages, we explicitly investigate the effect
of the common practice to assume a relatively
large development set for early stopping in the
low-resource setting.

Low-resource settings in NLP. Research in the
area of neural methods for low-resource NLP has
gained popularity in recent years, with a dedicated

workshop on the topic appearing in 2018 (Haffari
et al., 2018). High-level key words under which
other work on neural networks for data-poor sce-
narios in NLP can be found are domain adapta-
tion (Daume III, 2007), multi-task learning (Caru-
ana, 1997; Ruder, 2017), few-shot/zero-shot/one-
shot learning (Johnson et al., 2017; Finn et al.,
2017), transfer learning (Yarowsky et al., 2001),
semi-supervised training (Zhu, 2005), or pretrain-
ing (Erhan et al., 2010).

While options for early stopping without a de-
velopment set exist (Mahsereci et al., 2017), they
require hyperparameter tuning, which might not
be feasible without a development set, and, most
importantly, they are not commonly used in low-
resource NLP research. Here, we investigate if
current practices might lead to unrealistic results.

3 Experimental Design

We compare early stopping using development
set accuracy (DevSet) with an alternative strat-
egy where the amount of training epochs is a
hyperparameter tuned on development languages
(DevLang). We perform two rounds of training:

• Stopping point selection phase. Models for
the development languages are trained with
the original early stopping strategy from pre-
vious work. The number of training epochs
for the target languages is then calculated
as the average over the best epochs for all
development languages.1 All development
languages also function as target languages.
To make this possible, for development lan-
guages, we compute the average over other
development languages only.

• Main training phase. We train models for
all languages keeping both the model result-
ing from the original early stopping strat-
egy (DevSet) and that from the epoch com-
puted in the stopping point selection phase
(DevLang).2

The stopping point selection phase exclusively
serves the purpose of tuning the number of epochs
for the DevLang training setup. Models obtained

1We round this number to an integer. It is important for
our experiments that the training sets for all languages are
of the same size, cf. Table 1. Otherwise we would need to
account for the number of training examples per epoch.

2This requires training for at least the number of target
epochs, even if early stopping would end training earlier.

3344

in this phase are discarded. The development sets
we use in our experiments are those from the orig-
inal papers without alterations.

Since both final models obtained in the main
training phase result from the same training run,
our experimental design enables a direct compari-
son between the models from both setups.

Example. Assume that, in the stopping point se-
lection phase, we obtain the best development set
results for a given task in development languages
L1 and L2 after epochs 14 and 18, respectively.
In the main training phase, we then train a model
for the same task in target language L3 with the
original early stopping strategy, but keeping addi-
tionally the model from epoch 16. If the best de-
velopment result for language L3 is obtained after
epoch 19, we compare the model from epoch 19
(DevSet) to that from epoch 16 (DevLang).

4 Tasks, Data, Models

For our study, we select previously published ex-
periments which fulfill the following criteria: (1)
datasets exist for at least four languages, and all
training sets are of equal size; (2) the original au-
thors use early stopping with a development set;
(3) the authors explicitly investigate low-resource
settings; and (4) the original code is publically
available, or a standard model is used. Since our
main goal is to confirm the effect of the develop-
ment set and not to compare between tasks, we fur-
ther limit this study to sequence-to-sequence tasks.

4.1 Historical Text Normalization (NORM)

Task. The goal of historical text normalization
is to convert old texts into a form that conforms
with contemporary spelling conventions. Histori-
cal text normalization is a specific case of the gen-
eral task of text normalization, which additionally
encompasses, e.g., correction of spelling mistakes
or normalization of social media text.

Data. We experiment on the ten datasets from
Bollmann et al. (2018), which represent eight dif-
ferent languages: German (two datasets; Boll-
mann et al., 2017; Odebrecht et al., 2017); En-
glish, Hungarian, Icelandic, and Swedish (Petters-
son, 2016); Slovene (two datasets; Ljubešic et al.,
2016); and Spanish and Portuguese (Vaamonde,
2015). We treat the two datasets for German and
Slovene as different languages. All languages

serve both as development languages for all other
languages and as target languages.

Model. Our model for this task is an LSTM
(Hochreiter and Schmidhuber, 1997) encoder-
decoder model with attention (Bahdanau et al.,
2015). Both encoder and decoder have a single
hidden layer. We use the default model in Open-
NMT (Klein et al., 2017)3 as our implementation
and employ the hyperparameters from Bollmann
et al. (2018). In the original paper, early stop-
ping is done by training for 50 epochs, and the best
model regarding development accuracy is applied
to the test set.

4.2 Morphological Inflection (MORPH)

Task. Morphological inflection consists of map-
ping the canonical form of a word, the lemma,
to an indicated inflected form. This task gets
very complex for morphologically rich languages,
where a single lemma can have hundreds or thou-
sand of inflected forms. Recently, morphological
inflection has frequently been cast as a sequence-
to-sequence task, mapping the characters of the in-
put word together with the morphological features
specifying the target to the characters of the corre-
sponding inflected form (Cotterell et al., 2018).

Data. We experiment on the datasets released
for a 2018 shared task (Cotterell et al., 2018),
which cover 103 languages and feature an ex-
plicit low-resource setting. We randomly choose
ten development languages: Armenian, Basque,
Galician, Georgian, Greenlandic, Icelandic, Kar-
badian, Kannada, Latin, and Lithuanian.

Model. For MORPH, we experiment with a
pointer-generator network architecture (Gu et al.,
2016; See et al., 2017). This is a sequence-to-
sequence model similar to that for NORM, but em-
ploys separate encoders for characters and fea-
tures. It is further equipped with a copy mecha-
nism: using attention to decide on what element
from the input sequence to copy, the model com-
putes a probability for either copying or generation
while producing an output. The final probability
distribution over the target vocabulary is a combi-
nation of both. Hyperparameters are taken from
Sharma et al. (2018).4 For early stopping, we also
follow Sharma et al. (2018): all models are trained

3github.com/OpenNMT/OpenNMT-py
4github.com/abhishek0318/

conll-sigmorphon-2018

github.com/OpenNMT/OpenNMT-py
github.com/abhishek0318/conll-sigmorphon-2018
github.com/abhishek0318/conll-sigmorphon-2018

3345

for at least 300 epochs, and training is continued
for another 100 epochs each time there has been
improvement on the development set within the
last 100 epochs.

4.3 Transliteration (TRANSL)
Task. Transliteration is the task of converting
names from one script into another, while staying
as close to the original pronunciation as possible.
Unlike for translation, focus lies on the sound; the
target language meaning is usually ignored.

Data. For our transliteration experiments, we
follow Upadhyay et al. (2018). We experiment on
datasets from the Named Entities Workshop 2015
(Duan et al., 2015) in Hindi, Kannada, Bengali,
Tamil, and Hebrew. For this task, all languages
are both development and target languages.

Model. The last featured model is an LSTM
sequence-to-sequence model similar to that by
Bahdanau et al. (2015), except for using hard
monotonic attention (Aharoni and Goldberg,
2017). It attends to a single character at a time,
and attention moves monotonically over the input.
We take hyperparameters and code from Upad-
hyay et al. (2018).5 Early stopping is done by
training for 20 epochs and applying the best model
regarding development accuracy to the test data.

4.4 Experimental Setup
We run all experiments using the implementations
from previous work or OpenNMT as described
above. Existing code is only modified where nec-
essary. Most importantly, we add storing of the
DevLang model during the main training phase.

5 Results

Development sets vs. development languages.
We are asking if the use of a development set for
early stopping leads to over- or underestimation
of realistic model performance. Thus, we show
in Table 2 how often we obtain higher accuracy
for each of DevLang and DevSet. Additionally,
averaged performance over all languages as well
as the maximum difference in absolute accuracy
are listed in Table 3. For NORM and TRANSL,
results for individual languages are shown in Ta-
bles 4 and 5, respectively; for detailed results for
MORPH see Appendix A. We see in Table 2 that,
for MORPH and NORM, the use of unrealistically

5github.com/shyamupa/hma-translit

MORPH NORM TRANSL

DevLang>DevSet 23 0 2
DevLang=DevSet 8 2 3
DevLang<DevSet 72 8 0

Table 2: Summary of cases in which using a develop-
ment set leads to overestimation (DevSet>DevLang),
underestimation (DevSet<DevLang), or neither
(DevSet=DevLang) of the final model performance.

MORPH NORM TRANSL

DevSet 51.3 74.9 21.8
DevLang 50.0 74.2 22.3

∆ -1.4 -0.7 +0.5

max ∆ -18.0 -2.4 +1.3

Table 3: Test accuracy in % for different stopping ap-
proaches and tasks, averaged over languages.

large development sets leads to better results than
DevLang for 72 and 8 languages, respectively. For
8 and, respectively, 2 languages there is no dif-
ference, and a look at the detailed results in Ap-
pendix A and Table 4 reveals that, for those cases,
we end up training for the same number of epochs
for DevLang and DevSet. Only in 23 cases for
MORPH, and none for NORM, we obtain better re-
sults for DevLang. This suggests that, for these
two tasks, we frequently overestimate realistic
model performance by early stopping on the de-
velopment set. Indeed, Table 3 confirms this find-
ing and shows that, on average across languages,
DevSet models outperform DevLang models. The
maximum difference is 18% absolute accuracy for
the language Azeri and MORPH: for DevSet, we
reach 64% accuracy after epoch 217, while, for
DevLang, we only obtain 46% accuracy after the
predefined epoch 324.

We obtain a different picture for TRANSL: re-
sults are equal for 3 languages, and better for
DevLang for the remaining 2. Equal performance
might be explained by the overall smaller number
of training epochs in the original regime: stopping
at the same epoch for both strategies is more likely.
Overall, for TRANSL, performance on the devel-
opment set seems to be less predictive for the final
test performance than for the other tasks.

Influence of the final epoch. Since without
a development set performance decreases on
MORPH for most languages, we investigate if this
can be explained by training often being too short.
Therefore, we plot the difference of training du-

github.com/shyamupa/hma-translit

3346

Δ epochs

Δ
 a

cc
ur

ac
y

-20

-10

0

10

-400 -200 0 200 400 600

Figure 1: Difference in accuracy (DevLang-DevSet) depending on the difference in training epochs (DevLang-
DevSet) for MORPH.

Language DevSet DevLang

English 0.7705 (26) 0.7682 (43.44)
German (1) 0.6749 (44) 0.6749 (44.44)
German (2) 0.7075 (43) 0.6837 (41.78)
Hungarian 0.4897 (44) 0.4773 (41.67)
Icelandic 0.7017 (27) 0.6952 (43.56)
Portuguese 0.7944 (43) 0.7860 (42.44)
Slovene (1) 0.8206 (38) 0.8202 (41.67)
Slovene (2) 0.8952 (46) 0.8873 (42.00)
Spanish 0.8352 (42) 0.8352 (41.89)
Swedish 0.7985 (43) 0.7913 (42.11)

Table 4: Detailed results per language for NORM; cor-
responding epochs in parenthesis.

Language DevSet DevLang

Bengali 0.374 (9) 0.387 (10.50)
Hebrew 0.135 (10) 0.135 (10.00)
Hindi 0.248 (10) 0.248 (10.25)
Kannada 0.216 (11) 0.229 (10.00)
Tamil 0.116 (10) 0.116 (10.25)

Table 5: Detailed results per language for TRANSL;
corresponding epochs in parenthesis.

ration in epochs between DevLang and DevSet
against the resulting difference in accuracy in Fig-
ure 1. While we indeed find that shorter training
duration for a pointer-generator network for this
task mostly results in worse performance, longer
training can lead to either lower or higher accu-
racy. Thus, while longer training seems better for
MORPH, not all performance loss can be explained
by aborting training too early.

6 Discussion And Conclusion

Limitations. We investigate the effect of early
stopping on the validation set as compared to a

realistic setting without target language develop-
ment examples. However, we would like to point
out that, in certain situations, standard practices
might be sufficient, e.g., for comparing different
methods in equal settings, if absolute performance
is not the main focus.

Further, we do not claim to show that using a
validation set always over- or underestimates real-
world performance, since this depends on how
representative the validation set is of the target dis-
tribution. Our main result is that using a develop-
ment set gives a poor estimate of real-world per-
formance and that it is important to be aware of
potential performance differences.

Practical take-aways. We replicate experi-
ments from recent low-resource NLP research,
once with the original experimental design and
once without assuming development sets for early
stopping. Since differences in absolute accuracy
are up to 18.0%, we conclude that low-resource
NLP research should move away from using large
development sets for early stopping whenever
real-world settings are being considered.

Acknowledgments

We would like to thank Nikita Nangia and Jason
Phang for their feedback on this work. This work
has benefited from the support of Samsung Re-
search under the project Improving Deep Learning
using Latent Structure and from the donation of a
Titan V GPU by NVIDIA Corporation.

3347

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Marcel Bollmann, Joachim Bingel, and Anders
Søgaard. 2017. Learning attention for historical text
normalization by learning to pronounce. In ACL.

Marcel Bollmann, Anders Søgaard, and Joachim Bin-
gel. 2018. Multi-task learning for historical text nor-
malization: Size matters. In DeepLo.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In CoNLL–SIGMORPHON.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Xiangyu Duan, Rafael E. Banchs, Min Zhang, Haizhou
Li, and A Kumaran. 2015. Proceedings of the fifth
named entity workshop. In Fifth Named Entity
Workshop.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? JMLR, 11:625–660.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML.

Dan Garrette, Jason Mielens, and Jason Baldridge.
2013. Real-world semi-supervised learning of POS-
taggers for low-resource languages. In ACL.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL.

Reza Haffari, Colin Cherry, George Foster, Shahram
Khadivi, and Bahar Salehi. 2018. Proceedings of
the workshop on deep learning approaches for low-
resource NLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ann Irvine and Chris Callison-Burch. 2013. Combin-
ing bilingual and comparable corpora for low re-
source machine translation. In WMT.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Googles multilingual neural machine
translation system: Enabling zero-shot translation.
TACL, 5:339–351.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradigm completion. In ACL.

Katharina Kann, Jesus Manuel Mager Hois,
Ivan Vladimir Meza Ruiz, and Hinrich Schütze.
2018. Fortification of neural morphological
segmentation models for polysynthetic minimal-
resource languages. In NAACL.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In ACL.

Nikola Ljubešic, Katja Zupan, Darja Fišer, and Tomaz
Erjavec. 2016. Normalising slovene data: historical
texts vs. user-generated content. In KONVENS.

Maren Mahsereci, Lukas Balles, Christoph Lassner,
and Philipp Hennig. 2017. Early stopping without
a validation set. arXiv:1703.09580.

Peter Makarov and Simon Clematide. 2018. Imitation
learning for neural morphological string transduc-
tion. In EMNLP.

Carolin Odebrecht, Malte Belz, Amir Zeldes, Anke
Lüdeling, and Thomas Krause. 2017. RIDGES her-
bology: designing a diachronic multi-layer corpus.
Language Resources and Evaluation, 51(3):695–
725.

Avital Oliver, Augustus Odena, Colin A Raffel,
Ekin Dogus Cubuk, and Ian Goodfellow. 2018. Re-
alistic evaluation of deep semi-supervised learning
algorithms. In NeurIPS.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL.

Eva Pettersson. 2016. Spelling normalisation and lin-
guistic analysis of historical text for information ex-
traction. Ph.D. thesis, Acta Universitatis Upsalien-
sis.

Sebastian Ruder. 2017. An overview of
multi-task learning in deep neural networks.
arXiv:1706.05098.

Claudia Schulz, Steffen Eger, Johannes Daxenberger,
Tobias Kahse, and Iryna Gurevych. 2018. Multi-
task learning for argumentation mining in low-
resource settings. In NAAACL.

3348

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Abhishek Sharma, Ganesh Katrapati, and Dipti Misra
Sharma. 2018. IIT(BHU)–IIITH at CoNLL–
SIGMORPHON 2018 shared task on universal mor-
phological reinflection. In CoNLL–SIGMORPHON.

Shyam Upadhyay, Jordan Kodner, and Dan Roth. 2018.
Bootstrapping transliteration with constrained dis-
covery for low-resource languages. In EMNLP.

Gael Vaamonde. 2015. Userguide for digital edition of
texts in ps post scriptum.

Alex Wang, Amapreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In HLT.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni
Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text clas-
sification with multiple metrics. arXiv:1805.07513.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning
literature survey. Technical report, University of
Wisconsin-Madison, Department of Computer Sci-
ences.

3349

A Detailed Results for MORPH

Language DevSet DevLang

adyghe 89.2 (263) 84.8 (324)
albanian 27.9 (400) 24.8 (324)
arabic 34.1 (397) 31.7 (324)
armenian 52.2 (393) 50.9 (323.1111111)
asturian 71.2 (348) 69 (324)
azeri 64 (217) 46 (324)
bashkir 80.1 (474) 78.1 (324)
basque 7.9 (282) 8.5 (334.2222222)
belarusian 22.1 (198) 25.4 (324)
bengali 56 (585) 59 (324)
breton 56 (263) 58 (324)
bulgarian 50.3 (266) 45.9 (324)
catalan 64 (319) 61.5 (324)
classical-syriac 93 (285) 93 (324)
cornish 32 (267) 32 (324)
crimean-tatar 90 (458) 89 (324)
czech 37.2 (592) 35.4 (324)
danish 64.5 (409) 61.2 (324)
dutch 54.1 (362) 48.2 (324)
english 87.3 (292) 83.8 (324)
estonian 31 (536) 30.1 (324)
faroese 34 (310) 31.2 (324)
finnish 21.5 (799) 14.9 (324)
french 55.1 (881) 54.5 (324)
friulian 72 (247) 72 (324)
galician 44 (230) 41.9 (324.4444444)
georgian 77.2 (353) 76.1 (303.5555556)
german 52.3 (384) 48 (324)
greek 25.6 (300) 24.5 (324)
greenlandic 74 (167) 76 (331.6666667)
haida 58 (298) 57 (324)
hebrew 31.3 (268) 31 (324)
hindi 75 (594) 73.5 (324)
hungarian 39.5 (395) 38 (324)
icelandic 33.9 (250) 31.6 (319.8888889)
ingrian 50 (263) 46 (324)
irish 23.7 (493) 20.9 (324)
italian 45.6 (549) 44.3 (324)
kabardian 89 (233) 86 (341.4444444)
kannada 52 (93) 56 (349.2222222)
karelian 88 (147) 92 (324)
kashubian 52 (263) 54 (324)
kazakh 82 (287) 84 (324)
khakas 82 (148) 80 (324)
khaling 23.1 (742) 22.4 (324)
kurmanji 81.9 (470) 78.8 (324)
ladin 66 (236) 70 (324)
latin 14.4 (478) 10.2 (315.8888889)
latvian 35.3 (397) 34.3 (324)
lithuanian 15.8 (447) 14 (296.5555556)
livonian 31 (134) 32 (324)

Table 6: Detailed results per language for MORPH; cor-
responding epochs in parenthesis; part 1.

Language DevSet DevLang

lower-sorbian 42 (590) 38.8 (324)
macedonian 56.8 (508) 55.3 (324)
maltese 26 (189) 27 (324)
mapudungun 86 (107) 90 (324)
middle-french 82.9 (236) 77.1 (324)
middle-high-german 80 (223) 78 (324)
middle-low-german 36 (192) 38 (324)
murrinhpatha 38 (72) 48 (324)
navajo 10.8 (368) 9.8 (324)
neapolitan 77 (301) 80 (324)
norman 60 (148) 62 (324)
northern-sami 18.7 (695) 17.3 (324)
north-frisian 43 (386) 41 (324)
norwegian-bokmaal 66.3 (273) 63.2 (324)
norwegian-nynorsk 51.6 (385) 44 (324)
occitan 69 (183) 68 (324)
old-armenian 31.6 (389) 31.1 (324)
old-church-slavonic 49 (134) 50 (324)
old-english 22.7 (433) 20.4 (324)
old-french 40.6 (352) 39.1 (324)
old-irish 2 (78) 2 (324)
old-saxon 25 (494) 25.8 (324)
pashto 36 (114) 40 (324)
persian 51.2 (277) 48.5 (324)
polish 31.3 (544) 27 (324)
portuguese 57.3 (319) 56.9 (324)
quechua 58.7 (753) 57.5 (324)
romanian 35.2 (531) 32.4 (324)
russian 43.6 (320) 43.3 (324)
sanskrit 50.7 (489) 46.2 (324)
scottish-gaelic 76 (361) 66 (324)
serbo-croatian 34.4 (533) 28.4 (324)
slovak 41 (575) 40.1 (324)
slovene 47.4 (535) 45.8 (324)
sorani 27.3 (677) 24.3 (324)
spanish 54.3 (588) 48.7 (324)
swahili 62 (298) 62 (324)
swedish 63.7 (392) 55.7 (324)
tatar 76 (191) 77 (324)
telugu 98 (79) 98 (324)
tibetan 36 (28) 46 (324)
turkish 36.6 (299) 36.7 (324)
turkmen 82 (115) 78 (324)
ukrainian 33.8 (522) 33 (324)
urdu 66.6 (369) 64.7 (324)
uzbek 93 (242) 92 (324)
venetian 76.8 (210) 76.8 (324)
votic 22 (342) 21 (324)
welsh 48 (482) 48 (324)
west-frisian 50 (153) 49 (324)
yiddish 63 (198) 61 (324)
zulu 32.3 (679) 28 (324)

Table 7: Detailed results per language for MORPH; cor-
responding epochs in parenthesis; part 2.

