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Abstract

Can we construct a neural model that is in-
ductively biased towards learning human lan-
guages? Motivated by this question, we aim
at constructing an informative prior over neu-
ral weights, in order to adapt quickly to held-
out languages in the task of character-level lan-
guage modeling. We infer this distribution
from a sample of typologically diverse train-
ing languages via Laplace approximation. The
use of such a prior outperforms baseline mod-
els with an uninformative prior (so-called ‘fine-
tuning’) in both zero-shot and few-shot set-
tings. This shows that the prior is imbued
with universal phonological knowledge. More-
over, we harness additional language-specific
side information as distant supervision for
held-out languages. Specifically, we condition
language models on features from typologi-
cal databases, by concatenating them to hid-
den states or generating weights with hyper-
networks. These features appear beneficial in
the few-shot setting, but not in the zero-shot
setting. Since the paucity of digital texts af-
fects the majority of the world’s languages, we
hope that these findings will help broaden the
scope of applications for language technology.

1 Introduction

With the success of recurrent neural networks and
other black-box models on core NLP tasks, such as
language modeling, researchers have turned their
attention to the study of the inductive bias such neu-
ral models exhibit (Linzen et al., 2016; Marvin and
Linzen, 2018; Ravfogel et al., 2018). A number of
natural questions have been asked. For example,
do recurrent neural language models learn syntax
(Marvin and Linzen, 2018)? Do they map onto
grammaticality judgments (Warstadt et al., 2019)?
However, as Ravfogel et al. (2019) note, “[m]ost of
the work so far has focused on English.” Moreover,
these studies have almost always focused on train-

ing scenarios where a large number of in-language
sentences are available.

In this work, we aim to find a prior distribu-
tion over network parameters that generalize well
to new human languages. The recent vein of re-
search on the inductive biases of neural nets im-
plicitly assumes a uniform (unnormalizable) prior
over the space of neural network parameters (Rav-
fogel et al., 2019, inter alia). In contrast, we take
a Bayesian-updating approach: First, we approxi-
mate the posterior distribution over the network pa-
rameters using the Laplace method (Azevedo-Filho
and Shachter, 1994), given the data from a sample
of seen training languages. Afterward, this distri-
bution serves as a prior for maximum-a-posteriori
(MAP) estimation of network parameters for the
held-out unseen languages.

The search for a universal prior for linguistic
knowledge is motivated by the notion of Universal
Grammar (UG), originally proposed by Chomsky
(1959). The presence of innate biological proper-
ties of the brain that constrain possible human lan-
guages was posited to explain why children learn
languages so quickly despite the poverty of the
stimulus (Chomsky, 1978; Legate and Yang, 2002).
In turn, UG has been connected with Greenberg
(1963)’s typological universals by Graffi (1980)
and Gilligan (1989): this way, the patterns observed
in cross-lingual variation could be explained by
an innate set of parameters wired into a language-
specific configuration during the early phases of
language acquisition.

Our study explores the task of character-level
language modeling. Specifically, we choose an
open-vocabulary setup, where no token is treated
as unknown, to allow for a fair comparison among
the performances of different models across differ-
ent languages (Gerz et al., 2018a,b; Cotterell et al.,
2018; Mielke et al., 2019). We run experiments un-
der several regimes of data scarcity for the held-out

2900



languages (zero-shot, few-shot, and joint multilin-
gual learning) over a sample of 77 typologically
diverse languages.

As an orthogonal contribution, we also note that
realistically we are not completely in the dark about
held-out languages, as coarse-grained grammati-
cal features are documented for most world’s lan-
guages and available in typological databases such
as URIEL (Littell et al., 2017). Hence, we also
explore a regime where we condition the universal
prior on typological side information. In particu-
lar, we consider concatenating typological features
to hidden states (Östling and Tiedemann, 2017)
and generating the network parameters with hyper-
networks receiving typological features as inputs
(Platanios et al., 2018).

Empirically, given the results of our study, we
offer two findings. The first is that neural recur-
rent models with a universal prior significantly out-
perform baselines with uninformative priors both
in zero-shot and few-shot training settings. Sec-
ondly, conditioning on typological features further
reduces bits per character in the few-shot setting,
but we report negative results for the zero-shot set-
ting, possibly due to some inherent limitations of
typological databases (Ponti et al., 2019).

The study of low-resource language modeling
also has a practical impact. According to Simons
(2017), 45.71% of the world’s languages do not
have written texts available. The situation is even
more dire for their digital footprint. As of March
2015, just 40 out of the 188 languages documented
on the Internet accounted for 99.99% of the web
pages.1 And as of April 2019, Wikipedia is trans-
lated only in 304 out of the 7097 existing languages.
What is more, Kornai (2013) prognosticates that the
digital divide will act as a catalyst for the extinction
of many of the world’s languages. The transfer of
language technology may help reverse this course
and give space to unrepresented communities.

2 LSTM Language Models

In this work, we address the task of character-level
language modeling. Whereas word lexicalization is
mostly arbitrary across languages, phonemes allow
for transferring universal constraints on phonotac-
tics2 and language-specific sequences that may be
shared across languages, such as borrowings and

1https://w3techs.com/technologies/
overview/content_language/all

2E.g. with few exceptions (Evans and Levinson, 2009, sec.
2.2.2), the basic syllabic structure is vowel–consonant.

cognates (Brown et al., 2008). Since languages
are mostly recorded in text rather than phonemic
symbols (IPA), however, we focus on characters as
a loose approximation of phonemes.

Let Σ` be the set of characters for language
`. Moreover, consider a collection of languages
T tE partitioned into two disjoint sets of observed
(training) languages T and held-out (evaluation)
languages E . Then, let Σ = ∪`∈(T tE)Σ` be the
union of character sets in all languages. A univer-
sal, character-level language model is a probability
distribution over Σ∗.3 Let x ∈ Σ∗ be a sequence
of characters. We write:

p(x | w) =

n∏
t=1

p(xt | x<t,w) (1)

where t is a time step, x0 is a distinguished begin-
ning-of-sentence symbol, w are the parameters,
and every sequence x ends with a distinguished
end-of-sentence symbol xn.

We implement character-level language models
with Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). These en-
code the entire history x<t as a fixed-length vector
ht by manipulating a memory cell ct through a set
of gates. Then we define

p(xt | x<t,w) = softmax(Wht + b). (2)

LSTMs have an advantage over other recurrent ar-
chitectures as memory gating mitigates the problem
of vanishing gradients and captures long-distance
dependencies (Pascanu et al., 2013).

3 Neural Language Modeling with a
Universal Prior

The fundamental hypothesis of this work is that
there exists a prior p(w) over the weights of a
neural language model that places high probability
on networks that describe human-like languages.
Such a prior would provide an inductive bias that
facilitates learning unseen languages. In practice,
we construct it as the posterior distribution over
the weights of a language model of seen languages.
Let D` be the examples in language `, and let the
examples in all training languages beD = ∪`∈T D`.
Taking a Bayesian approach, the posterior over

3Note that Σ is also augmented with punctuation and white
space, and distinguished beginning-of-sequence and end-of-
sequence symbols, respectively.
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weights is given by Bayes’ rule:

p(w | D)︸ ︷︷ ︸
posterior

∝
∏
`∈T

p(D` | w)︸ ︷︷ ︸
likelihood

p(w)︸ ︷︷ ︸
prior

(3)

We take the prior of eq. (3) to be a Gaussian with
zero mean and covariance matrix σ2 I, i.e.

p(w) =
1√

2πσ2
exp

(
− 1

2σ2
||w||22

)
. (4)

However, computation of the posterior p(w | D)
is woefully intractable: recall that, in our setting,
each p(x | w) is an LSTM language model, like the
one defined in eq. (2). Hence, we opt for a simple
approximation of the posterior, using the classic
Laplace method (MacKay, 1992). This method has
recently been applied to other transfer learning or
continuous learning scenarios in the neural network
literature (Kirkpatrick et al., 2017; Kochurov et al.,
2018; Ritter et al., 2018).

In §3.1, we first introduce the Laplace method,
which approximates the posterior with a Gaussian
centered at the maximum-likelihood estimate.4 Its
covariance matrix is amenable to be computed with
backpropagation, as detailed in §3.2. Finally, we
describe how to use this distribution as a prior to
perform maximum-a-posteriori inference over new
data in §3.3.

3.1 Laplace Method
First, we (locally) maximize the logarithm of the
RHS of eq. (3):

L(w) =
∑
`∈T

log p(D` | w) + log p(w) (5)

We note thatL(w) is equivalent to the log-posterior
up to an additive constant, i.e.

log p(w | D) = L(w)− log p(D) (6)

where the constant log p(D) is the log-normalizer.
Let w? be a local maximizer of L.5 We now ap-
proximate the log-posterior with a second-order
Taylor expansion around w?:

log p(w | D) ≈ (7)

L(w?) +
1

2
(w−w?)>H (w −w?)− log p(D)

4Note that, in general, the true posterior is multi-modal.
The Laplace method instead approximates it with a unimodal
distribution.

5In practice, non-convex optimization is only guaranteed to
reach a critical point, which could be a saddle point. However,
the derivation of Laplace’s method assumes that we do reach
a maximizer.

where H is the Hessian matrix. Note that we
have omitted the first-order term, since the gra-
dient ∇L(w) = 0 at the local maximizer w?.
This quadratic approximation to the log-posterior
is Gaussian, which can be seen by exponentiating
the RHS of eq. (7):

exp
[
−1

2(w −w?)>(−H)(w −w?)
]√

(2π)d |−H|−1

, N (w?,−H−1) (8)

where exp(L(w?)) is simplified from both numer-
ator and denominator. Since w? is a local maxi-
mizer, H is a negative semi-definite matrix.6 The
full derivation is given in App. C.

In principle, computing the Hessian is possible
by running backpropagation twice: This yields a
matrix with d2 entries. However, in practice, this is
not possible. First, running backpropagation twice
is tedious. Second, we can not easily store a matrix
with d2 entries since d is the number of parameters
in the language model, which is exceedingly large.

3.2 Approximating the Hessian
To cut the computation down to one pass, we ex-
ploit a property from theoretical statistics: Namely,
that the Hessian of the log-likelihood bears a close
resemblance to a quantity known as the Fisher in-
formation matrix. This connection allows us to de-
velop a more efficient algorithm that approximates
the Hessian with one pass of backpropagation.

We derive this approximation to the Hessian of
L(w) here. First, we note that due to the linearity
of∇2, we have

H = ∇2L(w)

= ∇2

(∑
`∈T

log p(D` | w) + log p(w)

)
=
∑
`∈T
∇2 log p(D` | w)︸ ︷︷ ︸

likelihood

+∇2 log p(w)︸ ︷︷ ︸
prior

(9)

Note that the integral over languages ` ∈ T is a
discrete summation, so we may exchange addends
and derivatives such as is required for the proof.

We now discuss each term of eq. (9) individually.
First, to approximate the likelihood term, we draw
on the relation between the Hessian and the Fisher

6Note that, as a result, our representation of the Gaussian
is non-standard; generally, the precision matrix is positive
semi-definite.
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information matrix. A basic fact from information
theory (Cover and Thomas, 2006) gives us that the
Fisher information matrix may be written in two
equivalent ways:

−E
[
∇2 log p(D | w)

]
(10)

= E
[
∇ log p(D | w)∇ log p(D | w)>

]
︸ ︷︷ ︸

expected Fisher information matrix

This equality suggests a natural approximation of
the expected Fisher information matrix—the ob-
served Fisher information matrix

− 1

|D|
∑
x∈D
∇2 log p(x | w) (11)

≈ 1

|D|
∑
x∈D
∇ log p(x | w)∇ log p(x | w)>︸ ︷︷ ︸

observed Fisher information matrix

which is tight in the limit as |D| → ∞ due to the
law of large numbers. Indeed, when we have a
large number of training exemplars, the average
of the outer products of the gradients will be a
good approximation to the Hessian. However, even
this approximation still has d2 entries, which is far
too many to be practical. Thus, we further use a
diagonal approximation. We denote the diagonal
of the observed Fisher information matrix as the
vector f ∈ Rd, which we define as

f =
∑
`∈T

∑
x∈D`

1

|T | · |D`|
[
∇ log p(x | w)

]2 (12)

where the (·)2 is applied point-wise. Computation
of the Hessian of the prior term in eq. (9) is more
straightforward and does not require approximation.
Indeed, generally, this is the negative inverse of the
covariance matrix, which in our case means

∇2 log p(w) = − 1

σ2
I (13)

Summing the (approximate) Hessian of the log-
likelihood in eq. (12) and the Hessian of the prior
in eq. (13) yields our approximation to the Hessian
of the log-posterior

H̃ = −diag(f)− 1

σ2
I (14)

The full derivation of the approximated Hessian is
available in App. D.

3.3 MAP Inference
Finally, we harness the posterior p(w | D) ≈
N (w?,−H̃−1) as the prior over model parame-
ters for training a language model on new, held-out
languages via MAP estimation. This is only an
approximation to full Bayesian inference, because
it does not characterize the entire distribution of
the posterior, just the mode (Gelman et al., 2013).

In the zero-shot setting, this boils down to using
the mean of the prior w? as network parameters
during evaluation. In the few-shot setting, instead,
we assume that some data for the target language
` ∈ E is available. Therefore, we maximize the
log-likelihood given the target language data plus
a regularizer that incarnates the prior, scaled by a
factor of λ:

L(w) =
∑
`∈E

log p(D` | w) (15)

+
λ

2
(w −w?)>H̃ (w −w?)

We denote the the prior N (w?,−H̃−1) that fea-
tures in eq. (15) as UNIV, as it incorporates uni-
versal linguistic knowledge. As a baseline for this
objective, we perform MAP inference with an unin-
formative prior N (0, I), which we label NINF. In
the zero-shot setting, this means that the parame-
ters are sampled from the uninformative prior. In
the few-shot setting, we maximize

L(w) =
∑
`∈E

log p(D` | w)− λ

2
||w||22 (16)

Note that, owing to this formulation, the unin-
formed NINF model does not have access to the
posterior of the weights given the data from the
training languages.

Moreover, as an additional baseline, we consider
a common approach for transfer learning in neural
networks (Ruder, 2017), namely ‘fine-tuning.’ Af-
ter finding the maximum-likelihood value w? on
the training data, this is simply used to initialize
the weights before further optimizing them on the
held-out data. We label this method FITU.

4 Language Modeling Conditioned on
Typological Features

Realistically, the prior over network weights should
also be augmented with side information about the
general properties of the held-out language to be
learned, if such information is available. In fact,
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linguists have documented such information even
for languages without plain digital texts available
and stored it in the form of attribute–value features
in publicly accessible databases (Croft, 2002; Dryer
and Haspelmath, 2013).

The usage of such features to inform neural NLP
models is still scarce, partly because the evidence
in favor of their effectiveness is mixed (Ponti et al.,
2018, 2019). In this work, we propose a way to
distantly supervise the model with this side infor-
mation effectively. We extend our non-conditional
language models outlined in §3 (BARE) to a series
of variants conditioned on language-specific prop-
erties, inspired by Östling and Tiedemann (2017)
and Platanios et al. (2018). A fundamental differ-
ence from these previous works, however, is that
they learn such properties in an end-to-end fash-
ion from the data in a joint multilingual learning
setting. Obviously, this is not feasible for the zero-
shot setting and unreliable for the few-shot setting.
Rather, we represent languages with their typologi-
cal feature vector, which we assume to be readily
available both for both training and held-out lan-
guages.

Let t` ∈ [0, 1]f be a vector of f typological
features for language ` ∈ T tE . We reinterpret the
conditional language models within the Bayesian
framework by estimating their posterior probability

p(w | D,F) ∝
∏
`∈T

p(D` | w) p(w | t`) (17)

We now consider two possible methods to estimate
p(w | t`). For both of them, we first encode
the features through a non-linear transformation
f(t`) = ReLU(Wt`+b), where W ∈ Rr×f and
b ∈ Rr, r � f . A first variant, labeled OEST, is
based on Östling and Tiedemann (2017). Assum-
ing the standard LSTM architecture where ot is the
output gate and ct is the memory cell, we modify
the equation for the hidden state ht as follows:

ht =
(
ot � tanh(ct)

)
⊕ f(t`) (18)

where � stands for the Hadamard product and ⊕
for concatenation. In other words, we concatenate
the typological features to all the hidden states.

Moreover, we experiment with a second variant
where the parameters of the LSTM are generated
by a hyper-network (i.e., a simple linear layer with
weight W ∈ R|w|×r) that transforms f(t`) into
w. This approach, labeled PLAT, is inspired by

Platanios et al. (2018), with the difference that they
generate parameters for an encoder-decoder archi-
tecture for neural machine translation.

On the other hand, we do not consider the condi-
tional model proposed by Sutskever et al. (2014),
where f(t`) would be used to initialize the val-
ues for h0 and c0. During the evaluation, for all
time steps t, ht and ct are never reset on sentence
boundaries, so this model would find itself at a dis-
advantage because it would require either to erase
the sequential history cyclically or to lose memory
of the typological features.

5 Experimental Setup

Data The source for our textual data is the
Bible corpus7 (Christodouloupoulos and Steedman,
2015).8 We exclude languages that are not written
in the Latin script and duplicate languages, result-
ing in a sample of 77 languages.9 Since not all
translations cover the entire Bible, they vary in
size. The text from each language is split into train-
ing, development, and evaluation sets (80-10-10
percent, respectively). Moreover, to perform MAP
inference in the few-shot setting, we randomly sam-
ple 100 sentences from the train set of each held-out
language.

We obtain the typological feature vectors from
URIEL (Littell et al., 2017).10 We include the fea-
tures related to 3 levels of linguistic structure, for
a total of 245 features: i) syntax, e.g. whether the
subject tends to precede the object. These origi-
nate from the World Atlas of Language Structures
(Dryer and Haspelmath, 2013) and the Syntactic
Structures of the World’s Languages (Collins and
Kayne, 2009); ii) phonology, e.g. whether a lan-
guage has distinctive tones; iii) phonological in-
ventories, e.g. whether a language possesses the
retroflex approximant /õ/. Both ii) and iii) were
originally collected in PHOIBLE (Moran et al.,
2014). Missing values are inferred as a weighted
average of the 10 nearest neighbor languages in
terms of family, geography, and typology.

7http://christos-c.com/bible/
8This corpus is arguably representative of the variety of the

world’s languages: it covers 28 families, several geographic
areas (16 languages from Africa, 23 from Americas, 26 from
Asia, 33 from Europe, 1 from Oceania), and endangered or
poorly documented languages (39 with less than 1M speakers).

9These are identified with their 3-letter ISO 639-3 codes
throughout the paper. For the corresponding language names,
consult www.iso.org/standard/39534.html.

10www.cs.cmu.edu/~dmortens/uriel.html
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NINF UNIV NINF UNIV NINF UNIV
BARE BARE OEST BARE BARE OEST BARE BARE OEST

acu 8.491 3.244 3.472 fra 8.587 4.066 4.467 por 8.491 3.751 4.219
afr 8.607 3.229 3.995 gbi 8.610 3.823 3.912 pot 8.600 5.336 5.359
agr 8.603 3.779 3.946 gla 8.490 4.179 3.956 ppk 8.596 4.506 4.599
ake 8.602 5.753 6.281 glv 8.606 4.349 4.612 quc 8.605 4.063 4.118
alb 8.490 4.571 5.017 hat 8.594 4.186 4.620 quw 8.488 3.560 4.027
amu 8.610 4.912 5.959 hrv 8.606 4.050 3.441 rom 8.603 3.669 4.056
bsn 8.591 5.046 5.695 hun 8.493 4.836 5.030 ron 8.588 5.011 5.690
cak 8.603 4.068 4.326 ind 8.604 3.796 4.311 shi 8.601 5.496 5.946
ceb 8.488 3.668 3.850 isl 8.596 5.039 5.629 slk 8.491 4.304 4.512
ces 8.600 4.369 4.461 ita 8.605 4.023 3.752 slv 8.604 3.661 4.106
cha 8.594 4.366 4.353 jak 8.488 4.051 4.793 sna 8.596 4.146 4.283
chq 8.598 6.940 7.623 jiv 8.601 3.866 4.039 som 8.614 4.159 4.470
cjp 8.494 4.600 4.985 kab 8.596 4.659 5.400 spa 8.489 3.645 4.020
cni 8.604 3.740 4.651 kbh 8.607 4.663 4.950 srp 8.604 3.414 3.437
dan 8.593 3.471 4.599 kek 8.491 4.666 4.944 ssw 8.593 4.064 3.780
deu 8.599 4.102 4.214 lat 8.601 3.703 4.093 swe 8.605 4.210 3.892
dik 8.490 4.447 4.533 lav 8.588 5.415 6.130 tgl 8.487 3.639 3.878
dje 8.603 3.725 3.996 lit 8.602 4.794 4.853 tmh 8.602 4.830 4.711
djk 8.592 3.663 3.874 mam 8.488 4.292 5.076 tur 8.592 5.574 5.935
dop 8.609 5.950 7.351 mri 8.606 3.440 4.074 usp 8.604 4.127 4.337
eng 8.488 3.816 4.028 nhg 8.588 4.323 4.450 vie 8.490 7.137 7.484
epo 8.605 3.818 4.116 nld 8.601 3.851 4.326 wal 8.605 4.027 4.585
est 8.606 6.807 8.261 nor 8.492 3.174 3.902 wol 8.607 4.290 4.420
eus 8.605 4.118 4.321 pck 8.603 4.053 4.233 xho 8.602 4.171 4.276
ewe 8.490 5.049 5.497 plt 8.603 4.364 4.648 zul 8.488 3.218 4.109
fin 8.604 4.308 4.338 pol 8.601 5.158 5.556 ALL 8.572 4.343 4.691

Table 1: BPC scores (lower is better) for the ZERO-SHOT learning setting, with the uninformed prior (NINF) and
the universal prior (UNIV): see §2 for the descriptions of the priors. Note that for NINF there is no difference
between a BARE model and a conditional model (OEST). Colors define the partition in which each language
(rows) has been held out.

BARE OEST BARE OEST BARE OEST BARE OEST
acu 1.413 1.308 eng 1.355 1.350 kek 1.131 1.133 slk 1.844 1.754
afr 1.471 1.457 epo 1.471 1.450 lat 1.792 1.758 slv 1.848 1.793
agr 1.701 1.581 est 0.333 0.150 lav 2.146 1.931 sna 1.489 1.457
ake 1.453 1.377 eus 1.763 1.635 lit 1.895 1.833 som 1.477 1.468
alb 1.590 1.552 ewe 2.084 1.944 mam 1.654 1.548 spa 1.559 1.525
amu 1.402 1.340 fin 1.716 1.680 mri 1.342 1.330 srp 1.832 1.756
bsn 1.232 1.172 fra 1.465 1.432 nhg 1.302 1.238 ssw 1.890 1.697
cak 1.281 1.221 gbi 1.398 1.331 nld 1.621 1.601 swe 1.619 1.595
ceb 1.193 1.185 gla 3.403 1.839 nor 1.623 1.590 tgl 1.221 1.210
ces 1.872 1.795 glv 1.932 1.644 pck 1.731 1.711 tmh 2.786 2.301
cha 1.934 1.790 hat 1.480 1.454 plt 1.296 1.286 tur 1.801 1.773
chq 1.265 1.220 hrv 2.059 1.974 pol 1.743 1.698 usp 1.290 1.214
cjp 1.706 1.565 hun 1.887 1.847 por 1.586 1.552 vie 1.648 1.637
cni 1.348 1.290 ind 1.356 1.336 pot 2.484 2.144 wal 1.561 1.457
dan 1.727 1.693 isl 1.845 1.808 ppk 1.538 1.439 wol 2.053 1.890
deu 1.532 1.512 ita 1.615 1.583 quc 1.393 1.291 xho 1.680 1.634
dik 1.979 1.835 jak 1.415 1.322 quw 1.498 1.418 zul 1.880 1.620
dje 1.570 1.550 jiv 1.705 1.572 rom 1.706 1.587 ALL 1.652 1.550
djk 1.515 1.435 kab 1.955 1.791 ron 1.572 1.537
dop 1.810 1.676 kbh 1.436 1.371 shi 2.057 1.903

Table 2: BPC results (lower is better) for the JOINT learning setting, with the uninformed NINF prior. These results
constitute the expected ceiling performance for language transfer models.
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NINF FITU UNIV NINF FITU UNIV
BARE OEST BARE OEST BARE OEST BARE OEST

acu 4.203 2.117 2.551 2.136 kbh 4.644 2.362 2.434 2.288
afr 4.423 3.620 3.042 2.773 kek 4.613 2.809 3.015 2.714
agr 4.268 3.282 3.403 2.457 lat 4.239 4.342 3.416 3.202
ake 4.318 2.168 2.238 2.180 lav 4.765 2.867 3.842 2.917
alb 4.544 3.186 3.302 3.084 lit 4.769 3.752 3.592 3.668
amu 4.486 2.820 3.948 2.080 mam 4.525 2.274 2.873 2.363
bsn 4.546 1.861 2.678 1.850 mri 3.795 3.482 3.010 2.459
cak 4.426 1.994 2.053 1.956 nhg 4.373 2.004 2.480 1.965
ceb 4.084 2.562 2.595 2.470 nld 4.469 3.008 2.908 2.903
ces 4.984 4.651 4.190 3.680 nor 4.453 3.152 2.954 3.054
cha 4.329 2.546 2.899 2.525 pck 4.246 4.011 3.532 3.030
chq 4.941 1.948 2.078 1.963 plt 4.201 2.532 2.742 2.490
cjp 4.424 2.389 2.880 2.393 pol 4.853 3.852 3.620 3.788
cni 4.185 2.797 3.018 1.982 por 4.446 3.231 3.198 3.098
dan 4.719 3.211 3.127 3.180 pot 4.299 3.773 3.944 2.763
deu 4.589 3.103 3.007 2.953 ppk 4.439 2.220 2.736 2.236
dik 4.380 2.640 3.020 2.667 quc 4.538 2.154 2.242 2.108
dje 4.382 3.815 3.398 2.898 quw 4.223 2.196 2.547 2.158
djk 4.130 2.064 2.446 2.085 rom 4.378 3.121 3.257 2.455
dop 4.508 2.506 2.562 2.448 ron 4.579 3.273 3.734 3.216
eng 4.436 2.808 2.913 2.719 shi 4.509 2.963 3.092 2.970
epo 4.469 3.609 3.511 2.825 slk 4.873 3.722 3.812 3.631
est 3.618 1.952 2.487 1.962 slv 4.633 4.630 3.527 3.501
eus 4.354 2.628 2.705 2.567 sna 4.455 2.910 3.114 2.870
ewe 4.590 2.806 3.336 2.786 som 4.257 3.048 2.908 2.934
fin 4.385 4.339 3.830 3.312 spa 4.507 3.223 3.149 3.090
fra 4.551 3.086 3.276 2.981 srp 4.561 4.467 3.367 3.380
gbi 4.250 2.138 2.170 2.054 ssw 4.370 2.611 2.924 2.570
gla 4.159 2.377 2.835 2.395 swe 4.657 3.266 3.184 3.177
glv 4.346 3.523 3.702 2.644 tgl 4.060 2.546 2.592 2.436
hat 4.468 2.929 3.048 2.849 tmh 4.618 4.087 4.218 3.125
hrv 4.615 3.845 3.608 3.588 tur 4.846 3.509 4.282 3.552
hun 4.806 3.589 3.709 3.522 usp 4.529 2.114 2.189 2.073
ind 4.377 3.317 3.258 2.420 vie 5.185 3.018 3.751 3.015
isl 4.744 3.174 3.703 3.101 wal 4.398 2.986 3.623 2.278
ita 4.370 3.384 3.196 3.178 wol 4.621 2.898 2.968 2.826
jak 4.532 2.113 2.650 2.126 xho 4.561 3.415 3.208 3.289
jiv 4.338 3.413 3.475 2.504 zul 4.564 2.625 2.866 2.622
kab 4.649 2.783 3.574 2.800 ALL 4.467 3.007 3.120 2.731

Table 3: BPC scores (lower is better) for the FEW-SHOT learning setting, with NINF, FITU and UNIV priors.
Colors define the partition in which each language (rows) has been held out.

Language Model We implement the LSTM
following the best practices and choosing the
hyper-parameter settings indicated by Merity et al.
(2018b,a). Specifically, we optimize the neural
weights with Adam (Kingma and Ba, 2014) and a
non-monotonically decayed learning rate: its value
is initialized as 10−4 and decreases by a factor of
10 every 1/3rd of the total epochs. The maximum
number of epochs amounts to 6 for training on DT ,
with early stopping based on development set per-
formance, and the maximum number of epochs is
25 for few-shot learning on D`∈E .

For each iteration, we sample a language pro-

portionally to the amount of its data: p(`) ∝ |D`|,
in order not to exhaust examples from resource-
lean languages in the early phase of training. Then,
we sample without replacement from D` a mini-
batch of 128 sequences with a variable maximum
sequence length.11 This length is sampled from
a distribution m ∼ N (µ = 125, σ = 5).12 Each
epoch ends when all the data sequences have been
sampled.

11This avoids creating insurmountable boundaries to back-
propagation through time (Tallec and Ollivier, 2017).

12The learning rate is therefore scaled by bme
µ
· |DT |
|T |·|D`|

,
where b·e is an operator that rounds to the closest integer.
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We apply several techniques of dropout for regu-
larization, including variational dropout (Gal and
Ghahramani, 2016), which applies an identical
mask to all the time steps, with p = 0.1 for char-
acter embeddings and intermediate hidden states
and p = 0.4 for the output hidden states. Drop-
Connect (Wan et al., 2013) is applied to the model
parameters U of the first hidden layer with p = 0.2.

Following Merity et al. (2018b), the underlying
language model architecture consists of 3 hidden
layers with 1,840 hidden units each. The dimen-
sionality of the character embeddings is 400. We
tie input and output embeddings following Merity
et al. (2018a). For conditional language models, the
dimensionality of f(t`) is set to 115 for the OEST

method based on concatenation (Östling and Tiede-
mann, 2017), and 4 (due to memory limitations)
in the PLAT method based on hyper-networks (Pla-
tanios et al., 2018). For the regularizer in eq. (15),
we perform grid search over the hyper-parameter
λ: we finally select a value of 105 for UNIV and
10−5 for NINF.

Regimes of Data Paucity We explore different
regimes of data paucity for the held-out languages:
• ZERO-SHOT transfer setting: we split the sample
of 77 languages into 4 partitions. The languages in
each subset are held out in turn, and we use their
test set for evaluation.13 For each subset, we further
randomly choose 5 languages whose development
set is used for validation. The training set of the
rest of the languages is used to estimate a prior over
network parameters via the Laplace approximation.
• FEW-SHOT transfer setting: on top of the zero-
shot setting, we use the prior to perform MAP in-
ference over a small sample (100 sentences) from
the training set of each held-out language.
• JOINT multilingual setting: the data includes
the full training set for all 77 languages, including
held-out languages. This serves as a ceiling for the
model performance in cross-lingual transfer.

6 Results and Analysis

The results for our experiments are grouped in Ta-
ble 1 for the ZERO-SHOT regime, in Table 3 for the
FEW-SHOT regime, and in Table 2 for the JOINT

multilingual regime, which constitutes a ceiling to
cross-lingual transfer performances. The scores
represent Bits Per Character (BPC; Graves, 2013):

13Holding out each language individually would not in-
crease the sample of training languages significantly, while
inflating the number of experimental runs needed.

this metric is simply defined as the negative log-
likelihood of test data divided by ln 2. We compare
the results along the following dimensions:

Informativeness of Prior Our main result is that
the UNIV prior consistently outperforms the NINF

prior across the board and by a large margin in both
ZERO-SHOT and FEW-SHOT settings. The scores of
the naïvest baseline, ZERO-SHOT NINF BARE, are
considerably worse than both ZERO-SHOT UNIV

models: this suggests that the transfer of informa-
tion on character sequences is meaningful. The low-
est BPC reductions are observed for languages like
Vietnamese (15.94% error reduction) or Highland
Chinantec (19.28%) where character inventories
differ the most from other languages. Moreover,
the ZERO-SHOT UNIV models are on a par or better
than even the FEW-SHOT NINF models. In other
words, the most helpful supervision comes from a
universal prior rather than from a small in-language
sample of sentences. This demonstrates that the
UNIV prior is truly imbued with universal linguis-
tic knowledge that facilitates learning of previously
unseen languages.

The averaged BPC score for the other baseline
without a prior, FINE-TUNE, is 3.007 for FEW-
SHOT OEST, to be compared with 2.731 BPC of
UNIV. Note that fine-tuning is an extremely com-
petitive baseline, as it lies at the core of most state-
of-the-art NLP models (Peters et al., 2019). Hence,
this result demonstrates the usefulness of Bayesian
inference in transfer learning.

Conditioning on Typological Information An-
other important result regards the fact that condi-
tioning language models on typological features
yields opposite effects in the ZERO-SHOT and FEW-
SHOT settings. Comparing the columns of the
BARE and OEST models in Table 1 reveals that
the non-conditional baseline BARE is superior for
71 / 77 languages (the exceptions being Chamorro,
Croatian, Italian, Swazi, Swedish, and Tuareg). On
the other hand, the same columns in Table 3 and Ta-
ble 2 reveal an opposite pattern: OEST outperforms
the BARE baseline in 70 / 77 languages. Finally,
OEST surpasses the BARE baseline in the JOINT

setting for 76 / 77 languages (save Q’eqchi’).
We also also take into consideration an alter-

native conditioning method, namely PLAT. For
clarity’s sake, we exclude this batch of results from
Table 1 and Table 3, as this method proves to be
consistently worse than OEST. In fact, the average
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BPC of PLAT amounts to 5.479 in the ZERO-SHOT

setting and 3.251 in the FEW-SHOT setting. These
scores have to be compared with 4.691 and 2.731
for OEST, respectively.

The possible explanation behind the mixed evi-
dence on the success of typological features points
to some intrinsic flaws of typological databases.
Ponti et al. (2019) has shown how their feature
granularity may be too coarse to liaise with data-
driven probabilistic models, and inferring missing
values due to the limited coverage of features re-
sults in additional noise. As a result, language mod-
els seem to be damaged by typological features in
absence of data, whereas they benefit from their
guidance when at least a small sample of sentences
is available in the FEW-SHOT setting.

Data Paucity Different regimes of data paucity
display uneven levels of performance. The best
models for each setting (ZERO-SHOT UNIV BARE,
FEW-SHOT UNIV OEST, and JOINT OEST) reveal
large gaps between their average scores. Hence, in-
language supervision remains the best option when
available: transferred language models always lag
behind their supervised equivalents.

7 Related Work

LSTMs have been probed for their inductive bias to-
wards syntactic dependencies (Linzen et al., 2016)
and grammaticality judgments (Marvin and Linzen,
2018; Warstadt et al., 2019). Ravfogel et al. (2019)
have extended the scope of this analysis to typolog-
ically different languages through synthetic varia-
tions of English. In this work, we aim to model
the inductive bias explicitly by constructing a prior
over the space of neural network parameters.

Few-shot word-level language modeling for truly
under-resourced languages such as Yongning Na
has been investigated by Adams et al. (2017)
with the aid of a bilingual lexicon. Vinyals et al.
(2016) and Munkhdalai and Trischler (2018) pro-
posed novel architectures (Matching Networks and
LSTMs augmented with Hebbian Fast Weights, re-
spectively) for rapid associative learning in English,
and evaluated them in few-shot cloze tests. In this
respect, our work is novel in pushing the problem
to its most complex formulation, zero-shot infer-
ence, and in taking into account the largest sample
of languages for language modeling to date.

In addition to those considered in our work, there
are also alternative methods to condition language
models on features. Kalchbrenner and Blunsom

(2013) used encoded features as additional biases
in recurrent layers. Kiros et al. (2014) put forth a
log-bilinear model that allows for a ‘multiplicative
interaction’ between hidden representations and
input features (such as images). With a similar de-
vice, but a different gating method, Tsvetkov et al.
(2016) trained a phoneme-level joint multilingual
model of words conditioned on typological features
from Moran et al. (2014).

The use of the Laplace method for neural trans-
fer learning has been proposed by Kirkpatrick et al.
(2017), inspired by synaptic consolidation in neuro-
science, with the aim to avoid catastrophic forget-
ting. Kochurov et al. (2018) tackled the problem
of continuous learning by approximating the pos-
terior probabilities through stochastic variational
inference. Ritter et al. (2018) substitute diagonal
Laplace approximation with a Kronecker factored
method, leading to better uncertainty estimates.
Finally, the regularizer proposed by Duong et al.
(2015) for cross-lingual dependency parsing can be
interpreted as a prior for MAP estimation where
the covariance is an identity matrix.

8 Conclusions

In this work, we proposed a Bayesian approach to
transfer language models cross-lingually. We cre-
ated a universal prior over neural network weights
that is capable of generalizing well to new lan-
guages suffering from data paucity. The prior was
constructed as the posterior of the weights given
the data from available training languages, inferred
via the Laplace method. Based on the results of
character-level language modeling on a sample of
77 languages, we demonstrated the superiority of
this prior imbued with universal linguistic knowl-
edge over uninformative priors and unnormalizable
priors (i.e., the widespread fine-tuning approach)
in both zero-shot and few-shot settings. Moreover,
we showed that adding language-specific side in-
formation drawn from typological databases to the
universal prior further increases the levels of perfor-
mance in the few-shot regime. While cross-lingual
transfer still lags behind supervised learning when
sufficient in-language data are available, our work
is a step towards bridging this gap in the future.
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and Ivan Vulić. 2018. Isomorphic transfer of syntac-
tic structures in cross-lingual NLP. In Proceedings
of ACL, pages 1531–1542.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019.
Studying the inductive biases of RNNs with syn-
thetic variations of natural languages. In Proceed-
ings of NAACL-HLT, pages 3532–3542.

Shauli Ravfogel, Yoav Goldberg, and Francis Tyers.
2018. Can LSTM learn to capture agreement? The
case of Basque. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 98–107.

Hippolyt Ritter, Aleksandar Botev, and David Barber.
2018. Online structured Laplace approximations for
overcoming catastrophic forgetting. In Proceedings
of NIPS, pages 3738–3748.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Gary F. Simons. 2017. Ethnologue: Languages of the
world, 22nd edition. Dallas, Texas: SIL Interna-
tional.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NIPS, pages 3104–3112.

Corentin Tallec and Yann Ollivier. 2017. Unbias-
ing truncated backpropagation through time. arXiv
preprint arXiv:1705.08209.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W. Black, Lori Levin, and
Chris Dyer. 2016. Polyglot neural language models:
A case study in cross-lingual phonetic represen-
tation learning. In Proceedings of NAACL-HLT,
pages 1357–1366.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. In Proceedings of NIPS, pages
3630–3638.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neural net-
works using DropConnect. In Proceedings of ICML,
pages 1058–1066.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

2910

https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://www.aclweb.org/anthology/E17-2002
https://www.aclweb.org/anthology/E17-2002
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1992.4.3.448
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1992.4.3.448
http://aclweb.org/anthology/D18-1151
http://aclweb.org/anthology/D18-1151
https://arxiv.org/pdf/1803.08240
https://arxiv.org/pdf/1803.08240
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://www.aclweb.org/anthology/P19-1491
https://www.aclweb.org/anthology/P19-1491
http://phoible.org/
http://arxiv.org/abs/1807.05076
http://www.aclweb.org/anthology/E17-2102
http://www.aclweb.org/anthology/E17-2102
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
https://www.aclweb.org/anthology/W19-4302.pdf
https://www.aclweb.org/anthology/W19-4302.pdf
http://www.aclweb.org/anthology/D18-1039
http://www.aclweb.org/anthology/D18-1039
http://www.aclweb.org/anthology/D18-1039
http://cognet.mit.edu/sites/default/files/coli_a_00357.pdf
http://cognet.mit.edu/sites/default/files/coli_a_00357.pdf
http://cognet.mit.edu/sites/default/files/coli_a_00357.pdf
https://www.aclweb.org/anthology/P18-1142
https://www.aclweb.org/anthology/P18-1142
https://www.aclweb.org/anthology/N19-1356.pdf
https://www.aclweb.org/anthology/N19-1356.pdf
https://www.aclweb.org/anthology/W18-5412
https://www.aclweb.org/anthology/W18-5412
http://papers.nips.cc/paper/7631-online-structured-laplace-approximations-for-overcoming-catastrophic-forgetting.pdf
http://papers.nips.cc/paper/7631-online-structured-laplace-approximations-for-overcoming-catastrophic-forgetting.pdf
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://www.ethnologue.com
https://www.ethnologue.com
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1705.08209
http://arxiv.org/abs/1705.08209
http://www.aclweb.org/anthology/N16-1161
http://www.aclweb.org/anthology/N16-1161
http://www.aclweb.org/anthology/N16-1161
https://pdfs.semanticscholar.org/d1c4/c4c7989102e85b5248cebfcb0cb000c3b837.pdf
https://pdfs.semanticscholar.org/d1c4/c4c7989102e85b5248cebfcb0cb000c3b837.pdf
http://yann.lecun.com/exdb/publis/pdf/wan-icml-13.pdf
http://yann.lecun.com/exdb/publis/pdf/wan-icml-13.pdf
https://aclanthology.org/Q19-1040.pdf


A Character Distribution

Even within the same setting, BPC scores vary
enormously across languages in both the ZERO-
SHOT and FEW-SHOT settings, which requires an
explanation. Similarly to Gerz et al. (2018a,b), we
run a correlation analysis between language mod-
eling performance and basic statistics of the data.
In particular, we first create a vector of unigram
character counts for each language, shown in Fig. 1.
Then we estimate the cosine distance between the
vector of each language and the average of all the
others in our sample. This cosine distance is a mea-
sure of the ‘exoticness’ of a language’s character
distribution.

Pearson’s correlation between such cosine dis-
tance and the perplexity of UNIV BARE in each
language reveals a strong correlation coefficient
ρ = 0.53 and a statistical significance of p < 10−6

in the ZERO-SHOT setting. On the other hand, such
correlation is absent (ρ = −0.13) and insignifi-
cant p > 0.2 in the FEW-SHOT setting. In other
words, if a few examples of character sequences
are provided for a target language, language mod-
eling performance ceases to depend on its unigram
character distribution.

B Probing of Learned Posteriors

Finally, it remains to establish which sort of knowl-
edge is embedded in the universal prior. How to
probe a probability distribution over weights in
the non-conditional UNIV BARE language model?
First, we study the signal-to-noise ratio of each pa-
rameter wi, computed as |µi|σi , in each of the 4 splits.
Intuitively, this metric quantifies the ‘informative-
ness’ of each parameter, which is proportional to
both the absolute value of the mean and the inverse
standard deviation of the estimate. The probabil-
ity density function of the signal-to-noise ratio is
shown in Fig. 2. From this plot, it emerges that
the estimated uncertainty is generally low (small
σi denominators yield high values). Most crucially,
the signal-to-noise values concentrate on the left of
the spectrum. This means that most weights will
not incur any penalty for changing during few-shot
learning based on eq. (15); on the other hand, there
is a bulk of highly informative parameters on the
right of the spectrum that are very likely to remain
fixed, thus preventing catastrophic forgetting. All
splits display such a pattern, although somewhat
shifted.

Second, to study the effect of conditioning the

universal prior on typological features, I gener-
ate random sequences of 25 characters from the
learned prior in each language. The first character
is chosen uniformly at random, and the subsequent
ones are sampled from the distribution given by
eq. (1) with a temperature of 1. The resulting texts
are shown in Table 4. Although this would warrant
a more thorough and systematic analysis, from a
cursory view it is evident of the sequences abide
with universal phonological patterns, e.g. favor-
ing vowels as syllabic nuclei and ordering conso-
nants based on sonority hierarchy. Moreover, the
language-specific information clearly steers pre-
dicted sequences towards the correct inventory of
characters, as demonstrated by Vietnamese (VIE)
and Lukpa (DOP) in Table 4.
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LIT javen šuksyr sun siriai tes pije nuks SHI ereswrin an daγtartnaas ni mad yanó
NOR s hech far binje alrn bre a ver e hior JAK fi pelo ayok musam nejaz jih tewat ushi
KEK sx er taj chan linam laj âtebke naque SWE ssiar řades perdeshen heklui tart si a
JIV da tum suuam sιtas nekkin una tekaru ni DIK e wEn ke nuN ni piyitia de run ye e ke
DJE a ciya toi milkak mo to yen nga suci EWE å mula pe ose le ake mente amesa ke kul
SLK o je to temokoé lostave sa jesé gukli ALB I kur je ki thet je ji tin nuk t tho
CES e je jek jem neuteN rekssýj jazá níb ws CNI u pen mireshisinoe airitcsa ateani yi
POR uč somo ai jegparase saves e iper to POT neta ynimka nekin linaayi meu carií a
SPA esquár y lues dusme allis nencec adi ZUL ởnakan kuná bencro krileke konusti k
GLV ayr shżi ayn ai sephson a gil or geee QUW ai chimira kachisinyra poi apre asyu
POL eteni na hidi cếho oż swchj jeci i cil AGR ji ica ama kujaa muri wajetar aumam hu
QUC ûs xe cä wija ro pio kin cbi’ ij jejac DOP btElO ι telaγa kO nει zûγι nEk@ pO
WAL banjake la dos que benthi shivegina EUS cerer nagcermac istirinun qatserite
XHO ukayla azigeecoa kosubentisiili jen maky HUN elyet a bukot aky azraá ot mu háláj y
SOM ao kun adku i sir jija i befey yadui GLA o e kere hhó sho dhöìr te ilailui a tu a
TGL ikugy peo asha atan kao amai kain ak a PCK u gihiha ki mi dhia mea la hen a puh ih
CJP pae yei aje kin trheka pän awawa ri s AFR mal hoor in e sheei wer var buerkeas en
ACU animmhi mustatur tukaw aants aastasai a USP okan mi ykis ris rajajkujij taka ja
FIN i koin suu meit ja ii soi tetot jasw IND t berka duhah menkad kemia ukus keri ya
MRI oki ka benoka ai ki kimanka pikaka ko ROM hal kus seke nukertia dehe neshes hos n
SLV čičvim koko si neče pau ku meta noj ne TMH @rofm sibarn awigtir εli d usi leped
HRV ca ka te zet jon jem nezin isak ve u ITA tri cordia io si si conse de namni nel
EPO j li inij keris ec xom el e sepon kaj SRP e se a nil do zasom kuz je sefe nij hoč
AMU ḿibinya na ñero melee cano’ ndo’ cy’oc NLD e suet en de semeshord ak abaido zin
KBH ẍe aquangmomnaynangmuacha tojam LAT ifte quissi fetam remnas emens in timnex
CEB abithon kayay isa atoug giraban sula MAM í la Nil a cheh tjea nut tej quxen kaj
GBI fuma ome pani de imoako kema kaye ntul VIE hẩ kì đãi bi ầt ni γì sa hiổ vū r
ENG g ban urse auth ahen ant msesher at nhe
ISL j noka nie leli maken ti aide ni itsim a EST inam acha dius dempegun geben parug j
SNA xe yare ske tengker ci bendar nu derbe CHA ê duka ka kina kia nextis ne aka nisa
RON ma awa nasil ko khe ni koy koj tikis t FRA dis assan in man usia issokoj mulel e me
KAB je cana ka casa chomdis mear de ber h DJK okrana anginar matom iliantarinta a non
NHG chun neyal den ma kashtaka asa as riste LAV ilu kagsa eriri isi paj ewri bus os
DAN dnepse aa aye sas ningli inas giksaj abe BSN as juhma yainawa nusa wali apai basti
PPK ios yena mona kemewascoj ni ne maa HAT a kuneati ua veskos oramaj meseqen ye k
SSW nta yoti gesi kela nii ikasgaber ni tus TUR che a shachmo ềspi meng rinnaj e ish em
WOL alen kokpan fed man benu pei ei kestam AKE n jes silem semmo caja arka wagtoa doo
DEU ke giko si obi rer nin eber tun ke ele CHQ shas nej neysakun kina alistad mesabe
CAK tej je awem titoj lunik c’u chis m ni PLT Vwi meyak me imai anet alavis edte kin

Table 4: Randomly generated text on observed languages (top) and held-out languages (bottom) in the 4th split.
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Figure 1: Unigram character distribution (x-axis) per language (y-axis). Note how some rows stand out as outliers.
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Figure 2: Probability density function of the signal-to-noise ratio for each parameter of the learned posteriors in
the UNIV BARE language models on splits 1 (blue), 2 (red), 3 (green), 4 (gold). The plot is in log-log scale.
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C Derivation of the Laplace Approximation

p(w | D) =
exp
(
L(w)

)∫
exp
(
L(w)

)
dw

Bayes rule

≈ exp
[
L(w?) + (w −w?)>∇L(w?) + 1

2(w −w?)>H (w −w?)
]∫

exp
[
L(w?) + (w −w?)>∇L(w?) + 1

2(w −w?)>H (w −w?)
]

dw
Taylor expansion

=
exp
[
L(w?) + 1

2(w −w?)>H (w −w?)
]∫

exp
[
L(w?) + 1

2(w −w?)>H (w −w?)
]

dw
∇L(w)|w? = 0

=
exp
(
L(w?)

)
exp
[
−1

2(w −w?)>(−H) (w −w?)
]

exp
(
L(w?)

) ∫
exp
[
−1

2(w −w?)>(−H)(w −w?)
]

dw
exponential of sum

=
exp
[
−1

2(w −w?)>(−H)(w −w?)
]√

(2π)d |−H|−1
integration and simplification

, N (w?,−H−1)
(19)

D Derivation of the Approximated Hessian

We assume w ∼ N (0, σ2I). Given the relationship among the expected Fisher Information I(w), the
observed Fisher Information J (w), the observed Fisher Information based on |D| samples JD(w), and
the Hessian H:

−I(w) = −EJ (w) ≈ − 1

|D|JD(w) =
1

|D| H =
1

|D|∇
2L(w) (20)

we can derive our approximation of 1
|D| H:
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1

|D|∇
2L(w)

=
1

|D|∇
2

(∑
`∈T

log p(D` | w) + log p(w)

)
definition of L(w)

=
∑
`∈T

∑
x∈D`

1

|T | · |D`|
∇2 log p(x | w) +∇2 log p(w) linearity of∇2

=
∑
`∈T

∑
x∈D`

1

|T | · |D`|
∇
(∇p(x | w)

p(x | w)

)
+∇2 log p(w) derivative of logarithm

=
∑
`∈T

∑
x∈D`

1

|T | · |D`|
p(x | w)∇2p(x | w)−∇p(x | w)∇p(x | w)>

p(x | w)2

+∇2 log p(w) quotient rule

=
∑
`∈T

∑
x∈D`

1

|T | · |D`|

[
∇2p(x | w)

p(x | w)
−
(∇p(x | w)

p(x | w)

)(∇p(x | w)

p(x | w)

)>]
+∇2 log p(w) rearrange and simplify

=
∑
`∈T

∑
x∈D`

1

|T | · |D`|

[∇2p(x | w)

p(x | w)
−∇ log p(x | w)∇ log p(x | w)>

]
+∇2 log p(w) derivative of logarithm

≈
∑
`∈T

1

|T |

Ex∼ p(·|w)
∇2p(x | w)

p(x | w)
− 1

|D`|
∑
x∈D`

∇ log p(x | w)∇ log p(x | w)>


+∇2 log p(w) sample average as expectation

=
∑
`∈T

1

|T |

∫ ∇2p(x | w)

p(x | w)
p(x | w) dx− 1

|D`|
∑
x∈D`

∇ log p(x | w)∇ log p(x | w)>


+∇2 log p(w) expectation as integral

=
∑
`∈T

1

|T |

∇2

∫
p(x | w) dx− 1

|D`|
∑
x∈D`

∇ log p(x | w)∇ log p(x | w)>


+∇2 log p(w) simplify

=
∑
`∈T

∑
x∈D`

−1

|T | · |D`|
∇ log p(x | w)∇ log p(x | w)> +∇2 log p(w) derivative of constant

≈
∑
`∈T

∑
x∈D`

−1

|T | · |D`|
diag

[
∇ log p(x | w)

]2
+∇2 log p(w) diagonal approximation

=
∑
`∈T

∑
x∈D`

−1

|T | · |D`|
diag

[
∇ log p(x | w)

]2
− 1

σ2
I second derivative of log-probability

(21)

2915


