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Abstract

The automated generation of information in-
dicating the characteristics of articles such
as headlines, key phrases, summaries and
categories helps writers to alleviate their work-
load. Previous research has tackled these tasks
using neural abstractive summarization and
classification methods. However, the outputs
may be inconsistent if they are generated
individually. The purpose of our study is to
generate multiple outputs consistently. We
introduce a multi-task learning model with
a shared encoder and multiple decoders for
each task. We propose a novel loss function
called hierarchical consistency loss to main-
tain consistency among the attention weights
of the decoders. To evaluate the consistency,
we employ a human evaluation. The results
show that our model generates more consistent
headlines, key phrases and categories. In
addition, our model outperforms the baseline
model on the ROUGE scores, and generates
more adequate and fluent headlines.

1 Introduction

Headlines and other information such as key
phrases, summaries and categories about articles
are crucial for readers to search articles on
demand. To attract more readers, writers manually
create headlines and summaries by summarizing
the articles, extract key phrases and classify
articles into categories. Figure 1 shows an
example of job advertisement articles. In addition
to the job description text, the headline, key phrase
and category are labeled for each article. Thus job
seekers can easily retrieve the job advertisements
they desire by reading them. However, it is a
burden for writers to create these headlines, key
phrases and categories manually for extremely
large numbers of articles. Hence, an automatic
generation system is highly demanded.

Headline: We Want Android1 Engineer to
Develop our New Service “Wantedly People2 ”!
Key Phrase: Android Engineer
Category: Engineer
Description Text (Truncated):
We released a new service ”Wantedly People” in
November 2016, and released new features in July 2017!
Our “People team”, developing rapidly growing
“Wantedly People” service, is recruiting an Android
Engineer! If you love to work on new services, or if you
want to try to develop new apps as your representative
work, we are looking forward to your application!

Figure 1: An example job advertisement article with
consistency. Each article contains a headline, key
phrase and category. The underlined topic “Engineer”
is consistently noted in the headline, key phrase and
category. A Japanese-English translation is applied.

For automated generation of multiple outputs,
consistency among outputs is crucial. A lack of
consistency among outputs causes incorrect infor-
mation in the outputs. In Figure 1, for example,
the “Engineer” position is consistently noted in the
headline, key phrase and category. An occupation
is consistent and salient information for headlines,
key phrases and categories. If the article was to
be misclassified as a “Designer” category or the
key phrase wrongly noted as “Robotics Engineer,”
an inconsistency among the headline, key phrase
and category would occur. Thus, readers would be
confused by these inconsistencies. We must force
generators to predict multiple outputs consistently.
This leads to the correctness of the occupation in
the outputs, and thus the quality of the generated
outputs also improves.

In previous research, neural networks have
achieved significant improvements in individual
tasks, such as abstractive summarization (Rush
et al., 2015; See et al., 2017; Shi et al., 2018),

1Android is a trademark of Google LLC.
2Wantedly People is a web service provided by Wantedly,

Inc.
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headline generation (Takase et al., 2016), key
phrase generation (Meng et al., 2017) and text
classification (Zhang et al., 2015) tasks. However,
consistency among multiple outputs is not consid-
ered in the strategy to predict multiple outputs with
separate models.

The purpose of our study is to maintain consis-
tency among automatic generated sentences and
classified categories. We adopt multi-task learning
(Caruana, 1997) to predict the headlines, key
phrases and categories of articles in one unified
model. We handle the key phrase generation and
classification tasks not as auxiliary tasks, but as the
desired outputs of our system. Multi-task learning
enables the encoder to focus on the common and
salient features in the input text.

We propose a novel hierarchical consistency
loss to maintain consistency among the multiple
outputs. A hierarchical consistency loss forces
the attention weights of the decoders to focus
on the same words in the input text, considering
the hierarchical relation among tasks. There is a
hierarchical relation among the tasks; the headline
generator generally focuses on the wider range of
words including the key phrase generator focus
upon. In addition, this loss has a flexibility
that alleviate the influences of errors propagated
from other tasks, similar to soft-parameter sharing
methods (Guo et al., 2018).

We design human evaluations using crowd-
sourcing to score the following three metrics:
fluency, adequacy and consistency among the
outputs. We implement human evaluations of the
job advertisement dataset, and the results indicate
that our model improves not only the consistency
score but also the fluency and adequacy scores.

In addition, we conduct automatic evaluations
of the job advertisement dataset and the modified
CNN-DailyMail (CNN-DM) dataset (Nallapati
et al., 2016). The automatic evaluations show that
our method improves the ROUGE metric scores
on both datasets, which has multiple outputs.

Overall, our contributions are as follows:

• We propose a multi-task sentence generation
and document classification model.

• A novel hierarchical consistency loss is
introduced to train the weights of attention to
focus more on the same part of the input text
among the task-specific decoders.

Our designed human evaluations show that our

model generates more consistent outputs. Our pro-
posed model generates more adequate and fluent
outputs on a human evaluation, and achieves the
best ROUGE score on an automatic evaluation.

2 Related Work

Abstractive summarization. Abstractive sum-
marization is a task to generate a short summary
that captures the core meaning of the original
text. Rush et al. (2015) used a neural attention
model, and See et al. (2017) introduced a pointer-
generator network to copy out-of-vocabulary
(OOV) words from the input text. Hsu et al. (2018)
combined abstractive and extractive summariza-
tion with an inconsistency loss to encourage con-
sistency between word-level attention weights of
the abstracter and sentence-level attention weights
of the extractor. Abstractive summarization
techniques are generally applied to a headline
generation because this is a similar task (Shen
et al., 2017; Tan et al., 2017).

Multi-task learning. Multi-task learning,
which trains different tasks in one unified model,
has achieved success in many natural language
processing tasks (Luong et al., 2016; Hashimoto
et al., 2017; Liu et al., 2019). Typical multi-task
learning models have a structure with a shared
encoder to encode the input text and multiple
decoders to generate outputs of each task. Multi-
task learning has a benefit in that the shared
encoder captures common features among tasks;
in addition, the encoder focuses more on relevant
and beneficial features, and disregards irrelevant
and noisy features (Ruder, 2017).

Although a multi-task learning model is ben-
eficial in training a shared encoder, it is still
difficult to share information among task-specific
decoders. Some studies have constructed a
multi-task learning model using techniques that
encourages information sharing among decoders.
Isonuma et al. (2017) proposed an extractive
summarization model that the outputs of the
sentence extractor are directly used for a document
classifier. Anastasopoulos and Chiang (2018)
introduced a triangle model to transfer the decoder
information of the second task to the decoder of
the first task. Tan et al. (2017) introduced a
coarse-to-fine model to generate headlines using
important sentences chosen in the extracter. These
methods are cascade models that additionally
input the information of the first tasks directly into
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the second tasks. They consider the hierarchy
among tasks, but these models suffer from the
errors of the previous tasks.

Guo et al. (2018) proposed a decoder shar-
ing method with soft-parameter sharing to train
the summarization and entailment tasks. Soft-
parameter sharing has a benefit in that it provides
more flexibility between the layer of summariza-
tion and entailment tasks; however, this method
does not consider the hierarchy among tasks.

Our study extends the method in Hsu et al.
(2018) to a multi-task learning model in which
the models need to generate multiple outputs
with consistency. Hierarchical consistency loss
combines two advantages. This loss considers the
hierarchy among tasks, and has flexibility among
tasks, similar to soft-parameter sharing methods.
We assess the advantages of this loss in Section
4.2.

3 Method

3.1 Problem Definition
We define the tasks of our study and describe the
overview of the datasets.

Let x = {x1, x2, ...xS} be a sequence of input
text. The target of our multi-task model is to
generate two types of sentences and to predict
the category of the input article. Our model
predicts the exactly one category tag y1 for each
input sentence. Our model also predicts y2 =
{y21, y22, ...y2T 2} and y3 = {y31, y32, ...y3T 3}, which
are the sequence of sentences.

For the job advertisement dataset, the targets of
our model are to classify articles into occupation
categories y1 (task 1), generate key phrases
regarding the occupation y2 (task 2) and generate
headlines y3 (task 3). For the CNN-DM dataset,
the targets are to predict the article categories y1

(task 1), headlines y2 (task 2) and multi-sentence
summaries y3 (task 3).

Here, S is the length of the input texts, and T 2

and T 3 are the lengths of the output sequences,
respectively. T 2 is generally smaller than T 3 in
both datasets. Hence, task 3 is generally more
difficult than task 2, and more information is
needed to generate y3 than y2.

3.2 Encoder-Decoder model
Encoder-decoder model with attention mecha-
nism. Our model is based on an encoder-decoder
model (Cho et al., 2014). The encoder RNN

transforms the input text into hidden vectors
he = {he1, he2, ..., heS}, and the decoder RNN then
predicts the generation probability of each word
Pvocab,t:

het = RNNenc(xt, h
e
t�1) (1)

hdt = RNNdec(yt�1, h
d
t�1, h

e
S) (2)

Pvocab,t = softmax(Wd2vh
d
t + bd2v) (3)

where the weight matrices Wd2v and bias vector
bd2v are trainable parameters.

Rush et al. (2015) used an attention mechanism
to handle long input sentences. The attention
mechanism obtains the hidden vector of attention
h̄dt from the hidden vector and context vector cet ,
which is defined as the weighted sum of the hidden
vectors of the encoder:

eetj = vT tanh(Weh
e
j +Wdh

d
t + battn) (4)

↵e
tj = softmax(eetj) (5)

cet =
X

j

↵e
tjh

e
j (6)

h̄dt = Wc[h
d
t , c

e
t ] + bc (7)

Note that [hdt , c
e
t ] indicates the concatenation of

vectors hdt and cet . Weight matrices We, Wd and
Wc and the bias vectors battn and bc are trainable
parameters.
Pointer-generator network. We adopt a pointer-
generator network (See et al., 2017) for the
decoders to handle OOV words. The decoder
generates words under the probability of pgen,yt
and copies words from the input sentence under
the probability of 1� pgen,yt .
Coverage mechanism. See et al. (2017) also
introduced a coverage mechanism to alleviate the
repetition problem. The coverage loss Lcov is
added to the loss function to penalize the attention
mechanism to avoid focusing on the same input
words.

3.3 Multi-Task Learning for Generation and
Classification

We introduce multi-task learning to predict multi-
ple outputs simultaneously in one unified model.
Figure 2 describes an overview of our multi-task
learning model. A multi-task learning model
comprises one shared layer, two task-specific
decoders for generation tasks, and one classifier.
Shared encoder. First, shared encoder RNNenc

transforms the input text into the shared hidden
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Figure 2: An overview of our multi-task learning model. The shared embedding layer and encoder first transform
the input text into a shared hidden vector, and the task-specific layers then predict the outputs of each task.
Hierarchical consistency loss penalizes the inconsistency between the attention weights of the pairs of decoders.

vector het . We use a 2-layer bi-directional GRU
(Cho et al., 2014) for the encoder.
Classifier. The classifier transforms a shared
hidden vector into the category probability Pcat.
We implement the classifier as 2-layer perceptron
with an attention mechanism:

oc = ReLU(W c
1 ([h

e
S , c

e
t ] + bc1)) (8)

Pcat = softmax(W c
2o

c + bc2) (9)

where the weight matrices W c
1 and W c

2 , and bias
vectors bc1 and bc2 are trainable parameters.
Decoders. The hidden vector of encoder heS is
first transformed into ĥd0 in the bridge layer, and
the decoders RNNdec of each task then generate
output sequences y2 and y3 from ĥd0. A bridge
is an additional fully connected layer used to fit
the hidden vector into each task. We expect that
multi-task learning will enable the shared encoder
to capture more common and salient parts of an
article, that is, the parts of the text that mention
the occupation.

3.4 Hierarchical Consistency Loss
The main objective of our method is to maintain
consistency among multiple outputs. If each
decoder focuses on the same word in the input text,
the model can generate a more consistent output.
Hence, consistency between attention weights
leads to consistency between multiple outputs. For
example, in Figure 3, inconsistency regarding the
occupation occurs because the word “engineer” is
inconsistently focused on the attention weights of
the key phrase generator. From this, the key phrase
generator predicts an incorrect key phrase. By

penalizing such inconsistencies, the model enables
the generation of more consistent outputs.

However, perfect consistency between attention
weights occasionally disturbs the model to gen-
erate proper outputs. Because headlines contain
more information than key phrases, the headline
generator must focus on a wider range of words
in the input text than the key phrase generator.
For example, in Figure 3, the headline generator
focuses on the words “user interface.” In contrast,
the key phrase generator does not focus on these
words. Therefore, the attention weights among
tasks generally maintain a hierarchical relation.
That is, the higher tasks (headline generation and
summarization) need to focus on a wider range of
words, and the lower tasks (classification) focus
on the range on which the higher tasks focused.

We introduce a novel “hierarchical consistency
loss” to penalize inconsistency among multiple
outputs. We define hierarchical consistency loss
between task s and task t as follows:

Lst
hcl =

�hcl

S

SX

i=1

|max
j

ed
s

ij �max
j

ed
t

ij |+ (10)

where ed
s

ij is the non-normalized attention weight
of the output word j toward the input word i. Note
that a ramp function |x|+ is used to compare two
attention weights. Task t is a task that needed to
focus on a wider range of words than the input task
s. For example, in Figure 3, task s is a key phrase
generation, and task t is a headline generation.

The aim of hierarchical consistency loss is
to penalize inconsistency between two attention
weights. For example, in Figure 3, the loss forces
the attention weight corresponding to the word
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Figure 3: An overview illustration of our hierarchical consistency loss. This loss penalizes a case in which
inconsistency occurs between two outputs. The decoder of the key phrase generator focuses on the word
“engineers.” However, the headline generation decoder does not focus on this word. Hierarchical consistency
loss treats this difference as an inconsistency.

Figure 4: An illustration of our training scheduling
strategy. The loss weights �s(p) gradually increase as
the training proceeds.

“engineers” to a higher weight because the word
“engineers” is crucial to generate consistent and
adequate outputs. Figure 3 shows the process of
the loss. The most salient attention weights for
each input word are extracted, and the extracted
attention weights between two tasks are then
compared. A ramp function enables this loss
to consider the hierarchical relation between two
tasks.

3.5 Learning Scheduling for Multi-Task
Learning

We also introduce a new multi-task learning
scheduling strategy to effectively train several
tasks with different levels of difficulty. Kiper-
wasser and Ballesteros (2018) introduced a strat-
egy that gradually changes the probability that
the training examples will be picked from each
dataset as the training proceeds. We modify
this idea to a situation in which the input text

is in common among multiple tasks, adjusting
the hyperparameters of the weighted sum of loss
functions. This strategy enables us to train our
model in such a way that our model focuses on
learning easy tasks at the beginning, and then
gradually focuses more on learning difficult tasks.

We determine the weights of the loss function
�s(p) for task s with a sigmoid function:

�s(p) = �s
const

1

1 + exp((psth � p)/↵)
(11)

where �s
const and psth are hyperparameters for

each task. Parameter p describes the number of
epochs trained thus far. We set hyperparameter ↵
to 0.5 for all tasks. As illustrated in Figure 4, �s(p)
becomes larger as the training proceeds.

3.6 Overall Loss Function
The overall loss function of the proposed model is
calculated as the weight sum of losses from three
tasks, coverage losses and hierarchical consistency
loss:

Lall = �1(p)L1 + �2(p)L2 + �3(p)L3

+ �2
covL

2
cov + �3

covL
3
cov

+ �all
hclL

all
hcl (12)

where �1(p), �2(p), �3(p), �2
cov, �3

cov and �all
hcl are

hyperparameters. In addition, �1(p), �2(p), and
�3(p) are calculated using Eqn.11. Moreover, L1,
L2 and L3 signify the loss of the classification, key
phrase generation and headline generation tasks,
respectively. L2

cov and L3
cov are the coverage losses
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of two generators, and Lall
hcl is the sum of the

hierarchical consistency losses:

Lall
hcl = L12

hcl + L13
hcl + L23

hcl (13)

where Lst
hcl indicates the hierarchical consistency

loss between task s and t.

4 Experiments and Results

4.1 Experimental Settings
We use two datasets, namely, a job advertise-
ment dataset and the CNN-DailyMail (CNN-DM)
dataset. We evaluate the headline generation,
key phrase generation and classification tasks in
these datasets. As an example, Figure 1 shows
the headlines, key phrases and categories, which
generally include common features, that is, the
words mentioning occupations.

We also use the CNN-DM dataset (See et al.,
2017) in an automatic evaluation under different
task settings. We evaluate the multi-sentence
summarization, headline generation and classifi-
cation tasks in this dataset. Note that we train
and evaluate the CNN and DailyMail datasets
separately because they have different taxonomies.

The original CNN-DM dataset does not con-
tains headlines or categories, and thus we extract
the headlines and categories from the raw HTMLs.
The Supplementary section describes the details
and modification of the CNN-DM dataset.

We employ pointer-generator models without
multi-task learning as baselines of the sentence
generators, and a 2-layer GRU with attention
as the baseline of the classifier. We chose all
hyperparameters based on the learning curve and
the scores of the validation set. Details of our
model, such as the hyperparameters of the RNNs,
the weights of the loss function and the optimizers,
are described in the Supplementary section for
reproducibility.

4.2 Results
Human evaluation of job advertisement
dataset. We conduct a human evaluation of the
job advertisement dataset to measure the quality
of the generated outputs. Ten crowd-sourcing
workers measure 250 randomly selected samples.
We defined the following four metrics:

• Consistency: Measure whether the outputs
include the same occupation. We choose a
pair of outputs, and if both outputs mention

HG-KG HG-CC KG-CC 3 Outputs
Baseline 56.8% 37.6% 37.6% 30.0%
Proposed 58.8% 39.6% 39.2% 32.4%
Gold 65.2% 44.4% 48.8% 35.2%

Table 1: Comparison of human evaluation results
with their consistency. HG-KG, HG-CC and KG-CC
indicate the consistency scores between the headline
generation and key phrase generation, headline gen-
eration and category classification and key phrase
generation and category classification, respectively.

Adequacy Fluency
Occupation

Adequacy
Baseline 3.34 3.69 3.45
Proposed 3.76 3.86 3.89
Gold 4.09 4.12 4.13

Table 2: Comparison of human evaluation results for
headlines. Scores are an average of ten crowd-sourcing
workers with five scale rating.

the same type of occupation, we regard this
pair as consistent.

• Adequacy: Measure how well the headline
describes the correct information.

• Fluency: Measure how natural the generated
headline is.

• Occupation Adequacy: Measure how well
the headline mentions the correct occupation.
For example, in Figure 1, if the generated
headline implies that the occupation “engi-
neer” is recruited, we regard this headline
as adequate regarding the occupation. We
assume that consistency of the occupation
improves the score of the occupation ade-
quacy.

First, we conduct a human evaluation to
measure the consistency among three outputs.
Table 1 shows the evaluation results with their
consistency. The scores are the percentage of
articles evaluated as consistent by a majority
of workers. We consider all three outputs as
consistent if all pairs of outputs are consistent. The
results indicate that the proposed method improves
the consistency of the three generated outputs 1.

Second, to evaluate the quality of the generated
headline, we implement a human evaluation to
measure the adequacy and fluency. Table 2 shows
the evaluation result along with the adequacy
and fluency. The proposed method improves the

1Note that the consistency of HG-CC and KG-CC is
relatively low because some categories are too abstractive (for
example, “other types of engineers”).
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Headline generation Key phrase generation Classification
R-1 R-2 R-L R-1 R-2 R-L Accuracy

Baseline (Pointer-Generator Network) 25.1 5.3 21.1 30.9 10.6 28.7 62.8
Multi-Task Learning (MTL) 26.2 5.8 21.6 32.3 10.9 30.0 64.1
MTL + Scheduling (SD) 26.3 6.0 21.8 32.3 10.4 29.9 63.9
Proposed (MTL + SD +
Hierarchical Consistency Loss (HCL)) ⇤26.9 ⇤6.1 ⇤22.4 ⇤32.8 ⇤11.2 ⇤30.5 64.4
Lead-1 19.0 4.3 13.5 - - - -

Table 3: Automatic evaluation results based on the ROUGE metrics and accuracy (%) of classification of job
advertisement dataset. R-1, R-2 and R-L indicate the F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L,
respectively. The proposed method (MTL + SD + HCL) achieved the best scores (bold) for all tasks, and the
ROUGE scores are statistically significant from the baseline model (p < 0.05) in both the headline and key phrase
(indicated as ⇤). Lead-1 is the baseline score, which uses the first sentence of the input article as a predicted
headline.

Summarization Headline Generation Classification
R-1 R-2 R-L R-1 R-2 R-L Accuracy

CNN
Baseline 30.7 10.6 27.3 19.5 5.0 17.0 43.8
Proposed (MTL + SD + HCL) ⇤31.0 ⇤10.9 ⇤ 27.8 19.6 5.0 17.1 43.9
Lead 33.4 12.2 26.1 17.2 5.0 11.1 -

DailyMail
Baseline 38.4 15.8 35.0 43.1 25.3 39.6 89.0
Proposed (MTL + SD + HCL) ⇤38.9 ⇤16.3 ⇤35.4 ⇤43.7 25.5 ⇤40.1 89.8
Lead 43.8 19.2 37.3 27.7 10.9 21.7 -

Table 4: Automatic evaluation results based on the ROUGE metrics and accuracy (%) of classification of the CNN
and DailyMail datasets. The metrics are the same as in Table 3. The proposed method (MTL + SD + HCL)
improved the scores for all tasks. The scores with ⇤ indicate that the scores are statistically significant from the
baseline model (p < 0.05). The lead is the score that uses the first three sentences of the input article as a predicted
summary, and the first sentence of the input article as a predicted headline.

adequacy by 0.42pt and the occupation adequacy
by 0.44pt. Proposed method can generate more
adequate outputs, particularly for the occupation.
Automatic evaluation of job advertisement cor-
pus. We implement an automatic evaluation using
the ROUGE metrics (Lin, 2004) and accuracy. We
conduct the experiment ten times, and calculate
the average score. Table 3 shows the effect
of the proposed methods: multi-task learning
(MTL), scheduling strategy (SD) and hierarchical
consistency loss (HCL). From this result, the
proposed method (MTL + SD + HCL) achieves
the best score on all three tasks. MTL and HCL
improve for all three tasks, and SD improves the
score of the headline generation.
Automatic evaluation of the CNN-DM dataset.
Table 4 shows the results of the CNN and Daily-
Mail datasets, respectively. For both datasets, the
proposed method improves the ROUGE scores of
the summarization and headline generation.

From Table 5, headlines and key phrases of
the job advertisement dataset have more overlap
than the summaries and headlines of the CNN-DM
dataset. Therefore, tasks of the job adver-
tisement dataset benefit more from maintaining

ROUGE-1 ROUGE-2 ROUGE-L
Job Ads 48.4 15.9 47.9
CNN 42.8 13.7 38.8
DailyMail 37.9 12.6 34.0

Table 5: ROUGE recall scores of task 2 (key phrases
for the Job Ads, headlines for CNN-DM) gold sen-
tences against task 3 (headlines for Job Ads, summaries
for CNN-DM) gold sentences in the validation set.
Higher scores indicate that words appearing in the
sentence of task 2 are overlapped by the sentence of
task 3.

the consistency. For this reason, the scores
of the job advertisement dataset achieve greater
improvement than the CNN-DM dataset.
Comparison of the decoder information shar-
ing methods. To validate the advantages of our
hierarchical consistency loss, we compare five
decoder information sharing methods: a cascade
model, soft-parameter sharing, non-hierarchical
consistency loss, hierarchical consistency loss
with normalized attention weights and our hi-
erarchical consistency loss. Table 6 presents
the comparison of the five methods for the job
advertisement dataset.

The cascade model, similar to Isonuma et al.
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Headline Generation Key Phrase Generation Classification
R-1 R-2 R-L R-1 R-2 R-L Accuracy

Baseline (Pointer-Generator Network) 25.1 5.3 21.1 30.9 10.6 28.7 62.8
Proposed (MTL + SD + HCL) 26.9 6.1 22.4 32.8 11.2 30.5 64.4

Comparison of Decoder Information Sharing Method
MTL + SD 26.3 6.0 21.8 32.3 10.4 29.9 63.9
MTL + SD + Cascade Model 26.3 5.6 21.6 31.8 10.6 29.5 64.4
MTL + SD + Cascade Model (Gold) 26.5 5.8 21.9 32.8 10.4 30.3 64.5
MTL + SD + Soft-Parameter Sharing 25.8 5.9 21.4 32.1 10.0 29.6 64.0
MTL + SD +
Non-Hierarchical Consistency Loss 25.9 6.0 21.4 32.6 10.9 30.2 64.0
MTL + SD +
HCL with Normalized Attention Weights 26.2 6.0 21.7 31.9 10.5 29.5 63.9

Comparison of Encoder Information Sharing Method
HCL
(SD and MTL are not applied) 25.8 5.6 21.2 31.0 10.1 28.7 63.1
SD + HCL
(MTL is not applied) 25.6 5.6 21.5 31.2 10.2 28.9 62.6

Table 6: Comparison of the decoder information sharing methods and encoder sharing methods for the job
advertisement dataset. The metrics are the same as in Table 3. The proposed method (adopting HCL) achieved the
best scores (bold) compared to the other sharing methods.

(2017); Anastasopoulos and Chiang (2018), uses
the output of the classifier as an additional
input of the headline and key phrase generators.
Meanwhile, the cascade model (gold) uses the
gold classification category as the additional input
of the generators during training and inference.

It can be observed from Table 6 that the cascade
model achieves a lower score than MTL + SD.
However, the cascade model (gold) improves the
ROUGE-L score. This result indicates that the
classification error propagates to the generators
when the cascade model is applied. Our proposed
HCL has an advantage in that it does not suffer
from an error of the classifier, and thus this method
achieves the best score.

Furthermore, we compare our proposed HCL
model with other settings. A soft-parameter
sharing method (Guo et al., 2018) penalizes
the difference between parameters in pairs of
decoders. The non-hierarchical consistency loss
is almost the same as the hierarchical consistency
loss (Eqn. 10). We replace a ramp function
in Eqn. 10 with an absolute value function.
Neither the soft-parameter sharing method nor the
non-hierarchical consistency loss has the ability to
consider the hierarchy among tasks.

It can be observed from Table 6 that both meth-
ods achieved a lower score than the hierarchical
consistency loss. This is because our hierarchical
consistency loss enables the model to penalize a
multi-task model with hierarchy among the tasks.

Although the HCL with normalized-attention
weights adopts the hierarchical consistency loss

model indicated in Eqn. 10, however, we
substitute the normalized attention weights ↵ds

ij for
non-normalized attention weights edsij .

HCL with normalized attention weights is not
as effective as HCL with non-normalized attention
weights. Our HCL is based on the assumption
that if one specific input word is important
for both the shorter and longer text generation
tasks, the attention weights of the words for the
shorter text generation task would be smaller
than the attention weights for the longer text
generation task. However, the distributions of the
normalized attention weights converge to a few
words for the shorter text generation task; thus the
normalized attention weights does not satisfy the
assumption. As a result, our proposed HCL with
non-normalized attention weights can accurately
compute this inconsistency, contrary to the HCL
with normalized attention weights.
Comparison of encoder information sharing
methods. To determine the dependence of HCL
on MTL, we conduct two experiments. HCL
applies the hierarchical consistency loss without
MTL and SD, while SD + HCL applies the
scheduling sampling and hierarchical consistency
loss; however, multi-task learning is not applied.
Table 6 presents the results of two methods for the
job advertisement dataset.

In comparison with the MTL applied models,
both models do not improve the performance
of the classification task. Encoder information
sharing is beneficial for both the classification
and generation tasks, whereas the attention infor-
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Proposed Method (MTL + SD + HCL) Baseline
Input Articles with Attention Weight (Truncated)
In 2011, Naka, the representative of Wantedly, founded our company alone.
Because we first developed the web service (now “Wantedly”), we have used
Ruby on Rails (...) Our development team is building valuable services with
cooperation among engineers (...) Wantedly is at the height of its growth!
We are recruiting super geeks to develop our “make work enjoyable”
services with Ruby on Rails to achieve our mission of “Becoming the
infrastructure for all workers” as a business SNS!

Input Articles with Attention Weight (Truncated)
In 2011, Naka, the representative of Wantedly, founded our company alone.
Because we first developed the web service (now “Wantedly”), we have used
Ruby on Rails (...) Our development team is building valuable services with
cooperation among engineers (...) Wantedly is at the height of its growth!
We are recruiting super geeks to develop our “make work enjoyable”
services with Ruby on Rails to achieve our mission of “Becoming the
infrastructure for all workers” as a business SNS!

Generated Headline:
We want a Ruby engineer to develop our own service!

Generated Headline:
We want a new member to launch new businesses with us!

Generated Key Phrase:
Ruby engineer

Generated Key Phrase:
Engineer

Figure 5: An example of an input article, generated headlines and key phrases. Underlined words indicate that
the attention weights of the headline generator between these words and the output words are high. Blue colored
words indicate that the attention weights of these words are consistently high between the two decoders. In
contrast, red colored italic words indicate that the attention weights of these words are high in the key phrase
generator, but low in the headline generator, that is, inconsistency occurs between the two decoders. A Japanese-
English translation is applied.

ROUGE-1 ROUGE-2 ROUGE-L
Baseline 29.1 5.5 29.0
Proposed 53.7 19.2 53.4

Table 7: Comparison of ROUGE recall scores of
generated key phrases against generated headlines for
the job advertisement dataset. The proposed method
significantly increases the word overlap between gen-
erated sentences.

mation sharing method is beneficial only for the
generation task. This can be attributed to the
asymmetry in the task settings. Generally, the
generation task need to focus on a wider range of
input words than the classification tasks. For the
generation task, it is important that which words
are focused on in the classification task. However,
this is not always the case that the words focused
on in the generation task are important for the
classification task.
Analysis of word overlap between output sen-
tences. To estimate the consistency between
output sentences, we evaluate the word overlap
between generated headlines and key phrases.
Table 7 presents the ROUGE recall scores of the
generated key phrases computed against generated
headlines for the job advertisement dataset. There-
fore, our proposed method generates significantly
similar word outputs, resulting in improvement in
the consistency between two sentences.

4.3 Example of Predicted Outputs

We visualize the attention weights of the decoders
to assess the performance of the proposed method.
The upper part of Figure 5 indicates an example
of the attention weights of the headline and key
phrase generators. The proposed method increases

the consistency and decreases the inconsistency
between the attention weights of the two decoders.
With the proposed method, both decoders com-
monly focus on the word “Ruby on Rails,” and
thus both outputs consistently contain the word
“Ruby.” From this result, the proposed method,
which avoids inconsistency, improves the quality
of the outputs.

5 Conclusion

We introduced a novel multi-task learning method
to maintain consistency among outputs. Hierar-
chical consistency loss was introduced to penalize
inconsistency between two attention weights of
decoders. We implemented a manual evaluation
using crowd-sourcing, and the results indicates
that our method generates more consistent outputs.
An automatic evaluation showed that proposed
method achieves the best ROUGE scores on both
datasets. As a future work, we would like
to explore whether our method is applicable to
other tasks such as multi-task learning for object
detection and image caption generation.
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