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Abstract

Surface realisation (SR) maps a meaning rep-
resentation to a sentence and can be viewed
as consisting of three subtasks: word ordering,
morphological inflection and contraction gen-
eration (e.g., clitic attachment in Portuguese
or elision in French). We propose a modular
approach to surface realisation which models
each of these components separately, and eval-
uate our approach on the 10 languages covered
by the SR’18 Surface Realisation Shared Task
shallow track. We provide a detailed evalua-
tion of how word order, morphological realisa-
tion and contractions are handled by the model
and an analysis of the differences in word or-
dering performance across languages.

1 Introduction

Surface realisation maps a meaning representation
to a sentence. In data-to-text generation, it is part
of a complex process aiming to select, compress
and structure the input data into a text. In text-
to-text generation, it can be used as a mean to
rephrase part or all of the input content. For in-
stance, Takase et al. (2016) used surface realisa-
tion to generate a summary based on the meaning
representations of multiple input documents and
Liao et al. (2018) to improve neural machine trans-
lation.

By providing parallel data of sentences and their
meaning representation, the SR’18 Surface Reali-
sation shared task (Mille et al., 2018) allows for a
detailed evaluation and comparison of surface re-
alisation models. Moreover, as it provides training
and test data for multiple languages, it also allows
for an analysis of how well these models handle
languages with different morphological and topo-
logical properties.

The SR’18 shared task includes two tracks: a
shallow track where the input is an unordered,
lemmatised dependency tree and a deep track

where function words are removed and syntactic
relations are replaced with semantic ones. In this
paper, we focus on the shallow track of the SR’18
Shared Task and we propose a neural approach
which decomposes surface realisation into three
subtasks: word ordering, morphological inflection
and contraction generation (e.g., clitic attachment
in Portuguese or elision in French). We provide a
detailed analysis of how each of these phenomena
(word order, morphological realisation and con-
traction) is handled by the model, and we discuss
the differences between languages.

For reproducibility, all our experiments includ-
ing data and scripts are available at https://
gitlab.com/shimorina/emnlp-2019.

2 Related Work

Early approaches for surface realisation adopted
statistical methods, including both pipelined
(Bohnet et al., 2010) and joint (Song et al., 2014;
Puduppully et al., 2017) architecture for word or-
dering and morphological generation.

Multilingual SR’18 was preceded by the SR’11
surface realisation task for the English language
only (Belz et al., 2011). The submitted sys-
tems in 2011 had grammar-based and statisti-
cal nature, mostly relying on pipelined archi-
tecture. Recently, Marcheggiani and Perez-
Beltrachini (2018) proposed a neural end-to-end
approach based on graph convolutional encoders
for the SR’11 deep track.

The SR’18 shallow track received submissions
from eight teams with seven of them dividing the
task into two subtasks: word ordering and inflec-
tion. Only Elder and Hokamp (2018) developed a
joint approach, however, they participated only in
the English track.

For word ordering, five teams chose an ap-
proach based on neural networks, two used a

https://gitlab.com/shimorina/emnlp-2019
https://gitlab.com/shimorina/emnlp-2019
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classifier, and one team resorted to a language
model. As for the inflection subtask, five teams
applied neural techniques, two used lexicon-based
approaches, and one used an SMT system (Basile
and Mazzei, 2018; Castro Ferreira et al., 2018; El-
der and Hokamp, 2018; King and White, 2018;
Madsack et al., 2018; Puzikov and Gurevych,
2018; Singh et al., 2018; Sobrevilla Cabezudo
and Pardo, 2018). Overall, neural components
were dominant across all the participants. How-
ever, official scores of the teams that went neural
greatly differ. Furthermore, two teams (Elder and
Hokamp, 2018; Sobrevilla Cabezudo and Pardo,
2018) applied data augmentation, which makes
their results not strictly comparable to others.

One of the interesting findings of the shared
task is reported by Elder and Hokamp (2018) who
showed that applying standard neural encoder-
decoder models to jointly learn word ordering and
inflection is highly challenging; their sequence-to-
sequence baseline without data augmentation got
43.11 BLEU points on English.

Our model differs from previous work in three
main ways. First, it performs word ordering on
fully delexicalised data. Delexicalisation has been
used previously but mostly to handle rare words,
e.g. named entities. Here we argue that surface
realisation and, in particular, word ordering works
better when delexicalising all input tokens. This
captures the intuition that word ordering is mainly
determined by the syntactic structure of the input.
Second, we we provide a detailed evaluation of
how our model handles the three subtasks under-
lying surface realisation. While all SR’18 partici-
pants provided descriptions of their models, not all
of them performed an in-depth analysis of model
performance. Exceptions are works of King and
White (2018), who provided a separate evalua-
tion for the morphological realisation module, and
Puzikov and Gurevych (2018), who evaluated both
word ordering and inflection modules. However,
it is not clear how each of those modules affect
the global performance when merged in the full
pipeline. In contrast, we propose a detailed incre-
mental evaluation of each component of the full
pipeline and show how each component impacts
the final scores. Third, we introduce a linguistic
analysis, based on the dependency relations, of the
word ordering component, allowing for deeper er-
ror analysis of the developed systems.

Furthermore, our model explicitly integrates a

module for contraction handling, as done also be-
fore by Basile and Mazzei (2018). We also ad-
dress all the ten languages proposed by the shared
task and outline the importance of handling con-
tractions.

3 Data

The SR’18 data (shallow track) is derived from
the ten Universal Dependencies (UD) v2.0 tree-
banks (Nivre et al., 2017) and consists of (T, S)
pairs where S is a sentence, and T is the UD
dependency tree of S after word information has
been removed and tokens have been lemmatised.
The languages are those shown in Table 1 and the
size of the datasets (training, dev and test) varies
between 7,586 (Arabic) and 85,377 (Czech) in-
stances with most languages having around 12K
instances (for more details about the data see Mille
et al. (2018)).

4 Model

As illustrated by Example 1, surface realisation
from SR’18 shallow meaning representations can
be viewed as consisting of three main steps: word
ordering, morphological inflection and contraction
generation. For instance, given an unordered de-
pendency tree whose nodes are labelled with lem-
mas and morphological features (1a)1, the lemmas
must be assigned the appropriate order (1b), they
must be inflected (1c) and contractions may take
place (1d).

(1) a. the find be not meaning of life it about
b. it be not about find the meaning of life
c. It is n’t about finding the meaning of life
d. It isn’t about finding the meaning of life

We propose a neural architecture which explic-
itly integrates these three subtasks as three sepa-
rate modules into a pipeline: word ordering (WO)
is applied first, then morphological realisation
(WO+MR) and finally, contractions (WO+MR+C)
are handled.

4.1 Word Ordering

For word ordering, we combine a factored
sequence-to-sequence model with an “extreme
delexicalisation” step which replaces matching
source and target tokens with an identifier.

1Features and tree structures have been omitted.
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(a) Unordered Source Tree (b) Output Lemmas with Gold Parse Tree

apple the John eat
noun det pnoun verb

2 3 4 1

root

nsubj

obj

det
John eat the apple
John eats the apple

pnoun verb det noun
4 1 3 2

root

nsubj det

obj

Input: 2:noun:obj:1 3:det:DET:2 4:pnoun:nsubj:1 1:verb:root:0 Output: 4 1 3 2

Figure 1: Delexicalising and linearising (in the parse tree of the output sentence the first row shows the lemmas, the second–the
word forms, the third–the POS tags and the fourth–the identifiers). Identifiers are assigned to the source tree nodes in the order
given by depth-first search.

Delexicalisation. Delexicalisation has fre-
quently been used in neural NLG to help handle
unknown or rare items (Wen et al., 2015; Dušek
and Jurcicek, 2015; Chen et al., 2018). Rare items
are replaced by placeholders both in the input and
in the output; models are trained on the delexi-
calised data; and a post-processing step ensures
that the generated text is relexicalised using the
placeholders’ original value. In these approaches,
delexicalisation is restricted to rare items (named
entities). In contrast, we apply delexicalisation
to all input lemmas. Abstracting away from
specific lemmas reduces data sparsity, allows for
the generation of rare or unknown words and last
but not least, it captures the linguistic intuition
that word ordering mainly depends on syntactic
information (e.g., in English, the subject generally
precedes the verb).

To create the delexicalised data, we need to
identify matching input and output elements and to
replace them by the same identifier. We also store
a mapping (id, L, F) specifying which identifier id
refers to which (L, F) pair, where L is a lemma and
F is its set of morpho-syntactic features.

We identify matching input and output elements
by comparing the unordered input tree provided
by the SR’18 task with the parse tree of the
output sentence provided by the UD treebanks
(cf. Figure 1). Source and target nodes which
share the same path to the root are then mapped
to the same identifier. For instance, in Figure 1,
the lemma “apple” has the same path to the root
(obj:eat:root) in both the input and the output
tree. Hence the same identifier is assigned to
the nodes. More generally, after linearisation

through depth-first, left-to-right traversal of the
input tree, each training instance captures the
mapping between lemmas in the input tree and
the same lemmas in the output sequence. For
instance, given the example shown in Figure 1,
delexicalisation will yield the training instance:

Input: tkn2 tkn3 tkn4 tkn1
Output: tkn4 tkn1 tkn3 tkn2

where tkni is the factored representation (see
below) of each delexicalised input node.

Factored Sequence-to-Sequence Model. Fol-
lowing Elder and Hokamp (2018), we use a fac-
tored model (Alexandrescu and Kirchhoff, 2006)
as a means of enriching the node representations
input to the neural model. Each delexicalised tree
node is modelled by a sequence of features. Sepa-
rate embeddings are learned for each feature type
and the feature embeddings of each input node
are concatenated to create its dense representation.
As exemplified in Figure 1, we model each input
placeholder as a concatenation of four features:
the node identifier, its POS tag, its dependency re-
lation to the parent node and its parent identifier2.

Sequence-to-sequence model. We use the
OpenNMT-py framework (Klein et al., 2017)3

to train factored sequence-to-sequence models
with attention (Luong et al., 2015) and the copy
and coverage mechanisms described in See et al.
(2017). A single-layer LSTM is used for both en-
coder and decoder. We train using full vocabulary

2The parent identifier of a root node is represented as 0.
3commit e61589d, https://github.com/

OpenNMT/OpenNMT-py

https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
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and the maximal length in the source and target
for both baseline and the proposed model. Models
were trained for 20 epochs, with a mini-batch size
of 64, a word embedding size of 300, and a hidden
unit size of 450. They were optimised with SGD
with a starting learning rate of 1.0. A learning
rate is halved when perplexity does not decrease
on the development set. Preliminary experiments
showed that the lowest perplexity was reached on
average at epoch 17, so this model was kept for
decoding. Decoding is done using beam search
with a beam size of 5. For each language, we
train three models with different random seeds,
and report the average performance and standard
deviation.

The model is trained on delexicalised data. At
test time, the token/identifier mapping is used to
relexicalise the model output.

4.2 Morphological Realisation

The morphological realisation (MR) module con-
sists in producing inflected word forms based on
lemmas coupled with morphological features. For
that module, we used a model recently proposed
by Aharoni and Goldberg (2017), which achieves
state-of-the-art results on several morphological
inflection datasets: the CELEX dataset (Baayen
et al., 1993; Dreyer et al., 2008), the Wiktionary
dataset (Durrett and DeNero, 2013) and the SIG-
MORPHON2016 dataset (Cotterell et al., 2016).
Their model is based on a neural encoder-decoder
architecture with hard monotonic attention and
performs out-of-context morphologic realisation:
given a lemma and a set of morpho-syntactic fea-
tures, it produces a corresponding word form.

We trained the model of Aharoni and Goldberg
(2017) on (lemma+morpho-syntactic features4,
form) pairs extracted from the SR’18 training data.
We trained the model for 20 epochs with the de-
fault parameters provided in the implementation5.

In our pipeline architecture, morphological real-
isation is applied to the output of our word order-
ing model using the (id, L, F) mapping mentioned
above. For each delexicalised token produced by
the word ordering component, we retrieve the cor-
responding lemma and morpho-syntactic features
(L, F) and apply our MR model to it so as to pro-
duce the corresponding word form.

4POS and morphological features
5https://github.com/roeeaharoni/

morphological-reinflection/blob/master/
src/hard_attention.py

While associating a lemma and its features to
a corresponding form, the MR module operates
without taking context into account, so it cannot
perform some finer grained operations, such as
contraction, elision, and clitic attachment. We ad-
dress that issue in the following section.

4.3 Contraction Generation

Contraction handling is the last step of our surface
realisation pipeline. Example 2 shows some types
of contractions.

(2) French: “Le chat dort.” / “L’alouette chante.”
(Elision for the definite article le before a
vowel: Le→ L’)

Italian: *“In il mare.”→ “Nel mare.” (Con-
traction of the preposition in and the article
il: In il→ Nel)

Portuguese: *“Eis lo.”→ “Ei-lo.” (Clitic
pronoun attachment: Eis lo→ Ei-lo)

We developed two modules for the contrac-
tion generation: one based on regular expres-
sions (Creg) and another based on a sequence-to-
sequence model (Cs2s).

The sequence-to-sequence model is trained on
pairs of sentences without and with contractions.
The sentence with contraction (S+c) is the final
sentence, i.e., the reference sentence in the SR’18
data. The sentence without contraction (S−c) is
the corresponding sequence of word forms ex-
tracted from the UD CoNLL data.

The regular expression module is inspired by
the decomposition of multi-word expressions,
such as contractions, which is applied during the
tokenisation step in parsing (Martins et al., 2009).
We reversed the regular expressions given in the
TurboParser6 for the surface realisation task, and
also added our own to tackle, for example, elision
in French. Cs2s and Creg modules were created for
three languages: French, Italian, and Portuguese7.

5 Evaluation

We evaluate each component of our approach
separately. We start by providing a detailed eval-
uation of how the model handles word ordering

6https://github.com/andre-martins/
TurboParser/tree/master/python/tokenizer

7Although contractions are also present in Spanish, we
did not develop a module for it, since the UD Spanish AnCora
treebank does not split them on the token level in contrast to
other UD treebanks.

https://github.com/roeeaharoni/morphological-reinflection/blob/master/src/hard_attention.py
https://github.com/roeeaharoni/morphological-reinflection/blob/master/src/hard_attention.py
https://github.com/roeeaharoni/morphological-reinflection/blob/master/src/hard_attention.py
https://github.com/andre-martins/TurboParser/tree/master/python/tokenizer
https://github.com/andre-martins/TurboParser/tree/master/python/tokenizer
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ar cs en es fi fr it nl pt ru
BL 29.6±1.39 48±0.7 53.57±0.15 46.5±0.78 27.2±0.4 46.4±0.5 49.07±0.9 36.6±0.7 44.3±0.26 58.1±0.46
WO 34.9±0.2 57.97±0.06 59.1±0.36 52.33±0.31 43.1±0.53 50.0±0.0 53.17±0.5 47.03±0.59 51.77±0.32 64.73±0.23
∆ +5.3 +9.97 +5.53 +5.83 +15.9 +3.6 +4.1 +10.43 +7.47 +6.63

Table 1: Word Ordering: BLEU scores on lemmatised data. Mean and standard deviation across three random seeds. BL:
Baseline. All pairwise comparisons of BL and our model showed a statistically significant difference in BLEU via the bootstrap
resampling (1000 samples, p < .05).

(Section 5.1). We then go on to analyse the re-
spective contributions of morphological realisa-
tion (Section 5.2) and contraction generation (Sec-
tion 5.3). Finally, we discuss the performance of
the overall surface realisation model (Section 5.4).
Throughout the evaluation, we used the SR’18
evaluation scripts to compute automatic metrics8.

5.1 Word Ordering

5.1.1 BLEU scores
We evaluate our word ordering component by
computing the BLEU-4 score (Papineni et al.,
2002) between the sequence of lemmas it produces
and the lemmatized reference sentence extracted
from the UD files. The baseline is the same model
without delexicalisation. As Table 1 shows, there
is a marked, statistically significant, difference be-
tween the baseline and our approach which indi-
cates that delexicalisation does improve word or-
dering.

5.1.2 Word Ordering Constraints
We also investigate the degree to which our re-
sults conform with the word ordering constraints
of the various languages focusing on the following
dependency relations: DET (determiner), NSUBJ

(nominal subject), OBJ (object), AMOD (adjectival
modifier) and ACL (nominal clausal modifier). For
each of these dependency relations, we compare
the relative ordering of the corresponding (head,
dependent) pairs in the reference data and in our
system predictions.

To determine whether the dependent should pre-
cede or follow its head, we use the gold standard
dependency tree of the UD treebanks. Since for
the system predictions we do not have a parse tree,
we additionally record the distance between head
and dependent (in the reference data) and we com-
pare it with the distance between the same two
items in the system output. For instance, for the
DET relation, given the gold sentence (3a) and the

8http://taln.upf.edu/pages/msr2018-ws/
SRST.html#evaluation

generated sentence (3b), we extract (3c) from the
UD parse tree and (3d) from the predicted sen-
tence where each triple is of the form either (dep,
head, distance) or (head, dep, distance) and dis-
tance is the distance between head and dependent.

(3) a. GOLD: The yogi tried the advanced asana
b. PRED: The yogi tried the asana advanced
c. G-triples: (thedep, yogihead, 1), (thedep,
asanahead, 2)
d. P-triples: (the, yogi, 1), (the, asana, 1)
Exact match: 1; Approximate match: 2

We then compute exact matches (the order and
the distance to the head is exactly the same)
and approximate matches (the order is preserved
but the distance differs by 1 token9). Table 2
shows the results and compares them with a non-
delexicalised approach.

Global Score. The all deprels column sum-
marises the scores for all dependency relations
present in the treebanks (not just DET, NSUBJ,
OBJ, AMOD and ACL). For the exact match,
most languages score above average (from 0.51 to
0.71). That is the relative word order and the po-
sition of the dependent with respect to the head
is correctly predicted in more than half of the
cases. Approximate match yields higher scores
with most languages scoring between 0.65 and
0.80 suggesting that a higher proportion of cor-
rect relative orderings is achieved (modulo mispo-
sitioning and false positives).

Long Range Dependencies. It is noticeable that
for all languages, accuracy drops for the ACL rela-
tion. We conjecture that two factors makes it diffi-
cult for the model to make the correct prediction:
heterogeneity and long range dependencies. As
the ACL relation captures different types of clausal
modifiers (finite and non-finite), it is harder for the
model to learn the corresponding patterns. As the
modifier is a clause, the distance between head

9We could of course consider further approximates
matches differing by, say 2, 3 or 5 tokens. But we refrain
from this as this would increase the number of false positives.

http://taln.upf.edu/pages/msr2018-ws/SRST.html#evaluation
http://taln.upf.edu/pages/msr2018-ws/SRST.html#evaluation


3091

det nsubj obj amod acl all deprels
+1 +2 +1 +2 +1 +2 +1 +2 +1 +2 +1 +2

ar 0.36 0.37 0.45 0.52 0.35 0.48 0.52 0.59 0.32 0.41 0.38 0.47
∆ +0.036 +0.047 -0.036 -0.067 -0.069 -0.113 -0.088 -0.106 -0.063 -0.061 -0.044 -0.071

cs 0.86 0.9 0.49 0.63 0.51 0.64 0.83 0.87 0.47 0.62 0.63 0.74
∆ -0.077 -0.071 -0.041 -0.054 -0.048 -0.053 -0.134 -0.126 -0.071 -0.073 -0.068 -0.074

en 0.76 0.85 0.71 0.85 0.76 0.84 0.71 0.76 0.53 0.65 0.63 0.74
∆ -0.10 -0.086 -0.002 -0.053 -0.074 -0.064 -0.15 -0.138 -0.058 -0.104 -0.06 -0.08

es 0.73 0.83 0.55 0.71 0.54 0.70 0.43 0.49 0.39 0.58 0.55 0.68
∆ -0.02 -0.074 -0.012 -0.073 +0.004 -0.057 +0.059 +0.036 -0.056 -0.12 -0.038 -0.088

fi 0.71 0.81 0.64 0.75 0.46 0.60 0.70 0.76 0.50 0.61 0.51 0.65
∆ -0.241 -0.244 -0.194 -0.189 -0.118 -0.137 -0.303 -0.296 -0.261 -0.312 -0.154 -0.16

fr 0.76 0.86 0.60 0.78 0.60 0.75 0.46 0.51 0.51 0.68 0.58 0.71
∆ -0.016 -0.235 +0.014 -0.037 +0.031 -0.029 +0.117 +0.104 -0.1 0.17 -0.038 -0.093

it 0.73 0.82 0.59 0.70 0.58 0.73 0.40 0.46 0.52 0.65 0.56 0.69
∆ -0.022 -0.058 -0.021 -0.07 -0.044 -0.101 +0.058 +0.017 -0.054 -0.072 -0.04 -0.088

nl 0.71 0.79 0.46 0.56 0.38 0.49 0.74 0.77 0.41 0.53 0.49 0.60
∆ -0.121 -0.115 -0.068 -0.07 -0.068 -0.087 -0.278 -0.29 -0.22 -0.277 -0.118 -0.13

pt 0.74 0.80 0.56 0.72 0.57 0.73 0.42 0.44 0.48 0.63 0.54 0.67
∆ -0.032 -0.051 -0.072 -0.114 -0.041 -0.094 +0.034 +0.043 -0.122 -0.204 -0.068 -0.103

ru NA NA 0.65 0.79 0.65 0.74 0.79 0.85 0.45 0.67 0.71 0.80
∆ — — -0.033 -0.057 -0.037 -0.033 -0.095 -0.1 +0.022 -0.027 -0.05 -0.059

Table 2: Proportion of correct head/dependent positioning for the five selected dependency relations: det, nsubj, obj, amod,
acl, and overall performance across all dependency relations. +1: exact match; +2: approximate match, i.e. head and dependent
are in the correct order but there is a one-token difference between gold and prediction. NA: no dependency relation found in a
treebank. ∆ indicates the difference between our delexicalised model and the baseline.

ar cs en es fi fr it nl pt ru
MR Accuracy 91.05 98.89 98.3 99.07 92.66 96.77 96.85 87.6 98.80 98.23
WO 34.9±0.2 57.97±0.06 59.1±0.36 52.33±0.31 43.1±0.53 50.0±0.0 53.17±0.5 47.03±0.59 51.77±0.32 64.73±0.23
WO+MR (S−c) 28.6±0.26 56.1±0.1 54.3±0.3 51.4±0.3 38.63±0.59 44.97±0.25 47.3±0.6 42.3±0.53 50.7±0.26 60.93±0.23
∆ -6.3 -1.87 -4.8 -0.93 -4.47 -5.03 -5.87 -4.73 -1.07 -3.8

Table 3: Morphological Realisation Results. MR Accuracy: accuracy of the MR module. WO: BLEU scores on lemmas.
WO+MR: BLEU scores on inflected tokens.

(the nominal being modified) and dependent (the
verb of the clause modifier) can be long which
again is likely to impede learning.

Irregular Order. For cases where the
head/dependent order is irregular, the scores
are lower. For instance, in Dutch the object may
occur either before (46.9% of the cases in the test
data) or after the verb depending on whether it oc-
curs in a subordinate or a main clause. Relatedly,
the OBJ exact match score is the lowest (0.38) for
this language. Similarly, in Romance languages
where the adjective (AMOD relation) can either be
pre- (head-final construction, HF) or post-posed
(head-initial construction, HI), exact match scores
are lower for this relation than for the others. For
instance, the Portuguese test data contains 71%
HF and 29% HI occurrences of the AMOD relation
and correspondingly, the scores for that relation

are much lower than for the DET, NSUBJ and OBJ

relations for that language. A similar pattern can
be observed for Spanish, French and Italian.

More detailed statistics, including other re-
lations and performance with respect to head-
directionality, can be found in the supplementary
material.

Non-delexicalised Baseline. We also com-
pare our delexicalised model with the non-
delexicalised baseline: ∆ in Table 2 shows
the difference in performance between the two
models.

Overall, the scores favour the delexicalised ap-
proach (negative delta in the all deprels col-
umn for all languages) supporting the results
given by the automatic metric. However, for
some dependency relations, the lexicalised base-
line shows usefulness of word information, for ex-
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ar cs en es fi fr it nl pt ru
S−c/S+c 47.1 96.1 90.9 98.4 98.5 70.8 65.1 99.5 66.3 96.9
WO+MR (S−c) 28.6±0.26 56.1±0.1 54.3±0.3 51.4±0.3 38.63±0.59 44.97±0.25 47.3±0.6 42.3±0.53 50.7±0.26 60.93±0.23
WO+MR (S+c) 15.8±0.1 54.83±0.21 53.3±0.53 51.03±0.31 38.37±0.55 36.23±0.42 31.5±0.4 42.27±0.55 34.0±0.62 60.43±0.15
∆ -12.8 -1.27 -1.0 -0.37 -0.26 -8.74 -15.8 -0.03 -16.7 -0.5
WO+MR+Creg (S+c) 41.8±0.26 40.0±0.66 46.13±0.29
WO+MR+Cs2s (S+c) 40.33±0.36 39.93±0.17 44.57±0.64

Table 4: Contraction Generation Results (BLEU scores). S−c/S+c: a sentence without contractions vs. a reference sentence
including contractions; S−c: BLEU with respect to sentences before contractions; S+c: BLEU with respect to a reference
sentence. The scores were computed on detokenised sequences.

ample, while predicting AMOD relations for Ro-
mance languages (positive delta for French, Ital-
ian, Spanish, and Portuguese). Indeed, preposed
adjectives in those languages constitute a limited
lexical group.

5.2 Morphological Realisation

Table 3 shows the results for the WO+MR model.
The top line (MR Accuracy) indicates the accu-

racy of the MR model on the SR’18 test data which
is computed by comparing its output with gold
word forms. As the table shows, the accuracy is
very high overall ranging from 87.6 to 99.07, with
9 of the 10 languages having an accuracy above
90. This confirms the high accuracy of the model
when performing morphological inflection out of
context.

The third line (WO+MR (S−c)) shows the
BLEU scores for our WO+MR model, i.e., when
the MR model is applied to the output of the
WO model. Here we use an oracle setting which
ignores contractions. That is, we compare the
WO+MR output not with the final sentence but
with the sentence before contraction applies (the
ability to handle contractions is investigated in the
next section).

As the table shows, the delta in BLEU scores
between the model with (WO+MR) and without
(WO) morphological realisation mirrors the ac-
curacy of the morphological realisation model:
as the accuracy of the morphological inflection
model decreases, the delta increases. For instance,
for Arabic, the MR accuracy is among the low-
est (91.05) and, correspondingly, the decrease in
BLEU score when going from word ordering to
word ordering with morphological realisation is
the largest (-6.3).

5.3 Contraction Generation

To assess the degree to which contractions are
used, we compute BLEU-4 between the gold se-
quence of word forms from UD treebanks and

the reference sentence (Table 4, Line S−c/S+c).
As the table shows, this BLEU score is very low
for some languages (Arabic, French, Italian, Por-
tuguese) indicating a high level of contractions.

These differences are reflected in the results of
our WO+MR model: the higher the level of con-
tractions, the stronger the delta between the BLEU
score on the reference sentence without contrac-
tions (WO+MR, S−c) and the reference sentence
with contractions (WO+MR, S+c).

This shows the limits of out-of-context morpho-
logical realisation. While the model is good at
producing a word form given its lemma and a set
of morpho-syntactic features, the lack of contex-
tual information means that contractions cannot be
handled.

Adding a contraction module permits improv-
ing results for those languages where contrac-
tion is frequent (Table 4, Lines WO+MR+Creg,
WO+MR+Cs2s). Gains range from +5 points for
French to +12 for Portuguese when comparing to
WO+MR. We achieved better results with contrac-
tion module based on regular expressions (Creg),
rather than a neural module (Cs2s). In a relatively
simple task, such as contraction generation, rule-
based methods are more reliable, and, overall, are
preferable due to their robustness and easy repair
comparing to neural models, which may, for in-
stance, hallucinate incorrect content.

5.4 Global Evaluation

Finally, we compare our approach with the best
results obtained by the SR’18 participants and
with OSU’s results (King and White, 2018) us-
ing BLEU-4, DIST and NIST scores. OSU results
are treated separately, since some of their scores
were published after the shared task had ended.
Table 5 shows the results. They are mixed. Our
model yields the best results for Czech (BLEU:
+1.63), Finnish (BLEU: +0.87), Dutch (BLEU:
+9.99) and Russian (BLEU: +2.53). However it
underperforms on Arabic (BLEU: -9.8), English
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ar cs en es fi fr it nl pt ru
BLEU
SR’18 16.2 25.05 55.29 49.47 23.26 52.03 44.46 32.28 30.82 34.34
OSU 25.6 53.2 66.30 65.30 37.5 38.2 42.1 25.5 47.6 57.9
Ours 15.8±0.1 54.83±0.21 53.3±0.53 51.03±0.31 38.37±0.55 41.8±0.26 40.0±0.66 42.27±0.55 46.13±0.29 60.43±0.15

DIST
SR’18 44.37 36.48 79.29 51.73 41.21 55.54 58.61 57.81 60.7 34.56
OSU 46.7 58.1 70.2 61.5 58.7 53.7 59.7 57.8 66.0 59.9
Ours 27.63±0.06 63.53±0.15 62.77±0.15 61.33±0.15 51.83±0.55 55.23±0.72 53.73±0.21 54.13±0.15 57.0±0.4 71.23±0.12

NIST
SR’18 7.15 10.74 10.86 11.12 9.36 9.85 9.11 8.64 7.55 13.06
OSU 7.15 13.5 12.0 12.7 9.56 8.00 8.70 7.33 9.13 14.2
Ours 6.04±0.02 13.6±0.05 10.95±0.09 11.63±0.02 10.41±0.03 8.93±0.08 8.99±0.01 9.51±0.03 9.44±0.04 13.96±0.03

Table 5: BLEU, DIST and NIST scores on the SR’18 test data (shallow track). SR’18 is the official results of the shared task
but do not include OSU scores, since they are given in the line below. We also excluded the ADAPT and NILC scores as they
were obtained using data augmentation. OSU is the submission of King and White (2018).

(BLEU: -13), Spanish (BLEU: -14.27), French
(BLEU: -10.23), Italian (BLEU: -4.46) and Por-
tuguese (BLEU: -1.47). Based on the evaluation
of each of our modules, these results can be ex-
plained as follows.

The languages for which our model outper-
forms the state of the art are languages for which
the WO model performs best, the accuracy of the
morphological realiser is high and the level of con-
tractions is low. For those languages, improving
the accuracy of the word ordering model would
further improve results.

For four of the languages where the model un-
derperforms (namely, Arabic, French, Portuguese
and Italian), the level of contraction is high. This
indicates that improvements can be gained by
improving the handling of contractions, e.g., by
learning a joint model that would take into account
both morphological inflection and contraction.

6 Conclusion

While surface realisation is a key component of
NLG applications, most work in this domain has
focused on the development of language specific
models. By providing multi-lingual training and
test set, the SR’18 shared task opens up the possi-
bility to investigate how language specific proper-
ties such as word order and morphological varia-
tion impact performance.

In this paper, we presented a modular approach
to surface realisation and applied it to the ten lan-
guages of the SR’18 shallow track.

For word ordering, we proposed a simple ap-
proach where the data is delexicalised, the input
tree is linearised using depth-first search and the

mapping between input tree and output lemma
sequence is learned using a factored sequence-
to-sequence model. Experimental results show
that full delexicalisation markedly improves per-
formance. Linguistically, this confirms the intu-
ition that the mapping between shallow depen-
dency structure and word order can be learned in-
dependently of the specific words involved.

We further carried out a detailed evaluation of
how our word ordering model performs on the
ten languages of the SR’18 shallow track. While
differences in annotation consistency, number of
dependency relations10 and frequency counts for
each dependency relations in each dataset make it
difficult to conclude anything from the differences
in overall scores between languages, the evalua-
tion of head/dependent word ordering constraints
highlighted the fact that long-distance relations,
such as ACL, and irregular word ordering con-
straints (e.g., the position of the verb in Dutch
main and subordinate clauses) negatively impact
results.

For morphological realisation and contractions,
we showed that applying morphological realisa-
tion out of context, as is done by most of the
SR’18 participating systems11, yields poor results
for those languages (Portuguese, French, Arabic,
Italian) where contractions are frequent. We ex-
plored two ways of handling contractions (a neu-
ral sequence-to-sequence model and a rule-based
model) and showed that adding contraction han-

10The number of distinct dependency relations present in
the treebank ranges between 29 (ar, es) and 44 (en).

11The only exception is Castro Ferreira et al. (2018) who
train an SMT model on pairs of lemmatised/non-lemmatised
sentences.
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dling strongly improves performance (from +5.57
to 12.13 increase in BLEU score for the rule-
based model depending on the language). More
generally, our work on contractions points to the
need for SR models to better take into account
the fine-grained structure of words. For instance,
in French, the article is elided (le → l’) when
the following word starts with a vowel. In fu-
ture work, we plan to explore the development of a
joint model that simultaneously handles morpho-
logical realisation and word ordering while using
finer grained word representations, such as fast-
Text embeddings (Bojanowski et al., 2017) or byte
pair encoding (BPE; Gage, 1994; Sennrich et al.,
2016).
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Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
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Tanaka, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Larraitz Uria, Gertjan van Noord, Viktor
Varga, Veronika Vincze, Jonathan North Washing-
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